
Technical Guideline TR-03165 Trusted
Service Management System
Version 1.1
December 4th, 2023

Document History
Vers. Date Description
1.0 31.05.2022 • created initial document

1.1 04.12.2023 • REST-API changes:
• added several conditional rules for data modifications
• ApplicationConfig: changed installConfig from “Mandatory” to “Optional”
• FeatureConfig: renamed cspFull to useCspFull
• FeatureConfig: added keyProvisioningMode and keyIndex
• PersonalizationConfig: added includeSecurityDomainDiversificationData
• PersonalizationConfig: added attribute certificateId and removed it from

PersonalizationScript
• added spId to Service, ELF, ApplicationConfig, PersonalizationScript, Certificate,

SposConfig
• added serviceId to Version, Flavor
• added elfId to EM
• widened scope of Error Category 1002
• changed API method parameter in linkSecureComponentProfiles from

Map<string,string[]> to Map<string,string>
• corrected URL in 4.1.6.5.10
• removed request content type in 4.1.6.4.15 Publish Flavor
• changed description, content-type and request body in 4.1.6.1.1 Create Access

Token
• clarified Mandatory/Editable attribute properties: tag and priority are now optional,

filename is now mandatory
• TSM-API changes:

• added new method setAccessToken
• Error Types: renamed INVALID_REQUEST to INVALID_ARGUMENT
• Error Types: renamed CONTENT_RELATED_E to SECURE_COMPONENT_E
• Error Types: renamed INVALID_STATE to NOT_ALLOWED
• Error Types: added ALREADY_EXISTS, UNAUTHORIZED, ISSUER_ERROR,

NOT_FOUND, OVERLOAD_PROTECTION, UNDER_MAINTENANCE
• Error Types: Clarified some Descriptions
• AttestationToken: changed type of masterKeyIndex to UUID
• Corrected return values for 4.2.5.1, 4.2.5.2, 4.2.5.9 to Future< >.

• Added attribute “signer validity” to attestation token in Appendix A

• Updated reference for TR-CSP

Federal Office for Information Security
Post Box 20 03 63
D-53133 Bonn
E-Mail: mobile-eid@bsi.bund.de
Internet: https://www.bsi.bund.de
© Federal Office for Information Security 2023

Table of Contents

Federal Office for Information Security 3

Table of Contents
1 Introduction ... 5

2 Overview ... 6

2.1 Roles ... 6

2.1.1 Handset User ... 6

2.1.2 Secure Component Issuer ... 6

2.1.3 Service Provider .. 6

2.1.4 Trusted Service Manager .. 7

2.2 Infrastructure Components .. 7

2.2.1 Handset ... 8

2.2.2 Secure Component .. 8

2.2.3 Cryptographic Service Provider .. 8

2.2.4 SP App .. 9

2.2.5 SP Secure Application .. 9

2.2.6 TSM-Backend ... 9

2.2.7 TSM-API SDK ... 9

2.2.8 Service Provider Online System ... 9

3 Implementation .. 10

3.1 Data Model ... 10

3.2 Life-cycle Management .. 11

3.2.1 Life-cycle Management Processes of Secure Applications .. 11

3.2.2 Service Instances and Service Instance Life-cycle ... 13

3.2.3 Orphaned Service Instances .. 15

3.3 Eligibility Check and Device Check ... 15

3.3.1 Eligibility Check ... 15

3.3.2 Device Check .. 18

3.4 Secure Application Attestation Mechanism .. 18

3.5 Logging and Error Handling ... 19

3.5.1 Sequence Logging with History.. 19

3.5.2 TSM-API Logging Callback ... 20

4 Interfaces ... 21

4.1 TSM-Backend REST-API... 21

4.1.1 TSM Base URL .. 21

4.1.2 Overview ... 21

4.1.3 Security ... 24

4.1.4 Data Types .. 24

4.1.5 Common Definitions ... 38

Table of Contents

4 Federal Office for Information Security

4.1.6 Interface Methods ... 41

4.2 TSM-API .. 81

4.2.1 Overview ... 82

4.2.2 Security ... 83

4.2.3 Data Types .. 83

4.2.4 Common Definitions ... 88

4.2.5 Interface Methods ... 92

4.2.6 Usage Example ... 102

4.3 SPOS-Service .. 105

4.3.1 Base URL .. 105

4.3.2 Overview ... 105

4.3.3 Data Types .. 105

4.3.4 Interface Methods ... 107

Appendix A: Attestation Token .. 108

Terms and Abbreviations .. 111

List of Figures and Tables ... 112

References ... 113

1 Introduction

5 Federal Office for Information Security

1 Introduction
Many aspects of everyday life have changed over the last years due to the ubiquitous market penetration of mobile
devices. However, the use of these devices for online government and business comes with a high security
demand and is not very prevalent yet. As a necessary foundation for further transaction authorizations, payments
and other applications with high security demands, sufficiently secure mechanisms for identification and
authentication of users have to be established for mobile devices.

A severe security problem of mobile devices is their complexity, as, e.g., compared to a hardware token in form of
a smartcard, combined with the persistent threat of remote attacks. This forbids the implementation of
authentication mechanisms relying on the Rich Operating System (Rich OS) of the mobile device. A solution to
this problem is given by resorting to Secure Components (SC), nowadays widely present on mobile devices, such
as Secure Elements (SE), Universal Integrated Circuit Cards (UICCs) and embedded Universal Integrated Circuit
Cards (eUICCs). Due to the relatively low complexity and the inherent access mechanisms, such secure
components are ideal to serve as security anchors for secure services and authentication mechanisms on mobile
devices.

However, due to the access mechanisms of secure components, their comparably complicated ownership
structure, and a quickly evolving portfolio of deployed SCs, it is not feasible for a single Service Provider (SP),
e.g., an identity provider or a public transport provider, to negotiate access to the secure components on the
various handsets of the SP's customers. The other way round, it is not feasible for the Secure Component Issuers
(SCIs), like globally active handset vendors or mobile network operators, to engage in business relations with a
large number of local service providers.

A suitable approach to attenuate these problems is to establish a Trusted Service Management System (TSMS). In
such a system, one or several Trusted Service Managers (TSMs) serve as a single point of contact for service
providers and secure component issuers. As a trusted business partner of SCIs, a TSM negotiates access to the
secure components and administers necessary access privileges contracted by the SCIs. As a trusted business
partner of service providers, a TSM is responsible for the provisioning the SP's secure application onto the SCs of
the SP's customers mobile devices.

Thus, a TSM occupies a central and powerful position within the TSMS. As part of the governmental task to
foster the society's digital progress, it has to be assured that up-to-date security standards are met and that every
TSM in the scope of this document offers non-discriminatory market access to all potential service providers.

The purpose of this Technical Guideline (Technische Richtlinie, TR) is to define a set of APIs that SHALL be
offered by every TSM and security requirements that SHALL be fulfilled by every TSM in the scope of this TR. It
is not concerned with a specific application that depends on a TSM.

This TR is organized as follows. In Chapter 2, an overview over the roles and infrastructure components of a
TSMS is given. Chapter 3 covers the data model and life-cycle management of secure applications. In Chapter 4,
the interfaces between TSM and SPs are specified.

2 Overview

6 Federal Office for Information Security

2 Overview
The term TSMS describes a system consisting of handset users, service providers, secure component issuers, and
trusted service managers that aims to provide services with high security demand for mobile handsets. In this
chapter, an overview over the general concept of a TSMS as well as the different roles and infrastructure
components and their interaction is given.

2.1 Roles

2.1.1 Handset User
A handset user is in possession of a mobile device. By installing a service provider’s app, a handset user indirectly
triggers the installation of the corresponding secure application (see Section 2.2.5) by a TSM. There is no direct
communication between handset user and TSM. If user input is necessary for the life-cycle management of the
secure application, it is communicated through the SP app.

2.1.2 Secure Component Issuer
A secure component issuer holds the full access rights to a SC and operates a service to (remotely) manage the
SC, e.g. a GlobalPlatform (GP) Admin Agent and GP Admin Server [GPD_SPE_008]. A SCI provides TSMs an
interface to create Supplementary Security Domains (SSDs) and to retrieve the cryptographic keys necessary to
access and manage these SSDs. Details may vary, e.g. based on the chosen Secure Channel Protocol for SSD
administration, and are not in the scope of this TR.

2.1.3 Service Provider
A service provider offers an online service, e.g. an eGovernment or eBusiness service, to handset users. For
integration in the TSMS, the service has to be offered via a mobile app. In addition to the mobile app, which runs
in the Rich OS of the handset, the offered service depends on a secure application which covers parts of the
service with high security demand, e.g. cryptographic functionalities or the storage of data with high integrity
demand, and which has to be installed on the SC of the handset. A secure application usually consists of at least
one Java Card applet, but can be more complex if necessary for the offered service (see Section 3.1). In any case,
the service provider develops this secure application and forwards it to a TSM for installation on the SC. Different
Flavors (see Section 3.1) of a secure application might be necessary for different types of secure components or
secure component operating systems. It is recommended that the secure application is certified according to the
security needs of the specific service (see also Section 2.2.2).

To provide secure applications, the SP communicates with a TSM’s backend via an interface provided by the
TSM. On the handset, a SP app communicates with the TSM-API SDK to trigger life-cycle management
processes of the secure application on the SC. Once a service is fully operational, a SP app directly communicates
with the SP’s secure application without further involvement of a TSM or the TSM-API SDK.

The SP is also responsible for the personalization of the secure application with personal data of the handset user,
if necessary for the service. The personalization process can be supported by a TSM, especially if the necessity for
TSM involvement arises due to the applicable standards or regulatory guidelines as well as technical limitations of
the underlying secure component. This personalization with personal data must not be confused with the
personalization of a SSD on the SC, which is a task that has to be performed by the TSM and does not involve any
personal data of the handset user.

For service providers, participation in the TSMS SHALL be possible without the necessity for direct
communication or direct business relations between SP and SCI.

2 Overview

Federal Office for Information Security 7

2.1.4 Trusted Service Manager
A TSM provides and operates the infrastructure for the provisioning and life-cycle management of SP’s secure
applications. A TSM maintains business relations to various SCIs, and holds the necessary rights contracted by the
SCIs to gain access to their SCs. Furthermore, a TSM acts as a single point of contact for SPs.

A TSM offers life-cycle management processes of SPs’ secure applications as a service to the SPs and is
responsible for checking the eligibility of the SC on the handset during the provisioning process of a secure
application. Application specific services are not in the focus of a TSM. However, a TSM may support application
specific services, if necessary or requested by the respective service provider. In particular, processes SHOULD
be supported by a TSM, if the necessity for TSM involvement arises due to the applicable standards or regulatory
guidelines. The secure applications themselves have to be developed and provided by the SPs.

Where applicable, TSM processes and TSM services offered to the SP, e.g. communication via TLS or the
creation of cryptographic keys, MUST be in accordance with BSI-TR-03116 [TR-03116]. If necessary for
interoperability, justified exceptions are possible in consultation with the BSI.

Where applicable, services provided by the TSM SHALL be run from a secure server in terms of ISO/IEC 27001.

2.2 Infrastructure Components
As an overview, the components of the TSMS infrastructure are schematically depicted in Figure 1. A brief
description of the components and connected processes reads as follows.

Figure 1: Schematic representation of the TSMS infrastructure components.

A SP provides and manages the SP app, the corresponding backend, including an optional Service Provider
Online System (SPOS) for TSM-related order- and status management, and the secure application for the service.
For installation of the secure application on the SC of the mobile device, the SP establishes a contract with the
TSM. The TSM maintains contracts with the SCI to obtain access to the SC and the Cryptographic Service
Provider (CSP) on the handset.

On demand of the SP app, the provisioning of the SP’s secure application is triggered via the TSM-API. The TSM
first checks the eligibility of the SC, then deploys and initializes the secure application on the SC. Once the secure
application is functional and ready to be personalized with customer data by the SP, the communication between
the SP’s app and secure application is based on mechanisms provided by the handset only, without necessity for
further involvement of the TSM-API SDK. If the installed secure application requires an update or should be

2 Overview

8 Federal Office for Information Security

deleted, the corresponding processes are triggered by the SP app via the TSM-API, after which the TSM performs
the requested services. Communication between SP app and TSM-API SDK is limited to technical necessities, but
additional information accompanying life-cycle management processes may be exchanged between TSM-
Backend and SPOS. At any time, independent of the provisioning process, the SP app may trigger a device check
via the TSM-API. Scope of this comparably fast check is to yield an educated guess if a device will be eligible for
a specific service.

2.2.1 Handset
For compliance with the TSMS infrastructure, a handset MUST provide at least one secure component that is
supported by a TSM. Communication with the SC via Open Mobile API (OMAPI) [GPD_SPE_075] MUST be
supported by the handset.

2.2.2 Secure Component
Due to the quickly evolving availability and market penetration of secure components, it is not feasible to define a
stringent and concluding list of SCs which have to be supported by a TSM. Therefore, this section only provides a
brief overview over adequate secure components oriented at the security level the TSMS aims for.

Preferential secure components are characterized by a meaningful security certification, the inclusion of a CSP,
and a strict separation on hardware level from the Rich OS of the handset. Examples for such preferential SCs are

• embedded Secure Elements with CSP, Common Criteria (CC) certified at least at Assurance Level
EAL4+AVA_VAN.5,

• Universal Integrated Circuit Cards with CSP, CC certified at least at Assurance Level
EAL4+AVA_VAN.5,

• embedded Universal Integrated Circuit Cards with CSP, CC certified at least at Assurance Level
EAL4+AVA_VAN.5.

With the goal of high market coverage, additional SCs could be included into the TSMS. Such additional SCs are
characterized by a potential lower security level as compared to preferential SCs, yet the market coverage they
provide might outweigh potential risks. It is important to note that an arbitrary lowering of the security level, e.g.
with purely software-based SC solutions, is not in accordance with the goals of the TSMS. Examples for
acceptable additional secure components are

• embedded Secure Elements without CSP, Common Criteria (CC) certified at least at Assurance Level
EAL4,

• Universal Integrated Circuit Cards without CSP, CC certified at least at Assurance Level EAL4,

• embedded Universal Integrated Circuit Cards without CSP, CC certified at least at Assurance Level EAL4,

• Trusted Execution Environments with dedicated hardware support for key management, to be evaluated on
a case-to-case basis.

Generally, a TSM has to decide if a secure component is eligible to be included into the system. For a specific
service, the decision which security level and which secure components are adequate is to be determined by the
respective service provider and is to be considered by the TSM for the eligibility check as described in Section
3.3.1.

2.2.3 Cryptographic Service Provider
To allow installation of Common Criteria certified secure applications without the demand of a composite
certification of a secure application on top of each type of secure component, it is beneficial to encapsulate the
cryptographic functionalities in a Cryptographic Service Provider [TR-CSP], which provides secure cryptographic
service to secure applications. The CSP’s security services are logically separated from the secure application and

2 Overview

Federal Office for Information Security 9

provided through well-defined external interfaces. Consequently, the security functionalities of the secure
application can be certified independently.

Due to these benefits, secure components with CSP according to [PP-CSP] or CSP Light according to [PP-CSP-
Light] are preferable over secure components without CSP.

2.2.4 SP App
A SP app is a mobile application offered by a SP to handset users.

A SP app MUST support communication with the TSM-API SDK via the TSM-API as specified in Section 3. A
SP app MUST be able to communicate directly (e.g. via OMAPI) with the corresponding secure application.

Before triggering the installation of a secure application, a SP app SHOULD check if the handset provides the
hardware and software required for the offered service. To support this task, a TSM SHALL provide a device
check which offers information about the eligibility of the handset for participation in the TSMS as a convenience
function via the TSM-API (see Section 3.3.2). This device check may not cover all aspects a SP has to check and
is not to be confused with the full eligibility check of the secure component, which has to be performed by a TSM
as part of every provisioning process (see Section 3.3).

If the specific service requires the secure application to be personalized with personal data of a handset user, the
SP app SHOULD implement the functionality to delete this personalized data or make it temporarily or
permanently inaccessible on request of the handset user without involvement of the TSM or the TSM-API SDK.

A SP app SHOULD provide mechanisms for the service provider to block the installation of the secure
application, respectively to block access to the already installed secure application without involvement of the
TSM or TSM-API SDK.

2.2.5 SP Secure Application
A secure application covers parts of an offered service with high security demand, e.g. cryptographic
functionalities, or the storage of data with high integrity demand. A secure application usually consists of at least
one Java Card applet which has to be installed on a SC of a handset. In the employed data model (see Section 3.2),
the practical implementation of a secure application on a handset is called a Service Instance.

2.2.6 TSM-Backend
A TSM-Backend is an IT-system of a TSM that provides TSM-services in form of a REST-API (see Section 4.1).
It acts as a repository for secure applications in different Flavors, configurations, and resources that are necessary
to install a secure application.

2.2.7 TSM-API SDK
The TSM-API (see Section 4.2) is a message-based interface that provides methods to trigger life-cycle
management processes of secure applications on secure components. A TSM SHALL provide a library (TSM-API
SDK) which implements this interface for integration into SP apps.

2.2.8 Service Provider Online System
A SP Online System (SPOS) is an IT-system of a SP that provides a REST interface to a TSM (see Section 4.3). A
SPOS enables a TSM to send the result of life-cycle management actions on a handset to the corresponding SP.
Providing a SPOS is optional for SPs.

The communication between TSM-Backend and SPOS SHALL take place via mutual HTTP with TLS (HTTPS)
encryption.

3 Implementation

10 Federal Office for Information Security

3 Implementation
A TSMS implementation consists of at least two parts:

• TSM-Backend

• TSM-API SDK

The TSM-Backend is the heart of the TSMS and holds all data needed to manage the life-cycle of secure
applications. The data model described in Section 3.1 is a subset of this data structure and concentrates on entities
needed to initially configure secure applications via the TSM-Backend REST-API.

Installation, update, removal, or other life-cycle changes are triggered via the TSM-API SDK by the SP app using
the TSM-API. Section 3.2 lists and describes all possible life-cycle states and their characteristics.

All hardware-specific variations needed to support different smartphone hardware platforms must be configured
in the TSM-Backend via the REST-API. For example, in case different secure application binaries are needed to
support different platforms, all of them must be uploaded to the TSM-Backend. Section 3.3 describes the process
of checking those requirements to prove eligibility of the device and to automatically select the secure application
matching the concrete hardware platform.

In some cases it is necessary to prove integrity and authenticity of a secure application which is already installed
on a handset. This can be done via the attestation mechanism specified in Section 3.4.

Logging is an essential feature to detect and correct errors. Suggestions for the implementation of logging in the
TSM are given in Section 3.5.

3.1 Data Model
For the life-cycle management of secure applications, data provided by the respective SP has to be stored in the
TSM-Backend. This data is represented by the data model shown in Figure 2 and briefly discussed in the
following paragraphs.

The central entity, the Service Provider is shown in orange. Class entities, like Service and Flavor, are shown in
dark blue, while helper classes are shown in light blue. As the top-level entity, besides the Service Provider itself,
a Service represents the functionality that should be provisioned onto a secure component. Please note that we use
the term service in a twofold way, for the whole service offered by a SP to its customers, and as an entity in the
secure application data model. A Service may have different Flavors. Flavors are specific realizations of a
Service. While the basic functionality is the same, different Flavors cover different characteristics and necessities
of different underlying platforms, which are represented by SecureComponentProfiles. A Flavor comes with
(typically) one or more Executable Load Files (ELFs). ELFs are containers of executable code on a secure
component [GPC_SPE_034]. A realization of a Load File is a Java Card CAP-File, which contains the Load File
Data Block and, optionally, a manifest file that is used to retrieve information regarding the content of the CAP
file. An ELF may contain several Executable Modules (EMs). An EM represents executable code on a secure
component of a single application that can be used for the instantiation of application instances. An example of an
Executable Module is a Java Card Applet.

These entities are augmented by various additional components. First of all, a Service has different Versions that
can be used for versioning and updating. Other components cover specific requirements and configuration
instructions for Flavors, ELFs, and EMs. E.g., during the installation process, the instantiation of application
instances from an Executable Module is configured with the ApplicationInstantiationConfig, which itself relies
on, respectively specifies, a more general ApplicationConfig. Several further components of the data model are
omitted for this overview, but will be discussed in Section 4.1.3.

Last but not least, the SposConfig is used to configure access to a SP backend for the delivery of order- and status
management related data. A single SposConfig may be used by multiple Services.

3 Implementation

Federal Office for Information Security 11

Figure 2: Overview of the secure application data model as discussed in the text.

3.2 Life-cycle Management
This section is concerned with life-cycle management processes of secure applications. Section 3.2.1 covers
general aspects, while more detailed information on the specific life-cycle of the practical realization of a secure
application, a Service Instance, is given in Section 3.2.2.

3.2.1 Life-cycle Management Processes of Secure Applications
A TSM provides an interface (TSM-API), which a SP app can use to trigger life-cycle management processes of
SP’s secure applications and to retrieve status information about the process status and progress. The TSM-API
SHALL be provided to the SPs via a software library for direct integration into the SP app.

A TSM performs life-cycle management of a SP’s secure application on a SC on request of the corresponding SP.
A lifecycle management process is performed for operation requests which commonly result in a state change of
the secure application Service Instance, that is

• the deployment (provisioning) of a secure application on a SC,

• the update of a deployed Service Instance of a secure application,

• suspend or resume a Service Instance of a deployed secure application,

• the removal of the Service Instance of a secure application from the SC.

Apart from that, the TSM provides functions as part of TSM-API SDK which are not associated with the
execution of a lifecycle management process. These are

3 Implementation

12 Federal Office for Information Security

• functions to obtain a Service Instance ID or to query the current state of a Service Instance (see Section
3.2.2),

• operations provided to perform the Device Check (see Section 3.3.2).

A process starts with the successful submission of a request from the TSM-API to the TSM-Backend and ends
with the last processing step performed by the TSM. The transmission of the process result itself is not part of the
process. Each process is uniquely identified by an ID that can be used as reference, e.g. within the context of
order- and status management.

The TSM-API SHALL notify the SP app about the start, end, and result of the process execution. If the
notification about the process start cannot be delivered to the SP app, the process execution SHALL be aborted
with an according error. Additionally, process results SHALL be reported to a SPOS via the SPOS-Service API, if
a SPOS for this purpose is provided by the SP.

3.2.1.1 Provisioning of Secure Applications
On request of the SP app via the TSM-API and after a successful eligibility check (see Section 3.3.1), a TSM
provisions a SP’s secure application on the SC chosen during the check. The provisioning process includes the
loading and installation of necessary components in the extent agreed between SP and TSM and optional
personalization and activation. The TSM SHOULD perform the installation and personalization as requested by
the SP’s configuration instructions. Once the secure application has been provisioned, the secure application
MUST be fully functional.

Figure 3: BPMN 2.0 diagram of the simplified installation process of a secure application.

The installation process is illustrated in Figure 3 by a simplified Business Process Model and Notation 2.0 (BPMN
2.0) diagram.

3.2.1.2 Update of Secure Applications
The update of a secure application is initiated by an update request sent from the SP app via the TSM-API. To
perform an update, the new secure application version MUST be available to the TSM, i.e. the new version
SHALL be supplied to the TSM by the SP in advance.

After an update, a secure application MUST be fully functional. The update process SHOULD NOT come with
the necessity for a new personalization with personal data of the handset user, i.e. the data stored in the secure

3 Implementation

Federal Office for Information Security 13

application SHOULD be maintained, if the SC and the secure application provide the necessary mechanisms. If
maintaining the respective data is not possible, the SP, not the TSM, is responsible for the new personalization
with personal data of the handset user.

3.2.1.3 Removal of Secure Applications
A TSM SHALL delete installed secure applications or their components on request of the SP app. A TSM
SHALL NOT delete installed secure applications or their components without the permission of the corresponding
SP.

When a secure application is deleted from the handset, a TSM SHALL assure that any personal data associated
with the secure application is permanently inaccessible or removed.

3.2.2 Service Instances and Service Instance Life-cycle
Service Instances, the practical realization of secure applications, are configured via the data model described in
Section 3.1 and created from Services through function calls via the TSM-API. Service Instances have a
manageable life-cycle, which is described in the following.

A SP can retrieve the current life-cycle state of a Service Instance at any time with a call to getServiceInstances or
as a result of a process execution. In case of an error during the process execution that results in an erroneous state
of the Service Instance, the state before the process start is not automatically restored but the targeted Service
Instance transitions to the life-cycle state InError. A SP can then decide whether the erroneous Service Instance
shall be terminated, or missing steps shall be performed to reach the targeted life-cycle state, e.g.,
UnderDeployment:Installed.

The life-cycle of a Service Instance begins with a successful createServiceInstance request by the SP and ends
with a successful call to terminateService. The different life-cycle states and their transitions are shown in Figure
4 and described in the following.

3 Implementation

14 Federal Office for Information Security

Figure 4: Flow chart of the Service Instance life-cycle.

• Not Deployed
The state Not deployed is the initial state for each Service Instance. In this state, no components of the Service
are deployed on the SC. In the state Not deployed a new Service Instance is created through a successful call to
createServiceInstance. During the execution of createServiceInstance, an Eligibility Check is performed.

• UnderDeployment:Initialized
A Service Instance reaches the UnderDeployment:Initialized state once the TSM has sent an onProcessStart
notification for a deployService or updateService request. In this state, the deployment of a Service has started
but not all components of the Service have been loaded and/or installed.

• UnderDeployment:Installed
A Service Instance reaches the UnderDeployment:Installed state when the execution of the
InstallServiceCommand of a deployService or updateService function call has finished. In this state the loading
and installing of all components of the Service as defined by the SP has been performed.

• UnderDeployment:Personalized (Optional)
A Service Instance reaches the optional UnderDeployment:Personalized state when the execution of the last
PersonalizeServiceCommand of a deployService or updateService function call has finished. In this state, the
Service has been personalized (e.g., by executing personalization scripts) as required by the SP.

3 Implementation

Federal Office for Information Security 15

• UnderDeployment:Activated (Optional)
A Service Instance reaches the optional UnderDeployment:Activated state when the execution of the
ActivateServiceCommand of a deployService or updateService function call has finished. The transition from
UnderDeployment states to Deployed states is triggered when the execution of a deployService or
updateService function call that indicates the finalization of the service deployment has finished successfully.
A SP can decide if the personalization and/or activation of a Service needs to be performed for the Service
Instance to be considered Deployed.

• Deployed:Operational
A Service Instance reaches the Deployed:Operational state when the execution of a deployService or
updateService function call that indicates the finalization of the service deployment has finished successfully.
Another possibility to reach Deployed:Operational is the successful execution of a suspendOrResumeService
function call from the state Deployed:Suspended. In this state, the Service Instance is ready to be used by the
SP.

• Deployed:Suspended
A Service Instance reaches the Deployed:Suspended state when the execution of a deployService or
updateService function call that has indicated the finalization of the Service deployment and that contains an
ActivateServiceCommand with SuspensionControl set to true has finished. Another possibility to reach
Deployed:Suspended is the successful execution of a suspendOrResumeService function call from the state
Deployed:Operational. In this state, the Service Instance cannot be used by the SP.

• In Error
A Service Instance reaches the InError state when an error occurs during the execution of a function call that
caused a change to a component of the Service. If the error occurred at a time when no change to secure
components has been applied, the Service Instance remains in the current life-cycle state. In the InError state,
function calls can be made to perform a transition to other life-cycle states.

3.2.3 Orphaned Service Instances
A Service Instance which is in the UnderDeployment, Deployed or InError state is orphaned if the associated
Flavor has been removed by the SP. By removing a Flavor, the SP indicates that the service configuration implied
by the Flavor is no longer applicable. Thus, specific life-cycle rules for state transitions apply for orphaned
Service Instance.

• An orphaned Service Instance at Deployed:Operational state may be suspended by executing the
SuspendOrResumeService function call.

• An orphaned Service Instance at Deployed:Suspended state may be resumed by executing the
SuspendOrResumeService function call.

• An orphaned Service Instance may be terminated by executing a TerminateService function call which
results in the removal of all components of the Service installed on the SC.

Other state transfers are invalid and will result in an error of the related process execution.

3.3 Eligibility Check and Device Check

3.3.1 Eligibility Check
For the installation of a secure application, a TSM SHALL perform an Eligibility Check (EC) to confirm that the
handset is equipped with at least one eligible SC that can be accessed and managed by the respective TSM. The
eligibility of a SC depends on the specific Service and secure application to be provisioned as well as on the TSM
performing the EC. For a SC to be eligible, the following conditions MUST be fulfilled:

• The SC SHALL successfully pass an authenticity check (see Section 3.3.1.1).

3 Implementation

16 Federal Office for Information Security

• The SC SHALL be in accordance with technical requirements and security requirements of the TSM and of
the secure application to be provisioned. This includes the availability of a matching Flavor of the secure
application (see Section 3.3.1.2).

• An application instance of the secure application to be provisioned SHALL NOT already be present on the
SC. Additionally, a TSM SHALL check, within the accessible scope of the particular TSM, if an
application instance of the secure application is already present on another SC on the handset.

All information for the EC SHALL be collected dynamically and directly on the handset without communication
to other entities, if the SCs under consideration offer the necessary technical functionality. In particular, the EC
SHALL be performed without direct communication to the SP. It is thus recommended that a SP ensures the
availability of matching Flavors of the SP’s secure application for all potentially eligible SC available to the SP’s
customers.

Possible outcomes of the EC are that there are no, exactly one, or multiple eligible SCs on the handset.

• If no eligible SC is identified, the provisioning process SHALL be aborted. The failure of the EC SHALL
be reported to the SP app. The reason for the failure of the EC SHALL be communicated to the SPOS, if
the SP provides a SPOS for this purpose.

• If exactly one eligible SC is identified, the provisioning process continues.

• If multiple eligible SCs are identified on the handset, the TSM SHALL choose one particular SC and
continue with the provisioning process (see Section 3.3.1.2).

Due to technical limitations, a TSM may be able to perform certain parts of the EC only after a SSD on a
(preliminary) eligible SC has been created. In such cases, it is the responsibility of a TSM to perform the EC
without generating unnecessary costs or efforts for the SP, the SCI, or other third parties. For this purpose, parts of
the EC that require the creation of a SSD SHOULD only be performed after a specific SC is preliminary eligible,
i.e. the SC successfully passed all parts of the EC that do not require the creation of an SSD. The preliminary
eligibility MAY be determined based on information that is less reliable than information obtained directly from
the SC after SSD creation, in which case this information SHALL be verified after SSD creation on the
preliminary eligible SC.

3.3.1.1 Secure Component Authenticity Check
In general, a TSM has to verify the authenticity of a SC before any provisioning activities take place. The
available mechanisms for this task may vary for different TSMs, SCs, and SCIs. If a dedicated attestation
mechanism is available to the TSM on the respective SC, this attestation SHALL take place within the EC. If no
dedicated attestation mechanism is available, the TSM SHALL use an adequate alternative to ensure the
authenticity of the SC. In the latter case, the attestation MAY take place outside of the EC. This TR will not
specify details for the adequate attestation of secure components in absence of a dedicated mechanism. However,
this section will give an example of an adequate alternative attestation process.

The example is based on the mutual authentication of TSM and SC via the GlobalPlatform Secure Channel
Protocol (SCP) [GPD_SPE_014]. An upside of performing the attestation via SCP is that, at least on GP-managed
SCs, the necessary cryptographic keys are required for the creation of further SSDs and secure application life-
cycle management anyways. A downside is that it requires direct involvement of the SCI and the creation of an
SSD on the SC under consideration prior to final result of the EC. However, the Secure Component Attestation is
expected to fail only under exceptionally rare circumstances.

The SC attestation in this example assumes an uncompromised SCI backend system and requires a transport key
securely exchanged between TSM and SCI. The attestation proceeds as follows:

1. The TSM acquires the ID of the specific SC on the handset.

2. The TSM contacts the SCI via mutual-TLS and requests the creation of a SD on the specific SC, including
creation and distribution of the keys required by SCP.

3 Implementation

Federal Office for Information Security 17

3. The SCI authenticates to the Issuer SD on the specific SC, instantiates the requested SD, and personalizes the
new SD with the required SCP keys.

4. The SCI encrypts the SCP keys with the transport key exchanged / derived in advance and sends them to the
TSM via mutual-TLS.

5. The TSM decrypts the SCP keys with the transport key and uses them to initiate a secure channel with the SD
on the SC via SCP.

6. As part of SCP, TSM and SC authenticate each other.

The successful mutual authentication in step 6 not only assures the access right of the TSM to the SD, but also the
“genuineness” of the SC itself. This is an example where the SC attestation is not part of the EC itself, but is
guaranteed to be executed prior to the provisioning process, as long as the provisioning utilizes the GP SCP.

3.3.1.2 Secure Component Flavor Matching
Due to technical differences between SC platforms, a SP may have to provide different Flavors, i.e. variants, of a
secure application. For this purpose, a TSM provider SHALL maintain a list where each secure component
supported by this TSM is represented by a data model entity called SecureComponentProfile (SC profile). Such a
SecureComponentProfile describes a secure component by its properties, e.g., JavaCard version or operating
system name and version. The list SHALL not contain multiples of identical SC profiles, i.e. SC profiles which
only differ by their id but not on the technical level.

To determine which hardware platforms are supported by a TSM, a SP can retrieve the list of supported
SecureComponentProfiles via the TSM-Backend REST API. With this information, the SP can provide matching
ELF files and configure corresponding Flavors. During the provisioning process on a particular handset, the
Flavor for the specific SC has to be selected by the respective TSM. To enable this, a SP SHALL assign the
SecureComponentProfiles to the prepared Flavors for each Version of the Service via the allowedDeployments
attribute (see Section 4.1.4.3.). With this step, a SP defines which Flavor (and thus indirectly which ELF) is used
for which hardware platform.

For a fixed Service Version, each SecureComponentProfile can be assigned to exactly zero or one Flavor the SP
has configured. To clarify, in the same Version it is not supported to assign a SecureComponentProfile to multiple
Flavors. It is, however, possible to assign multiple SecureComponentProfiles to a single Flavor (see Figure 5
below for examples). The assignment of a certain SC profile to a specific Flavor may be changed by the SP when
configuring a new Version. Furthermore, since the Version is mutable, it is possible to modify a Version when it
is already deployed on a device. With this, the SP can assign new SecureComponentProfiles to an existing
Version to increase the amount of devices supported by this Version. The SP can also remove
SecureComponentProfiles from an existing Version, e.g., in case of a security incident.

A TSM provider SHALL ensure that the FlavorIds and SecureComponentProfileIds are unique for each Version.
A TSM provider SHALL perform a compatibility check when the allowedDeployments attribute is modified.
Here, a TSM provider SHALL compare the ELF files with the assigned SecureComponentProfiles, e.g. to check
for JavaCard version mismatch or missing CSP support. Such a compatibility check might also be needed when an
ELF or a Flavor is modified.

If a handset provides multiple eligible SCs for a Service, a TSM SHALL choose one of them for provisioning.
The criteria for this choice are not in the scope of this TR.

Only the TSM provider can modify the list of available SecureComponentProfiles. If a new
SecureComponentProfile is added, the TSM provider SHOULD inform the SPs in time about the planned
changes. If an existing SecureComponentProfile is removed, the TSM provider SHALL inform the SPs about the
planned changes.

For a better understanding of the mapping of a Flavor, respectively a SC profile, various exemplary situations are
displayed in Figure 5. Note that this is a simplified visualization for a fixed version of the Service, since the
allocation of a SC profile to a specific Flavor may be changed when creating a new Version.

3 Implementation

18 Federal Office for Information Security

Figure 5: Exemplary situations of the mapping between Flavors and specific handsets for a specific Version of a
Service.

3.3.2 Device Check
As mentioned in Section 2.2.4, a SP app should check, respectively should offer the handset user a possibility to
check, if the handset provides the hardware and software required for the offered Service before triggering the
installation of a secure application. For this purpose, a TSM SHALL provide a device check which offers
information about the eligibility of the handset for participation in the TSMS as a convenience function via the
TSM-API. It is important to note that the scope of this Device Check is limited to TSM-related functionality of the
handset and may not cover all general requirements of a SP.

The comprehensiveness of this device check is up to the TSM. It is recommended that the device check reaches a
reliability comparable to a preliminary EC as described at the end of Section 3.3.1. However, this device check is
not to be used as a structural part of the EC. The full EC SHALL be performed as part of every provisioning
process regardless if a device check has or has not been performed in advance.

As a guideline, the device check

• SHOULD NOT require any input from the SP, except triggering the process via the TSM-API (which
requires the input specified in Section 4.2.5.7).

• SHOULD NOT yield a false-negative result for an eligible handset. False-positive results are considered
less severe, since they are corrected by the full EC during the provisioning process.

• SHOULD be performed locally on the handset without communication to third parties. A communication
to the TSM may be necessary to reach decent reliability.

3.4 Secure Application Attestation Mechanism
As part of the provisioning of a secure application, a TSM SHALL provide an Attestation Token to the secure
application, if requested by the SP. The purpose of this token is to allow the SP to verify that the secure
application has been provisioned by the TSM and thus an eligibility check of the secure component has been
performed. To clarify, this verification is important for a closed chain of trust from point of view of the SP. It is
not meant to assess the quality of services provided by the TSM. The verification of the token by the SP SHALL

3 Implementation

Federal Office for Information Security 19

be possible without involvement of the TSM or the TSM-API SDK and without the need to understand SCI
specific protocols of the underlying SC.

The content of the Attestation Token SHALL be cryptographically signed by the TSM with a signature according
to BSI-TR 03116-4 [TR-03116].

The Attestation Token SHALL contain

• a TSM identifier, e.g. an OID associated with the TSM,

• the Process ID of the provisioning process (UUID assigned by the TSM),

• the Flavor ID of the corresponding Flavor (UUID assigned by the TSM),

• a signer reference for the verification of the signature.

Additionally, if requested by the SP, the Attestation Token SHALL contain key diversification data and a master
key index for a SP-specific verification processes (see below).

The authenticity and integrity of the Attestation Token itself is guaranteed by the cryptographic signature. The
pairing of Attestation Token and a SC requires additional measures, e.g. against malicious exchange of the token
during the communication between SC and SP app. As a native way to validate the pairing, the Process ID
contained in the token could be validated against the Process ID of the provisioning process of the secure
application known to the SP. This, however, would require an adequate security level for the transmission and
validation of the Process ID which has to be implemented by a SP.

Alternatively, mechanisms of the GlobalPlatform Secure Channel Protocol [GPD_SPE_014] can be used to
achieve the pairing of SC and token. For this, SP and TSM have to agree on a key derivation process for the
cryptographic keys necessary for the SCP which utilizes a master key and key diversification data (KDD). The
master key has to be exchanged out of band. The KDD is provided to the SP by the TSM as part of the Attestation
Token. The TSM initializes the SSD associated with the SP’s secure application with SCP keys derived using the
agreed upon derivation process, the master key, and the KDD. The pairing of the Attestation Token to a SC,
respectively a particular SSD on the SC, can be validated by the SP by deriving valid SCP keys also using the
agreed upon derivation process, the master key, and the KDD taken from the token. Note that this process comes
with very little effort for the SP, as long as the use of SCP is required for the Service anyways, e.g. during a
personalization of the secure application with customer data.

Details about the provisioning and encoding of the Attestation Token are given in Appendix A.

3.5 Logging and Error Handling
Logging is an essential feature to detect and correct errors or other problems. A TSM should consider to
implement the following logging features:

• Sequence logging with history

• TSM-API logging callback

3.5.1 Sequence Logging with History
As a security feature, tamper resistant secure components incline to mute their communication interfaces under
certain circumstances. Once the communication to the secure component is blocked, it is hardly possible to detect
the cause afterwards. Thus, a backward stored logging is essential to analyze issues with secure components.
Thus, all communication between TSM and the secure component should be logged in the TSM-Backend
database for an adequate period of time (e.g. several weeks). This includes the command sequences to initialize
the secure component, e.g. initialize security domain and access rules and also all communication to install,
configure, manage and uninstall secure applications.

3 Implementation

20 Federal Office for Information Security

3.5.2 TSM-API Logging Callback
To be able to participate in the TSMS, the SP App has to integrate the TSM-API SDK as library. To be able to
analyze the behavior of the TSM-API SDK in case of errors, the SDK should provide a mechanism to forward
current log messages generated by the SDK to the SP App. This could be done via a callback object, by certain
logging frameworks, or other solutions. Latest at the moment when an issue occurs, the SP app shall have the
possibility to receive log and error messages for the period shortly before the error occurred.

4 Interfaces

Federal Office for Information Security 21

4 Interfaces
In this chapter, the interfaces between TSM and SP are defined:

• TSM-Backend REST-API (provided by the TSM, used by the SP),
• TSM-API (provided by the TSM via the TSM-API library, used by the SP app),
• SPOS-Service (provided by the SP, used by the TSM).

The TSM-Backend (see Section 4.1) provides a REST interface using HTTPS hosted by the TSM. It provides
methods to upload and maintain installation files for secure applications, including binary data and installation
instructions.

On Android devices, the TSM-API (see Section 4.2) is a bound-service-based interface to be integrated as
software library into the SP app running on the handset. It provides methods to trigger life-cycle management
processes for secure applications on secure components. A SP app can receive callback status messages by
providing a listener object within the function call made to the TSM-API.

The SPOS-Service is an optional REST interface a SP MAY provide depending on the SP’s business model. It
can be used to receive process success and process error messages sent by a TSM.

Remark: The interface methods in this version of the TR are all of “version 1.0” and not explicitly marked as
such. If the update of individual methods becomes necessary in the future, the updated methods will be indicated
appropriately.

4.1 TSM-Backend REST-API
A TSM SHALL provide a REST API as specified in this section that allows service providers to create, read,
update and delete all data objects that are necessary to enable the life-cycle management of their secure
application on secure components. The TSM MAY provide additional, e.g. graphical, user interfaces and
convenience functions.

4.1.1 TSM Base URL
The TSM Base URL specifies the endpoint that offers the interface methods. It consists of the URL of the host,
the name of the API as well as its version. Communication with the TSM-Backend SHALL be done via HTTP
with TLS (HTTPS) encryption:

https://<<host>>/sptsm/<<version>>/

4.1.2 Overview
This section lists the interface methods provided by the TSM-Backend as an overview. A detailed description of
the methods is given in Section 4.1.5.2.

4.1.2.1 /auth
The following methods for authentication are available:

Method REST-URL Short Description
POST /auth Create a short-term access token

which is needed to access any other
interface methods.

4.1.2.2 /service-providers
The following methods for the management of SP accounts are available:

4 Interfaces

22 Federal Office for Information Security

Method REST-URL Short Description
GET /service-providers/current Get account information.

4.1.2.3 /secure-component-profiles
The following methods to retrieve information about the supported SecureComponentProfiles are available:

Method REST-URL Short Description
GET /secure-component-profiles List SecureComponentProfiles.
GET /secure-component-profiles/{scpId} Get SecureComponentProfile.
GET /secure-component-profiles/{scpId}/elfs List related ELFs.
GET /secure-component-profiles/{scpId}/services List related Services.
GET /secure-component-

profiles/{scpId}/services/{serviceId}/flavors

List related Flavors.

GET /secure-component-

profiles/{scpId}/services/{serviceId}/versions

List related Versions.

4.1.2.4 /services
The following methods for the management of Services and Flavors are available:

Method REST-URL Short Description
GET /services List Services.
POST /services Create Service.
GET /services/{serviceId} Get Service.
PUT /services/{serviceId} Modify Service.
DELETE /services/{serviceId} Delete Service.
GET /services/{serviceId}/flavors List Flavors.
POST /services/{serviceId}/flavors Create Flavor.
GET /services/{serviceId}/flavors/{flavorId} Get Flavor.
PUT /services/{serviceId}/flavors/{flavorId} Modify Flavor.
DELETE /services/{serviceId}/flavors/{flavorId} Delete Flavor.
GET /services/{serviceId}/flavors/{flavorId}/application-configs List related

ApplicationConfigs.
GET /services/{serviceId}/flavors/{flavorId}/executable-load-

files

List linked ELFs.

POST /services/{serviceId}/flavors/{flavorId}/executable-load-

files

Link ELFs.

PUT /services/{serviceId}/flavors/{flavorId}/executable-load-

files

Unlink ELFs.

POST /services/{serviceId}/flavors/{flavorId}/publish Publish Flavor.
GET /services/{serviceId}/flavors/{flavorId}/versions List related Versions.
GET /services/{serviceId}/versions List Versions.
POST /services/{serviceId}/versions Create Version.
GET /services/{serviceId}/versions/{tag} Get Version.
PUT /services/{serviceId}/versions/{tag} Modify Version.
DELETE /services/{serviceId}/versions/{tag} Delete Version.
GET /services/{serviceId}/versions/{tag}/flavors List linked Flavors.
GET /services/{serviceId}/versions/{tag}/flavors/{flavorId}/

secure-component-profiles/

List linked
SecureComponentProfiles
for a specific Flavor.

POST /services/{serviceId}/versions/{tag}/flavors Link Flavors.

4 Interfaces

Federal Office for Information Security 23

Method REST-URL Short Description
PUT /services/{serviceId}/versions/{tag}/flavors Unlink Flavors.
GET /services/{serviceId}/versions/{tag}/secure-component-

profiles

List associated
SecureComponentProfiles

POST /services/{serviceId}/versions/{tag}/secure-component-

profiles

Link
SecureComponentProfiles
.

PUT /services/{serviceId}/versions/{tag}/secure-component-

profiles

Unlink
SecureComponentProfiles
.

4.1.2.5 /executable-load-files
The following methods for the management of ELFs and EMs are available:

Method REST-URL Short Description
GET /executable-load-files List ELFs.
POST /executable-load-files Create ELF and upload

binary.
GET /executable-load-files/{elfId} Get ELF.
PUT /executable-load-files/{elfId} Modify ELF and/or

overwrite binary.
DELETE /executable-load-files/{elfId} Delete ELF.
GET /executable-load-files/{elfId}/binary Get binary.
GET /executable-load-files/{elfId}/executable-modules List EMs.
GET /executable-load-files/{elfId}/executable-modules/{emId} Get EM.
GET /executable-load-files/{elfId}/executable-

modules/{emId}/application-configs

List related
ApplicationConfigs.

GET /executable-load-files/{elfId}/services List related Services.
GET /executable-load-files/{elfId}/services/{serviceId}/flavors List related Flavors.
GET /executable-load-files/{elfId}/services/{serviceId}/versions List related Versions.
GET /executable-load-files/{elfId}/services/{serviceId}/secure-

component-profiles

List related
SecureComponentProfiles
.

4.1.2.6 /application-configs
The following methods for the management of ApplicationConfigurations are available:

Method REST-URL Short Description
GET /application-configs List ApplicationConfigs.
POST /application-configs Create ApplicationConfig.
GET /application-configs/{configId} Get ApplicationConfig.
PUT /application-configs/{configId} Modify ApplicationConfig.
DELETE /application-configs/{configId} Delete ApplicationConfig.
GET /application-configs/{configId}/exectable-modules List related EMs.
GET /application-configs/{configId}/flavors List related Flavors.
GET /application-configs/{configId}/services List related Services.

4.1.2.7 /personalization-scripts
The following methods for the management of PersonalizationScripts are available:

4 Interfaces

24 Federal Office for Information Security

Method REST-URL Short Description
GET /personalization-scripts List PersonalizationScripts.
POST /personalization-scripts Create PersonalizationScript and

upload binary.
GET /personalization-scripts/{scriptId} Get PersonalizationScript.
PUT /personalization-scripts/{scriptId} Modify PersonalizationScript

and overwrite binary.
DELETE /personalization-scripts/{scriptId} Delete PersonalizationScript.
GET /personalization-scripts/{scriptId}/application-configs List related ApplicationConfigs.
GET /personalization-scripts/{scriptId}/binary Get binary.
GET /personalization-scripts/{scriptId}/flavors List related Flavors.
GET /personalization-scripts/{scriptId}/services List related Services.

4.1.2.8 /certificates
The following methods for the management of Certificates are available:

Method REST-URL Short Description

GET /certificates List Certificates.
POST /certificates Create Certificate and upload binary.
GET /certificates/{certificateId} Get Certificate.
PUT /certificates/{certificateId} Modify Certificate and overwrite

binary.
DELETE /certificates/{certificateId} Delete Certificate.
GET /certificates/{certificateId}/application-configs List related ApplicationConfigs.
GET /certificates/{certificateId}/binary Get binary.
GET /certificates/{certificateId}/flavors List related Flavors.
GET /certificates/{certificateId}/services List related Services.
GET /certificates/{certificateId}/spos-configs List related SposConfigs.

4.1.2.9 /spos-configs
The following methods for the management of SposConfigs are available:

Method REST-URL Short Description
GET /spos-configs List SposConfigs.
POST /spos-configs Create SposConfig.
GET /spos-configs/{configId} Get SposConfig.
PUT /spos-configs/{configId} Modify SposConfig.
DELETE /spos-configs/{configId} Delete SposConfig.
GET /spos-configs/{configId}/services List related Services.

4.1.3 Security
The TSM-Backend REST-API offers complex methods to manipulate a database of the TSM-Backend. This leads
to high potential for security attacks. Since the user group addressed by the TSM-Backend REST-API is a
manageable amount, it is suggested to protect the TSM-Backend REST-API using a second authentication factor
and adding a secure access mechanism on top to the HTTP REST-API.

4.1.4 Data Types
In this section, the data model and data types introduced in Section 3.1 are specified. Each entity is defined
including all attributes and data types. The entities and their relations are visualized in Figure 6, which extends the

4 Interfaces

Federal Office for Information Security 25

overview given in Figure 2. The entities FeatureConfig, ApplicationInstantiationConfig, and
TechnicalRequirements are helper classes providing additional complex data structures for their corresponding
holder (Flavor, and ExecutableLoadFile). For all other entities, API methods for management are available and
described in this section. In Figure 6, class entities are shown in dark blue, helper entities are shown in light blue,
and the entities ServiceProvider as well as SecureComponentProfile (administrated solely by a TSM) are shown in
orange.

Figure 6: Visualization of the secure application data model as discussed in the text.

Besides name, type, and description of an attribute, two additional columns specify properties called Mandatory
and Editable (abbreviated with Mand. and Ed. in table headers) with the following options.

Mandatory:

• Mandatory (M): The attribute must be provided in request bodies for POST, PUT and also for return
values of GET, POST, PUT, DELETE methods. Restrictions to the value of the attribute are specified in
Table 1.

4 Interfaces

26 Federal Office for Information Security

• Optional (O): The attribute may be provided, but could also be omitted or null in request bodies for POST
and PUT. The attribute is always present, containing at least the default value, for return values of GET,
POST, PUT, DELETE.

• Automatically (A): The attribute may be provided, but could also be omitted or null in request bodies for
PUT and POST. The attribute is always present for return values of GET, POST, PUT, DELETE. Its value
is automatically assigned by the TSM on POST requests. Values provided in the request bodies are ignored.

Editable:

• No: The value of the attribute is assigned (by a TSM) during creation of the entity and cannot be modified.

• Yes: The value of the attribute can be modified at any time. In case the same attribute is marked as
Mandatory, there is a restriction that the new value cannot be null. In case an attribute is marked as
Optional, but was not provided inside a request body, the value is not changed and the old value is kept for
the attribute.

• Conditional (C): The value of the attribute can be modified only in special situations. The particular
conditional situation is specified in the description of the attribute.

The combination of Mandatory and Editable will lead to the following restrictions, which SHALL be enforced by
a TSM:

Type Mandatory Optional Automatic
POST Request;

PUT Request

Attribute must be provided.

Value cannot be null.

Attribute may be omitted.

Value may be null.

Attribute may be omitted.

Value may be null. Non-null values
are ignored by the TSMS

GET Request;
DELETE Request

No body allowed. No body allowed. No body allowed.

POST Response;

Attribute is always present.

Value is never null.

Attribute is always present.

Value is never null.

When attribute in Request was
omitted or null, the value is
assigned to a default value.

Attribute is always present.

Value is assigned to an
automatically generated value.

GET Response;
PUT Response;
DELETE Response

Attribute is always present.

Value is never null.

Attribute is always present.

Value is never null.

Attribute is always present.

Value is never null.

Table 1- REST-API attributes: Mandatory and Editable in POST, PUT, GET and DELETE Requests and Reponses

Datetime strings, e.g. CreationDate or UploadDate, express Coordinated Universal Time (UTC) including
milliseconds with a special UTC designator (“Z”) according to [ISO8601]. They refer to a context-specific point
in time when, e.g., a data model entity had been created or a file had been uploaded.

4.1.4.1 ServiceProvider
The top-level entity of the data model is a ServiceProvider. The ServiceProvider entity of the data model
represents the (“real-life”) SP, and both terms will be used interchangeable. The access to resources that are
associated with a ServiceProvider is always restricted to the users that are associated with that ServiceProvider. A
ServiceProvider has one or more Service entities and zero or more SposConfig entities.

The SP can check and modify account information via a REST-API with the following attributes:

Attribute Type Description Mand. Ed.
id string Unique identification of the SP. A No
name string Name of the SP. M Yes

4 Interfaces

Federal Office for Information Security 27

4.1.4.2 Service
A Service (as an entity of the data model) represents all data needed for the life-cycle management of a secure
application. Services are the key elements for the communication between TSM-Backend and TSM-API. A
Service may have multiple Versions with multiple Flavors, which in turn may contain different ELFs. A Service is
associated with zero to one SposConfigs.

A Service has the following attributes:

Attribute Type Description Mand. Ed.
id string Unique identification of the Service. A No
spId string ID of the ServiceProvider owning the

Service.
A No

name string Name of the Service. M Yes
creationDate string A datetime string (creation of Service). A No
sdAid string AID of the specific security domain that is

created for every Service Instance. The AID
format follows [ISO/IEC7816-4].

A No

accessAuthorizedDeviceA
pps

string[] List of apps for which an access rule is
created when an instance of this Service is
activated.
Default value is empty list.

O Yes

sposConfigId string ID of the SposConfig used for this Service.
Default value is null.

O Yes

spParameters Map<string, string> Key value definitions used as parameters of
a Service. Those parameters can be retrieved
via TSM-API.
The parameters can be overwritten for each
Flavor.
Default value is empty map.

O Yes

4.1.4.3 Version
A Service can be provided in different Versions. Each Version may have multiple Flavors. Each Flavor defines a
set of configurations and ELF files to support a certain hardware platform. The matching of a Flavor to specific
SCs is managed via the attribute allowedDeployments. This attribute is a map where one or multiple
SecureComponentProfiles are assigned to a specific Flavor. A SecureComponentProfile describes the hardware
platform(s) a Flavor is supporting. Thus, inside the Version, a SP MUST define which ELF is used for which
hardware platform. The SP also MAY add platform specific configurations. A TSM provider MUST ensure that
the FlavorIds and SecureComponentProfileIds are unique for a Version. In the same Version it is not supported to
assign a SecureComponentProfile to multiple Flavors or vice versa. A TSM provider MUST also perform a
compatibility check when the allowedDeployments attribute is modified. Here, a TSM provider SHALL compare
the ELF files with the assigned SecureComponentProfiles, e.g. to check for JavaCard version mismatch or missing
CSP support. Such a compatibility check might also be needed when an ELF or a Flavor is modified.

The Version is mutable, thus it is allowed to modify a Version when it is already deployed on a device. With this,
the SP can assign new SecureComponentProfiles to an existing Version to increase the amount of devices
supported by this Version. The SP can also remove SecureComponentProfiles from an existing Version, e.g., in
case of a security incident.

A Version has the following attributes:

4 Interfaces

28 Federal Office for Information Security

Attribute Type Description Mand. Ed.
tag string (5…11) Tag of the Version in the format

<Major>.<Minor>.<Revision>
The tag must be unique for a Service, since tag is
used to reference the Version.
The tag is mandatory for PUT requests.
For POST requests the attribute may be omitted or
null. Non-null values on POST requests are ignored
by the TSMS.

C No

serviceId string ID of the Service owning the Version. A No
allowedDeploy
ments

Map<string, string[]> Map, which associates Flavors (see 4.1.4.4) to one or
multiple SecureComponentProfiles (see 4.1.4.5).
By this, Flavors linked to this Version are assigned to
concrete hardware platforms as 1-n association.
The key of the map contains the FlavorId. The value
of the map is a list of SecureComponentProfileIds.
Specific FlavorIds and SecureComponentProfileIds
can only be used once inside a Version, i.e., inside a
Version it is not supported to assign a
SecureComponentProfile to multiple Flavors or vice
versa.

M Yes

4.1.4.4 Flavor
Services, respectively Versions, can be provided in different Flavors to solve interoperability problems when
provisioning Services to different SC platforms. Simply speaking, a Flavor is a certain variant of a Service. A
Flavor consists of zero or more ExecutableLoadFile entities, zero or more ApplicationInstantiationConfigs, and
exactly one FeatureConfig entity.

Flavors need to be published before they can be used for installation. After publishing a Flavor, certain data
attributes of the Flavor cannot be modified anymore. The purpose is to avoid the problem that Flavor
modifications done on a Flavor which is already installed might lead to inconsistencies on the handset.

The allocation of a Flavor to one or multiple SecureComponentProfiles is done via the allowedDeployments
attribute of the parent Version of each Flavor.

A Flavor has the following attributes:

Attribute Type Description Mand. Ed.
id string Unique identification of the Flavor. The id shall

be used to check the necessity of applet
reinstallation during the Version update process,
for use cases when the same Flavor is used for
different Versions.

A No

serviceId string ID of the Service owning the Flavor. A No
name string Name of this Flavor.

Default value is empty string.
O Yes

description string Additional description for this Flavor.
Default value is empty string.

O Yes

creationDate string A datetime string (creation of Flavor). A No

4 Interfaces

Federal Office for Information Security 29

Attribute Type Description Mand. Ed.
published boolean A Flavor can only be used for deployment if it is

published.
Once published, modification of the following
attributes is no longer possible:

• executableLoadFileIds
• applicationInstantationConfigs

Default value is false. The value can be changed
to true via the interface method Publish Flavor
(see Section 4.1.6.4.15).
Once published (value set to true), a Flavor
cannot be reversed to an unpublished state
again.

A No

executableLoadFileIds string[] List of IDs of ELFs used by this Flavor.
Modifications are only possible, as long as the
Flavor is not yet published.
Default value is empty list.

O C

applicationInstantiationCo
nfigs

ApplicationInstan
tiationConfig[]

List to link and prioritize EMs and
ApplicationConfigs.
Modifications are only possible, as long as the
Flavor is not yet published.
Default value is empty list.

O C

spParameters Map<string,
string>

Key value definitions used as parameters of a
service. Those parameters can be retrieved via
TSM-API.
For the parameters returned by TSM-API the
key value pairs are combined with key values
pairs of spParameters contained in the Service
definition. For pairs with identical keys, the key
value pairs of the given flavor take presence
over the corresponding pairs contained in
spParameters of the Service definition.
Default value is empty map.

O Yes

featureConfig FeatureConfig Used to indicate the use of features supported by
the SC or provided by the TSM.
Default value is FeatureConfig with defaults.

O Yes

contextSpecificAttributes Map<string,
string>

Additional context specific configuration
settings (e.g. platform specific CSP patch level).
Possible options are defined bilateral between
SP and TSMS provider.
Default value is empty map.

O Yes

4.1.4.5 SecureComponentProfile
A SecureComponentProfile describes a secure component by its properties like JavaCard version, operating
system name and version, chip identifier etc. The SP can retrieve this list via the TSM-Backend REST-API to
determine supported hardware platforms. With this information, the SP can prepare the necessary ELF files and
configure a corresponding Flavor. Finally, the SP assigns specific SecureComponentProfiles to this Flavor to
control on which platforms it shall be deployed. This is done via the allowedDeployments attribute of the Version
(see Section 4.1.4.3.).

SecureComponentProfiles are read-only and cannot be modified by the Service Provider.

4 Interfaces

30 Federal Office for Information Security

A SecureComponentProfile has the following attributes:

Attribute Type Description Mand. Ed.
id string Unique identification of the Secure

Component Profile assigned automatically by
TSMS.

A No

name string Name of the SecureComponentProfile. M No
scType int Secure component type. One of:

• 1: EMBEDDED_SE
• 2: EMBEDDED_UICC
• 3: REMOVABLE_EUICC
• 4: UICC

M No

hardwarePlatform string Name of hardware platform / chip.
Sample values are P62G98, S9FD2EE.

M No

os string Secure component operating system name, e.g.
GTO, JCOP.

M No

osVersion string Version of operating system with vendor
specific encoding.
Sample values are 4.7, 3.1.

M No

javaCardVersion string JavaCard version.
Sample values are 3.0.5, 3.0.4.

M No

javaCardFeatures Map<string, string[]> Features provided by the JavaCard. The key
contains the name of the feature. The value
contains a list of supported algorithm for each
feature.
Sample keys are

• cypher
• signature
• messageDigest
• randomData
• keyBuilder
• keyAgreement
• checksum
• keyPairAlgRsaOnCardGeneration
• keyPairAlgRsaCrtOnCardGeneration
• keyPairAlgDsaOnCardGeneration
• keyPairAlgEcF2MOnCardGeneration
• keyPairAlgEcFpOnCardGeneration
• aeadCipher

M No

4 Interfaces

Federal Office for Information Security 31

Attribute Type Description Mand. Ed.
gpSpecVersions Map<string, string> Global Platform Specification versions. The

key contains an identifier for the GP
specification document. The value contains the
version for each specification.
Sample keys are:

• card
• contactlessServices
• scp03
• executableLoadFileUpgrade

Sample values are 2.3.1, 2.3, 2.2.1.

M No

gpApiVersions Map<string, string> GlobalPlatform API versions. The key
contains an identifier for the GP API. The
value contains the version for each API.
Sample keys are:

• card
• contactless
• elfUpgrade

Sample values are 1.7, 1.6.

M No

csp Map<string, string> Supported CSP. Empty when no CSP is
available. Key contains an identifier for
additional information about the CSP. Value
contains the additional CSP information.
Sample keys are:

• apiVersion
• vendor

M No

certifications Map<string, string> Platform certification level. The key contains
the scope of the certification. The value
contains the link to the letter of approval.
Sample keys are:

• BSI-CC-PP-0084-2014
• BSI-CC-PP-0089-2015
• BSI-CC-PP-0099-2017
• BSI-CC-PP-0100-2018
• BSI-CC-PP-0104-2019
• BSI-CC-PP-0117-2022

M No

4.1.4.6 FeatureConfig
The FeatureConfig is part of a Flavor. It is used to indicate the use of features supported by a SC or features
provided by the TSM. The FeatureConfig data type is only used as a complex type inside Flavor and is not
directly referenced in any API methods. Currently, it has the following attributes:

Attribute Type Description Mand. Ed.
useCspFull boolean True if a CSP available on the SC is supported and

configured by the TSM, so that the CSP can be used by
the applets installed with this Service, false otherwise.
If omitted, default value false will be used.

O Yes

4 Interfaces

32 Federal Office for Information Security

Attribute Type Description Mand. Ed.
genericOptions Map<string,

boolean>
Possibility to configure further feature options (e.g. key-
agreement-algorithm, message-digest).
If omitted, default value empty map will be used.

O Yes

keyProvisioningMode int(0..3) The type of the key provisioning mode for the security
domain of the Service. One of:

• 0: None
• 1: BASIC_DIVERSIFIED_CREATE
• 2: BASIC_CREATE
• 3: BASIC_RANDOM_CREATE

If provideAttestationToken of at least one corresponding
PersonalizationConfig is set to true, the
keyProvisioningMode must be one of 1, 2 or 3.
If no Attestation Token is configured, all available
options 0 - 3 can be used.
If omitted, default value 0 will be used.

C Yes

keyIndex string A key index for provisioning of the security domain of
the Service. Depending on the keyProvisioningMode the
keyIndex represents either the master key index when
used in mode 1 (Basic Diversified Created) or it
represents the transport key index when used in mode 2
(Basic Create) and 3 (Basic Random Create).
If keyProvisioningMode is one of 1, 2 or 3, a keyIndex
must be provided.
If keyProvisioningMode is set to 0, keyIndex must be
empty.
If omitted, default value empty string will be used.

C Yes

4.1.4.7 ApplicationInstantiationConfig
The ApplicationInstantiationConfig contains the link between EM and the ApplicationConfig for a certain Flavor.
A lower value of priority indicates that an ApplicationInstantiationConfig shall be applied before an
ApplicationInstantiationConfig with a higher value of priority. If multiple ApplicationInstantiationConfigs within
the same Flavor have the same priority value, the TSM will choose which one will be applied first.

Modifications are only possible, as long as the corresponding Flavor is not published.

The ApplicationInstantiationConfig is only used as complex type inside Flavor and is not directly referenced in
any API methods. It has the following attributes:

Attribute Type Description Mand. Ed.
priority int (1...255) Priority, which specifies the order in which an

application should be instantiated. Must be in the range
from 1 to 255. A lower value means a higher priority.
Default value is 255.

A C

executableModuleId string ID of the EM the referenced ApplicationConfig shall
be applied to.

M C

applicationConfigId string ID of the ApplicationConfig that shall be applied to the
referenced EM.

M C

4 Interfaces

Federal Office for Information Security 33

4.1.4.8 ExecutableLoadFile
An ExecutableLoadFile (ELF) is an executable binary file that can be loaded onto a Secure Component. In
SmartCard terminology, the ELF is a container of executable code on a secure component [GPC_SPE_034]. ELFs
are essential components of a Flavor used by a Version of a Service. ELFs are uploaded by the SP and may be
used in different Flavors. An ELF may contain zero or more ExecutableModule entities. The specific type of an
ELF is determined at upload time. If the ELF is a CAP, the ELF AID is automatically extracted from the CAP.

The binary of an ELF can be replaced only as long as the ELF is not linked to a published Flavor.

An ELF has the following attributes:

Attribute Type Description Mand. Ed.
id string Unique identification of the ELF. A No
spId string ID of the ServiceProvider owning the ELF. A No
aid string Package-ID of this ELF. A No
fileName string Name of this ELF. M Yes
type string Type of this ELF. Currently, only CAP is supported. A No
creationDate string A datetime string (creation of ELF) A No
uploadDate string A datetime string (upload of ELF binary).

A No

4.1.4.9 CAP
A CAP is a Java Card realization of an ELF. It is derived from ExecutableLoadFile and adds the following
attributes:

Attribute Type Description Mand. Ed.
packageName string Name of the package of the CAP. A No
importedPackages string[] List of imported package AIDs used

by the EM of this CAP.
A No

packageVersion string Version of the package
(“major.minor”).

A No

technicalRequirements TechnicalRequirements Technical requirements needed for
this CAP.
Default value is
TechnicalRequirements.

O Yes

4.1.4.10 TechnicalRequirements
The TechnicalRequirements data type is used to define technical requirements needed to execute a CAP. Those
requirements are detected automatically when uploading the binary file and are checked against the
SecureComponentProfiles when modifying the allowedDeployments of a Flavor.

The TechnicalRequirements data type is only used as a complex type inside CAP and is not directly referenced in
any API methods. It has the following attributes:

Attribute Type Description Mand. Ed.
javaCardVersion string Version of Java Card required by the CAP

(“major.minor.patch”).
A No

gpApiVersion string Version of GlobalPlatform API required by the CAP
(“major.minor.patch”).

A No

4 Interfaces

34 Federal Office for Information Security

4.1.4.11 ExecutableModule
ExecutableModules (EMs) are contained in ELFs. Thus, an EM is always bound to an ELF. A specific example of
an EM is a Java Card Applet. A Java Card Applet is a specific class which extends javacard.framework.Applet
and is part of a CAP file, which is a technology-specific type of an ELF in this context.

An EM has the following attributes:

Attribute Type Description Mand. Ed.
id string Unique identification of the EM. A No
elfId string ID of the ExecutableLoadFile owning the EM. A No
aid string Application identifier of this EM. The AID format

follows [ISO/IEC7816-4].
A No

4.1.4.12 ApplicationConfig
An ApplicationConfig consists of parameters, certificates and other properties needed for provisioning
applications. All configuration options defined here are applied to the secure component during deploy or update
service commands triggered with the TSM-API.

The ApplicationConfig itself is not dependent on a specific EM. In order to link it to an EM, the
ApplicationConfig is referenced in an ApplicationInstantiationConfig within a Flavor by a mapping of available
EMs and corresponding ApplicationConfigs. The same ApplicationConfigs can be used for EMs in different
Flavors.

Modifications are only possible, as long as the ApplicationConfig is not yet linked to a published Flavor.

An ApplicationConfig has the following attributes:

Attribute Type Description Mand. Ed.
id string Unique identification of the

ApplicationConfig.
A No

spId string ID of the ServiceProvider owning the
ApplicationConfig.

A No

instanceAid string AID of the running application instance
that shall be created from this
ApplicationConfig. This AID is also the
AID that is used for selecting a selectable
application on the SC. The AID format
follows [ISO/IEC7816-4].

M C

name string Name of this ApplicationConfig.
Default value is empty string.

O Yes

description string Description of this ApplicationConfig.
Default value is empty string.

O Yes

installConfig InstallConfig Configuration settings applied to the
running application instance during
transition to lifecycle state Installed.
Default value is InstallConfig with
defaults.

O C

activationConfig ActivationConfig Configuration settings applied to the
running application instance during
transition to lifecycle state Activated.
Default value is ActivationConfig with
defaults.

O C

4 Interfaces

Federal Office for Information Security 35

Attribute Type Description Mand. Ed.
personalizationConfig PersonalizationConfig Configuration settings applied to the

running application instance during
transition to lifecycle state Personalized.
Default value is PersonalizationConfig
with defaults.

O C

4.1.4.13 InstallConfig
An InstallConfig is a structure to configure configuration options needed to deploy a Service to lifecycle state
Installed. It defines configuration settings which are applied to the applet during deploy or update processes
triggered with the TSM-API when using the InstallServiceCommand parameter.

Modifications are only possible, as long as the corresponding ApplicationConfig is not yet linked to a published
Flavor.

The InstallConfig data type is only used as a complex type inside ApplicationConfig and is not directly referenced
in any API methods. It has the following attributes:

Attribute Type Description Mand. Ed.
applicationSpecificInstallParameter string List of application specific parameters

needed for installation. If omitted, empty
application specific parameters will be
used. Format: <TLV-Structures>.
Default value is empty string.

O C

privileges string[] List of required privileges for an
application instance. Subset of

• “CVMManagement”
• “ContactlessSelfActivation”
• “GlobalService”
• “PrivacyTrusted”

Default value is empty list.

O C

4.1.4.14 ActivationConfig
An ActivationConfig is a structure to configure configuration options needed to deploy a Service to lifecycle state
Activated. It defines configuration settings which are applied to the applet during deploy or update processes
triggered with the TSM-API when using the ActivateServiceCommand parameter.

Modifications are only possible, as long as the corresponding ApplicationConfig is not yet linked to a published
Flavor.

The ActivationConfig data type is only used as a complex type inside ApplicationConfig and is not directly
referenced in any API methods. It has following attributes:

Attribute Type Description Mand. Ed.
makeSelectable boolean Flag, whether application instance to be created shall

be made selectable.
If omitted, default value true will be used.

O C

accessibleViaApdu boolean Flag, whether the application instance to be created
will be accessible via APDU. Can only be applied if
makeSelectable is true.
If omitted, default value false will be used.

O C

4 Interfaces

36 Federal Office for Information Security

Attribute Type Description Mand. Ed.
accessibleViaNfc boolean Flag, whether the application instance to be created

will be accessible via NFC. Can only be applied if
makeSelectable is true.
If omitted, default value false will be used.

O C

4.1.4.15 PersonalizationConfig
A PersonalizationConfig is a structure to configure configuration options needed to deploy a Service to lifecycle
state Personalized and link a PersonalizationScript with Certificates for communication to a SP backend (if
required). It defines configuration settings which are applied to the applet during deploy or update processes
triggered with the TSM-API when using the PersonalizeServiceCommand parameter.

Modifications are only possible, as long as the corresponding ApplicationConfig is not yet linked to a published
Flavor.

The PersonalizationConfig data type is only used as a complex type inside ApplicationConfig and is not directly
referenced in any API methods. It has the following attributes:

Attribute Type Description Mand. Ed.
personalizationScriptId string ID of the PersonalizationScript used for

personalization.
Default value is null.

O C

certificateId string ID of the Certificate used in this
PersonalizationConfig.
Default value is null.

O Yes

provideAttestationToken boolean Flag, whether an AttestationToken shall be
included in the application specific install
parameters.
If omitted, default value false will be used.
When set to true, all corresponding
FeatureConfigs must configure
keyProvisioningMode and keyIndex.

O C

includeSecurityDomainDiversificationData boolean Flag, whether MasterKeyIndex and Key
Diversification Data used for a Basic
Diversified Create of the Service Security
Domain shall be included in the Attestation
Token.

Can only be applied if

• provideAttestationToken is true and
• FeatureConfig.keyProvisioningMode is

BASIC_DIVERSIFIED_CREATE and
• FeatureConfig.keyIndex is not empty

If omitted, default value false will be used.

O C

4.1.4.16 PersonalizationScript
A PersonalizationScript is a script a SP may use to specify installation instructions or request TSM-support for,
e.g., the personalization of a secure application during the provisioning process. This interface only provides
methods to manage the PersonalizationScripts. The content of the PersonalizationScript is currently not in the
scope of this TR.

A PersonalizationScript has the following attributes:

4 Interfaces

Federal Office for Information Security 37

Attribute Type Description Mand. Ed.
id string Unique identification of the Personalization-Script. A No
spId string ID of the ServiceProvider owning the Personalization-

Script.
A No

fileName string Name of this PersonalizationScript. M Yes
creationDate string A datetime string (creation of Personalization-Script). A No
uploadDate string A datetime string (upload of Personalization-Script

binary).
A No

4.1.4.17 Certificate
A Certificate is used for the communication between TSM and SP Online System and also in
PersonalizationScripts for applet provisioning and personalization.

A Certificate has the following attributes:

Attribute Type Description Mand. Ed.
id string Unique identification of the Certificate. A No
spId string ID of the ServiceProvider owning the Certificate. A No
fileName string Name of the file the Certificate was created from. M Yes
creationDate string A datetime string (creation of Certificate). A No
uploadDate string A datetime string (upload of Certificate binary). A No

4.1.4.18 SposConfig
SposConfig is used to configure communication with the Service Provider Online System. The aim is to enable a
service provider to receive process success and process error messages sent by the TSM.

A SposConfig has the following attributes:

Attribute Type Description Mand. Ed.
id string Unique identification of the SposConfig. A No
spId string ID of the ServiceProvider owning the SposConfig. A No
url string URL of the SP’s Online Service. M Yes
certificateId string ID of the Certificate that is used for the backend

communication.
M Yes

4.1.4.19 GeneralError
A GeneralError is used as response object for any REST method call in case the response status code is not 2xx.

GeneralError has the following attributes:

Attribute Type Description Mand. Ed.
errorCategory int The error type. M No

errorMessage string A human-readable error description in English. M No

The error category shall contain a rough indication about the problem type. The error message shall provide
additional detail information about the root cause of the underlying problem.

Concrete error categories and messages are defined in Section 4.1.5.2.

4 Interfaces

38 Federal Office for Information Security

4.1.5 Common Definitions

4.1.5.1 HTTP Status Codes
The listed HTTP Status Codes are consistent with [RFC7231]. The HTTP Status Codes SHALL be mapped to the
HTTP content as follows.

Code Description Content
200 specified individually specified individually

400 Bad Request GeneralError: 1002-1016

401 Unauthorized GeneralError: 1000, 1001

403 Forbidden -

404 Not Found -

500 Internal Server Error GeneralError: 2000

4.1.5.2 Error Types
The following error categories and messages are defined.

Error Category Error Message
1000 Not authenticated.

1001 Authentication failed.

1002 Invalid request: <<InvalidRequestReason>>.

1003 Create failed: attribute <<attributeName>> not allowed for POST. It is automatically assigned
when created.

1004 Create failed: attribute <<attributeName>> is missing, but it is mandatory for <<entityName>>.

1005 Modify failed: attribute <<attributeName>> not allowed for PUT. Attribute cannot be modified
after creation.

1006 Modify failed: attribute <<attributeName>> is missing, but it is mandatory for
<<entityName>>.

1007 Unknown: ‘<<attributeName>>’ is not a valid attribute.

1008 Invalid format ‘<<attributeValue>>’ for << attributeName>>. Supported format is
<<formatDefinition>>.

1009 Not existing: <<entityName>> with id ‘<<attributeValue>>’ does not exist.

1010 Delete failed: <<entityName>> is referenced in <<entityNameWhereUsed>>.

1011 Upload failed: missing file.

1012 Upload failed: too many files provided. Method supports uploading one file.

1013 Upload failed: invalid file type. Supported file types are <<fileTypeList>>.

1014 Upload failed: <<fileSize>>MB exceeds maximum upload file size of
<<maxUploadFileSize>>MB.

1015 Already Published: <<entityName>> cannot be modified. It is already published via Flavor
identifier ‘<<attributeValue>>’.

4 Interfaces

Federal Office for Information Security 39

Error Category Error Message
1016 Technical constraints failed: minimal <<attributeName>> version not supported by

SecureComponentProfile.

2000 Internal server error: <<InternalErrorReason>>.

The error message may be parametrized. This means the parameter inside the error message is replaced with
concrete detail information about the error during error creation. The following table explains the parameters in
detail:

Parameter Description
<<attributeName>> Name of the attribute provided in the request body which causes the error

message. In case the request body contains a deep attribute structure, the full
attribute path must be used in the error message.

Examples:

• Create failed: attribute id not allowed for POST. It is automatically
assigned when created.

• Save failed: attribute creationDate not allowed for PUT. It cannot be
modified after creation.

• Unknown: ‘securityRequirements.gpVersion’ is not a valid attribute
• Technical constraints failed: minimal javaCard version not supported by

SecureComponentProfile

<<entityName>> Name of the entity which contains the attribute affecting the error message.

Example:

• Modify failed: attribute tag is missing, but it is mandatory for Version.
<< entityNameWhereUsed>> Name of the other entity which is using the entity of request.

Example:

• Delete failed: ELF is referenced in Flavor.
<<attributeValue>> The value of an attribute provided in the request body.

Example:

• Not existing: Service with id ‘12345’ does not exist.
<< formatDefinition>> Format definition for valid format of the attribute value.

Example:

• Invalid format: ‘myName999’ for name. Supported format is [a-zA-Z].

<<fileTypeList>> Comma separated list of file types supported by this API method.

Example:

• Upload failed: Invalid file type. Supported file types are [cap, zip].

<<fileSize>>
<<maxUploadFileSize>>

Size of the file that was provided for uploading and maximal supported file size in
megabyte.

Example:

• Upload failed: 2,6MB exceeds maximum upload file size of 2MB.

4 Interfaces

40 Federal Office for Information Security

Parameter Description
<<InvalidRequestReason>> Reason for invalid request issues, not covered by existing error categories.

Example:

• Invalid request: request body not allowed.
• Invalid request: request body missing.
• Invalid request: unsupported content type.

<<InternalErrorReason>> Reason for internal error failure.

Example:

• Internal server error: service on maintenance, please try again later.

In case multiple errors occurred during a request, the GeneralError still contains only one of those errors.

Error category 1002 shall be thrown for invalid request not covered by any other of the following error categories.

Error category 1003 shall be thrown for POST requests containing attributes which are marked automatically
assigned (A) in Section 4.1.3.

Error category 1004 shall be thrown for POST requests with missing attributes which are marked mandatory (M)
in Section 4.1.3.

Error category 1005 shall be thrown for PUT requests containing attributes which are modified but marked as not
editable (No) in Section 4.1.3.

Error category 1006 shall be thrown for PUT requests missing attributes which are marked as mandatory (M) in
Section 4.1.3.

Error category 1007 shall be thrown for all requests containing attributes which are not part of the API.

Error category 1008 shall be thrown for all requests containing attributes with the attribute value provided in the
wrong format.

Error category 1009 shall be thrown for all requests that refer to an entity which does not exist in the TSM, e.g. an
identifier inside request path (URL) or request body (JSON).

Error category 1010 shall be thrown for all DELETE requests on entities which are still linked to other entities
and thus are still in use. This affects all entities referenced by attributes of related entities with attributes named
“[a-zA-Z]Id”. These are for example:

• Flavor

• ExecutableLoadFile

• ApplicationConfig

• PersonalizationScript

• Certificates

Error categories 1011-2014 shall be thrown for requests of content type multipart/form-data when no file or too
many files were provided or when file type or file size is out of boundary definition of the TSM.

Error category 1015 is a special error thrown when SP tries to modify a published Flavor or ELF.

Error category 1016 is a special error thrown when SP tries to allocate an ELF to a SecureComponentProfile not
supporting the TechnicalRequirements of the ELF.

Error category 2000 shall be thrown on any issue during a request that is caused by TSM itself.

4 Interfaces

Federal Office for Information Security 41

4.1.6 Interface Methods

4.1.6.1 Authentication

4.1.6.1.1 Create Access Token

Authenticate to the TSM-Backend by sending a long-term token, and receive a short-term bearer token. The short-
term bearer token is used to access the other API functions. The long-term token is provided out of band.

To authenticate the client, Basic Authentication is used, where the Request Authorization header contains the
"Basic" keyword followed by the Base64-encoded string of the URL-encoded long-term-token (typically: {URL-
encoded-client-ID}:{URL-encoded-client-secret}).

REST-URL <<tsmBaseURL>>/auth

Request Method POST

Request Headers Authorization <<Longterm-Token>>

Content-Type application/x-www-form-urlencoded

Accept application/json

Request Body grant_type=client_credentials

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body auth-Token

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1001, 1002, 2000

4.1.6.2 Manage SP Account
This section lists methods for the management of SP account information.

4.1.6.2.1 Get Account Information

Get details of the SP account.

REST-URL <<tsmBaseURL>>/service-providers/current

Request Method GET

Request Headers Authorization <<auth-Token>>

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body ServiceProvider

4 Interfaces

42 Federal Office for Information Security

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 2000

4.1.6.3 Retrieve SecureComponentProfiles
This section provides methods to retrieve information about the by the TSMS supported hardware platforms.

4.1.6.3.1 List SecureComponentProfiles

List all available SecureComponentProfiles.

REST-URL <<tsmBaseURL>>/secure-component-profiles

Request Method GET

Request Headers Authorization <<auth-Token>>

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body SecureComponentProfile[]

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 2000

4.1.6.3.2 Get SecureComponentProfile

Get details of a certain SecureComponentProfile.

REST-URL <<tsmBaseURL>>/secure-component-profiles/{scpId}

Request Method GET

Request Headers Authorization <<auth-Token>>

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body SecureComponentProfile

Responses on failures:

4 Interfaces

Federal Office for Information Security 43

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4.1.6.3.3 List Related ELFs

List all ELFs that use a certain SecureComponentProfile.

REST-URL <<tsmBaseURL>>/secure-component-profiles/{scpId}/elfs

Request Method GET

Request Headers Authorization <<auth-Token>>

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body ExecutableLoadFile[]

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4.1.6.3.4 List Related Services

List all Services that use a certain SecureComponentProfile.

REST-URL <<tsmBaseURL>>/secure-component-profiles/{scpId}/services

Request Method GET

Request Headers Authorization <<auth-Token>>

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body Service[]

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4 Interfaces

44 Federal Office for Information Security

4.1.6.3.5 List Related Flavors

List all Flavors of a certain Service that use a certain SecureComponentProfile.

REST-URL <<tsmBaseURL>>/secure-component-

profiles/{scpId}/services/{serviceId}/flavors

Request Method GET

Request Headers Authorization <<auth-Token>>

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body Flavor[]

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4.1.6.3.6 List Related Versions

List all Versions of a certain Service that use a certain SecureComponentProfile.

REST-URL <<tsmBaseURL>>/secure-component-

profiles/{scpId}/services/{serviceId}/versions

Request Method GET

Request Headers Authorization <<auth-Token>>

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body Version[]

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4 Interfaces

Federal Office for Information Security 45

4.1.6.4 Manage Services and Flavors
This section lists methods for the management of Services, Versions, and Flavors. Using these methods, an SP
may, e.g., link existing ELFs and ApplicationConfigs to create and modify different Versions and Flavors of a
Service.

There are methods to list, create, modify, and delete Service entities and their corresponding Version and Flavor
entities, and to link ExecutableModule entities and ApplicationConfig entities to a certain Flavor.

The methods listed in this section do not provide functionality to upload binary data for ELFs or to create
ApplicationConfigs. Uploading ELFs can be done via methods listed in Section 4.1.6.4.27. Managing
ApplicationConfigs can be done via methods listed in Section 4.1.6.6.

4.1.6.4.1 List Services

List all Services of the authenticated ServiceProvider.

REST-URL <<tsmBaseURL>>/services

Request Method GET

Request Headers Authorization <<auth-Token>>

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body Service[]

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 2000

4.1.6.4.2 Create Service

Create a new Service.

REST-URL <<tsmBaseURL>>/services

Request Method POST

Request Headers Authorization <<auth-Token>>

Content-Type application/json

Accept application/json

Request Body Service

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body Service

4 Interfaces

46 Federal Office for Information Security

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1003, 1004, 1007, 1008, 1009, 2000

4.1.6.4.3 Get Service

Get details of a certain Service.

REST-URL <<tsmBaseURL>>/services/{serviceId}

Request Method GET

Request Headers Authorization <<auth-Token>>

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body Service

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4.1.6.4.4 Modify Service

Update details of an existing Service.

REST-URL <<tsmBaseURL>>/services/{serviceId}

Request Method PUT

Request Headers Authorization <<auth-Token>>

Content-Type application/json

Accept application/json

Request Body Service

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body Service

Responses on failures:

4 Interfaces

Federal Office for Information Security 47

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1005, 1006, 1007, 1008, 1009, 2000

4.1.6.4.5 Delete Service

Delete a certain Service. All data, including associated Versions, Flavors, and ApplicationInstantiationConfigs is
deleted. Referenced ELFs, ApplicationConfigs, and SposConfigs are not deleted.

REST-URL <<tsmBaseURL>>/services/{serviceId}

Request Method DELETE

Request Headers Authorization <<auth-Token>>

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 204

Response Body -

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4.1.6.4.6 List Flavors

List all Flavors of a certain Service.

REST-URL <<tsmBaseURL>>/services/{serviceId}/flavors

Request Method GET

Request Headers Authorization <<auth-Token>>

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body Flavor[]

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4 Interfaces

48 Federal Office for Information Security

4.1.6.4.7 Create Flavor

Create a new Flavor for a certain Service.

REST-URL <<tsmBaseURL>>/services/{serviceId}/flavors

Request Method POST

Request Headers Authorization <<auth-Token>>

Content-Type application/json

Accept application/json

Request Body Flavor

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body Flavor

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1003, 1004, 1007, 1008, 1009, 2000

4.1.6.4.8 Get Flavor

Get details of a certain Flavor.

REST-URL <<tsmBaseURL>>/services/{serviceId}/flavors/{flavorId}

Request Method GET

Request Headers Authorization <<auth-Token>>

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body Flavor

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4.1.6.4.9 Modify Flavor

Update details of an existing Flavor.

REST-URL <<tsmBaseURL>>/services/{serviceId}/flavors/{flavorId}

4 Interfaces

Federal Office for Information Security 49

Request Method PUT

Request Headers Authorization <<auth-Token>>

Content-Type application/json

Accept application/json

Request Body Flavor

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body Flavor

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1005, 1006, 1007, 1008, 1009, 1015,

1016, 2000

4.1.6.4.10 Delete Flavor

Delete a certain Flavor. All data, including associated ApplicationInstantiationConfigs, is deleted. Referenced
ELFs and ApplicationConfigs are not deleted.

Deletion SHALL only be possible if the Flavor is not referenced in any Version and thus is not in use anywhere.

REST-URL <<tsmBaseURL>>/services/{serviceId}/flavors/{flavorId}

Request Method DELETE

Request Headers Authorization <<auth-Token>>

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 204

Response Body -

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 1010, 2000

4.1.6.4.11 List Related ApplicationConfigs

List all ApplicationConfigs that use a certain Flavor.

REST-URL <<tsmBaseURL>>/services/{serviceId}/flavors/{flavorId}/application-

configs

Request Method GET

4 Interfaces

50 Federal Office for Information Security

Request Headers Authorization <<auth-Token>>

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body ApplicationConfig[]

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4.1.6.4.12 List Linked ELFs

List all ExecutableLoadFiles used by a certain Flavor.

REST-URL <<tsmBaseURL>>/services/{serviceId}/flavors/{flavorId}/executable-

load-files

Request Method GET

Request Headers Authorization <<auth-Token>>

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body ExecutableLoadFile[]

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4.1.6.4.13 Link ELFs

Add additional ExecutableLoadFiles to a certain Flavor. In case ELF Ids provided are already linked to this
Flavor, method will still be successful.

REST-URL <<tsmBaseURL>>/services/{serviceId}/flavors/{flavorId}/executable-

load-files

Request Method POST

Request Headers Authorization <<auth-Token>>

Content-Type application/json

4 Interfaces

Federal Office for Information Security 51

Accept application/json

Request Body string[] Ids of the ELFs to be added to the flavor

(elfIds)

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body Flavor

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1008, 1009, 1015, 1016, 2000

4.1.6.4.14 Unlink ELFs

Remove ExecutableLoadFiles from a certain Flavor. In case ELF Ids provided are not linked to this Flavor,
method will still be successful.

REST-URL <<tsmBaseURL>>/services/{serviceId}/flavors/{flavorId}/executable-

load-files

Request Method PUT

Request Headers Authorization <<auth-Token>>

Content-Type application/json

Accept application/json

Request Body string[] Ids of the ELFs to be removed from the

flavor (elfIds)

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body Flavor

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1008, 1009, 1015, 2000

4.1.6.4.15 Publish Flavor

Publish a Flavor. After publishing, the Flavor can be used for installation on a handset and certain attributes
cannot be modified anymore (see Section 4.1.6.4.6). The publishing status of a Flavor can be checked with the
attribute publish of the Flavor.

When a Flavor is once published, it is not possible to undo this process. It is valid to call this method multiple
times, even if a Flavor is already published.

4 Interfaces

52 Federal Office for Information Security

REST-URL <<tsmBaseURL>>/services/{serviceId}/flavors/{flavorId}/publish

Request Method POST

Request Headers Authorization <<auth-Token>>

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body Flavor

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4.1.6.4.16 List Related Versions

List all Versions that use a certain Flavor.

REST-URL <<tsmBaseURL>>/services/{serviceId}/flavors/{flavorId}/versions

Request Method GET

Request Headers Authorization <<auth-Token>>

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body Version[]

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4.1.6.4.17 List Versions

List all Versions of a certain Service.

REST-URL <<tsmBaseURL>>/services/{serviceId}/versions

Request Method GET

Request Headers Authorization <<auth-Token>>

Accept application/json

4 Interfaces

Federal Office for Information Security 53

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body Version[]

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4.1.6.4.18 Create Version

Create a new Version of a certain Service.

REST-URL <<tsmBaseURL>>/services/{serviceId}/versions

Request Method POST

Request Headers Authorization <<auth-Token>>

Content-Type application/json

Accept application/json

Request Body Version

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body Version

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1003, 1004, 1007, 1008, 1009, 1016,

2000

4.1.6.4.19 Get Version

Get details of a certain Version.

REST-URL <<tsmBaseURL>>/services/{serviceId}/versions/{tag}

Request Method GET

Request Headers Authorization <<auth-Token>>

Accept application/json

Request Body -

Response on success:

4 Interfaces

54 Federal Office for Information Security

Response Headers Content-Type application/json

Status Code 200

Response Body Version

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4.1.6.4.20 Modify Version

Update details of an existing Version.

REST-URL <<tsmBaseURL>>/services/{serviceId}/versions/{tag}

Request Method PUT

Request Headers Authorization <<auth-Token>>

Content-Type application/json

Accept application/json

Request Body Version

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body Version

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1005, 1006, 1007, 1008, 1009, 1016,

2000

4.1.6.4.21 Delete Version

Delete a certain Version. All data is deleted. Referenced Flavors are not deleted.

REST-URL <<tsmBaseURL>>/services/{serviceId}/versions/{tag}

Request Method DELETE

Request Headers Authorization <<auth-Token>>

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 204

Response Body -

Responses on failures:

4 Interfaces

Federal Office for Information Security 55

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 1010, 2000

4.1.6.4.22 List Linked Flavors

List all Flavors used by a certain Version.

REST-URL <<tsmBaseURL>>/services/{serviceId}/versions/{tag}/flavors

Request Method GET

Request Headers Authorization <<auth-Token>>

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body Flavor[]

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4.1.6.4.23 Link Flavors

Add additional Flavors to a certain Version and configure the SecureComponentProfiles supported by the Flavor.
In case Flavor Ids provided are already linked to this Version, the method will still be successful and it will just
modify the list of supported SecureComponentProfiles.

REST-URL <<tsmBaseURL>>/services/{serviceId}/versions/{tag}/flavors

Request Method POST

Request Headers Authorization <<auth-Token>>

Content-Type application/json

Accept application/json

Request Body Map<string,

string[]>

Map key: flavorId

Map values: list of

secureComponentProfileIds

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body Version

Responses on failures:

4 Interfaces

56 Federal Office for Information Security

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1008, 1009, 1016, 2000

4.1.6.4.24 Unlink Flavors

Remove Flavors from a certain Version. In case Flavor Ids provided are not linked to this Version, method will
still be successful.

REST-URL <<tsmBaseURL>>/services/{serviceId}/versions/{tag}/flavors

Request Method PUT

Request Headers Authorization <<auth-Token>>

Content-Type application/json

Accept application/json

Request Body string[] Ids of the flavors to be removed from the

version (flavorIds)

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body Version

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1008, 1009, 2000

4.1.6.4.25 List Associated SecureComponentProfiles

List SecureComponentProfiles associated to a certain Flavor of a certain Version.

REST-URL <<tsmBaseURL>>/services/{serviceId}/versions/{tag}/flavors/

{flavorId}/secure-component-profiles/

Request Method GET

Request Headers Authorization <<auth-Token>>

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body SecureComponentProfile[]

Responses on failures:

4 Interfaces

Federal Office for Information Security 57

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4.1.6.4.26 List Linked SecureComponentProfiles

List all SecureComponentProfiles used by a certain Version.

REST-URL <<tsmBaseURL>>/services/{serviceId}/versions/{tag}/secure-

component-profiles

Request Method GET

Request Headers Authorization <<auth-Token>>

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body SecureComponentProfile[]

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4.1.6.4.27 Link SecureComponentProfiles

Add additional SecureComponentProfiles to a certain Version and configure the corresponding Flavors. In case
SecureComponentProfile Ids provided are already linked to this Version, the method will still be successful and it
will just modify the list of supported Flavors.

REST-URL <<tsmBaseURL>>/services/{serviceId}/versions/{tag}/secure-

component-profiles

Request Method POST

Request Headers Authorization <<auth-Token>>

Content-Type application/json

Accept application/json

Request Body Map<string, string> Map key: secureComponentProfileId

Map value: flavorId of the corresponding

Flavor

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body Version

4 Interfaces

58 Federal Office for Information Security

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1008, 1009, 1016, 2000

4.1.6.4.28 Unlink SecureComponentProfiles

Remove SecureComponentProfiles from a certain Version. In case SecureComponentProfile Ids provided are not
linked to this Version, method will still be successful.

REST-URL <<tsmBaseURL>>/services/{serviceId}/versions/{tag}/secure-

component-profiles

Request Method PUT

Request Headers Authorization <<auth-Token>>

Content-Type application/json

Accept application/json

Request Body string[] Ids of the secureComponentProfiles to be

removed from the version

(secureComponentProfileIds)

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body Version

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1008, 1009, 2000

4.1.6.5 Manage ELFs and EMs
This section lists methods for the upload of executable binary files, usually CAP files, and to provide technical
requirements and installation orders for the EMs inside those files.

There are methods to list, create, modify, upload, overwrite, and delete ExecutableLoadFile entities and their
corresponding InstallationOrder and TechnicalRequirements entities.

These methods do not provide functionality to link EMs to certain ApplicationConfigs. Linking EMs and
ApplicationConfigs is done using methods listed in Section 4.1.6.4.

4.1.6.5.1 List ELFs

List all ExecutableLoadFiles of the authenticated ServiceProvider.

REST-URL <<tsmBaseURL>>/executable-load-files

Request Method GET

Request Headers Authorization <<auth-Token>>

4 Interfaces

Federal Office for Information Security 59

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body ExecutableLoadFile[]

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 2000

4.1.6.5.2 Create ELF and Upload Binary

Create a new ExecutableLoadFile and upload corresponding binary data. ELF details and binary must both be
provided to create a new ExecutableLoadFile.

REST-URL <<tsmBaseURL>>/executable-load-files

Request Method POST

Request Headers Authorization <<auth-Token>>

Content-Type multipart/form-data; boundary=<<boundary>>

Content-Length File length in bytes

Accept application/json

Request ELF-
Filename

Content-Disposition form-data; name=”elfFilename”

Content-Type text/plain

Body string

Request ELF-File Content-Disposition form-data; name=”elfFile”,

filename=”<<fileName>>”

Content-Type application/octet-stream

Body byte[]

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body ExecutableLoadFile

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1003, 1004, 1007, 1008, 1009, 1011-

1014, 2000

4 Interfaces

60 Federal Office for Information Security

4.1.6.5.3 Get ELF

Get details of a certain ExecutableLoadFile.

REST-URL <<tsmBaseURL>>/executable-load-files/{elfId}

Request Method GET

Request Headers Authorization <<auth-Token>>

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body ExecutableLoadFile

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4.1.6.5.4 Modify ELF and Overwrite Binary

Update details and overwrite binary data of an existing ExecutableLoadFile. The binary of an ExecutableLoadFile
can only be replaced, as long it is not yet linked to a published Flavor.

REST-URL <<tsmBaseURL>>/executable-load-files/{elfId}

Request Method PUT

Request Headers Authorization <<auth-Token>>

Content-Type multipart/form-data; boundary=<<boundary>>

Content-Length File length in bytes

Accept application/json

Content-Type text/plain

Body string

Request ELF-File Content-Disposition form-data; name=”elfFile”,

filename=”<<fileName>>”

Content-Type application/octet-stream

Body byte[]

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body ExecutableLoadFile

Responses on failures:

4 Interfaces

Federal Office for Information Security 61

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1005, 1006, 1007, 1008, 1009, 1011-

1014, 1015, 1016, 2000

4.1.6.5.5 Delete ELF

Delete a certain ExecutableLoadFile. All data, including binary data, meta-data, and associated
TechnicalRequirements, is deleted.

Deletion SHALL only be possible if the ExecutableLoadFile is not referenced in any Flavor and thus is not in use
anywhere.

REST-URL <<tsmBaseURL>>/executable-load-files/{elfId}

Request Method DELETE

Request Headers Authorization <<auth-Token>>

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 204

Response Body -

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 1010, 2000

4.1.6.5.6 Get Binary

Get binary data of a certain ExecutableLoadFile.

REST-URL <<tsmBaseURL>>/executable-load-files/{elfId}/binary

Request Method GET

Request Headers Authorization <<auth-Token>>

Request Body -

Response on success:

Response Headers Content-Type application/octet-stream

Content-Disposition attachment; filename=”<<fileName>>”

Status Code 200

Response Body byte[]

Responses on failures:

4 Interfaces

62 Federal Office for Information Security

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4.1.6.5.7 List EMs

List all ExecutableModules of a certain ExecutableLoadFile.

REST-URL <<tsmBaseURL>>/executable-load-files/{elfId}/executable-modules/

Request Method GET

Request Headers Authorization <<auth-Token>>

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body ExecutableModule[]

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4.1.6.5.8 Get EM

Get details of a certain ExecutableModule of a certain ExecutableLoadFile.

REST-URL <<tsmBaseURL>>/executable-load-files/{elfId}/executable-

modules/{emId}

Request Method GET

Request Headers Authorization <<auth-Token>>

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body ExecutableModule

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4 Interfaces

Federal Office for Information Security 63

4.1.6.5.9 List Related ApplicationConfigs

Return the ApplicationConfigs that apply to a certain ExecutableModule.

REST-URL <<tsmBaseURL>>/executable-load-files/{elfId}/executable-

modules/{emId}/application-configs

Request Method GET

Request Headers Authorization <<auth-Token>>

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body ApplicationConfig[]

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4.1.6.5.10 List Related Flavors

List all Flavors that use a certain ExecutableLoadFile.

REST-URL <<tsmBaseURL>>/executable-load-

files/{elfId}/services/{serviceId}/flavors

Request Method GET

Request Headers Authorization <<auth-Token>>

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body Flavor[]

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4.1.6.5.11 List Related Services

List all Services that use a certain ExecutableLoadFile.

REST-URL <<tsmBaseURL>>/executable-load-files/{elfId}/services

4 Interfaces

64 Federal Office for Information Security

Request Method GET

Request Headers Authorization <<auth-Token>>

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body Service[]

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4.1.6.5.12 List Related Versions

List all Versions of a certain Service that use a certain ExecutableLoadFile.

REST-URL <<tsmBaseURL>>/executable-load-

files/{elfId}/services/{serviceId}/versions

Request Method GET

Request Headers Authorization <<auth-Token>>

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body Version[]

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4.1.6.5.13 List Related SecureComponentProfiles

List all SecureComponentProfiles associated to certain Service that use a certain ExecutableLoadFile. The
returned list of SecureComponentProfiles SHALL not contain any duplicate entries.

REST-URL <<tsmBaseURL>>/executable-load-

files/{elfId}/services/{serviceId}/secure-component-profiles

Request Method GET

Request Headers Authorization <<auth-Token>>

4 Interfaces

Federal Office for Information Security 65

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body SecureComponentProfile[]

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4.1.6.6 Manage ApplicationConfigs
This section lists methods to create application configurations for EMs. An ApplicationConfig consists of
parameters and certificates necessary for the provisioning of a specific kind of SC. An ApplicationConfig does not
depend on a specific EM.

There are methods to list, upload, overwrite, and delete ApplicationConfigs, and to link PersonalizationScripts and
Certificates to a certain ApplicationConfig.

The methods listed here do not provide functionality to link ApplicationConfigs to certain EMs. Linking
ApplicationConfigs and EMs is done via methods listed in Section 4.1.6.4.

The methods listed here do not provide functionality to upload binary data for PersonalizationScripts or
Certificates. Uploading those files is done via methods listed in Section 4.1.6.7 and Section 4.1.6.8.

4.1.6.6.1 List ApplicationConfigs

List all ApplicationConfigs of the authenticated ServiceProvider.

REST-URL <<tsmBaseURL>>/application-configs

Request Method GET

Request Headers Authorization <<auth-Token>>

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body ApplicationConfig[]

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 2000

4 Interfaces

66 Federal Office for Information Security

4.1.6.6.2 Create ApplicationConfig

Create a new ApplicationConfig.

REST-URL <<tsmBaseURL>>/application-configs

Request Method POST

Request Headers Authorization <<auth-Token>>

Content-Type application/json

Accept application/json

Request Body ApplicationConfig

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body ApplicationConfig

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1003, 1004, 1007, 1008, 1009, 2000

4.1.6.6.3 Get ApplicationConfig

Get details of a certain ApplicationConfig.

REST-URL <<tsmBaseURL>>/application-configs/{applicationConfigId}

Request Method GET

Request Headers Authorization <<auth-Token>>

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body ApplicationConfig

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4.1.6.6.4 Modify ApplicationConfig

Update details of an existing ApplicationConfig.

REST-URL <<tsmBaseURL>>/application-configs/{applicationConfigId}

4 Interfaces

Federal Office for Information Security 67

Request Method PUT

Request Headers Authorization <<auth-Token>>

Content-Type application/json

Accept application/json

Request Body ApplicationConfig

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body ApplicationConfig

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1005, 1006, 1007, 1008, 1009, 2000

4.1.6.6.5 Delete ApplicationConfig

Delete a certain ApplicationConfig. All data is deleted. Referenced Certificates and PersonalizationScripts are not
deleted.

Deletion SHALL only be possible if the ApplicationConfig is not referenced in any Flavor and thus is not in use
anywhere.

REST-URL <<tsmBaseURL>>/application-configs/{applicationConfigId}

Request Method DELETE

Request Headers Authorization <<auth-Token>>

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 204

Response Body -

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 1010, 2000

4.1.6.6.6 List Related EMs

List all ExecutableModules that use a certain ApplicationConfig.

REST-URL <<tsmBaseURL>>/application-

configs/{applicationConfigId}/executable-modules

Request Method GET

4 Interfaces

68 Federal Office for Information Security

Request Headers Authorization <<auth-Token>>

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body ExecutableModule[]

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4.1.6.6.7 List Related Flavors

List all Flavors that use a certain ApplicationConfig.

REST-URL <<tsmBaseURL>>/application-configs/{applicationConfigId}/flavors

Request Method GET

Request Headers Authorization <<auth-Token>>

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body Flavor[]

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4.1.6.6.8 List Related Services

List all Services that use a certain ApplicationConfig.

REST-URL <<tsmBaseURL>>/application-configs/{applicationConfigId}/services

Request Method GET

Request Headers Authorization <<auth-Token>>

Accept application/json

Request Body -

Response on success:

4 Interfaces

Federal Office for Information Security 69

Response Headers Content-Type application/json

Status Code 200

Response Body Service[]

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4.1.6.7 Manage PersonalizationScripts
This section lists methods to upload and manage PersonalizationScripts. A PersonalizationScript is a binary script
a SP may use to specify installation instructions or request TSM-support for, e.g., the personalization of a secure
application during the provisioning process. A PersonalizationScript is independent of specific EMs and can be
linked to an ApplicationConfig.

There are methods to list, get, upload, and delete PersonalizationScripts.

The methods listed here do not provide functionality to link a PersonalizationScript to an ApplicationConfig or
EM. Linking a PersonalizationScript to an ApplicationConfig is done via methods listed in Section 4.1.6.6 ,
indirect linking to EMs is done via methods listed in Section 4.1.6.4.

4.1.6.7.1 List PersonalizationScripts

List all PersonalizationScripts of the authenticated ServiceProvider.

REST-URL <<tsmBaseURL>>/personalization-scripts

Request Method GET

Request Headers Authorization <<auth-Token>>

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body PersonalizationScript[]

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 2000

4.1.6.7.2 Create PersonalizationScript and Upload Binary

Create a new PersonalizationScript and upload corresponding binary data.

REST-URL <<tsmBaseURL>>/personalization-scripts

Request Method POST

4 Interfaces

70 Federal Office for Information Security

Request Headers Authorization <<auth-Token>>

Content-Type multipart/form-data; boundary=<<boundary>>

Content-Length File length in bytes.

Accept application/json

Request Script-
Filename

Content-Disposition form-data; name=”scriptFilename”

Content-Type text/plain

Body string

Request Script-File Content-Disposition form-data; name=”scriptFile”;

filename=”<<fileName>>”

Content-Type application/octet-stream

Body byte[]

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body PersonalizationScript

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1011-1014, 2000

4.1.6.7.3 Get PersonalizationScript

Get details of a certain PersonalizationScript.

REST-URL <<tsmBaseURL>>/personalization-scripts/{personalizationScriptId}

Request Method GET

Request Headers Authorization <<auth-Token>>

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body PersonalizationScript

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4 Interfaces

Federal Office for Information Security 71

4.1.6.7.4 Modify PersonalizationScript and Overwrite Binary

Update details and overwrite binary data of an existing PersonalizationScript.

REST-URL <<tsmBaseURL>>/personalization-scripts/{personalizationScriptId}

Request Method PUT

Request Headers Authorization <<auth-Token>>

Content-Type multipart/form-data; boundary=<<boundary>>

Content-Length File length in bytes.

Accept application/json

Request Script-File Content-Disposition form-data; name=”scriptFile”;

filename=”<<fileName>>”

Content-Type application/octet-stream

Body byte[]

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body PersonalizationScript

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4.1.6.7.5 Delete PersonalizationScript

Delete a certain PersonalizationScript. All data, including binary data, is deleted.

Deletion SHALL only be possible if the PersonalizationScript is not referenced in any ApplicationConfig and thus
is not in use anywhere.

REST-URL <<tsmBaseURL>>/personalization-scripts/{personalizationScriptId}

Request Method DELETE

Request Headers Authorization <<auth-Token>>

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 204

Response Body -

Responses on failures:

4 Interfaces

72 Federal Office for Information Security

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 1010, 2000

4.1.6.7.6 List Related ApplicationConfigs

List all ApplicationConfigs that use a certain PersonalizationScript.

REST-URL <<tsmBaseURL>>/personalization-scripts/{personalizationScriptId}/

application-configs

Request Method GET

Request Headers Authorization <<auth-Token>>

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body ApplicationConfig[]

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4.1.6.7.7 Get Binary

Get binary data of a certain PersonalizationScript.

REST-URL <<tsmBaseURL>>/personalization-scripts/{personalizationScriptId}/

binary

Request Method GET

Request Headers Authorization <<auth-Token>>

Request Body -

Response on success:

Response Headers Content-Type application/octet-stream

Content-Disposition attachment; filename=”<<fileName>>”

Status Code 200

Response Body byte[]

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4 Interfaces

Federal Office for Information Security 73

4.1.6.7.8 List Related Flavors

List all Flavors that use a certain PersonalizationScript.

REST-URL <<tsmBaseURL>>/personalization-scripts/{personalizationScriptId}/

flavors

Request Method GET

Request Headers Authorization <<auth-Token>>

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body Flavor[]

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4.1.6.7.9 List Related Services

List all Services that use a certain PersonalizationScript.

REST-URL <<tsmBaseURL>>/personalization-scripts/{personalizationScriptId}/

services

Request Method GET

Request Headers Authorization <<auth-Token>>

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body Service[]

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4.1.6.8 Manage Certificates
This section lists methods to manage the TLS certificates which are used for communication with a SP backend
requested by PersonalizationScripts (if applicable) and for communication between TSM and SPOS.

4 Interfaces

74 Federal Office for Information Security

There are methods to list, get, upload, and delete Certificates.

The methods listed here do not provide functionality to link a Certificate to certain ApplicationConfigs or
SposConfigs. Linking Certificates to ApplicationConfigs is done via methods listed in Section 4.1.6.6, and linking
to SposConfigs is done using methods listed in Section 4.1.6.9.

4.1.6.8.1 List Certificates

List all Certificates of the authenticated ServiceProvider.

REST-URL <<tsmBaseURL>>/certificates

Request Method GET

Request Headers Authorization <<auth-Token>>

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body Certificate[]

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 2000

4.1.6.8.2 Create Certificate and Upload Binary

Create a new Certificate and upload corresponding binary data.

REST-URL <<tsmBaseURL>>/certificates

Request Method POST

Request Headers Authorization <<auth-Token>>

Content-Type multipart/form-data; boundary=<<boundary>>

Content-Length File length in bytes.

Accept application/json

Request Cert-
Filename

Content-Disposition form-data; name=”certFilename”

Content-Type text/plain

Body string

Request Cert-File Content-Disposition form-data; name=”certFile”;

filename=”<<fileName>>”

Content-Type application/octet-stream

Body byte[]

Response on success:

4 Interfaces

Federal Office for Information Security 75

Response Headers Content-Type application/json

Status Code 200

Response Body Certificate

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1011-1014, 2000

4.1.6.8.3 Get Certificate

Get details of a certain Certificate.

REST-URL <<tsmBaseURL>>/certificates/{certificateId}

Request Method GET

Request Headers Authorization <<auth-Token>>

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body Certificate

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4.1.6.8.4 Modify Certificate and Overwrite Binary

Update details and overwrite binary data of an existing Certificate.

REST-URL <<tsmBaseURL>>/certificates/{certificateId}

Request Method PUT

Request Headers Authorization <<auth-Token>>

Content-Type multipart/form-data; boundary=<<boundary>>

Content-Length File length in bytes.

Accept application/json

Request Cert-File Content-Disposition form-data; name=”certFile”;

filename=”<<fileName>>”

Content-Type application/octet-stream

Body byte[]

Response on success:

4 Interfaces

76 Federal Office for Information Security

Response Headers Content-Type application/json

Status Code 200

Response Body Certificate

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4.1.6.8.5 Delete Certificate

Delete a certain Certificate. All data, including binary data, is deleted.

Deletion SHALL only be possible if the Certificate is not referenced in any ApplicationConfig or SposConfig and
thus is not in use anywhere.

REST-URL <<tsmBaseURL>>/certificates/{certificateId}

Request Method DELETE

Request Headers Authorization <<auth-Token>>

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 204

Response Body -

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 1010, 2000

4.1.6.8.6 List Related ApplicationConfigs

List all ApplicationConfigs that use a certain Certificate.

REST-URL <<tsmBaseURL>>/certificates/{certificateId}/application-configs

Request Method GET

Request Headers Authorization <<auth-Token>>

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body ApplicationConfig[]

Responses on failures:

4 Interfaces

Federal Office for Information Security 77

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4.1.6.8.7 Get Binary

Get binary data of a certain Certificate.

REST-URL <<tsmBaseURL>>/certificates/{certificateId}/binary

Request Method GET

Request Headers Authorization <<auth-Token>>

Request Body -

Response on success:

Response Headers Content-Type application/octet-stream

Content-Disposition attachment; filename=”<<fileName>>”

Status Code 200

Response Body byte[]

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4.1.6.8.8 List Related Flavors

List all Flavors that use a certain Certificate.

REST-URL <<tsmBaseURL>>/certificates/{certificateId}/flavors

Request Method GET

Request Headers Authorization <<auth-Token>>

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body Flavor[]

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4 Interfaces

78 Federal Office for Information Security

4.1.6.8.9 List Related Services

List all Services that use a certain Certificate.

REST-URL <<tsmBaseURL>>/certificates/{certificateId}/services

Request Method GET

Request Headers Authorization <<auth-Token>>

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body Service[]

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4.1.6.8.10 List Related SposConfigs

List all SposConfigs that use a certain Certificate.

REST-URL <<tsmBaseURL>>/certificates/{certificateId}/spos-configs

Request Method GET

Request Headers Authorization <<auth-Token>>

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body SposConfig[]

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4.1.6.9 Manage SposConfigs
This section lists methods to manage SposConfigs.

4.1.6.9.1 List SposConfigs

List all SposConfigs of the authenticated ServiceProvider.

4 Interfaces

Federal Office for Information Security 79

REST-URL <<tsmBaseURL>>/spos-configs

Request Method GET

Request Headers Authorization <<auth-Token>>

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body SposConfig[]

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 2000

4.1.6.9.2 Create SposConfig

Create a new SposConfig and set all corresponding details.

REST-URL <<tsmBaseURL>>/spos-configs

Request Method POST

Request Headers Authorization <<auth-Token>>

Content-Type application/json

Accept application/json

Request Body SposConfig

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body SposConfig

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1003, 1004, 1007, 1008, 1009, 2000

4.1.6.9.3 Get SposConfig

Get details of a certain SposConfig.

REST-URL <<tsmBaseURL>>/spos-configs/{sposConfigId}

Request Method GET

Request Headers Authorization <<auth-Token>>

4 Interfaces

80 Federal Office for Information Security

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body SposConfig

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 2000

4.1.6.9.4 Modify SposConfig

Update details of an existing SposConfig.

REST-URL <<tsmBaseURL>>/spos-configs/{sposConfigId}

Request Method PUT

Request Headers Authorization <<auth-Token>>

Content-Type application/json

Accept application/json

Request Body SposConfig

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body SposConfig

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1005, 1006, 1007, 1008,1009, 2000

4.1.6.9.5 Delete SposConfig

Delete a certain SposConfig. All data is deleted.

Deletion SHALL only be possible if the SposConfig is not referenced in any Service and thus is not in use
anywhere.

REST-URL <<tsmBaseURL>>/spos-configs/{sposConfigId}

Request Method DELETE

Request Headers Authorization <<auth-Token>>

Request Body -

Response on success:

4 Interfaces

Federal Office for Information Security 81

Response Headers Content-Type application/json

Status Code 204

Response Body -

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 1009, 1010, 2000

4.1.6.9.6 List Related Services

List all Services that use a certain SposConfig.

REST-URL <<tsmBaseURL>>/spos-configs/{sposConfigId}/services

Request Method GET

Request Headers Authorization <<auth-Token>>

Accept application/json

Request Body -

Response on success:

Response Headers Content-Type application/json

Status Code 200

Response Body Service[]

Responses on failures:

Response Headers Content-Type application/json

Status Code 400, 401, 500

Response Body GeneralError 1000, 1002, 2000

4.2 TSM-API
The TSM-API is an interface that provides methods to trigger life-cycle management processes of secure
applications on secure components.

The general flow of interaction with the TSM-API for life-cycle management is as follows:

1. A SP app calls a function of the TSM-API for life-cycle management. The SP app specifies the Service
Instance on which the life-cycle state transfer shall be performed and the parameters that are necessary
for the execution.

2. If the request is valid, the TSM-API submits a request to the TSM-Backend. As soon as the process
execution starts, the TSM-API sends a callback with a ProcessStart message to the SP app.

3. During the process execution, the TSM-API sends one or more callbacks with a ProcessProgress
message containing information about the progress of the process execution, which can be used to
display status information to a user.

4. After the execution of the process has finished, the TSM-API function call provides a result message to
the SP app that contains the execution status of the process (success or failure) and may contain specific
result data.

4 Interfaces

82 Federal Office for Information Security

If an error occurs at some point after the SP app has made a request and before the process execution has started,
the TSM-API returns a result with an empty Process ID and status “Not executed” to the SP app that has made the
request. This error is not associated with any process, since the process execution has not started – this means that
no data is sent to the SPOS-Service.

4.2.1 Overview
This section provides an overview over function calls and callbacks.

4.2.1.1 Function Calls
 The following methods for the applet life-cycle management are provided by TSM-API.

TSM-API Method Short Description
createServiceInstance(..)

Create a Service Instance.
Instantiate a Service with the given ID and Version Tag on a SC
selected by the eligibility check. It returns the created Service
Instance.

getServiceInstances(..)

Get Service Instances. Get the existing Service Instances for a
given Service ID.

deployService(..)

Deploy Service.
Install EM(s) (e.g. JavaCard Applets) as defined in TSM-
Backend on a handset.

updateService(..)

Update Service.
Remove old and install new version of EM(s) (e.g. JavaCard
Applets) as defined in the TSM-Backend for this Service.

suspendOrResumeService(..)

Suspend or resume Service.
Disable or enabled the main EM (e.g. JavaCard Applet) on the
handset.

terminateService(..)

Terminate Service.
Remove EM(s) (e.g. JavaCard Applets) of this Service from the
handset.

checkServiceDeploymentAvailable(..)

Check for Deployment.
Check for a Service if there is at least one secure component
accessible on the handset for which a deployment can be
requested.

checkServiceUpdateAvailable(..) Check for Update.
Check for a Service Instance if there is an update that can be
requested.

setAccessToken(..) Set Access Token.
Set a custom access token for authentication against TSM-
Backend. When not set, a default built-in authentication
mechanism is used.

4.2.1.2 Function Callbacks
It is possible to provide an optional ProcessListener object for the functions deployService, updateService,
suspendOrResumeService, and terminateService. The callback object needs to implement all feedback methods
listed below. The TSM-API will call those methods asynchronous as response to the corresponding request
method call.

TSM-API Callback Short Description
onProcessStart(processStartInfo)

Callback on process started.

4 Interfaces

Federal Office for Information Security 83

TSM-API Callback Short Description
onProcessProgress(processProgressInfo)

Callback on process progress.

4.2.2 Security
Since the TSM-API-SDK is a utility library for smartphone apps, it is not feasible to protect it via a simple access
mechanism like a username/password combination. Without additional measures, the communication between
TSM-API-SDK and TSM-Backend is vulnerable to security attacks. To address this risk, a TSM provider MUST
ensure the following points.

• The API between TSM-API-SDK and TSM-Backend SHALL be run in a separate environment, detached
from TSM-Backend REST-API (see Section 4.1).

• A TSM provider SHALL perform extensive Fuzzing of the interface between TSM-API-SDK and TSM-
Backend (Robustness Testing).

• The authentication check mechanism of the secure component issuer SHALL be used before accessing the
secure component.

• A TSM provider SHALL configure restrictive database writing access, such that there is no direct or
indirect writing access to any data type described in Section 4.1.4 from interface between TSM-API-SDK
and TSM-Backend.

• A TSM provider SHALL configure database reading access via Need-to-Know principle.

4.2.3 Data Types
In this section, data types used in multiple interface methods are described. Data types for return values which are
specific for an interface method are described with the respective method.

Mandatory:

• Mandatory (M): parts marked with M may not be null or empty.

• Optional (O): parts marked with O may be null or empty.

• Conditional (C): parts marked with C may be null or empty, but only if the condition as specified in the
description is met.

Datetime strings, e.g. CreationDate or UploadDate, express Coordinated Universal Time (UTC) including
milliseconds with a special UTC designator (“Z”) according to [ISO8601]. They refer to a context-specific point
in time when, e.g., a data model entity had been created or a file had been uploaded.

4.2.3.1 ServiceInstance
A ServiceInstance represents an instance of a Service on a concrete Secure Component. It holds information about
the current life-cycle state of the Service and the underlying platform used.

The ServiceInstance is created via the method createServiceInstance. Once it is created, it can be retrieved via the
method getServiceInstances.

Attribute Type Description Mand.
id string The Service Instance identifier. This ID is required for most

TSM-API methods to address the Service for a concrete
handset.

M

4 Interfaces

84 Federal Office for Information Security

Attribute Type Description Mand.
state int The current state of the Service Instance. One of:

• 1: NOT_DEPLOYED
• 10: INITIALIZED
• 11: INSTALLED
• 12: PERSONALIZED
• 14: ACTIVATED
• 21: OPERATIONAL
• 22: SUSPENDED
• 25: IN_ERROR

M

technicalInformation TechnicalInforma
tion

Information about the underlying platform profile and a list of
all parameters defined (by spParameters) for the Service or
overwritten via certain Flavor in the TSM-Backend.

M

lastOperation int Indicates the last operation that has been performed on the
Service Instance. One of:

• 10: SERVICE_DEPLOYMENT_INSTALLATION
• 11:

SERVICE_DEPLOYMENT_PERSONALIZATION
• 12: SERVICE_DEPLOYMENT_ACTIVATION
• 13: SERVICE_DEPLOYMENT_FINALIZE
• 20: SERVICE_UPDATE_INSTALLATION
• 21: SERVICE_UPDATE_PERSONALIZATION
• 22: SERVICE_UPDATE_ACTIVATION
• 23: SERVICE_UPDATE_FINALIZE
• 30: SERVICE_SUSPENSION
• 31: SERVICE_RESUMPTION
• 40: SERVICE_TERMINATION

M

reader string The name of SE reader that can be used to access the secure
component. See section 4.2.6 in [GPD_SPE_075].

M

4.2.3.2 ServiceCommand
A ServiceCommand is an abstract type which defines a command to be executed as part of the deployService or
updateService functions. The following subtypes exist and are described in the following:

• InstallServiceCommand

• PersonalizeServiceCommand

• ActivateServiceCommand

The States which can be reached using those functions are described in Section 3.2.1.

4.2.3.3 InstallServiceCommand
An InstallServiceCommand requests the loading and installation of a Service as configured by the SP via the
REST-API. After successful execution, the Service Instance reaches the state UnderDeployment:Installed (11).

4 Interfaces

Federal Office for Information Security 85

Attribute Type Description Mand.
installationData Map<string, string> An optional map of key value pairs to provide additional

data required for the service installation.
O

4.2.3.4 PersonalizeServiceCommand
A PersonalizeServiceCommand requests the personalization of a Service as configured by the SP via the REST-
API. After successful execution, the Service Instance reaches the state UnderDeployment:Personalized (12).

Attribute Type Description Mand.
personalizationData Map<string, string> An optional map of key value pairs to provide addition

data required for the service personalization.
O

4.2.3.5 ActivateServiceCommand
An ActivateServiceCommand requests the activation of a Service, e.g. setting application states to
“SELECTABLE” and creating Access Rules for device applications as configured by the SP via the REST-API.
After successful execution, the Service Instance reaches the UnderDeployment:Activated (14) state. Depending on
the value of suspensionControl, the Service instance reaches either Deployed:Operational (21) or
Deployed:Suspended (22) once the deployment, respective update, is complete.

Attribute Type Description Mand.
suspensionControl boolean Indicates whether the Service Instance state shall be set to

Deployed:Operational (21) or Deployed:Suspended (22)
after the deployment process.

• If true, the Service Instance shall be suspended.
• If false, the Service Instance shall be resumed.

M

4.2.3.6 ProcessListener
The ProcessListener is an interface for the callback object containing the asynchronous status information about
the function calls deployService, updateService, suspendOrResumeService and terminateService. The following
table lists interface methods for callback response used on listener objects.

Callback Method Return Type Description
onProcessStart(ProcessStart
processStartInfo)

void Callback method called once the execution of the requested
process has started.

onProcessProgress(ProcessProgress
processProgressInfo)

void Callback method called when an update regarding the
progress of the process execution is available. Can be called
multiple times until process is finished.

4.2.3.7 ProcessStart
ProcessStart is a callback message and is used in ProcessListener indicating that the execution of a process has
started.

Attribute Type Description Mand.
processId string Identifier of the process. M

callerId string The device application identifier which is a hash value of the
certificate of the device Application Provider, i.e. the SP.

M

startDate string A datetime string (start of process). M

4 Interfaces

86 Federal Office for Information Security

4.2.3.8 ProcessProgress
ProcessProgress is a message and is used in ProcessListener indicating the progress of the process execution.

Attribute Type Description Mand.
processId string A string containing the identifier of the process. M

progress int (0..100) A number representing a percentage value to indicate the relative
progress of the action execution.

M

operation int Executed operation. One of:

• 10 SERVICE_DEPLOYMENT_INSTALLATION
• 11 SERVICE_DEPLOYMENT_PERSONALIZATION
• 12 SERVICE_DEPLOYMENT_ACTIVATION
• 13 SERVICE_DEPLOYMENT_FINALIZE
• 20 SERVICE_UPDATE_INSTALLATION
• 21 SERVICE_UPDATE_PERSONALIZATION
• 22 SERVICE_UPDATE_ACTIVATION
• 23 SERVICE_UPDATE_FINALIZE
• 30 SERVICE_SUSPENSION
• 31 SERVICE_RESUMPTION
• 40 SERVICE_TERMINATION

M

4.2.3.9 ProcessInfo
A ProcessInfo object is used to provide the result of the process execution.

Attribute Type Description Mand.
processId string A string containing the identifier of the process. The value of

processId is empty if the request failed before a Process has been
created.

C

executionStatus int An integer value indicating the process execution result. Possible
values are:

• 0: Successful Execution
• > 0: error category (see Section 4.2.4.4)

M

executionMessage string An executionMessage (see Section 4.2.4.4). C

startDate string A datetime string (start of process). M

endDate string A datetime string (end of process). M

4.2.3.10 ServiceCommandResult
A ServiceCommandResult object is used to provide the result of execution of a service command.

Attribute Type Description Mand.
commandExecutionStatus int An Integer value indicating the process

execution result. Possible values are:

• 0 Execution-Success
• 1 Execution-Failed
• 2 NotExecuted

M

4 Interfaces

Federal Office for Information Security 87

personalizationResults PersonalizationResult[] Additional data originating from the execution
of PersonalizeServiceCommand.

This attribute is only relevant for a personalize
request and thus empty for install and activate
requests.

C

4.2.3.11 PersonalizationResult
A PersonalizationResult contains data of an executed PersonalizeServiceCommand.

Attribute Type Description Mand.
applicationInstanceAid string AID of the personalized Service Instance.

The AID format follows [ISO/IEC7816-
4].

M

results List<CommandResponsePair> A list of CommandResponsePair objects
which carry command and response
APDUs for individual personalization
commands performed on the Service
Instance.

M

4.2.3.12 CommandResponsePair
A CommandResponsePair object contains command and response APDUs for individual personalization
commands performed on the Service Instance.

Attribute Type Description Mand.
tag string Tag name for the personalization result. M

command string Hex string representation of a Command APDU. M

response string Hex string representation of a Response APDU. M

4.2.3.13 TechnicalInformation
A TechnicalInformation object contains information about the underlying platform and the service parameters.

Attribute Type Description Mand.
spParameters Map<string,string> List of parameters of the Service. The

parameters can be defined generally for the
Service or separately for each Flavor via the
TSM-Backend. Empty if no spParameters are
defined.

C

serviceId string ID of the installed Service. Empty if no Service
is installed.

C

serviceVersionTag string Version tag of the installed Service. Empty if no
Service and thus no applet(s) are installed.

C

flavorId string ID of the installed Flavor for this Service. Empty
if no Service and thus no applet(s) are installed.

C

4 Interfaces

88 Federal Office for Information Security

Attribute Type Description Mand.
flavorName string Name of the installed Flavor for this Service.

Empty if no Service and thus no applet(s) are
installed or if the “name” field of the Flavor
configuration is empty.

C

profileId string ID of the SecureComponentProfile. C

4.2.3.14 AccessToken
The AccessToken is an optional interface to register a custom access token for message authentication with TSM-
Backend. The SP may provide an implementation of the AccessToken and register it via the TSM-API method
setAccessToken (see Section 4.2.5.9). When registered, the TSM-API-SDK will call the method getToken of the
AccessToken to retrieve the authentication token for TSMS communication. The getToken method is called for
each TSM-Backend request. Caching the token and re-questing a new one when expired, must be implemented by
the SP.

Callback Method Return Type Description
getToken() string Callback method called for each request to TSM-Backend. The

implementation of this interface handles token caching and token expiration.
The access token is only active, if the implementation is registered via TSM-
API method setAccessToken.

4.2.4 Common Definitions

4.2.4.1 Service Instance States
List of possible states of a Service Instance. All life-cycle states of a Service Instance are described in detail in
Section 3.2.2.

State State Name Description
0 UNKNOWN Unknown

1 NOT_DEPLOYED Not Deployed

10 INITIALIZED UnderDeployment:Initialized

11 INSTALLED UnderDeployment:Installed

12 PERSONALIZED UnderDeployment:Personalized

14 ACTIVATED UnderDeployment:Activated

21 OPERATIONAL Deployed:Operational

22 SUSPENDED Deployed:Suspended

25 IN_ERROR In Error

There is no separate state for TERMINATED, since the Service Instance is removed during termination. A new
Service Instance may be created through a call to createServiceInstance, the resulting state is NOT_DEPLOYED.

4.2.4.2 Service Operations
List of possible operations performed on a service.

Operation Name Description
0 NO_OPERATION No operation executed.

4 Interfaces

Federal Office for Information Security 89

Operation Name Description
10 SERVICE_DEPLOYMENT_INSTALLATION DeployService method call with install command as

last serviceCommand and finalize false.

11 SERVICE_DEPLOYMENT_PERSONALIZATI
ON

DeployService method call with personalization
command as last serviceCommand and finalize false.

12 SERVICE_DEPLOYMENT_ACTIVATION DeployService method call with activate command as
last serviceCommand and finalize false.

13 SERVICE_DEPLOYMENT_FINALIZE DeployService method call with finalize true.

20 SERVICE_UPDATE_INSTALLATION UpdateService method call with install command as
last serviceCommand and finalize false.

21 SERVICE_UPDATE_PERSONALIZATION UpdateService method call with personalization
command as last serviceCommand and finalize false.

22 SERVICE_UPDATE_ACTIVATION UpdateService method call with activate command as
last serviceCommand and finalize false.

23 SERVICE_UPDATE_FINALIZE UpdateService method call with finalize true.

30 SERVICE_SUSPENSION SuspendOrResumeService method call with
suspensionControl true.

31 SERVICE_RESUMPTION SuspendOrResumeService method call with
suspensionControl false.

40 SERVICE_TERMINATION TerminateService method call.

4.2.4.3 Future
A Future or also called Promise represents the result of an asynchronous computation. It acts as proxy for a result
that is initially unknown, because the computation of the result is not yet complete.

A Future provides at least the following methods:

• retrieve the concrete result after computation has been completed

• handle errors during computation

Some Future concepts additionally provide the following methods, those are, however, not essential:

• wait for completion of computation

• cancel computation

Future / Promise concepts are usually part of the underlying technology and its concrete usage can be determined
from the API of the used programming language.

In TSM API, the Future concept is used for various interface methods, since their execution might take a longer
time than usual function calls.

4.2.4.4 Error Types
During function calls, different error types may occur. Error information can be retrieved in the following ways:

• from ProcessInfo as Future return value of all asynchronous process executions

• from return value on all synchronous interface methods

4 Interfaces

90 Federal Office for Information Security

All synchronous interface methods SHALL return the attributes executionStatus and executionMessage. All
asynchronous interface methods SHALL return a Future object, which returns a ProcessInfo object with
information about the status of the process, including also the attributes executionStatus and executionMessage.

For both method types executionStatus contains the error category and executionMessage contains a human-
readable error message in English. In case no error occurred, the executionStatus is 0 and the executionMessage is
empty.

The following error categories and error messages exist:

Error Category: Name Error Message
1: TSM_NOT_AVAILABLE TSM not available: <<details>>

2: INTERNAL_ERROR Internal error: <<details>>

3: NETWORK_CONNECTION_ERROR Network connection error: <<details>>

4: INVALID_ARGUMENT Invalid argument: <<details>>

5: NOT_AUTHENTICATED Not authenticated: <<details>>

6: EXECUTION_INTERRUPTED Execution interrupted: <<details>>

7: SECURE_COMPONENT_ERROR Secure component error: <<details>>

8: NO_ELIGIBLE_SC No eligible SC: <<details>>

9: SC_INACCESSIBLE SC inaccessible: <<details>

10: SC_CHANNEL_NOT_AVAILABLE SC channel not available: <<details>

11: NFC_NOT_ACTIVATED NFC not activated: <<details>>

12: ORPHANED_SERVICE_INSTANCE Orphaned service instance: <<details>>

13: NOT_ALLOWED Not allowed: <<details>>

14: ALREADY_EXISTS Already exists: <<details>>

15: UNAUTHORIZED Unauthorized: <<details>>

16: ISSUER_ERROR Issuer error: <<details>>

17: NOT_FOUND Not found: <<details>>

18: OVERLOAD_PROTECTION Overload protection: The system is currently not available,
please try again later.

19: UNDER_MAINTENANCE Under maintenance: The system is currently not available,
please try again later.

20: DEVICE_INTEGRITY_CHECK_FAILED Device integrity check failed: <<details>>

100: UNSPECIFIED Unspecified: <<details>>

Error category 1: TSMS_NOT_AVAILABLE shall be thrown when TSM is not available. The SP may want to
contact the TSM-Support.

Error category 2: INTERNAL_ERROR shall be thrown when an internal error occurred during process execution.

Error category 3: NETWORK_CONNECTION_ERROR shall be thrown when establishing a connection to the
TSM or SCI backend is not possible. The reason for network failures could be bad cellular connection or wrong
firewall configuration. An example error message is:

• Network connection error: host ‘tsmService’ not found

4 Interfaces

Federal Office for Information Security 91

Error category 4: INVALID_ARGUMENT shall be thrown when interface method was called with invalid
parameters, e.g. attempt to access a non-existing resource, or request of an invalid action. Example error messages
are:

• Invalid argument: serviceId in GetServiceInstancesRequest has invalid format

• Invalid argument: serviceId in CreateServiceInstanceRequest has invalid format

• Invalid argument: serviceInstanceId in DeployServiceRequest has invalid format

• Invalid argument: serviceCommands in DeployServiceRequest is only allowed to be empty if the finalize
deployment flag is set

• Invalid argument: serviceCommands in DeployServiceRequest contain multiple InstallServiceCommands

• Invalid argument: serviceCommands in DeployServiceRequest contain multiple
PersonalizeServiceCommands

• Invalid argument: version in CheckServiceDeploymentAvailableRequest has invalid format

• Invalid argument: version in CheckServiceDeploymentAvailableRequest uses an unsupported filter
pattern

Error category 5: NOT_AUTHENTICATED shall be thrown in case of authentication related issues, e.g. an error
during the request of an access token. An example error message is:

• Not authenticated: could not retrieve access token

Error category 6: EXECUTION_INTERRUPTED shall be thrown when a running process execution has been
interrupted. The reason for this could be a broken connection, or that the user has manually stopped a service.
Example error messages are:

• Execution interrupted: connection to ‘tsmService’ interrupted

• Execution interrupted: manually cancelled

Error category 7: SECURE_COMPONENT_ERROR shall be thrown on issues related to the content of the
Secure Component. The reason for this could be unfulfilled service dependencies. Example error messages are:

• Secure component error: no space available

• Secure component error: SC is not accessible

• Secure component error: invalid response

Error category 8: NO_ELIGIBLE_SC shall be thrown when the eligibility check failed during Service deployment
or update. Example error messages are:

• No eligible SC: service is already deployed

• No eligible SC: service is already updated to requested version

Error category 9: SC_INACCESSIBLE shall be thrown when a secure component is present but cannot be
accessed. Example error messages are:

• SC inaccessible: app not authorized to access SC

• SC inaccessible: access to SC failed

Error category 10: SC_CHANNEL_NOT_AVAILABLE shall be thrown when TSM-API is unable to open a
basic or logical channel to the according Secure Component and thus cannot access the SC via the Open Mobile
API. The SP app may try to close active channels (if present) and request the process execution again.

Error category 11: NFC_NOT_ACTIVATED shall be thrown, when NFC is currently not active, but the Secure
Component requires NFC to be activated. The SP app may request the handset user to enable NFC. An example
error message is:

4 Interfaces

92 Federal Office for Information Security

• NFC not activated: please activate NFC

Error category 12: ORPHANED_SERVICE_INSTANCE shall be thrown if an invalid Service Operation was
requested for a Service Instance that has been created from a Flavor that no longer exists. The only permissible
service operations for such a Service Instance are suspend, resume and terminate.

Error category 13: NOT_ALLOWED shall be thrown if methods were called for a Service Instance that is in a
state not supported by the method. Example error messages are:

• Not allowed: invalid state transfer from DeployedOperational to UnderDeploymentInstalled

• Not allowed: invalid state transfer from NotDeployed to UnderDeploymentActivated

• Not allowed: invalid state transfer from UnderDeploymentPersonalized to UnderDeploymentPersonalized

• Not allowed: service command 'install' has already been executed

Error category 14: ALREADY_EXISTS shall be thrown if a Service Provider tries to create a Service Instance
although there already exists a Service Instance on one of the accessible Secure Components. Example error
messages are:

• Already exists: service already instantiated

Error category 15: UNAUTHORIZED shall be thrown if an app is not authorized to use the services of the TSM.
An example error message is:

• Unauthorized: app not authorized

Error category 16: ISSUER_ERROR shall be thrown when an error related to a Secure Component issuer
infrastructure occurs. Example error messages are:

• Issuer error: issuer TSM not available

• Issuer error: SCI key management system caused an unexpected error

Error category 17: NOT_FOUND shall be thrown if an operation with a resource that does not exist, or that is not
available for a SP, is requested via the TSM-API. Example error messages are:

• Not found: serviceId 910bbd5a-1749-4737-b855-a520f1bc9da4 does not exist

• Not found: serviceInstanceId d8c791a1-c39e-41f7-a2ec-f8cdfb57406a does not exist

• Not found: version 1.1.1 does not exist

Error category 18: OVERLOAD_PROTECTION shall be thrown if the TSM backend is rejecting requests due to
a high system load.

Error category 19: UNDER_MAINTENANCE shall be thrown if requests cannot be processed because of an
ongoing maintenance.

Error category 20: DEVICE_INTEGRITY_CHECK_FAILED shall be thrown if the mobile device is in a state
that does not justify the issuing of an access token by the TSM. An example error message is:

• Device integrity check failed: device does not fulfil integrity conditions of the TSM

Error category 100: UNSPECIFIED shall be thrown for errors which fit no other category.

4.2.5 Interface Methods

4.2.5.1 Create Service Instance
Creates a Service Instance that is used for life-cycle management.

This method instantiates a Service on a SC of the device which is resulting from the eligibility check performed as
part of the operation. The instantiation creates a new Service Instance which is associated with the SC on which

4 Interfaces

Federal Office for Information Security 93

the Service with the given id and version is eligible for deployment. The result of the performed eligibility check
remains valid until the Service is terminated.

Note, however, this method does not include the execution of any service commands for deployment. These need
to be performed by subsequent deployService (and updateService) invocations. The Service Instance ID created
with this method can be retrieved via the getServiceInstances method and must be used in all other interface
methods to address the Service for this handset. In case of multiple available Secure Components on the device,
the TSM chooses one eligible Secure Component. Hereby, the TSM uses a decision matrix which will always
have the same result of the same set of accessible Secure Components.

Once a TSM created a Service Instance for a certain Service, the Service Instance ID for this concrete Service on
this concrete handset will be always the same, until the Service Instance is terminated. After the Termination of a
Service Instance, this method must be used to create a new Service Instance ID.

In this way, a Service provisioned prior to a reinstallation of the SP app can be checked for its life-cycle state.
With this, secure applications can be completed, updated, used or removed after a reinstallation of the
corresponding SP app during any life-cycle state.

Parameter Type Description Mand.
serviceId string Service for which a new service instance

shall be created.
M

version string Version of the Service that shall be
instantiated and for an eligible SC is
determined.

M

<<return type>> Future<CreateServiceInstanceResult> Returns a proxy object indicating deferred
execution which will be fulfilled when the
expected CreateServiceInstanceResult
response is available.

M

The return type CreateServiceInstanceResult has the following attributes:

Attribute Type Description Mand.
serviceInstance ServiceInstance The ServiceInstance created.

Is null if no Service Instance could be created.

C

executionStatus int An integer value indicating the method execution result.
Possible values are:

• 0: Successful Execution
• > 0: error category (see Section 4.2.4.4)

M

executionMessage string An executionMessage, see Section 4.2.4.4. C

4.2.5.2 Get Service Instances
Checks for all Secure Components that can be accessed at the time of the request whether Service Instances for a
specific Service already exists. All Service Instances found are returned in the form of a list. This function can be
used to check whether a Service Instance has already been provided on one of the available SCs. If no Service
Instance exists for this specific device, an empty list is returned.

The IDs of the Service Instances returned by this method are used in all other interface methods to address
specific instances. If no Service Instance exists, the SP may create a new Service Instance via the
createServiceInstance method.

4 Interfaces

94 Federal Office for Information Security

Parameter Type Description Mand.
serviceId string Service for which the existence of

Service Instances shall be checked.
M

<<return type>> Future<GetServiceInstancesResult> Returns a proxy object indicating
deferred execution which will be
fulfilled when the expected
GetServiceInstancesResult response is
available.

M

The return type GetServiceInstancesResult has the following attributes:

Attribute Type Description Mand.
serviceInstances List<ServiceInstance> A list of ServiceInstances present on the device.

Is empty if no Service Instance exists.

M

executionStatus int An integer value indicating the method execution result.
Possible values are:

• 0: Successful Execution
• > 0: error category (see Section 4.2.4.4)

M

executionMessage string An executionMessage, see Section 4.2.4.4. C

4.2.5.3 Deploy Service
Deploy a Service and transfer the Service Instance to the desired state. All parts of the secure application (e.g.
multiple Java Card Applets, if applicable) are deployed on the device.

This method is used to deploy a Service Instance for the first time. If a Service Instance is already deployed on the
device, the method will fail and the updateService method shall be used in this case. This means the method will
only be successful, when the Service Instance is at least in one of the following states:

• NOT_DEPLOYED

• INSTALLED

• PERSONALIZED

• ACTIVATED

A SP app can specify the ServiceCommands for the deployment. Depending on the needs of a SP app, either the
Install, Activate or Personalize commands can be executed for deployment. It is also possible to execute all the
commands in the same request or to skip them partly. Usually, one to three unique service commands are present.
But it is also possible to provide an empty list of service commands to finalize a deployment later. Common for
all options is that they will fail, if the Service does not match the life-cycle defined in chapter 3.2.2. This means
the order of ServiceCommands determines the order in which the associated life-cycle states shall be reached. For
example: a SP may request the installation, personalization and activation of a Service Instance in a single request
or perform the installation and personalization in one request and then separately request the activation and
finalization of the deployment. The following combinations are supported:

• NOT_DEPLOYED: [Install, Activate, Personalize]

• NOT_DEPLOYED: [Install, Activate]

• NOT_DEPLOYED: [Install, Personalize, Activate]

• NOT_DEPLOYED: [Install, Personalize]

• NOT_DEPLOYED: [Install]

4 Interfaces

Federal Office for Information Security 95

• INSTALLED: [Activate, Personalize]

• INSTALLED or PERSONALIZED: [Activate]

• INSTALLED: [Personalize, Activate]

• ACTIVATED: [Personalize]

• ACTIVATED or PERSONALIZED: []

Parameter Type Description Mand.
serviceInstanceId string Denotes the Service Instance for which

deployment is requested.
M

serviceCommands List<ServiceCommand> A list of service commands to be executed as
part of the deployService request. The list must
contain at least 0 or at maximum 3 service
command entries of:

• InstallServiceCommand
• PersonalizeServiceCommand
• ActivateServiceCommand

The order of the commands depends on the
live-cycle state of the Service.

M

finalizeDeployment boolean Indicates whether the service deployment or
update shall be finalized with the successful
execution of the last command.

M

listener ProcessListener Callback object. May be null. O

<<return type>> Future<DeployServiceResult> Returns a proxy object indicating deferred
execution which will be fulfilled when the
expected DeployServiceResult response is
available.

M

The return type DeployServiceResult has the following attributes:

Attribute Type Description Mand.
processInfo ProcessInfo The result of the process execution. M

serviceInstanceState int The current state of the Service Instance. M

technicalInformation TechnicalInformation Information about the underlying platform
profile and list of all parameters defined for
the Service (by spParameters) or overwritten
via certain Flavor in the TSM-Backend.

M

serviceCommandResults List<ServiceCommandR
esult>

List of ServiceCommandResult that represent
the results of the requested service commands.

M

reader string The name of the SE reader that can be used to
access the secure component. See section 4.2.6
in [GPD_SPE_075]

M

4.2.5.4 Update Service
Update a Service Instance to the specified Version. Updating a Service is in most parts identical to deploying a
Service. The only difference is that an update will remove a previously installed Service Instance before installing

4 Interfaces

96 Federal Office for Information Security

the new Version. The SP app must be aware that, depending on capabilities of the SC and the secure application,
e.g. support of [GPD_SPE_075] Amendment H, the update might lead to data loss.

If applicable, the TSM will check parts of the secure application (e.g. multiple Java Card Applets) separately for
modifications. A Service Instance will only be removed and reinstalled, either if its binary data changed or if
configurations and parameters of the install, activate or personalize commands changed. To prevent data loss
during the update (see above), a SP may want to use a separate part of the secure application just for data
management that is not modified during updates.

The method will fail if no Service Instance is deployed, i.e. if install, activate or personalize commands from the
deployService method are not finished yet. This means the method will only be successful, when the Service
Instance is in one of the following states:

• OPERATIONAL

• SUSPENDED

The method will fail if the requested Version of the service is already installed.

For the service commands, the same restrictions as described in the deployService method are valid (see Section
4.2.5.3).

Parameter Type Description Mand.
serviceInstanceId string Denotes the Service Instance for which the

update is requested.
M

newVersion string The new Version to which the existing
Service Instance shall be updated.

M

serviceCommands List<ServiceCommand> A list of service commands to be executed as
part of the deployService request. The list
must contain at least 0 or maximum 3
service command entries of:

• InstallServiceCommand
• PersonalizeServiceCommand
• ActivateServiceCommand

The order of the commands depends on the
live-cycle state of the Service Instance.

M

finalizeDeployment boolean Indicates whether the service deployment or
update shall be finalized with the successful
execution of the last command.

M

listener ProcessListener Callback object. May be null. O

<<return type>> Future<UpdateServiceResult> Returns a proxy object indicating deferred
execution which will be fulfilled when the
expected UpdateServiceResult response is
available.

M

The return type UpdateServiceResult has the following attributes:

Attribute Type Description Mand.
processInfo ProcessInfo The result of the process execution. M

serviceInstanceState int The current state of the Service Instance. M

4 Interfaces

Federal Office for Information Security 97

Attribute Type Description Mand.
technicalInformation TechnicalInformation Information about the underlying platform

profile and list of all parameters defined for
the Service (by spParameters) or overwritten
via certain Flavor in the TSM-Backend.

M

serviceCommandResults List<ServiceCommandR
esult>

List of ServiceCommandResult that represent
the results of the requested service commands.

M

reader string The name of the SE reader that can be used to
access the secure component. See Section
4.2.6 in [GPD_SPE_075].

M

4.2.5.5 Suspend Or Resume Service
Suspend or resume a Service Instance. This method is used to suspend or resume a deployed Service Instance.

If this method called with no Service deployed on the handset, it will fail (executionStatus > 0). The method will
not fail, if a Service Instance is s suspended repeatedly in a row or resumed repeatedly in a row. This means the
method will only be successful, when the Service Instance is in one of the following states:

• OPERATIONAL

• SUSPENDED

Parameter Type Description Mand.
serviceInstanceId string Denotes the Service Instance for which the

suspension/resumption is requested.
M

suspensionControl boolean Indicates whether the deployed Service Instance
shall be transferred to Active or Suspended state.

If true, the Service shall be suspended. If false,
the Service shall be resumed.

M

listener ProcessListener Callback object. May be null. O

<<return type>> Future<SuspendOrResumeR
esult>

Returns a proxy object indicating deferred
execution which will be fulfilled when the
expected SuspendOrResumeResult response is
available.

M

The return type SuspendOrResumeResult has the following attributes:

Attribute Type Description Mand.
processInfo ProcessInfo The result of the process execution. M

4.2.5.6 Terminate Service
Uninstall a Service Instance. Removes all installation files on the handset.

This method is used to terminate a Service Instance and to invalidate the Service Instance ID.

Under rare circumstances, the Service Instance ID may also get invalidated while processInfo.executionStatus
returns a value greater than zero. This means fetching a new Service Instance ID might be necessary even though
the terminate request was not successful.

If terminate is called on a device where no Service is installed, the method will still finish successfully and the
Service Instance ID gets invalidated. The method can be used for all Service Instance states.

4 Interfaces

98 Federal Office for Information Security

Parameter Type Description Mand.
serviceInstanceId string Denotes the Service Instance whose

termination is requested.
M

listener ProcessListener Callback object. May be null. O

<<return type>> Future<TerminateServiceResult> Returns a proxy object indicating deferred
execution which will be fulfilled when the
expected TerminateServiceResult response
is available.

M

The return type TerminateServiceResult has the following attributes:

Attribute Type Description Mand.
processInfo ProcessInfo The result of the process execution. M

4.2.5.7 Check Service Deployment Available
Check if there is at least one secure component present on the handset for which an applicable Service deployment
is available. A deployment is considered applicable if the SP has provided at least one entry in the
allowedDeployments of the requested Version that maps a Flavor to a SecureComponentProfile instantiated by the
secure components present on the handset.

This method is used to estimate the eligibility of a device for the deployment of the indicated Service. The result
might be invalidated when a full eligibility check is conducted via createServiceInstance. This is due to the fact
that a device check may operate on a subset of the relevant eligibility check parameters, in order to provide a
lightweight check before deciding whether or not a Service shall be instantiated on a device.

This method does not evaluate the lifecycle state of any currently available installation. This means it will not
consider if a Service Instance is already present on the device nor will it check its current state. In particular,
DEPLOYMENT_AVAILABLE may be returned even though a Service Instance is already present, in which case
a full eligibility check will fail if a deployment is requested without a prior termination of the existing Service
Instance.

The check can either be used to retrieve the latest available and applicable version or to check if a certain version
of a Service can be deployed. This is realized with a RegExp pattern where some digits of the provided version
can be replaced with a placeholder ‘x’ to check for a semantically higher deployable version.

If the device is not supported, e.g. if no SC exists or if no Flavor is applicable for the device, the returned version
will be empty, but the method will still be successful (executionStatus=0).

Parameter Type Description Mand.
serviceId string Service for which the availability of a deployment shall be

checked.
M

4 Interfaces

Federal Office for Information Security 99

Parameter Type Description Mand.
version string Version of the Service that shall be checked.

Can be either a concrete version or a RegExp pattern to
retrieve the semantically higher version that is available
for deployment. The following combinations are
supported (1 fixed integers, x variable integer):

• a.b.c (fixed version, e.g. 1.3.0)

• a.b.x (patch level equal or higher than 0, but major
and minor version level fixed, e.g. 1.3.x)

• a.x.x (patch level and minor version level equal or
higher than 0, but major version level fixed, e.g.
1.x.x)

• x.x.x (any version)

The special char “x” can be uppercase and/or lowercase.
Other combinations are not supported, e.g.

• x.1.x (unsupported)

• x.x.1 (unsupported)

• 1.x (unsupported)

• 1 (unsupported)

• x (unsupported)

• null / empty (unsupported)

M

<<return type>> Future<
ServiceDeploymentA
vailableResult>

Returns a proxy object indicating deferred execution
which will be fulfilled when the expected
ServiceDeploymentAvailableResult response is available.

M

The return type ServiceDeploymentAvailableResult has the following attributes:

Attribute Type Description Mand.
deploymentAvailable int Result of the deployment available check. One of:

• 0: DEVICE_NOT_ELIGIBLE
• 1: DEPLOYMENT_AVAILABLE

M

version string Version of the Service available for deployment.
Either the version explicitly requested by the
function call, or the semantically highest
applicable version if a RegExp pattern is used.

Is empty if device is not eligible, if no Version is
available, or if executionStatus > 0.

C

4 Interfaces

100 Federal Office for Information Security

Attribute Type Description Mand.
newTechnicalInformation TechnicalInformation Technical Information of the to be deployed

Service Instance. Information about the
underlying platform profile and list of all
parameters defined for the Service (by
spParameters) or overwritten via certain Flavor in
the TSM-Backend.

Is null if device is not eligible, if no Version is
available, or if executionStatus > 0.

C

executionStatus int An integer value indicating the method execution
result. Possible values are:

• 0: Successful Execution
• > 0: error category (see Section 4.2.4.4)

M

executionMessage string An executionMessage (see Section 4.2.4.4). C

4.2.5.8 Check Service Update Available
Check if there is an applicable update for the specified Service Instance. An update is considered applicable if the
SP has provided at least one entry in the allowedDeployments of the requested Version that maps a Flavor to the
SecureComponentProfile instantiated by the secure component on which the Service Instance is created.

This method is used to estimate the eligibility of a device for the deployment of the indicated Service. It is in
many regards similar to the method Check Service Deployment Available, but it requires a Service Instance to be
already instantiated on the device and restricts the check to the SC where this Service Instance is instantiated.
However, the method does not evaluate the lifecycle state of the Service Instance.

The check can either be used to retrieve the latest available and applicable version or to check if a certain version
of a Service can be deployed on the particular SC. This is realized with a RegExp pattern where some digits of the
provided version can be replaced with a placeholder ‘x’ to check for a semantically higher deployable version. If
the requested version (explicitly or via RegExp pattern) is equal or lower to the version of the current Service
Instance, the method will respond with empty newVersion and NO_UPDATE_AVAILABLE, but will still be
successful (executionStatus=0).

Even with a higher version of the service available (and thus an update available), the Flavor of the current
Service Instance and the Flavor of the future Service Instance may not differ. In this case, depending on the
motivation for the update, a SP may decide not to perform an update. A SP can check for this situation by
comparing the FlavorIds of the current and the future Service Instance prior to an update.

Parameter Type Description Mand.

serviceInstanceId string Service Instance for which the availability of an update
shall be checked.

M

4 Interfaces

Federal Office for Information Security 101

Parameter Type Description Mand.

newVersion string Version of the Service that shall be checked.

Can be either a concrete version or a RegExp pattern to
retrieve the semantically higher version that is available
for deployment. The following combinations are
supported (a, b, c fixed integers, x variable integer):

• a.b.c (fixed version a.b.c, e.g. 1.3.0)

• a.b.x (patch level equal or higher than 0, but major
and minor version level fixed, e.g. 1.3.x)

• a.x.x (patch level and minor version level equal or
higher than 0, but major version level fixed, e.g.
1.x.x)

• x.x.x (any version)

The special char “x” can be uppercase and/or lowercase.
Other combinations are not supported, e.g.

• x.1.x (unsupported)

• x.x.1 (unsupported)

• 1.x (unsupported)

• 1 (unsupported)

• x (unsupported)

• null / empty (unsupported)

M

<<return type>> Future<
ServiceUpdateAvailabl
eResult>

Returns a proxy object indicating deferred execution
which will be fulfilled when the expected
ServiceUpdateAvailableResult response is available.

M

The return type ServiceUpdateAvailableResult has the following attributes:

Attribute Type Description Mand.
updateAvailable int Result of the update available check. One of:

• 0: NO_UPDATE_AVAILABLE
• 1: UPDATE_AVAILABLE

M

newVersion string Version of the Service available for update. Either
the version explicitly requested by the function
call, or the semantically highest applicable version
if a RegExp pattern is used.

Is empty if no update is available, or if
executionStatus > 0.

C

4 Interfaces

102 Federal Office for Information Security

newTechnicalInformation TechnicalInformation TechnicalInformation of the updated Service
Instance (not the currently present Service
Instance). Information about the underlying
platform profile and list of all parameters defined
for the Service (by spParameters) or overwritten
via certain Flavor in the TSM-Backend.

Is null if no update is available or when
executionStatus > 0.

C

executionStatus int An integer value indicating the method execution
result. Possible values are:

• 0: Successful Execution
• > 0: error category (see Section 4.2.4.4)

M

executionMessage string An executionMessage (see Section 4.2.4.4). C

4.2.5.9 Set Access Token
The TSM-API-SDK SHOULD have a default implementation to authenticate communication-requests with
external servers like TSM-Backend. This means, all API methods (getServiceInstances, deployService etc.) are
authenticated via built-in access control, also when the SP does not provide a custom access token.

In case an SP does not want to use the default built-in authentication mechanism, the method setAccessToken can
be used to set a custom access token.

Parameter Type Description Mand.
token AccessToken Custom access token to authenticate. M

<<returnType>> Future<SetAccessTokenResult> Returns a proxy object indicating deferred
execution which will be fulfilled when the
expected SetAccessTokenResult response is
available.

M

The return type SetAccessTokenResult has the following attributes:

Attribute Type Description Mand.
executionStatus int An integer value indicating the method

execution result.

Possible values are:

• 0: Successful execution

• > 0: error category (see Section 4.2.4.4)

M

executionMessage string An executionMessage, see Section 4.2.4.4 C

4.2.6 Usage Example
This section provides an example how the TSM-API can be integrated into a SP app. The example uses the
following technologies:

• JavaCard Applets as secure applications

• Android as handset operation system

4 Interfaces

Federal Office for Information Security 103

4.2.6.1 Prerequisites
The TSM-API requires certain configurations before it can be used to install JavaCard Applets on a handset.
Therefore usually the SP develops use-case specific JavaCard Applets and uploads them to the TSM-Backend via
the REST-API (see Section 4.1). Besides this, TSM-Backend requires some additional technical configuration to
make the TSM-API operable. The following table lists the minimal configuration needed:

Entity Description
ExecutableLoadFile A JavaCard CAP file must be uploaded as ExecutableLoadFile to the TSM-Backend

system (see Section 4.1.6.5.2).

ApplicationConfig An ApplicationConfig must be created to configure install, activate and personalize
tasks for the uploaded JavaCard Applet (see Section 4.1.6.6.2).

Service A Service, which is representing the service of the smartphone app, must be created
(see Section 4.1.6.4.2).

The SERVICE_ID created here is then used in the TSM-API as parameter to create a
ServiceInstance ID, which is required for most of the TSM-API methods.

Flavor A Flavor must be created. The uploaded JavaCard Applet together with the created
ApplicationConfig must be linked to the Flavor (see Section 4.1.6.4.7).

Version An initial Version must be created for the new JavaCard Applet. The Flavor and
supported SecureComponentProfiles must be linked to this Version (see Section
4.1.6.4.18).

The VERSION_TAG defined here is then used in the TSM-API as parameter for the
TSM-API methods createServiceInstance and updateService.

4.2.6.2 Install, Update and Remove JavaCard Applets
To install a JavaCard Applet on a handset, an app installed on a handset must call the TSM-API method
deployService. To update the Applet to a new version, the method updateService is used and to remove it, the
method terminateService is used. Usually some additional supporting method calls like createServiceInstance and
getServiceInstances must be executed before. The following code snippet shows a sample sequence how to use
those life-cycle methods. Hereby, handling of Future results and null checks should be added as needed. The
parameter SERVICE_ID must be taken from the prerequisites configuration (see Section 4.2.6.1).

// check device

serviceInstance = null

serviceInstances = getServiceInstances(SERVICE_ID)

if (serviceInstances == []) {

 latestVersion = checkServiceDeploymentAvailable(SERVICE_ID)

 if (latestVersion) {

 serviceInstance = createServiceInstance(SERVICE_ID, latestVersion)

 } else {

 print(‘device not supported’)

 return

 }

} else {

 serviceInstance = serviceInstances[0]

}

// In Error state? -> remove the service

if (serviceInstance.state == IN_ERROR) {

 terminateService(serviceInstance.id)

4 Interfaces

104 Federal Office for Information Security

}

// Not deployed yet? -> deploy the service

if (serviceInstance.state == NOT_DEPLOYED) {

 deployService(serviceInstance.id, [install, activate], true)

}

// Already deployed? -> update the service

if (serviceInstance.state == OPERATIONAL || serviceInstance.state == SUSPENDED) {

 latestVersion = checkServiceUpdateAvailable(serviceInstanceId)

 if (latestVersion) {

 updateService(serviceInstanceId, latestVersion, [install, activate], true)

 } else {

 print(‘no update available’)

 }

}

4.2.6.3 Android
The TSM-API for Android devices is provided by the respective TSM as an Android Archive (AAR) and contains
an Android Service, in this example called “TSMAPIService”, and the required classes to interact with this
service. The service can be integrated into the SP app to enable the interaction with the TSMS such as requesting
life-cycle management. It uses bound services with an extension of the Binder class to allow components of the
SP App to send requests and receive responses via a client-server interface.

4.2.6.3.1 SP App Android Manifest Service Description

The TSMAPIService is required to run in the process of the SP app and therefore requires the SP app to declare
the service in its Android Manifest. A recommended declaration of this service is as follows:

<service

 android:exported="false"

 android:name="<TSM-specific-package-name>.TSMAPIService">

</service>

4.2.6.3.2 SP App Permissions

Although no special permissions are required to access the TSMAPIService, the SP app must at least request the
following permissions for the TSMAPIService to work:

<uses-permission android:name="android.permission.INTERNET" />

For some devices and secure components, it may be required to activate NFC in order to communicate with the
SC. It is therefore recommended to also request the according permission:

<uses-permission android:name="android.permission.NFC" />

4.2.6.3.3 Device Application Identifier

For secure components that are accessed by the Open Mobile API, an Access Control Enforcer allows or denies
device applications access based on access rules. On Android devices, a device application is identified by a
“DeviceAppID” which is a hash value of the certificate of the device Application Provider (in this case, the SP).
When the TSM-API is integrated as a library the TSM-API itself carries no certificate that is retrievable by the
Access Control Enforcer, which is why the TSM-API will use the DeviceAppID of the SP app it has been
integrated into.

4 Interfaces

Federal Office for Information Security 105

4.2.6.3.4 Binding the TSMAPIService

A SP app may start the TSMAPIService first and then bind it later or bind it directly without calling startService()
on its Context first. If the TSMAPIService has been started first, it must be stopped with a call to stopService().
When the SP app calls bindService(), it must provide an implementation of ServiceConnection.

In case of a successful binding, the onServiceConnected() callback on the ServiceConnection includes an IBinder
argument that can be used to communicate with the bound service. In order to do so, the received IBinder
argument must be casted to the TSMAPIService.LocalBinder class which provides a getService() method that
returns the current instance of the TSMAPIService that can be used to call functions of the TSM-API.

4.3 SPOS-Service
The SPOS-Service is a REST interface provided by a SP-Backend to enable a TSM to send results of life-cycle
management actions to the corresponding SP. Providing a SPOS-Service to a TSM is optional for a SP.

4.3.1 Base URL
The base URL of the SPOS-Service is set and configured via the url attribute of the SposConfig entity of the
TSM-Backend (see Section 4.1.4.18).

4.3.2 Overview
This section lists the interface methods provided by the SPOS-Service as an overview. A detailed description of
the methods is given in Section 4.3.4.

Method REST-URL Short Description
POST /process-results Send the result of a life-cycle management process.

4.3.3 Data Types
In this section, the data types used in the SPOS-Service are specified.

Datetime strings, e.g. CreationDate or UploadDate, express Coordinated Universal Time (UTC) including
milliseconds with a special UTC designator (“Z”) according to [ISO8601]. They refer to a context-specific point
in time when, e.g., a data model entity had been created or a file had been uploaded.

4.3.3.1 ProcessResult
ProcessResult provides information about the execution of a process.

Attribute Type Description Mand.
processId string A string containing the identifier of the process. The value of

processId is empty if the request failed before a Process has been
created.

C

executionStatus int An integer value indicating the process execution result. Possible
values are:

• 0: Successful Execution
• > 0: ErrorType

M

executionMessage string A human-readable message in English providing details about
the execution status. It is empty when executionStatus is 0.

C

startDate string A datetime string (start of process). M

endDate string A datetime string (end of process). M

4 Interfaces

106 Federal Office for Information Security

Attribute Type Description Mand.
serviceId string The id of the Service on which the life-cycle action requested by

the SP app has been performed.
M

versionTag string The tag of the Version on which the life-cycle action requested
by the SP app has been performed.

M

serviceInstanceId string The id of the Service Instance on which the life-cycle action
requested by the SP app has been performed.

M

requestedOperations int[] List of operations that have been requested by the SP app. List of
available operations:

• 10 SERVICE_DEPLOYMENT_INSTALLATION
• 11 SERVICE_DEPLOYMENT_PERSONALIZATION
• 12 SERVICE_DEPLOYMENT_ACTIVATION
• 20 SERVICE_UPDATE_INSTALLATION
• 21 SERVICE_UPDATE_PERSONALIZATION
• 22 SERVICE_UPDATE_ACTIVATION
• 30 SERVICE_SUSPENSION
• 31 SERVICE_RESUMPTION
• 40 SERVICE_TERMINATION

M

serviceStartState int The state of the Service Instance before operations are executed.
One of:

• 1 NOT_DEPLOYED
• 10 INITIALIZED
• 11 INSTALLED
• 12 PERSONALIZED
• 14 ACTIVATED
• 21 OPERATIONAL
• 22 SUSPENDED
• 25 IN_ERROR

M

serviceEndState int The state of the Service Instance after all operations are
executed. One of:

• 1 NOT_DEPLOYED
• 10 INITIALIZED
• 11 INSTALLED
• 12 PERSONALIZED
• 14 ACTIVATED
• 21 OPERATIONAL
• 22 SUSPENDED
• 25 IN_ERROR

M

The executionStatus and executionMessage contain the information defined in TSM-API (see Section 4.2.4.4).

4 Interfaces

Federal Office for Information Security 107

4.3.4 Interface Methods

4.3.4.1 Send Process Result
Inform the SPOS about a TSM process request result.

REST-URL <<sposURL>>/process-results

Request Method POST

 Content-Type application/json

Request Body ProcessResult

Responses:

Response Headers Status-Code 200

Response Body -

4 Interfaces

108 Federal Office for Information Security

Appendix A: Attestation Token
A.1 Attestation Token Provisioning

If requested by the SP, the Attestation Token is provided by the TSMS as part of the personalization process that
is triggered by a “PersonalizeServiceCommand” as part of a deployService or updateService function call. If the
PersonalizationConfig within an ApplicationConfig has the “provideAttestationToken” flag set to true, the TSM
will generate an Attestation Token and provide it to the application to be personalized via the GP personalization
interface during a dedicated personalization session (see [GPC_SPE_034]). If an Attestation Token is requested
by the SP but the secure application does not implement the GP personalization interface, the
PersonalizeServiceCommand fails and the Service Instance transitions to the InError state. The STORE DATA
command(s) used for transporting the Attestation Token use(s) P1 & 0x7F == 0x10.

If the PersonalizationConfig has the flag includeSecurityDomainDiversificationData set to true, the TSM will
include the index of the master key and the key diversification data used for the personalization of the
corresponding security domain in the Attestation Token.

An exemplary STORE DATA command for provisioning an Attestation Token is given below (all values are hex
encoded).

code value description

CLA 80 GP command

INS E2 STORE DATA

P1 xx & 0x7F More Blocks or Last Block, BER-TLV format of the command data field

P2 xx Block number (starting from 00 to FF)

Lc xx Length of BER-TLV encoded Attestation Token

Data 7F41xxx… BER-TLV encoded Attestation Token

Le Not present

A.2 Attestation Token Encoding

The Attestation Token SHALL be encoded as given below.

tag length data / description presence

‘7F41’ variable Attestation Token mandatory

‘A0’ variable Attestation Token body mandatory

‘81’ variable Attestation Token signature mandatory

Tag ‘81’ SHALL be present and contain the signature over the Attestation Token Body. Tag ‘A0’ SHALL be
present and SHALL be structured as given below.

tag length data / description presence

‘A0’ variable Attestation Token body mandatory

‘80’ variable TSM identifier (e.g. OID) mandatory

‘81’ 16 ProcessId mandatory

‘82’ 16 FlavorId mandatory

‘83’ 16 master key index (present if requested by SP) conditional

‘84’ variable key diversification data (present if requested by SP) conditional

4 Interfaces

Federal Office for Information Security 109

tag length data / description presence

‘85’ 20 signer reference mandatory

‘86’ variable signer validity mandatory

Tag ‘80’ SHALL be present. It contains an identifier of the TSM that issues the Attestation Token. It SHALL be
encoded according to ISO/IEC 8825-1 8.19.

Tag ‘81’ SHALL be present. It contains the ID of the Process during which the personalization of the Service
Instance that receives the Attestation has occurred. It contains the UUID in its binary representation according to
ITU-T X.667:2012, clause 6.2 "Binary representation".

Tag ‘82’ SHALL be present. It contains the ID of the Flavor that is being deployed. It contains the UUID in its
binary representation according to ITU-T X.667:2012, clause 6.2 "Binary representation".

Tag ‘83’ SHALL be present, if the tag includeSecurityDomainDiversificationData in the PersonalizationConfig is
set to true. It contains the Index of the master key that has been used in conjunction with the key diversification
data to derive the static keys for the corresponding SD. It contains the UUID in its binary representation according
to ITU-T X.667:2012. The value of the index is a part of a business agreement between SP and TSM.

Tag ‘84’ SHALL be present, if the tag includeSecurityDomainDiversificationData in the PersonalizationConfig is
set to true. It contains data for diversifying a master key with GP SCP03 diversification methods.

Tag ‘85’ SHALL be present. It contains a signer reference which holds the subject key identifier of the signing
key used for creating the Attestation Token signature. Usually, the signer is referenced either by the issuer/serial
number, or by a subject key identifier. It is assumed that the signer certificate that contains the public key holds a
subject key identifier extension as defined in RFC 5280.

Tag ‘86’ SHALL be present. It contains the signer validity which holds date and time of expiration of the signer
certificate in UTCTime format.

A.3 Attestation Token ASN.1 scheme

An exemplary ASN.1 scheme for an Attestation token is given below.

AttestationTokenExample

DEFINITIONS AUTOMATIC TAGS::=

-- Use of automatic tagging as the recommended ASN.1 tagging scheme

-- based on the guidelines of ISO/IEC 8824-1:2021 section G2.12

BEGIN

-- This module defines the proprietary data structures

-- for the exemplary attestation token

-- that is utilised in the provisioning and personalisation process

-- 2022

-- EXPORTS All --

-- Definitions for the attestation token

AttestationToken ::= [APPLICATION 65] SEQUENCE {

 attestationTokenBody AttestationTokenBody,

 attestationTokenSignature OCTET STRING -- the signature over the

attestationTokenBody data

 -- This version of the ASN.1 module assumes that ECDSA with the secp256r1 curve is

applied

 -- Reference: SEC2 "Recommended Elliptic Curve Domain Parameters", v2.0, 2010,

clause 2.4.2

 -- Encoding of the attestationTokenSignature content itself is an ECDSA-Sig-Value

according to ANSI X9.62

4 Interfaces

110 Federal Office for Information Security

 -- ECDSA-Sig-Value ::= SEQUENCE {

 -- r INTEGER,

 -- s INTEGER

 -- }

 -- The length of the attestationTokenSignature can vary between 70 and 72 bytes

 -- Example:

304402200C9E3D56CCDEC4FF00E6EAEFE11C594C0C29A3D85BE9F04CA5A8FDBFFA5001AD0220212BDFA5E78

9C96F05C884F557BA7B03C47B2F4FB8A48CC9B7DCE45853249B14

}

AttestationTokenBody ::= SEQUENCE {

 tsmIdentifier OBJECT IDENTIFIER,

 processID UUID,

 flavorID UUID,

 masterKeyIndex UUID,

 keyDiversificationData OCTET STRING,

 -- Important note: for the purpose of key derivation for SCP03 keys,

keyDiversificationData hold the xx byte random number only

 -- The full diversification data structure for the specific SCP03 keys K-ENC,

K-MAC and K-DEK are constructed separately

 signerReference SubjectKeyIdentifier,

 -- unique reference to the signer certificate's public key

 signerValidity UTCTime,

 -- expiration date of the signer certificate, to be taken from the element

validity -> notAfter of the signer certificate

 ...

}

UUID ::= OCTET STRING (SIZE(16))

-- Binary representation according to ITU-T X.667:2012, clause 6.2 "Binary

representation"

-- Example: 0x7390F811F27F412CA4FFE792D073F41F

-- That translates onto the hexadecimal representation of ITU-T X.667:2012 as follows:

7390f811-f27f-412c-a4ff-e792d073f41f

SubjectKeyIdentifier::= OCTET STRING

-- The Subject Key Identifier provides a means of identifying

-- certificates that contain a particular public key.

-- The public key is utilised to verify the attestation token's signature.

-- It is assumed that the signer certificate that contains the public key

-- holds a Subject Key Identifier extension as defined in RFC 5280.

-- The Subject Key Identifier shall be obtained by the method (1)

-- as defined in RFC 5280 section 4.2.1.2 (i.e. a 160 bit hash value)

END

Terms and Abbreviations

111 Federal Office for Information Security

Terms and Abbreviations
Abbreviation Meaning

APDU Application Protocol Data Unit
API Application Programming Interface
AVA_VAN CC Vulnerability Assessment
BPMN Business Process Model Notation
CAP Card Application
CC Common Criteria
CSP Cryptographic Service Provider
EAL Evaluation Assurance Level
EC Eligibility Check
ELF Executable Load File
EM Executable Module
eUICC embedded UICC
GP GlobalPlatform
NFC Near Field Communication
OMAPI Open Mobile API
REST Representational State Transfer
SC Secure Component
SCP Secure Channel Protocol
SCI Secure Component Issuer
SD Security Domain
SE Secure Element
SP Service Provider
SPOS Service Provider Online System
SSD Supplementary SD
TEE Trusted Execution Environment
TLS Transport Layer Security
TR Technical Guideline (German: Technische Richtlinie)
TSM Trusted Service Manager
TSM-API Trusted Service Manager API
TSMS Trusted Service Management System
UICC Universal Integrated Circuit Card
URL Uniform Resource Locator
UTC Coordinated Universal Time
UUID Universally Unique Identifier

4 Interfaces

112 Federal Office for Information Security

List of Figures and Tables
FIGURE 1: SCHEMATIC REPRESENTATION OF THE TSMS INFRASTRUCTURE COMPONENTS. ... 7
FIGURE 2: OVERVIEW OF THE SECURE APPLICATION DATA MODEL AS DISCUSSED IN THE TEXT. .. 11
FIGURE 3: BPMN 2.0 DIAGRAM OF THE SIMPLIFIED INSTALLATION PROCESS OF A SECURE APPLICATION. 12
FIGURE 4: FLOW CHART OF THE SERVICE INSTANCE LIFE-CYCLE. ... 14
FIGURE 5: EXEMPLARY SITUATIONS OF THE MAPPING BETWEEN FLAVORS AND SPECIFIC HANDSETS FOR A SPECIFIC

VERSION OF A SERVICE. .. 18
FIGURE 6: VISUALIZATION OF THE SECURE APPLICATION DATA MODEL AS DISCUSSED IN THE TEXT. 25

TABLE 1- REST-API ATTRIBUTES: MANDATORY AND EDITABLE IN POST, PUT, GET AND DELETE REQUESTS AND

REPONSES ... 26

4 Interfaces

Federal Office for Information Security 113

References
[GPC_SPE_034] GlobalPlatform, “Card Specification, V2.3.1”, 2018.

[GPD_SPE_008] GlobalPlatform, “Secure Element Remote Application Management, V1.0.1”, 2015

[GPD_SPE_013] GlobalPlatform, “Secure Element Access Control, V1.1”, 2014.

[GPD_SPE_014] GlobalPlatform, “Secure Channel Protocol '03', V1.1.2”, 2019.

[GPD_SPE_075] GlobalPlatform, “Open Mobile API Specification, V3.3”, 2018.

[ISO/IEC7816-4] ISO/IEC, “Identification cards - Integrated circuit cards - Part 4: Organization, security
and commands for interchange”, 2020.

[ISO8601] ISO, “Data elements and interchange formats - Information interchange - Representation
of dates and times”, 2019.

[PP-CSP] Federal Office for Information Security (BSI), “Common Criteria Protection Profile
Cryptographic Service Provider, BSI-CC-PP-0104-2019”, 2019.

[PP-CSP-Light] Federal Office for Information Security (BSI), “Common Criteria Protection Profile
Cryptographic Service Provider Light, BSI-CC-PP-0111-2019”, 2019.

[RFC4122] The Internet Society, „A Universally Unique IDentifier (UUID) URN Namespace”,
2015.

[RFC7231] Internet Engineering Task Force, „Hypertext Transfer Protocol (HTTP/1.1): Semantics
and Content“, 2014.

[TR-03116] Federal Office for Information Security (BSI), „Technische Richtlinie TR-03116,
Kryptographische Vorgaben für Projekte der Bundesregierung“, 2021.

[TR-CSP] Federal Office for Information Security (BSI), “Technical Guideline BSI TR-03181
CSP2”, 2023

	1 Introduction
	2 Overview
	2.1 Roles
	2.1.1 Handset User
	2.1.2 Secure Component Issuer
	2.1.3 Service Provider
	2.1.4 Trusted Service Manager

	2.2 Infrastructure Components
	2.2.1 Handset
	2.2.2 Secure Component
	2.2.3 Cryptographic Service Provider
	2.2.4 SP App
	2.2.5 SP Secure Application
	2.2.6 TSM-Backend
	2.2.7 TSM-API SDK
	2.2.8 Service Provider Online System

	3 Implementation
	3.1 Data Model
	3.2 Life-cycle Management
	3.2.1 Life-cycle Management Processes of Secure Applications
	3.2.1.1 Provisioning of Secure Applications
	3.2.1.2 Update of Secure Applications
	3.2.1.3 Removal of Secure Applications

	3.2.2 Service Instances and Service Instance Life-cycle
	3.2.3 Orphaned Service Instances

	3.3 Eligibility Check and Device Check
	3.3.1 Eligibility Check
	3.3.1.1 Secure Component Authenticity Check
	3.3.1.2 Secure Component Flavor Matching

	3.3.2 Device Check

	3.4 Secure Application Attestation Mechanism
	3.5 Logging and Error Handling
	3.5.1 Sequence Logging with History
	3.5.2 TSM-API Logging Callback

	4 Interfaces
	4.1 TSM-Backend REST-API
	4.1.1 TSM Base URL
	4.1.2 Overview
	4.1.2.1 /auth
	4.1.2.2 /service-providers
	4.1.2.3 /secure-component-profiles
	4.1.2.4 /services
	4.1.2.5 /executable-load-files
	4.1.2.6 /application-configs
	4.1.2.7 /personalization-scripts
	4.1.2.8 /certificates
	4.1.2.9 /spos-configs

	4.1.3 Security
	4.1.4 Data Types
	4.1.4.1 ServiceProvider
	4.1.4.2 Service
	4.1.4.3 Version
	4.1.4.4 Flavor
	4.1.4.5 SecureComponentProfile
	4.1.4.6 FeatureConfig
	4.1.4.7 ApplicationInstantiationConfig
	4.1.4.8 ExecutableLoadFile
	4.1.4.9 CAP
	4.1.4.10 TechnicalRequirements
	4.1.4.11 ExecutableModule
	4.1.4.12 ApplicationConfig
	4.1.4.13 InstallConfig
	4.1.4.14 ActivationConfig
	4.1.4.15 PersonalizationConfig
	4.1.4.16 PersonalizationScript
	4.1.4.17 Certificate
	4.1.4.18 SposConfig
	4.1.4.19 GeneralError

	4.1.5 Common Definitions
	4.1.5.1 HTTP Status Codes
	4.1.5.2 Error Types

	4.1.6 Interface Methods
	4.1.6.1 Authentication
	4.1.6.1.1 Create Access Token

	4.1.6.2 Manage SP Account
	4.1.6.2.1 Get Account Information

	4.1.6.3 Retrieve SecureComponentProfiles
	4.1.6.3.1 List SecureComponentProfiles
	4.1.6.3.2 Get SecureComponentProfile
	4.1.6.3.3 List Related ELFs
	4.1.6.3.4 List Related Services
	4.1.6.3.5 List Related Flavors
	4.1.6.3.6 List Related Versions

	4.1.6.4 Manage Services and Flavors
	4.1.6.4.1 List Services
	4.1.6.4.2 Create Service
	4.1.6.4.3 Get Service
	4.1.6.4.4 Modify Service
	4.1.6.4.5 Delete Service
	4.1.6.4.6 List Flavors
	4.1.6.4.7 Create Flavor
	4.1.6.4.8 Get Flavor
	4.1.6.4.9 Modify Flavor
	4.1.6.4.10 Delete Flavor
	4.1.6.4.11 List Related ApplicationConfigs
	4.1.6.4.12 List Linked ELFs
	4.1.6.4.13 Link ELFs
	4.1.6.4.14 Unlink ELFs
	4.1.6.4.15 Publish Flavor
	4.1.6.4.16 List Related Versions
	4.1.6.4.17 List Versions
	4.1.6.4.18 Create Version
	4.1.6.4.19 Get Version
	4.1.6.4.20 Modify Version
	4.1.6.4.21 Delete Version
	4.1.6.4.22 List Linked Flavors
	4.1.6.4.23 Link Flavors
	4.1.6.4.24 Unlink Flavors
	4.1.6.4.25 List Associated SecureComponentProfiles
	4.1.6.4.26 List Linked SecureComponentProfiles
	4.1.6.4.27 Link SecureComponentProfiles
	4.1.6.4.28 Unlink SecureComponentProfiles

	4.1.6.5 Manage ELFs and EMs
	4.1.6.5.1 List ELFs
	4.1.6.5.2 Create ELF and Upload Binary
	4.1.6.5.3 Get ELF
	4.1.6.5.4 Modify ELF and Overwrite Binary
	4.1.6.5.5 Delete ELF
	4.1.6.5.6 Get Binary
	4.1.6.5.7 List EMs
	4.1.6.5.8 Get EM
	4.1.6.5.9 List Related ApplicationConfigs
	4.1.6.5.10 List Related Flavors
	4.1.6.5.11 List Related Services
	4.1.6.5.12 List Related Versions
	4.1.6.5.13 List Related SecureComponentProfiles

	4.1.6.6 Manage ApplicationConfigs
	4.1.6.6.1 List ApplicationConfigs
	4.1.6.6.2 Create ApplicationConfig
	4.1.6.6.3 Get ApplicationConfig
	4.1.6.6.4 Modify ApplicationConfig
	4.1.6.6.5 Delete ApplicationConfig
	4.1.6.6.6 List Related EMs
	4.1.6.6.7 List Related Flavors
	4.1.6.6.8 List Related Services

	4.1.6.7 Manage PersonalizationScripts
	4.1.6.7.1 List PersonalizationScripts
	4.1.6.7.2 Create PersonalizationScript and Upload Binary
	4.1.6.7.3 Get PersonalizationScript
	4.1.6.7.4 Modify PersonalizationScript and Overwrite Binary
	4.1.6.7.5 Delete PersonalizationScript
	4.1.6.7.6 List Related ApplicationConfigs
	4.1.6.7.7 Get Binary
	4.1.6.7.8 List Related Flavors
	4.1.6.7.9 List Related Services

	4.1.6.8 Manage Certificates
	4.1.6.8.1 List Certificates
	4.1.6.8.2 Create Certificate and Upload Binary
	4.1.6.8.3 Get Certificate
	4.1.6.8.4 Modify Certificate and Overwrite Binary
	4.1.6.8.5 Delete Certificate
	4.1.6.8.6 List Related ApplicationConfigs
	4.1.6.8.7 Get Binary
	4.1.6.8.8 List Related Flavors
	4.1.6.8.9 List Related Services
	4.1.6.8.10 List Related SposConfigs

	4.1.6.9 Manage SposConfigs
	4.1.6.9.1 List SposConfigs
	4.1.6.9.2 Create SposConfig
	4.1.6.9.3 Get SposConfig
	4.1.6.9.4 Modify SposConfig
	4.1.6.9.5 Delete SposConfig
	4.1.6.9.6 List Related Services

	4.2 TSM-API
	4.2.1 Overview
	4.2.1.1 Function Calls
	4.2.1.2 Function Callbacks

	4.2.2 Security
	4.2.3 Data Types
	4.2.3.1 ServiceInstance
	4.2.3.2 ServiceCommand
	4.2.3.3 InstallServiceCommand
	4.2.3.4 PersonalizeServiceCommand
	4.2.3.5 ActivateServiceCommand
	4.2.3.6 ProcessListener
	4.2.3.7 ProcessStart
	4.2.3.8 ProcessProgress
	4.2.3.9 ProcessInfo
	4.2.3.10 ServiceCommandResult
	4.2.3.11 PersonalizationResult
	4.2.3.12 CommandResponsePair
	4.2.3.13 TechnicalInformation
	4.2.3.14 AccessToken

	4.2.4 Common Definitions
	4.2.4.1 Service Instance States
	4.2.4.2 Service Operations
	4.2.4.3 Future
	4.2.4.4 Error Types

	4.2.5 Interface Methods
	4.2.5.1 Create Service Instance
	4.2.5.2 Get Service Instances
	4.2.5.3 Deploy Service
	4.2.5.4 Update Service
	4.2.5.5 Suspend Or Resume Service
	4.2.5.6 Terminate Service
	4.2.5.7 Check Service Deployment Available
	4.2.5.8 Check Service Update Available
	4.2.5.9 Set Access Token

	4.2.6 Usage Example
	4.2.6.1 Prerequisites
	4.2.6.2 Install, Update and Remove JavaCard Applets
	4.2.6.3 Android
	4.2.6.3.1 SP App Android Manifest Service Description
	4.2.6.3.2 SP App Permissions
	4.2.6.3.3 Device Application Identifier
	4.2.6.3.4 Binding the TSMAPIService

	4.3 SPOS-Service
	4.3.1 Base URL
	4.3.2 Overview
	4.3.3 Data Types
	4.3.3.1 ProcessResult

	4.3.4 Interface Methods
	4.3.4.1 Send Process Result

	Appendix A: Attestation Token
	Terms and Abbreviations
	List of Figures and Tables
	References

