
Technical Guideline TR-03110

Advanced Security Mechanisms for Machine
Readable Travel Documents and eIDAS Token –

Part 3: Common Specifications

Version 2.21

21. December 2016

Federal Office for Information Security
Post Box 20 03 63
D-53133 Bonn

Phone: +49 22899 9582-0
E-Mail: ExtendedAccessControl@bsi.bund.de
Internet: https://www.bsi.bund.de
© Federal Office for Information Security 2016

History

Version Date Comment

1.00 2006-02-08 Initial public version.

1.01 2006-11-02 Minor corrections and clarifications.

1.10 2007-08-20 Revised version.

1.11 2008-02-21 Minor corrections and clarifications.

2.00 2008-10-27 Enhanced version.

2.01 2009-05-05 Minor corrections and clarifications. Additional Mapping for PACE.

2.02 2009-11-09 Adjustments to PACE required due to international standardization.

2.03 2010-03-24 Clarification on the definition of a session. Standardization of domain
parameters. Introduction of a secondary security object.

2.04 2010-09-15 Clarifications on certificate extensions. Improved handling of chip-specific keys
for privileged terminals.

2.05 2010-10-14 Clarifications on RFU-bits, “Read access to eID” deprecated

2.10 2012-03-20 Split into three parts

2.11 2013-07-12 Minor clarifications, addition of Envelope/Get Response

2.20 2015-02-03 Enhanced version with additional mechanisms. Split into four parts.

2.21 2016-12-21 Clarifications, minor corrections and optimizations. Simplification of
authorization handling.

mailto:ExtendedAccessControl@bsi.bund.de
https://www.bsi.bund.de/

Contents

Contents
1 Introduction.. 7

1.1 Requirements for ICCs and Terminals... 7

1.2 Cryptography requirements... 7

1.3 Terminology... 8

1.4 Abbreviations... 8

2 Public Key Infrastructure... 10

2.1 Country Verifying CA.. 10

2.2 Document Verifiers.. 11

2.3 Card Verifiable Certificates.. 11

2.4 Certificate Scheduling... 11

2.5 Certificate Validation... 12

2.6 Initial State of the ICC's trust-point(s)... 14

2.7 Effective Authorization.. 14

2.8 Terminal Sector.. 15

3 Management of Attributes.. 19

3.1 Specific Attributes... 19

3.2 Generic Attributes... 20

3.3 Attribute Requests.. 20

A. ASN.1 Specifications (Normative)... 22

A.1. Information on Supported Security Protocols.. 22

A.2. Key Agreement... 41

A.3. PACE.. 46

A.4. Chip Authentication.. 48

A.5. Restricted Identification.. 50

A.6. Pseudonymous Signatures.. 51

A.7. Terminal Authentication... 53

A.8. Enhanced Role Authentication... 60

B. ISO 7816 Mapping (Normative)... 61

B.1. PACE.. 61

B.2. Chip Authentication.. 62

B.3. Terminal Authentication... 65

B.4. Restricted Identification.. 66

B.5. Pseudonymous Signature of Messages or Credentials...66

B.6. Auxiliary Data Verification.. 68

B.7. PIN Management.. 68

B.8. eSign Application.. 69

B.9. Reading Data Groups... 69

B.10. Enhanced Role Authentication... 69

B.11. Switching of Session Context.. 71

B.12. Extended Length... 72

Bundesamt für Sicherheit in der Informationstechnik 3

Inhaltsverzeichnis

B.13. Command Chaining.. 72

B.14. APDU Specification.. 73

C. CV Certificates (normative).. 86

C.1. Certificate Profile... 86

C.2. Certificate Requests.. 87

C.3. Certificate Extensions for Terminal Authentication Version 2..89

C.4. Certificate Policy.. 91

D. DER Encoding (Normative)... 93

D.1. ASN.1... 93

D.2. Data Objects... 93

D.3. Public Key Data Objects... 96

E. Envelope/Get Response (Normative).. 98

E.1. Envelope.. 99

E.2. Get Response... 99

F. Secure Messaging (Normative).. 100

F.1. Session.. 100

F.2. Session Context... 100

F.3. Message Structure of Secure Messaging APDUs... 100

F.4. Cryptographic Algorithms... 102

F.5. Send Sequence Counter... 103

F.6. Secure Messaging Termination.. 103

List of Figures
Figure 1: Public Key Infrastructure... 10
Figure 2: Certificate Scheduling.. 12
Figure 3: Revocation... 17
Figure 4: Transformation of a command APDU... 104
Figure 5: Transformation of a command APDU if no data is available..104
Figure 6: Transformation of a response APDU.. 105

List of Tables
Table 1: Key words... 8
Table 2: Elementary Files CardAccess, CardSecurity and ChipSecurity...37
Table 3: Algorithms and Formats for Key Agreement..41
Table 4: Standardized Domain Parameters... 42
Table 5: Encoding of Passwords.. 45
Table 6: Object Identifiers for PACE with DH... 46
Table 7: Object Identifiers for PACE with ECDH... 46
Table 8: Object Identifiers for Chip Authentication with DH...48
Table 9: Object Identifiers for Chip Authentication with ECDH...49
Table 10: Object Identifiers for PSA based on ECSchnorr with ECDH..50
Table 11: Object Identifiers for Restricted Identification with DH...50
Table 12: Object Identifiers for Restricted Identification with ECDH...51
Table 13: Object Identifiers for PSM and PSC based on ECSchnorr with ECDH..52
Table 14: Credential data format for PSC... 53

4 Bundesamt für Sicherheit in der Informationstechnik

Contents

Table 15: Certificate Holder Reference... 53
Table 16: Elementary File EF.CVCA... 55
Table 17: Object Identifiers for Terminal Authentication with RSA..56
Table 18: Object Identifiers for Terminal Authentication with ECDSA..57
Table 19: Authenticated Auxiliary Data... 58
Table 20: Chip Authentication Version 3 - General Authenticate command for Key Agreement............................63
Table 21: Chip Authentication Version 3 - General Authenticate command for PSA...64
Table 22: Pseudonymous Signature of Messages - PSO:Compute Digital Signature command..............................67
Table 23: CV Certificate Profile.. 86
Table 24: CV Certificate Request Profile.. 88
Table 25: Certificate Extensions.. 89
Table 26: Evolution of Authorization Extensions... 90
Table 27: Overview on Data Objects (sorted by Tag).. 93
Table 28: ISO/IEC 8859-1 Character Set.. 95
Table 29: RSA Public Key.. 96
Table 30: DH Public Key.. 97
Table 31: EC Public Keys... 97
Table 32: Usage of Secure Messaging Data Objects.. 101

Bundesamt für Sicherheit in der Informationstechnik 5

Introduction 1

1 Introduction
This Part of the Technical Guideline gives the common specifications, comprising the PKI used for
Access Control as well as a mapping of the protocols to ASN.1- and APDU-specifications, for the
protocols defined in Part 1 and Part 2:

• Part 1:

◦ Terminal Authentication version 1

◦ Chip Authentication version 1

• Part 2:

◦ Password Authenticated Connection Establishment (PACE)

◦ Chip Authentication version 2

◦ Chip Authentication version 3

◦ Terminal Authentication version 2

◦ Restricted Identification

◦ Pseudonymous Signature

Although the specifications of PACEv2 in [8] are compatible to the specifications in this document,
please refer to [8] for an implementation of PACE according to Part 1.

In this Technical Guideline, documents which only implement the protocols described in Part 1 of this
Guideline are designated “MRTDs”, while documents implementing protocols from Part 2 or from both
Parts are designated “eIDAS token”.

1.1 Requirements for ICCs and Terminals

This Technical Guideline specifies requirements for implementations of ICCs and terminals. While ICCs
must comply with those requirements according to the terminology described in Section 1.3,
requirements for terminals are to be interpreted as guidance, i.e. interoperability of ICC and terminal
are only guaranteed if the terminal complies with those requirements, otherwise the interaction with
the ICC will either fail or the behavior of the ICC is undefined. In general, the ICC need not enforce
requirements related to terminals unless the security of the ICC is directly affected.

1.2 Cryptography requirements

This Technical Guideline specifies objects identifiers of the protocols for different cryptographic
parameters. Furthermore, this Technical Guideline defines IDs for different domain parameters that can
be used within the protocols.

It should be noted that the selection of suitable key lengths is up to the document issuer and not within
the scope of this Technical Guideline. Suitable standards and algorithm catalogues from IT security
authorities should be taken into account for selection of appropriate algorithms and key lengths.
Guidance on suitable cryptographic algorithms may also be found in [28].

Bundesamt für Sicherheit in der Informationstechnik 7

1 Introduction

1.3 Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described
in RFC 2119 [2]. The key word "CONDITIONAL" is to be interpreted as follows:

CONDITIONAL: The usage of an item is dependent on the usage of other items. It is therefore further
qualified under which conditions the item is REQUIRED or RECOMMENDED.

When used in tables (profiles), the key words are abbreviated as shown in Table 1.

1.4 Abbreviations

The following abbreviations are commonly used throughout this specification.

Name Abbreviation

Binary Coded Digit BCD

Card Verifiable CV

Card/Chip Security Object SOC

Certification Authority CA

Chip Identifier ID ICC

Chip Authentication Public Key PK ICC

Chip Authentication Private Key SK ICC

Country Signing CA CSCA

Country Verifying CA CVCA

Country Verifying CA Certificate C CVCA

Document Security Object SOD

Data Group DG

Document Verifier DV

Document Verifier Certificate C DV

Domain Parameters D

Ephemeral Private Key SK

Ephemeral Public Key PK

8 Bundesamt für Sicherheit in der Informationstechnik

Key word Abbrev.

MUST / SHALL REQUIRED m

MUST NOT / SHALL NOT – x

SHOULD RECOMMENDED r

MAY OPTIONAL o

– CONDITIONAL c

Table 1: Key words

Introduction 1

Name Abbreviation

Hash Function H

International Civil Aviation Organization ICAO

Key Agreement Function KA

Key Derivation Function KDF

Logical Data Structure LDS

Machine Readable Travel Document MRTD

Proximity Integrated Circuit Chip PICC

Proximity Coupling Device PCD

Restricted Identification Public Key PK ID

Restricted Identification Private Key SK ID

Sector Public Key PK Sector

Sector Private Key SKSector

Sector-specific Identifier I ID
Sector

Terminal Authentication Public Key PK PCD

Terminal Authentication Private Key SK PCD

Terminal Certificate C T

Pseudonymous Signature Group Public Key PK ICC

Pseudonymous Signature Individual Public Keys PK ICC ,1, PK ICC ,2

Pseudonymous Signature Sector-specific Identifier I ICC ,i
Sector

Identifier of the Pseudonymous Signature variant ID DSI

Bundesamt für Sicherheit in der Informationstechnik 9

2 Public Key Infrastructure

2 Public Key Infrastructure
Terminal Authentication requires the terminal to prove to the ICC that it is entitled to access sensitive
data. Such a terminal is equipped with at least one Terminal Certificate, encoding the terminal’s public
key and access rights, and the corresponding private key. After the terminal has proven knowledge of
this private key, the ICC grants the terminal access to sensitive data as indicated in the Terminal
Certificate.

The PKI required for issuing and validating Terminal Certificates consists of the following entities:

1. Country Verifying CAs (CVCAs)

2. Document Verifiers (DVs)

3. Terminals

This PKI forms the basis of Extended Access Control and is also abbreviated by EAC-PKI. It is illustrated
in Figure 1.

2.1 Country Verifying CA

Every State is required to set up one trust-point that issues Document Verifier Certificates: the Country
Verifying CA (CVCA).

Note: The Country Signing CA issuing certificates for Document Signers (cf. [8]) and the Country
Verifying CA MAY be integrated into a single entity, e.g. a Country CA. However, even in this case,
separate key pairs MUST be used for different roles.

A CVCA determines the access rights to national ICCs for all DVs (i.e. official domestic DVs as well as the
foreign/commercial DVs) by issuing certificates for DVs entitled to access some sensitive data. The
conditions under which a CVCA grants a DV access to sensitive data is out of the scope of this
document and SHOULD be stated in a certificate policy (cf. Appendix C.4).

Document Verifier Certificates MUST contain information, such as which data a certain DV is entitled
to access. To diminish the potential risk introduced by lost or stolen terminals Document Verifier

10 Bundesamt für Sicherheit in der Informationstechnik

Figure 1: Public Key Infrastructure

Term. ... Term. Term. ... Term.

CVCA CVCA

DV DV DV DV

DV-Cert. Assigns:
- Access Rights
- Validity Period

Country A Country B

Term.-Cert. restricts:
- Access Rights
- Validity Period

Term. ... Term. Term. ... Term.

Arrows denote certification

Public Key Infrastructure 2

Certificates MUST contain a short validity period. The validity period is assigned by the issuing CVCA at
its own choice and this validity period may differ depending on the Document Verifier the certificate is
issued to.

2.2 Document Verifiers

A Document Verifier (DV) is an organizational unit that manages a group of terminals (e.g. terminals
operated by a State’s border police) by – inter alia – issuing Terminal Certificates. A Document Verifier is
therefore a CA, authorized by at least the national CVCA to issue certificates for its terminals. The
Terminal Certificates issued by a DV usually inherit both the access rights and the validity period from
the Document Verifier Certificate, however, the Document Verifier MAY choose to further restrict the
access rights or the validity period depending on the terminal the certificate is issued for.

If a Document Verifier requires its terminals to access sensitive data stored on other States’ ICCs, it
MUST apply for a DV Certificate issued by the CVCA of the respective States. The Document Verifier
MUST also ensure that all received Document Verifier Certificates are forwarded to the terminals within
its domain.

2.3 Card Verifiable Certificates

CVCA Link Certificates, DV Certificates, and Terminal Certificates are to be validated by ICCs. Due to the
computational restrictions of those chips, the certificates MUST be in a card verifiable format:

• The certificate format and profile specified in Appendix C.1 SHALL be used.

• The signature algorithm, domain parameters, and key sizes to be used are determined by the
CVCA of the issuing State, i.e. the same signature algorithm, domain parameters and key sizes
MUST be used within a certificate chain.1

• CVCA Link Certificates MAY include a public key that deviates from the current parameters, i.e.
the CVCA MAY switch to a new signature algorithm, new domain parameters, or key sizes.

2.4 Certificate Scheduling

Each certificate MUST contain a validity period. This validity period is identified by two dates, the
certificate effective date and the certificate expiration date.

Certificate Effective Date: The certificate effective date SHALL be the date of the certificate generation.

Certificate Expiration Date: The certificate expiration date SHALL be the date after which the
certificate expires. It may be arbitrarily chosen by the certificate issuer.

When generating certificates, the issuer MUST carefully plan the roll-over of certificates, as sufficient
time for propagation of certificates and set up of certificate chains MUST be provided. Obviously, a new
certificate must be generated before the current certificate expires. To realize the link of trust between
consecutive CVCA certificates, CVCA Link Certificates have to be produced. CVCA Link Certificates
MUST be signed with the previous CVCA key, i.e. the CVCA key with the most recent effective date.

In each case, the resulting maximum distribution time equals the certificate expiration date of the old
certificate minus the certificate effective date of the new certificate. For the application and

1 As a consequence Document Verifiers and terminals will have to be provided with several key pairs.

Bundesamt für Sicherheit in der Informationstechnik 11

2 Public Key Infrastructure

distribution of certificates, the communication protocols specified in TR-03129 [3] are
RECOMMENDED. Certificate scheduling is illustrated in Figure 2.

2.5 Certificate Validation

To validate a Terminal Certificate, the ICC MUST be provided with a certificate chain starting at a
trust-point stored on the ICC. Those trust-points are more or less recent public keys of the ICC’s CVCA.
The initial trust-point(s) SHALL be stored securely in the ICC’s memory in the production or (pre-)
personalization phase.

As the key pair used by the CVCA changes over time, the ICC is REQUIRED to internally update its
trust-point(s) according to received valid link certificates.

The ICC MUST be able to store up to two trust-points per application.

Note: Due to the scheduling of CVCA Link Certificates (cf. Figure 2), at most two trust-points per
application need to be stored on the ICC.

The ICC MUST accept expired CVCA Link Certificates but it MUST NOT accept expired DV and
Terminal Certificates. To determine whether a certificate is expired, the ICC SHALL use its current date.

Current Date: If the ICC has no internal clock, the current date of the ICC SHALL be approximated as
described in the following. The date is autonomously approximated by the ICC using the most recent
certificate effective date contained in a valid CVCA Link Certificate, a DV Certificate or an Accurate
Terminal Certificate.

12 Bundesamt für Sicherheit in der Informationstechnik

Figure 2: Certificate Scheduling

CVCA

Certificate effective date
Certificate expiration date

Terminal

DV

Max. distribution time

Public Key Infrastructure 2

Accurate Terminal Certificate: A Terminal Certificate is accurate, if the issuing Document Verifier is
trusted by the ICC to produce Terminal Certificates with the correct certificate effective date. A valid
Terminal Certificate MUST be accepted as accurate by the ICC if it was issued by an official domestic DV
and SHOULD NOT be accepted as accurate otherwise.

A terminal MAY send CVCA Link Certificates, DV Certificates, and Terminal Certificates to an ICC to
update the current date and the trust-point stored on the ICC even if the terminal does not intend to or
is not able to continue with Terminal Authentication.

Note: The ICC only verifies that a certificate is apparently recent (i.e. with respect to the approximated
current date).

2.5.1 General Procedure

The certificate validation procedure consists of three steps:

1. Certificate Verification: The signature MUST be valid and unless the certificate is a CVCA Link
Certificate, the certificate MUST NOT be expired. If the verification fails, the procedure SHALL
be aborted.

2. Internal Status Update: The current date MUST be updated, the public key and the attributes
(including relevant certificate extensions) MUST be imported, new trust-points MUST be
enabled, expired trust-points MUST be disabled for the verification of DV Certificates.

3. Cleanup: The chip SHALL provide at most two enabled trust-points per application. If more
than two trust-points for an application remain enabled after the internal status update, the
trust-point with the least recent effective date SHALL be disabled.

The operation of updating the current date and the operations of enabling and disabling a trust-point
MUST be implemented as an atomic operation.

Enabling a trust-point: The new trust-point SHALL be added to the list of trust-points.

Disabling a trust-point: Expired trust-points MUST NOT be used for the verification of DV Certificates.
In case of ICCs where the current date may be advanced beyond the expiry date of a trust-point, e.g.
ICCs with more than one application or ICCs using an internal clock, expired trust-points MUST
remain usable for the verification of CVCA Link Certificates. Disabled trust-points MAY be deleted
after the successful import of the successive Link Certificate.

Note: In case of single-application ICCs with no internal clock, the above specification is equivalent to
the specification in version 1.11 of this Guideline.

2.5.2 Example Procedure

The following validation procedure, provided as an example, MAY be used to validate a certificate chain.
For each received certificate the ICC performs the following steps:

1. The ICC verifies the signature on the certificate. If the signature is incorrect, the verification
fails.

2. If the certificate is not a CVCA Link Certificate, the certificate expiration date is compared to the
ICC’s current date. If the expiration date is before the current date, the verification fails.

3. The certificate is accepted as valid and the public key and the attributes (including relevant
certificate extensions) contained in the certificate are imported.

Bundesamt für Sicherheit in der Informationstechnik 13

2 Public Key Infrastructure

i For CVCA, DV, and Accurate Terminal Certificates: The certificate effective date is compared to
the ICC’s current date. If the current date is before the effective date, the current date is
updated to the effective date.

ii For CVCA Link Certificates: The new CVCA public key is added to the list of trust-points stored
securely in the ICC’s memory. The new trust-point is then enabled.

iii For DV and Terminal Certificates: The new DV or terminal public key is temporarily imported
for subsequent certificate verification or Terminal Authentication, respectively.

4. Expired trust-points stored securely in the ICC’s memory are disabled for the verification of DV
Certificates and may be removed from the list of trust-points.

2.6 Initial State of the ICC's trust-point(s)

The (pre-)personalization agent SHALL

• set the current date of the ICC to the date of the (pre-)personalization, and

• personalize the CVCA key with the most recent effective date as trust-point.

The (pre-)personalization agent MAY additionally personalize the previous CVCA key as trust-point.

2.7 Effective Authorization

Each certificate SHALL contain a Certificate Holder Authorization Template (CHAT) (cf. Appendix C.1.5)
and MAY contain Authorization Extensions (cf. Appendix C.3.1).

• The Certificate Holder Authorization Template identifies the terminal type (cf. Parts 1 and 2 of
this Technical Guideline).

• The Certificate Holder Authorization Template and the Authorization Extensions determine the
relative authorization of the certificate holder assigned by the issuing certificate authority.

To determine the effective authorization of a certificate holder, the ICC MUST perform the following:

1. If an Authorization Extension supported by the ICC is missing in a certificate of the certificate
chain, the corresponding relative authorization of the certificate holder SHALL be set all to '0'
for calculation of the effective authorization.

2. For the CHAT and for each supported Authorization Extension, the ICC MUST calculate a
bitwise Boolean ’and’ of the relative authorization contained in the Terminal Certificate, the
referenced Document Verifier Certificate, and the referenced CVCA Certificate.

2.7.1 Confined Authorization (eIDAS token only)

The effective authorization may be further restricted by using the General Authentication Procedure
(cf. Part 2 of this Technical Guideline). In this case, the terminal performing the General Authentication
Procedure (cf. Part 2) MUST indicate the terminal type and the confined authorization (i.e. the effective
authorization required by the terminal) as part of PACE. If the ICC supports Authorization Extensions,
the confined authorization SHALL include the relevant Authorization Extensions of the Terminal
Certificate. Otherwise, the Authorization Extension SHALL be omitted by the terminal.

The confined authorization SHALL be used by the ICC to compute the effective authorization as part of
Terminal Authentication of the General Authentication Procedure phase (i.e. the first Terminal

14 Bundesamt für Sicherheit in der Informationstechnik

Public Key Infrastructure 2

Authentication of a session). For that purpose, the ICC SHALL include the confined authorization by
calculating a bitwise Boolean ’and’ in step 2. of Section 2.7 for the computation of the effective
authorization.

If switching of session contexts is supported and Terminal Authentication is performed as part of
Enhanced Role Authentication, the confined authorization SHALL be omitted by the ICC to compute
the effective authorization of an Attribute Provider.

Note: The ICC MUST verify that the terminal type indicated in the confined authorization and the
terminal type in the relative authorization of each certificate of the certificate chain are equal. If a
mismatch is detected, the ICC SHALL reset the access rights and indicate an error (cf. Appendix B.14.7).

2.7.2 Interpretation (all document types)

The effective authorization SHALL be interpreted by the ICC as follows:

• The effective role is a CVCA:

◦ This link certificate was issued by the national CVCA.

◦ The ICC MUST update its internal trust-point, i.e. the public key and the relative
authorization.

◦ The certificate issuer is a trusted source of time. If the ICC has no internal clock, the ICC
MUST update its current date using the Certificate Effective Date.

◦ The ICC MUST NOT grant the CVCA access to sensitive data (i.e. the effective authorization
SHOULD be ignored).

• The effective role is a DV:

◦ The certificate was issued by the national CVCA for an authorized DV.

◦ The certificate issuer is a trusted source of time. If the ICC has no internal clock, the ICC
MUST update its current date using the Certificate Effective Date.

◦ The ICC MUST NOT grant a DV access to sensitive data (i.e. the effective authorization
SHOULD be ignored).

• The effective role is a Terminal:

◦ The certificate was issued by either an official domestic, a foreign, or a non-official DV.

◦ If the certificate is an accurate terminal certificate (cf. Section 2.5), the issuer is a trusted
source of time. If the ICC has no internal clock, the ICC MUST update its current date using
the Certificate Effective Date.

◦ The ICC MUST grant the authenticated terminal access to sensitive data according to the
effective authorization.

2.8 Terminal Sector

To support

• Restricted Identification

• Pseudonymous Signatures

• Enhanced Role Authentication

Bundesamt für Sicherheit in der Informationstechnik 15

2 Public Key Infrastructure

terminals MUST be assigned a Terminal Sector. The Terminal Sector SHALL be contained in the
Terminal Certificate and thus, it is RECOMMENDED that the Terminal Sector is generated by the
certifying Document Verifier. In any case, the Terminal Sector MUST NOT be chosen by the terminal
itself.

The Terminal Sector is always a public key. It MAY be chosen either verifiably at random with an
unknown private key to disable tracing completely (in this case linking sector-specific identifiers across
sectors is computationally impossible) or as key pair to enable revocation based on sector-specific
identifiers.

The definition of a Sector is up to the policy of the Issuer of the ICC.

2.8.1 Sector Key Pair

Sector Key Pairs MUST be generated by all Document Verifiers that support sector-specific revocation
of ICCs.

Each Document Verifier SHALL perform the following steps for every subordinated sector:

1. Generate a new Sector Key Pair based on the Revocation Sector Public Key.

2. Store the Sector Private Key securely (at the Document Verifier).

3. Include the Sector Public Key in every Terminal Certificate of all terminals belonging to the
corresponding sector.

The Revocation Sector Key Pair SHALL be generated by the CVCA. The CVCA MAY delegate the
revocation service to a service provider.

2.8.2 Sector-Specific Revocation of ICCs

At the (pre-) personalization of the ICC, a key pair for Restricted Identification SHALL be generated. For
Chip Authentication version 3, the ICC's private key is part of the ICC's private keys for Chip
Authentication Version 3 or Pseudonymous Signatures described in A.4.2.1.

The private key SHALL be stored in the ICC. If the public key is used to enable revocation of the ICC (i.e.
PK ID for Restricted Identification or PK ICC ,i for Pseudonymous Signatures), the public key SHALL be
stored in a database together with other data identifying the holder of the MRTD .

Note: The generation of the key pair for Restricted Identification MAY be performed within the ICC or
externally. The key pair MUST be chosen to be unique and MAY be either chip-specific or
holder-specific (i.e. the same key pair will be used on subsequent ICCs). At least one key pair used for
Restricted Identification MUST be chip-specific.

To revoke the ICC, the chip-specific public key of the ICC is looked up in the database and transferred to
the CVCA. The CVCA then transforms the public key using its Revocation Sector Private Key. The
transformed public key is then transferred to all subordinated Document Verifiers. Each Document
Verifier calculates the sector-specific identifiers using the Sector Private Keys for all subordinated
Terminal Sectors. Finally, the sector-specific identifier is transferred to all terminals of the
corresponding sector.

16 Bundesamt für Sicherheit in der Informationstechnik

Public Key Infrastructure 2

2.8.3 Generation of Revocation Lists

The CVCA publishes the Revocation Sector Public Key PK Revocation and the domain parameters D. Each
Document Verifier randomly chooses a Sector Private Key SK Sector for every subordinated sector and
calculates the Sector Public Key as PK Sector=KA SK Sector , PKRevocation , D .

To revoke an ICC, a revocation request is sent to the CVCA containing the Restricted Identification
PK ID or Pseudonymous Signature Public Key PK ID :=PK ICC , i . The sector-specific identities are

calculated as follows:

1. The CVCA calculates PK ID
Revocation

=KA SK Revocation , PK ID , D using its private key SK Revocation and

the Restricted Identification Public Key PK ID received with the revocation request. The

transformed public key PK ID
Revocation is forwarded to all subordinated Document Verifiers.

2. Each Document Verifier calculates the sector-specific identifier for all subordinated sectors. For each

sector the Document Verifier calculates I ID
Sector=F(KA (SK Sector , PK ID

Revocation , D)) using the

corresponding Sector Private Key SKSector , the received public key PK ID
Revocation of the ICC to be

revoked and the hash function of the protocol object identifier as F for Restricted Identification
sector-specific identifiers or identity function as F for Pseudonymous Signature sector-specific
identifiers. The sector-specific identifier I ID

Sector is then forwarded to the terminals of the
corresponding sector.

Bundesamt für Sicherheit in der Informationstechnik 17

Figure 3: Revocation

2 Public Key Infrastructure

2.8.4 Sector-specific Whitelisting of ICCs

The sector-specific identifiers generated with Chip Authentication version 3 or Pseudonymous
Signatures can also be used for the generation of Whitelists. In this case, the same procedure as for
revoking ICC's is performed with the generated ICCs. If an ICC is revoked, the corresponding
sector-specific identifier SHALL be deleted from the Whitelist.

2.8.5 Validity Period

In contrast to the Terminal Key Pair (for Terminal Authentication), the Sector Key Pair is valid for a long
time and MUST be chosen appropriately.

2.8.6 Migrating Terminals

To migrate a terminal from one Document Verifier to another Document Verifier, the sector key pair of
the terminal MUST be transferred securely to the new Document Verifier.

Note: Migrating a terminal to a Document Verifier supervised by another CVCA is not possible.

18 Bundesamt für Sicherheit in der Informationstechnik

Management of Attributes 3

3 Management of Attributes
Enhanced Role Authentication (if supported by the ICC) enables Attribute Terminals manage additional
attributes on the ICC.

Management of attributes consists of the following functions:

• Requesting Attributes

• Reading Attribute Requests

• Writing Attributes

• Reading Attributes

• Deleting Attributes

The following classes of attributes are defined:

• Specific Attributes

• Generic Attributes

3.1 Specific Attributes

Specific Attributes are attributes that are stored in data containers, each bijectively linked to the hash of
a Sector Public Key contained in the Terminal Sector as defined in C.3.2.1 of requesting terminal's CV
Certificate.

The ASN.1 structure for Specific Attributes is specified in A.8.2. Commands for management of Specific
Attributes are specified in Appendix B.

Data containers nest data and their corresponding security attributes. However, the inherent structure
of data containers is out of scope of this document, i.e. containers can be files of self-controlled data
objects.

If the ICC supports Specific Attributes, it MUST also support Attribute Requests.

3.1.1 Reading and deleting Specific Attributes

The ICC SHALL restrict read and delete access to Specific Attribute containers to authenticated
terminals with the corresponding access right of the terminal.

If the terminal has effective authorization for reading/deleting Specific Attributes of all Terminal
Sectors, the ICC SHALL grant access to all Specific Attribute containers and MUST respond/delete all
Specific Attributes upon request of the terminal.

If the terminal's effective authorization is restricted to reading/deleting of Specific Attributes linked to
the hash of a Sector Public Key of the terminal's CV Certificate, the following steps MUST be performed
to read/delete Specific Attributes:

• The terminal MUST present the hash of its Sector Public Key to be used as user ID to the ICC.

• The ICC MUST verify that the hash of the Sector Public Key is contained in the Terminal Sector
of the terminal's CV Certificate sent during Terminal Authentication.

Bundesamt für Sicherheit in der Informationstechnik 19

3 Management of Attributes

• If the verification was successful, the ICC SHALL grant read/delete access to the Specific
Attribute container linked to the terminal's presented user ID and MUST respond/delete the
Specific Attributes upon request of the terminal.

If the terminal has no effective authorization for reading/deleting Specific Attributes, the ICC SHALL
NOT grant access to read/delete Specific Attributes.

3.1.2 Writing Specific Attributes

The ICC SHALL restrict read access to the Attribute Request container and write access to a Specific
Attribute container to authenticated terminals with the corresponding effective authorization
(Attribute Provider).

If no Attribute Request is present on the ICC, writing Specific Attribute MUST be denied by the ICC. If
the terminal writes a Specific Attribute to the ICC, the attribute MUST be added to the data container
that is linked to the user ID of the Attribute Request.

Note: In order to avoid that single data containers take too much storage on the ICC, it can be advisable
to limit the maximum size of a data container taking into account the expected number and sizes of
relevant Specific Attributes.

3.2 Generic Attributes

Generic Attributes are attributes that are not linked to the Terminal Sector of the requesting terminal.
Each Generic Attribute is stored in a file, identified by a file identifier.

The ICC SHALL restrict read or write access or deletion of Generic Attributes to authenticated terminals
with the corresponding effective authorization.

If the ICC supports Generic Attributes, it MAY also support Attribute Requests. The ICC SHOULD allow
writing of Generic Attributes without Attribute Request stored on the ICC.

A Logical Data Structure and access rights for Generic Attributes are described in Part 4 of this Technical
Guideline. Commands for the management of Generic Attributes are specified in Appendix B.

3.3 Attribute Requests

If a terminal needs additional attributes not available on the ICC, it MAY write an Attribute Request to
the ICC. Attribute Requests are stored in a particular Attribute Request container.

Writing of Attribute Requests SHALL be restricted to authenticated terminals with the effective
authorization for writing Attribute Requests.

The following steps MUST be performed to write an Attributes Request on the ICC:

• The terminal SHALL present the hash of the Sector Public Key to be used as user ID to the ICC.

• The ICC MUST verify that the hash of the Sector Public Key Data is contained in the Terminal
Sector of the terminal's CV Certificate sent during Terminal Authentication. If the verification
was successful, the ICC SHALL grant write access to the Attribute Request container.

• The terminal MAY store an Attribute Request to the ICC's Attribute Request container. The ICC
SHALL make an internal link between the Attribute request and the user ID of the requesting
terminal.

20 Bundesamt für Sicherheit in der Informationstechnik

Management of Attributes 3

Reading of Attribute Requests SHALL be restricted to authenticated terminals with the effective
authorization for reading Attribute Requests. A terminal with effective authorization MAY read an
Attribute Request stored on the ICC (without presentation of its user ID).

The ICC SHALL provide only one data container for storage of Attribute Requests that must be shared
by all terminals. If a previous request is already stored on the ICC, the stored Attribute Request MUST be
replaced with the new one, i.e. the previous request is deleted.

The ASN.1 structure to be used for Attribute Requests is defined in Appendix A.8.1.

Bundesamt für Sicherheit in der Informationstechnik 21

A. ASN.1 Specifications (Normative)

A. ASN.1 Specifications (Normative)
The object identifiers used in this Technical Guideline are contained in the subtree of bsi-de:

bsi-de OBJECT IDENTIFIER ::= {
 itu-t(0) identified-organization(4) etsi(0)
 reserved(127) etsi-identified-organization(0) 7
}

A.1. Information on Supported Security Protocols

The ASN.1 data structure SecurityInfos SHALL be provided by the ICC to indicate supported
security protocols. The data structure is specified as follows:

SecurityInfos ::= SET OF SecurityInfo

SecurityInfo ::= SEQUENCE {
 protocol OBJECT IDENTIFIER,
 requiredData ANY DEFINED BY protocol,
 optionalData ANY DEFINED BY protocol OPTIONAL
}

The elements contained in a SecurityInfo data structure have the following meaning:

• The object identifier protocol identifies the supported protocol.

• The open type requiredData contains protocol specific mandatory data.

• The open type optionalData contains protocol specific optional data.

A.1.1. Supported Protocols

The ASN.1 specifications for the protocols provided in this specification are described in the following.

A.1.1.1. PACE

To indicate support for PACE SecurityInfos may contain the following entries:

• At least one PACEInfo using a standardized domain parameter MUST be present.

• For each supported set of explicit domain parameters a PACEDomainParameterInfo MUST
be present.

• For each supported global user credential, a PasswordInfo MAY be present.

PACEInfo: This data structure provides detailed information on an implementation of PACE.

22 Bundesamt für Sicherheit in der Informationstechnik

Note: ICCs implemented according to Version 1.0.x of this specification will only provide a
ChipAuthenticationPublicKeyInfo.

In this case, the terminal SHOULD assume the following:

• The ICC supports Chip Authentication in version 1.

• The ICC may support Terminal Authentication in version 1.

To determine whether or not sensitive data protected by Terminal Authentication is stored on the
ICC, the terminal may consult the Document Security Object and the elementary file EF.CVCA.

ASN.1 Specifications (Normative) A.

• The object identifier protocol SHALL identify the algorithms to be used (i.e. key agreement,
symmetric cipher and MAC).

• The integer version SHALL identify the version of the protocol. Version 1 is deprecated and it
is RECOMMENDED to only use version 2.

• The integer parameterId is used to indicate the domain parameter identifier. It MUST be
used if the ICC uses standardized domain parameters (cf. Table 4) or provides multiple explicit
domain parameters for PACE.

id-PACE OBJECT IDENTIFIER ::= {
 bsi-de protocols(2) smartcard(2) 4
}

id-PACE-DH-GM OBJECT IDENTIFIER ::= {id-PACE 1}
id-PACE-DH-GM-3DES-CBC-CBC OBJECT IDENTIFIER ::= {id-PACE-DH-GM 1}
id-PACE-DH-GM-AES-CBC-CMAC-128 OBJECT IDENTIFIER ::= {id-PACE-DH-GM 2}
id-PACE-DH-GM-AES-CBC-CMAC-192 OBJECT IDENTIFIER ::= {id-PACE-DH-GM 3}
id-PACE-DH-GM-AES-CBC-CMAC-256 OBJECT IDENTIFIER ::= {id-PACE-DH-GM 4}

id-PACE-ECDH-GM OBJECT IDENTIFIER ::= {id-PACE 2}
id-PACE-ECDH-GM-3DES-CBC-CBC OBJECT IDENTIFIER ::= {id-PACE-ECDH-GM 1}
id-PACE-ECDH-GM-AES-CBC-CMAC-128 OBJECT IDENTIFIER ::= {id-PACE-ECDH-GM 2}
id-PACE-ECDH-GM-AES-CBC-CMAC-192 OBJECT IDENTIFIER ::= {id-PACE-ECDH-GM 3}
id-PACE-ECDH-GM-AES-CBC-CMAC-256 OBJECT IDENTIFIER ::= {id-PACE-ECDH-GM 4}

id-PACE-DH-IM OBJECT IDENTIFIER ::= {id-PACE 3}
id-PACE-DH-IM-3DES-CBC-CBC OBJECT IDENTIFIER ::= {id-PACE-DH-IM 1}
id-PACE-DH-IM-AES-CBC-CMAC-128 OBJECT IDENTIFIER ::= {id-PACE-DH-IM 2}
id-PACE-DH-IM-AES-CBC-CMAC-192 OBJECT IDENTIFIER ::= {id-PACE-DH-IM 3}
id-PACE-DH-IM-AES-CBC-CMAC-256 OBJECT IDENTIFIER ::= {id-PACE-DH-IM 4}

id-PACE-ECDH-IM OBJECT IDENTIFIER ::= {id-PACE 4}
id-PACE-ECDH-IM-3DES-CBC-CBC OBJECT IDENTIFIER ::= {id-PACE-ECDH-IM 1}
id-PACE-ECDH-IM-AES-CBC-CMAC-128 OBJECT IDENTIFIER ::= {id-PACE-ECDH-IM 2}
id-PACE-ECDH-IM-AES-CBC-CMAC-192 OBJECT IDENTIFIER ::= {id-PACE-ECDH-IM 3}
id-PACE-ECDH-IM-AES-CBC-CMAC-256 OBJECT IDENTIFIER ::= {id-PACE-ECDH-IM 4}

PACEInfo ::= SEQUENCE {
 protocol OBJECT IDENTIFIER(
 id-PACE-DH-GM-3DES-CBC-CBC |
 id-PACE-DH-GM-AES-CBC-CMAC-128 |
 id-PACE-DH-GM-AES-CBC-CMAC-192 |
 id-PACE-DH-GM-AES-CBC-CMAC-256 |
 id-PACE-ECDH-GM-3DES-CBC-CBC |
 id-PACE-ECDH-GM-AES-CBC-CMAC-128 |
 id-PACE-ECDH-GM-AES-CBC-CMAC-192 |
 id-PACE-ECDH-GM-AES-CBC-CMAC-256 |
 id-PACE-DH-IM-3DES-CBC-CBC |
 id-PACE-DH-IM-AES-CBC-CMAC-128 |
 id-PACE-DH-IM-AES-CBC-CMAC-192 |
 id-PACE-DH-IM-AES-CBC-CMAC-256 |
 id-PACE-ECDH-IM-3DES-CBC-CBC |
 id-PACE-ECDH-IM-AES-CBC-CMAC-128 |
 id-PACE-ECDH-IM-AES-CBC-CMAC-192 |
 id-PACE-ECDH-IM-AES-CBC-CMAC-256),
 version INTEGER, -- SHOULD be 2
 parameterId INTEGER OPTIONAL
}

Bundesamt für Sicherheit in der Informationstechnik 23

A. ASN.1 Specifications (Normative)

PACEDomainParameterInfo: This data structure provides one set of explicit domain parameters for
PACE of the ICC.

• The object identifier protocol SHALL identify the type of the domain parameters (i.e. DH or
ECDH).

• The sequence domainParameter SHALL contain the domain parameters.
• The integer parameterId MAY be used to indicate the local domain parameter identifier. It MUST

be used if the ICC provides multiple explicit domain parameters for PACE.
PACEDomainParameterInfo ::= SEQUENCE {
 protocol OBJECT IDENTIFIER(
 id-PACE-DH-GM |
 id-PACE-ECDH-GM |
 id-PACE-DH-IM |
 id-PACE-ECDH-IM),
 domainParameter AlgorithmIdentifier,
 parameterId INTEGER OPTIONAL
}

PasswordInfo: This data structure provides information about the passwords supported by the ICC2.

• The object identifier protocol SHALL identify the password.

• The integer pwdId SHALL contain the identifier of the password.

• If optionalPwdData is present, the bit string pwdFlags SHALL be used to indicate whether
the password is

◦ local, meaning that the password is a local password, i.e. a password specific to a
particular application,

◦ unblocks-others, meaning that the password may be used to unblock other passwords,

◦ is-blocking, meaning that the password has a retry counter and is blocked if the counter
has reached the value RC=0.

◦ is-suspending, meaning that the password has to be resumed before usage if the retry
counter has reached the value RC=1,

◦ limited-resetUT, meaning that the password is assigned with a reset counter for
unauthenticated terminals,

◦ unblock-allowedUT, meaning that if the password is blocked and the reset counter is
non-zero, it may be unblocked by an unauthenticated terminal,

◦ unblock-allowedAT, meaning that if the password is blocked and the reset counter is
non-zero, it may be unblocked by an authenticated terminal with effective authorization for
PIN management,

◦ change-allowedUT, meaning that the password may be changed by an unauthenticated
terminal,

◦ change-allowedAT, meaning that the password may be changed by an authenticated
terminal with effective authorization for PIN management,.

◦ activation-allowedAT, meaning that the password may be activated (if deactive) by an
authenticated terminal with effective authorization for PIN management,

2 The data structure is designed to allow the description of various passwords, not necessarily specified within
this Technical Guideline.

24 Bundesamt für Sicherheit in der Informationstechnik

ASN.1 Specifications (Normative) A.

◦ deactivation-allowedAT, meaning the the password may be deactivated (if active) by
an authenticated terminal with effective authorization for PIN management,

◦ needs-padding, meaning that, depending on the length of the given password and the
stored length, the password may need to be padded before presentation to the ICC.

• The set of integers resuming-Pwds MAY be used to indicate the IDs of the passwords that can
be used to resume the password.

• The set of integers resetting-Pwds MAY be used to indicate the IDs of the passwords that
can be used by unauthenticated terminals to reset the password if the reset counter is non-zero.

• The set of integers change-Pwds MAY be used to indicate the IDs of the passwords that can be
used by unauthenticated terminals to change the password if the reset counter is non-zero.

• The field pwdType MAY be used to indicate type of the password (see [10] for details on
PasswordType).

• The integer minLength MAY be used to indicate the minimum length (in characters) of new
passwords (if allowed to change).

• The integer storedLength MAY be used to indicate the stored length on the ICC (in bytes). It
can be used to deduce the number of padding characters needed.

• The integer maxLength MAY be used to indicate the maximum password length (in characters)
allowed.

• The octet string padChar MAY be used to indicate the character to be used for padding. It
MUST be omitted if the password needs no padding. If present and the password is of type bcd,
then padChar should consist of two nibbles of the same value, any nibble could be used as the
“padding nibble” (e.g. ‘55’ is allowed, meaning padding with ‘0101’, but ‘34’ is illegal).

id-PasswordType OBJECT IDENTIFIER ::= {
bsi-de protocols(2) smartcards(2) 12

}

id-MRZ OBJECT IDENTIFIER ::= { id-PasswordType 1 }
id-CAN OBJECT IDENTIFIER ::= { id-PasswordType 2 }
id-PIN OBJECT IDENTIFIER ::= { id-PasswordType 3 }
id-PUK OBJECT IDENTIFIER ::= { id-PasswordType 4 }

PasswordInfo ::= SEQUENCE {
protocol OBJECT IDENTIFIER,
requiredPwdData RequiredPwdData,
optionalPwdData OptionalPwdData

}

RequiredPwdData ::= SEQUENCE {
pwdId PwdId

}

PwdId ::= INTEGER

OptionalPwdData ::= SEQUENCE {
pwdFlags PwdFlags,
resuming-Pwds [0] IMPLICIT SET OF PwdId OPTIONAL,
resetting-Pwds [1] IMPLICIT SET OF PwdId OPTIONAL,
changing-PwdsUT [2] IMPLICIT SET OF PwdId OPTIONAL,
pwdType [3] IMPLICIT PasswordType OPTIONAL,
minLength [4] IMPLICIT INTEGER OPTIONAL,

Bundesamt für Sicherheit in der Informationstechnik 25

A. ASN.1 Specifications (Normative)

storedLength [5] IMPLICIT INTEGER OPTIONAL,
maxLength [6] IMPLICIT INTEGER OPTIONAL,
padChar [7] IMPLICIT OCTET STRING (SIZE(1)) OPTIONAL,
... –- For future extensions

}

PwdFlags ::= BIT STRING {
local (0)
unblocks-others (1),
is-blocking (2),
is-suspending (3),
limited-resetUT (4),
unblock-allowedUT (5),
unblock-allowedAT (6),
change-allowedUT (7),
change-allowedAT (8),
activation-allowedAT (9),
deactivation-allowedAT (10),
needs-padding (11)

}

PasswordType ::= ENUMERATED {bcd, ascii-numeric, utf8, half-nibble-bcd,
iso9564-1, ...}

If the PasswordInfo structure is absent for a password, the following options of the description in
Part 2 SHOULD be implemented:

• The PIN is assigned with a reset counter.

• The PUK is non-blocking.

• For unauthenticated terminals, the function Change PIN after PACE with PUK is not allowed.

Note: Usage of the algorithm 3DES is deprecated, hence the object identifiers
id-PACE-DH-GM-3DES-CBC-CBC, id-PACE-ECDH-GM-3DES-CBC-CBC,
id-PACE-DH-IM-3DES-CBC-CBC and id-PACE-DH-IM-3DES-CBC-CBC SHOUL NOT be used

A.1.1.2. Chip Authentication

To indicate support for Chip Authentication Version 1 or Version 2 SecurityInfos may contain the
following entries:

• At least one ChipAuthenticationPublicKeyInfo MUST be present.

• At least one ChipAuthenticationInfo MUST be present.

• At least one ChipAuthenticationDomainParameterInfo MUST be present for Chip
Authentication in version 2.

To indicate support for Chip Authentication Version 3 SecurityInfos may contain the following
entries:

• At least one ChipAuthenticationInfo MUST be present.

• At least one ChipAuthenticationDomainParameterInfo MUST be present.

• At least one PSAInfo MUST be present.

• At least one PSPublicKeyInfo MUST be present.

26 Bundesamt für Sicherheit in der Informationstechnik

ASN.1 Specifications (Normative) A.

The usage of the keyId within the SecurityInfos is CONDITIONAL. In case Chip Authentication
version 3 is supported by the ICC or more than one Chip Authentication Public Key is present on the
ICC, the optional keyId MUST be used in all data structures to indicate the local key identifier and
domain parameters.

Note: For Chip Authentication Version 3, the domain parameters for the ephemeral key agreement are
contained in ChipAuthenticationDomainParameterInfo, while the domain parameters to be
used for the Pseudonymous Signature are contained in PSPublicKeyInfo. Hence, the keyId does
not only indicate the local key identifier for Pseudonymous Signature Authentication, but also the
domain parameters to be used within the ephemeral key agreement for secure messaging.

ChipAuthenticationInfo: This data structure provides detailed information on an implementation of
Chip Authentication.

• The object identifier protocol SHALL identify the algorithms to be used (i.e. key agreement,
symmetric cipher and MAC).

• The integer version SHALL identify the version of the protocol. Currently, versions 1, 2 and 3
are supported.

• The integer keyId MAY be used to indicate the local key identifier (and domain parameters for
key agreement). It MUST be used if the condition listed above is satisfied.

id-CA OBJECT IDENTIFIER ::= {
 bsi-de protocols(2) smartcard(2) 3
}

id-CA-DH OBJECT IDENTIFIER ::= {id-CA 1}
id-CA-DH-3DES-CBC-CBC OBJECT IDENTIFIER ::= {id-CA-DH 1}
id-CA-DH-AES-CBC-CMAC-128 OBJECT IDENTIFIER ::= {id-CA-DH 2}
id-CA-DH-AES-CBC-CMAC-192 OBJECT IDENTIFIER ::= {id-CA-DH 3}
id-CA-DH-AES-CBC-CMAC-256 OBJECT IDENTIFIER ::= {id-CA-DH 4}

id-CA-ECDH OBJECT IDENTIFIER ::= {id-CA 2}
id-CA-ECDH-3DES-CBC-CBC OBJECT IDENTIFIER ::= {id-CA-ECDH 1}
id-CA-ECDH-AES-CBC-CMAC-128 OBJECT IDENTIFIER ::= {id-CA-ECDH 2}
id-CA-ECDH-AES-CBC-CMAC-192 OBJECT IDENTIFIER ::= {id-CA-ECDH 3}
id-CA-ECDH-AES-CBC-CMAC-256 OBJECT IDENTIFIER ::= {id-CA-ECDH 4}

ChipAuthenticationInfo ::= SEQUENCE {
 protocol OBJECT IDENTIFIER(
 id-CA-DH-3DES-CBC-CBC |
 id-CA-DH-AES-CBC-CMAC-128 |
 id-CA-DH-AES-CBC-CMAC-192 |
 id-CA-DH-AES-CBC-CMAC-256 |
 id-CA-ECDH-3DES-CBC-CBC |
 id-CA-ECDH-AES-CBC-CMAC-128 |
 id-CA-ECDH-AES-CBC-CMAC-192 |
 id-CA-ECDH-AES-CBC-CMAC-256),
 version INTEGER, -- MUST be 1 for CAv1 or 2 for CAv2 or 3 for CAv3
 keyId INTEGER OPTIONAL
}

ChipAuthenticationDomainParameterInfo: This data structure provides one set of domain parameters
for Chip Authentication version 2 and version 3 of the ICC.

• The object identifier protocol SHALL identify the type of the domain parameters (i.e. DH or
ECDH).

Bundesamt für Sicherheit in der Informationstechnik 27

A. ASN.1 Specifications (Normative)

• The sequence domainParameter SHALL contain the domain parameters.

• The integer keyId MAY be used to indicate the local key identifier (and domain parameters for
key agreement). It MUST be used if the condition listed above is satisfied.

ChipAuthenticationDomainParameterInfo ::= SEQUENCE {
 protocol OBJECT IDENTIFIER(id-CA-DH | id-CA-ECDH),
 domainParameter AlgorithmIdentifier,
 keyId INTEGER OPTIONAL
}

ChipAuthenticationPublicKeyInfo: This data structure provides a public key for Chip Authentication of
the ICC.

• The object identifier protocol SHALL identify the type of the public key (i.e. DH or ECDH).

• The sequence chipAuthenticationPublicKey SHALL contain the public key in encoded
form.

• The integer keyId MAY be used to indicate the local key identifier. It MUST be used if the
condition listed above is satisfied.

id-PK OBJECT IDENTIFIER ::= {
 bsi-de protocols(2) smartcard(2) 1
}

id-PK-DH OBJECT IDENTIFIER ::= {id-PK 1}
id-PK-ECDH OBJECT IDENTIFIER ::= {id-PK 2}

ChipAuthenticationPublicKeyInfo ::= SEQUENCE {
 protocol OBJECT IDENTIFIER(id-PK-DH | id-PK-ECDH),
 chipAuthenticationPublicKey SubjectPublicKeyInfo,
 keyId INTEGER OPTIONAL
}

PSAInfo: This data structure provides detailed information on an implementation of Pseudonymous
Signature Authentication and is of the following form:

PSAInfo ::= SEQUENCE {
protocol OBJECT IDENTIFIER (

id-PSA-ECDH-ECSchnorr-SHA-256 |
id-PSA-ECDH-ECSchnorr-SHA-384 |
id-PSA-ECDH-ECSchnorr-SHA-512),

requiredData PSARequiredData,
keyId INTEGER OPTIONAL

}

PSARequiredData ::= SEQUENCE {
version INTEGER, –- MUST be 1
ps1-authInfo INTEGER (0 | 1 | 2),
ps2-authInfo INTEGER (0 | 1 | 2)

}

id-PS OBJECT IDENTIFIER ::= { bsi-de protocols(2) smartcards(2) 11 }
id-PSA OBJECT IDENTIFIER ::= { id-PS 1 }

id-PSA-ECDH-ECSchnorr OBJECT IDENTIFIER ::= { id-PSA 2 }
id-PSA-ECDH-ECSchnorr-SHA-256 OBJECT IDENTIFIER ::= { PSA-ECDH-ECSchnorr 3 }
id-PSA-ECDH-ECSchnorr-SHA-384 OBJECT IDENTIFIER ::= { PSA-ECDH-ECSchnorr 4 }
id-PSA-ECDH-ECSchnorr-SHA-512 OBJECT IDENTIFIER ::= { PSA-ECDH-ECSchnorr 5 }

28 Bundesamt für Sicherheit in der Informationstechnik

ASN.1 Specifications (Normative) A.

The fields in the data structure contain the following information:

• The object identifier protocol SHALL identify the Pseudonymous Signature Authentication
Protocol.

• The integer version SHALL identify the version of the supported protocol. Currently, version
1 is supported.

• The integer ps1-authInfo SHALL indicate the terminal's effective authorization required to

get the Pseudonym I ICC , 1
Sector during Pseudonymous Signature Authentication. The value

◦ '0' indicates that no explicit authorization is required,

◦ '1' indicates that explicit authorization is required and

◦ '2' indicates that a terminal is not authorized to obtain I ICC , 1
Sector

.

• The integer ps2-authInfo SHALL indicate the required terminal's effective authorization to

obtain the Pseudonym I ICC , 2
Sector during Pseudonymous Signature Authentication. The value

◦ '0' indicates that no explicit authorization is required,

◦ '1' indicates that explicit authorization is required and

◦ '2' indicates that a terminal is not authorized to obtain I ICC , 2
Sector

.

• The integer keyId MUST be used to indicate the local key identifier and domain parameters
for key agreement.

PSPublicKeyInfo: This data structure provides detailed information on a public key for the
Pseudonymous Signature and is of the following form:

PSPublicKeyInfo ::= SEQUENCE {
protocol OBJECT IDENTIFIER (id-PS-PK-ECDH-ECSchnorr),
requiredData PSPKRequiredData,
optionalData PSPKOptionalData OPTIONAL

}

PSPKRequiredData ::= SEQUENCE {
pSPublicKey SubjectPublicKeyInfo,

}

PSPKOptionalData ::= SEQUENCE {
pSParameterID [1] IMPLICIT INTEGER OPTIONAL,
keyId [2] IMPLICIT INTEGER OPTIONAL

id-PS-PK OBJECT IDENTIFIER ::= { bsi-de protocols(2) smartcards(2) PK(1) 3 }
id-PS-PK-ECDH-ECSchnorr OBJECT IDENTIFIER ::= { id-PS-PK 2 }

The fields in the data structures contain the following information:

• The object identifier protocol SHALL identify the public key type,

• The sequence pSPublicKey SHALL contain the ICC's public key and the underlying extended
domain parameters in encoded form. The algorithm identifiers of section A.6.1 SHALL be used.

• The integer pSParameterID MAY be used to indicate the (local) ID of the domain parameters
(excluding the domain parameters). It MUST be present if explicit domain parameters are used.
Otherwise, the field SHOULD be omitted.

Bundesamt für Sicherheit in der Informationstechnik 29

A. ASN.1 Specifications (Normative)

• The integer keyId MUST be used to indicate the local key identifier and domain parameters
for key agreement.

Note: Usage of the algorithm 3DES is deprecated, hence, the object identifiers
id-CA-DH-3DES-CBC-CBC and id-CA-ECDH-GM-3DES-CBC-CBC SHOULD NOT be used.

A.1.1.3. Terminal Authentication

To indicate support for Terminal Authentication SecurityInfos may contain the following entry:

• At least one TerminalAuthenticationInfo SHOULD be present.

TerminalAuthenticationInfo: This data structure provides detailed information on an implementation
of Terminal Authentication.

• The object identifier protocol SHALL identify the general Terminal Authentication Protocol
as the specific protocol may change over time.

• The integer version SHALL identify the version of the protocol. Currently, versions 1 and 2
are supported.

• The sequence efCVCA MAY be used in version 1 to indicate a (short) file identifier of the file
EF.CVCA. It MUST be used, if the default (short) file identifier is not used. In version 2, the field
MUST be absent.

id-TA OBJECT IDENTIFIER ::= {
 bsi-de protocols(2) smartcard(2) 2
}

id-TA-RSA OBJECT IDENTIFIER ::= {id-TA 1}
id-TA-RSA-v1-5-SHA-1 OBJECT IDENTIFIER ::= {id-TA-RSA 1}
id-TA-RSA-v1-5-SHA-256 OBJECT IDENTIFIER ::= {id-TA-RSA 2}
id-TA-RSA-PSS-SHA-1 OBJECT IDENTIFIER ::= {id-TA-RSA 3}
id-TA-RSA-PSS-SHA-256 OBJECT IDENTIFIER ::= {id-TA-RSA 4}
id-TA-RSA-v1-5-SHA-512 OBJECT IDENTIFIER ::= {id-TA-RSA 5}
id-TA-RSA-PSS-SHA-512 OBJECT IDENTIFIER ::= {id-TA-RSA 6}

id-TA-ECDSA OBJECT IDENTIFIER ::= {id-TA 2}
id-TA-ECDSA-SHA-1 OBJECT IDENTIFIER ::= {id-TA-ECDSA 1}
id-TA-ECDSA-SHA-224 OBJECT IDENTIFIER ::= {id-TA-ECDSA 2}
id-TA-ECDSA-SHA-256 OBJECT IDENTIFIER ::= {id-TA-ECDSA 3}
id-TA-ECDSA-SHA-384 OBJECT IDENTIFIER ::= {id-TA-ECDSA 4}
id-TA-ECDSA-SHA-512 OBJECT IDENTIFIER ::= {id-TA-ECDSA 5}

TerminalAuthenticationInfo ::= SEQUENCE {
 protocol OBJECT IDENTIFIER(id-TA),
 version INTEGER, -- MUST be 1 for TAv1 or 2 for TAv2
 efCVCA FileID OPTIONAL -- MUST NOT be used for version 2
}

FileID ::= SEQUENCE {
 fid OCTET STRING (SIZE(2)),
 sfid OCTET STRING (SIZE(1)) OPTIONAL
}

30 Bundesamt für Sicherheit in der Informationstechnik

ASN.1 Specifications (Normative) A.

Note: Usage of the hash function SHA-1 is deprecated, hence the object identifiers
id-TA-RSA-v1-5-SHA-1, id-TA-RSA-PSS-SHA-1 and id-TA-ECDSA-SHA-1 SHOULD NOT be
used.

A.1.1.4. Restricted Identification

To indicate support for Restricted Identification SecurityInfos may contain the following entry:

• At least one RestrictedIdentificationInfo MUST be present.

• At most one RestrictedIdentificationDomainParameterInfo MAY be present.

RestrictedIdentificationInfo: This data structure provides detailed information on an implementation
of Restricted Identification.

• The object identifier protocol SHALL identify the algorithms to be used (i.e. key agreement).

• The integer version SHALL identify the version of the protocol. Currently, only version 1 is
supported.

• The integer keyId SHALL identify the private key to be used.

• The boolean authorizedOnly SHALL indicate whether explicit authorization is REQUIRED
to use the corresponding secret key.

• The integer maxKeyLen MAY be used to indicate the maximum length of the supported sector
specific public keys.

id-RI OBJECT IDENTIFIER ::= {
 bsi-de protocols(2) smartcard(2) 5
}

id-RI-DH OBJECT IDENTIFIER ::= {id-RI 1}
id-RI-DH-SHA-1 OBJECT IDENTIFIER ::= {id-RI-DH 1}
id-RI-DH-SHA-224 OBJECT IDENTIFIER ::= {id-RI-DH 2}
id-RI-DH-SHA-256 OBJECT IDENTIFIER ::= {id-RI-DH 3}
id-RI-DH-SHA-384 OBJECT IDENTIFIER ::= {id-RI-DH 4}
id-RI-DH-SHA-512 OBJECT IDENTIFIER ::= {id-RI-DH 5}

id-RI-ECDH OBJECT IDENTIFIER ::= {id-RI 2}
id-RI-ECDH-SHA-1 OBJECT IDENTIFIER ::= {id-RI-ECDH 1}
id-RI-ECDH-SHA-224 OBJECT IDENTIFIER ::= {id-RI-ECDH 2}
id-RI-ECDH-SHA-256 OBJECT IDENTIFIER ::= {id-RI-ECDH 3}
id-RI-ECDH-SHA-384 OBJECT IDENTIFIER ::= {id-RI-ECDH 4}
id-RI-ECDH-SHA-512 OBJECT IDENTIFIER ::= {id-RI-ECDH 5}

RestrictedIdentificationInfo ::= SEQUENCE {
 protocol OBJECT IDENTIFIER(
 id-RI-DH-SHA-1 |
 id-RI-DH-SHA-224 |
 id-RI-DH-SHA-256 |
 id-RI-DH-SHA-384 |
 id-RI-DH-SHA-512 |
 id-RI-ECDH-SHA-1 |
 id-RI-ECDH-SHA-224 |
 id-RI-ECDH-SHA-256 |
 id-RI-ECDH-SHA-384 |
 id-RI-ECDH-SHA-512),
 params ProtocolParams,

Bundesamt für Sicherheit in der Informationstechnik 31

A. ASN.1 Specifications (Normative)

 maxKeyLen INTEGER OPTIONAL
}

ProtocolParams ::= SEQUENCE {
 version INTEGER, -- MUST be 1
 keyId INTEGER,
 authorizedOnly BOOLEAN
}

RestrictedIdentificationDomainParameterInfo: This data structure provides the set of domain
parameters that have been used for the generation of the public key PK ID for revocation of the ICC.

• The object identifier protocol SHALL identify the type of the domain parameters (i.e. DH or
ECDH).

• The sequence domainParameter SHALL contain the domain parameters.

RestrictedIdentificationDomainParameterInfo ::= SEQUENCE {
 protocol OBJECT IDENTIFIER(id-RI-DH | id-RI-ECDH),
 domainParameter AlgorithmIdentifier
}

Note: Usage of the hash function SHA-1 is deprecated, hence the object identifiers id-RI-DH-SHA-1
and id-RI-ECDH-SHA-1 SHOULD NOT be used.

A.1.1.5. Pseudonymous Signatures of Messages (PSM)

To indicate support for Pseudonymous Signature of Messages, SecurityInfos may contain the
following entries:

• At least one PSMInfo MUST be present.

• At least one PSPublicKeyInfo MUST be present.

PSMInfo: This data structure provides detailed information on an implementation of PSM and is of the
following form:

PSMInfo ::= SEQUENCE {
protocol OBJECT IDENTIFIER (

id-PSM-ECDH-ECSchnorr-SHA-256 |
id-PSM-ECDH-ECSchnorr-SHA-384 |
id-PSM-ECDH-ECSchnorr-SHA-512),

requiredData PSMRequiredData,
keyId INTEGER OPTIONAL

}

PSMRequiredData ::= SEQUENCE {
version INTEGER, –- MUST be 1
ps1-authInfo INTEGER (0 | 1 | 2),
ps2-authInfo INTEGER (0 | 1 | 2)

}

id-PSM OBJECT IDENTIFIER ::= { id-PS 2 }

id-PSM-ECDH-ECSchnorr OBJECT IDENTIFIER ::= { id-PSM 2 }
id-PSM-ECDH-ECSchnorr-SHA-256 OBJECT IDENTIFIER ::= { PSM-ECDH-ECSchnorr 3 }
id-PSM-ECDH-ECSchnorr-SHA-384 OBJECT IDENTIFIER ::= { PSM-ECDH-ECSchnorr 4 }
id-PSM-ECDH-ECSchnorr-SHA-512 OBJECT IDENTIFIER ::= { PSM-ECDH-ECSchnorr 5 }

32 Bundesamt für Sicherheit in der Informationstechnik

ASN.1 Specifications (Normative) A.

The fields in the data structure contain the following information:

• The object identifier protocol SHALL identify the PSM Protocol.

• The integer version SHALL identify the version of the supported protocol. Currently, version
1 is supported.

• The integer ps1-authInfo SHALL indicate the required terminal's effective authorization to

get the Pseudonym I ICC , 1
Sector during Pseudonymous Signature of a Message. The value

◦ '0' indicates that no explicit authorization is required,

◦ '1' indicates that explicit authorization is required and

◦ '2' indicates that a terminal is not authorized to obtain I ICC , 1
Sector

.

• The integer ps2-authInfo SHALL indicate the required terminal's effective authorization to

get the Pseudonym I ICC , 2
Sector during Pseudonymous Signature of a Message. The value

◦ '0' indicates that no explicit authorization is required,

◦ '1' indicates that explicit authorization is required and

◦ '2' indicates that a terminal is not authorized to obtain I ICC , 2
Sector

.

• The integer keyId MUST be used to indicate the local key identifier.

A.1.1.6. Pseudonymous Signatures of Credentials (PSC)

To indicate support for Pseudonymous Signature of Credentials, SecurityInfos may contain the
following entries:

• At least one PSCInfo MUST be present.

• At least one PSPublicKeyInfo MUST be present.

PSCInfo: This data structure provides detailed information on an implementation of PSC and is of the
following form:

PSCInfo ::= SEQUENCE {
protocol OBJECT IDENTIFIER (

id-PSC-ECDH-ECSchnorr-SHA-256 |
id-PSC-ECDH-ECSchnorr-SHA-384 |
id-PSC-ECDH-ECSchnorr-SHA-512),

requiredData PSCRequiredData,
keyId INTEGER OPTIONAL

}

PSCRequiredData ::= SEQUENCE {
version INTEGER, –- MUST be 1
ps1-authInfo INTEGER (0 | 1 | 2),
ps2-authInfo INTEGER (0 | 1 | 2)

}

id-PSC OBJECT IDENTIFIER ::= { id-PS 3 }

id-PSC-ECDH-ECSchnorr OBJECT IDENTIFIER ::= { id-PSC 2 }
id-PSC-ECDH-ECSchnorr-SHA-256 OBJECT IDENTIFIER ::= { PSC-ECDH-ECSchnorr 3 }
id-PSC-ECDH-ECSchnorr-SHA-384 OBJECT IDENTIFIER ::= { PSC-ECDH-ECSchnorr 4 }

Bundesamt für Sicherheit in der Informationstechnik 33

A. ASN.1 Specifications (Normative)

id-PSC-ECDH-ECSchnorr-SHA-512 OBJECT IDENTIFIER ::= { PSC-ECDH-ECSchnorr 5 }

The fields in the data structure contain the following information:

• The object identifier protocol SHALL identify the PSC Protocol.

• The integer version SHALL identify the version of the supported protocol. Currently, version
1 is supported.

• The integer ps1-authInfo SHALL indicate the required terminal's effective authorization to

get the Pseudonym I ICC , 1
Sector during Pseudonymous Signature of Credentials. The value

◦ '0' indicates that no explicit authorization is required,

◦ '1' indicates that explicit authorization is required and

◦ '2' indicates that a terminal is not authorized to obtain I ICC , 1
Sector

.

• The integer ps2-authInfo SHALL indicate the required terminal's effective authorization to

get the Pseudonym I ICC , 2
Sector during Pseudonymous Signature of Credentials. The value

◦ '0' indicates that no explicit authorization is required,

◦ '1' indicates that explicit authorization is required and

◦ '2' indicates that a terminal is not authorized to obtain I ICC , 2
Sector

.

• The integer keyId MUST be used to indicate the local key identifier.

A.1.1.7. CardInfo (eIDAS token only)

To provide information about card capabilities and the structure of the card SecurityInfos may
contain the following entry:

• Exactly one CardInfo SHOULD be present. It MUST be present if the ICC supports
authorization extensions or storing/restoring of the session context.

CardInfo: This data structure provides detailed information about the applications supported by the
ICC.

• The object identifier protocol SHALL identify the CardInfo structure.

• The string urlCardInfo SHALL define the location that provides the most recent CardInfo
file [5] for the respective ICC type and version.

• The choice optionalCardInfoData MAY contain optional CardInfo data. If the ICC
supports Authorization Extensions or storing/restoring of Session Contexts or the compare
command for auxilliary data verification, the choice ExtCardInfoData MUST be present.

◦ The sequence efCardInfo MAY be used to indicate a (short) file identifier of the file
EF.CardInfo containing a CardInfo file [5].

◦ If present, supportedTRVersion SHALL contain the version of this Technical Guideline.
Compliance to this version SHALL be indicated by 'Version 2.21'.

◦ If the ICC supports Authorization Extensions, the set of suppTerminalTypes MUST be
present.

▪ If present, the object identifier supportedTerminalType SHALL contain a terminal
type supported by the ICC a terminal type supported by the ICC indicated by the

34 Bundesamt für Sicherheit in der Informationstechnik

ASN.1 Specifications (Normative) A.

corresponding OBJECT IDENTIFIER. See Part 4 for the Terminal Types defined in this
Technical Guideline.

▪ If the ICC supports Authorization Extensions for the terminal type, these extensions
SHALL be indicated by the corresponding object identifier in the set of
supportedAuthorizationExtensions.

◦ The integer maxSCNo MAY indicate the maximum number of Session Contexts that can be
handled by the ICC in addition to the default session context. It MUST be present if the ICC
supports switching of session contexts. The value MUST NOT exceed 127. The value of 0x00
indicates that the ICC supports the default session context only.

◦ The boolean envInfo MAY be used to indicate if the ICC supports Envelope/GetResponse
TPDUs.

id-CI OBJECT IDENTIFIER ::= {
 bsi-de protocols(2) smartcard(2) 6
}

CardInfo ::= SEQUENCE {
 protocol OBJECT IDENTIFIER(id-CI),
 urlCardInfo IA5String,
 optionalCardInfoData OptionalCardInfoData OPTIONAL,
}

FileID ::= SEQUENCE {
 fid OCTET STRING (SIZE(2)),
 sfid OCTET STRING (SIZE(1)) OPTIONAL
}

OptionalCardInfoData ::= CHOICE {
 efCardInfo EfCardInfo,
 extCardInfoData [0] IMPLICIT ExtCardInfoData
}

EfCardInfo ::= FileID

ExtCardInfoData ::= SEQUENCE {
 efCardInfo [0] IMPLICIT FileID OPTIONAL,
 supportedTRVersion [1] IMPLICIT UTF8String OPTIONAL,
 suppTerminalTypes [2] IMPLICIT SET OF SupportedTerminalTypes
OPTIONAL,
 maxSCNo [3] IMPLICIT INTEGER OPTIONAL,
 envInfo [4] IMPLICIT BOOLEAN OPTIONAL
}

SupportedTerminalTypes ::=SEQUENCE {
 supportedTerminalType OBJECT IDENTIFIER,
 supportedAuthorizations SET OF OBJECT IDENTIFIER OPTIONAL
}

A.1.1.8. EIDSecurityInfo (eIDAS token only)

To protect data stored in the eID application SecurityInfos may contain the following entry:

• Exactly one EIDSecurityInfo SHOULD be present.

EIDSecurityInfo: This data structure provides hash values of selected data groups of the eID
application.

Bundesamt für Sicherheit in der Informationstechnik 35

A. ASN.1 Specifications (Normative)

• The sequence eIDSecurityObject SHALL define the hash values of selected data groups.

• The sequence eIDVersionInfo MAY be used to identify the version of the eID Application.

id-eIDSecurity OBJECT IDENTIFIER ::= {
 bsi-de protocols(2) smartcard(2) 7
}

EIDSecurityInfo ::= SEQUENCE {
 protocol OBJECT IDENTIFIER(id-eIDSecurity),
 eIDSecurityObject EIDSecurityObject,
 eIDVersionInfo EIDVersionInfo OPTIONAL
}

EIDSecurityObject ::= SEQUENCE {
 hashAlgorithm AlgorithmIdentifier,
 dataGroupHashValues SEQUENCE OF DataGroupHash
}

DataGroupHash ::= SEQUENCE {
 dataGroupNumber INTEGER,
 dataGroupHashValue OCTET STRING
}

EIDVersionInfo ::= SEQUENCE {
 eIDVersion PrintableString,
 unicodeVersion PrintableString
}

A.1.1.9. PrivilegedTerminalInfo (eIDAS token only)

To provide additional information about Chip Authentication keys restricted to privileged terminals
SecurityInfos may contain the following entry:

• Exactly one PrivilegedTerminalInfo MUST be present, if some Chip Authentication keys
are only available to privileged terminals.

PrivilegedTerminalInfo: This data structure provides SecurityInfos related to Chip Authentication
using chip-individual keys that are only available to privileged terminals.

• The set privilegedTerminalInfos SHALL encapsulate SecurityInfos corresponding
to Chip Authentication keys that are only available to privileged terminals.

id-PT OBJECT IDENTIFIER ::= {
 bsi-de protocols(2) smartcard(2) 8
}

PrivilegedTerminalInfo ::= SEQUENCE {
 protocol OBJECT IDENTIFIER(id-PT),
 privilegedTerminalInfos SecurityInfos
}

36 Bundesamt für Sicherheit in der Informationstechnik

ASN.1 Specifications (Normative) A.

A.1.1.10. Other Protocols

SecurityInfos MAY contain references to protocols that are not contained in this specification
(including Active Authentication and Basic Access Control).

A.1.2. Storage on the Chip

The ICC SHALL provide SecurityInfos in the following transparent elementary files contained in
the master file (cf. Table 2):

• CardAccess (CONDITIONAL)
SHALL be present if PACE, Chip Authentication version 2 and/or Terminal Authentication
version 2 are implemented by the chip. SHALL be readable by all terminals.

• CardSecurity (CONDITIONAL)
SHALL be present if Chip Authentication version 2 or 3, Terminal Authentication version 2,
Restricted Identification or PSM are implemented by the chip. Read access to CardSecurity
SHALL be restricted to terminals having successfully performed PACE and MAY be further
restricted to authenticated terminals.

• ChipSecurity (OPTIONAL)
Read access to ChipSecurity SHALL be restricted to authenticated privileged terminals. If this
optional file is available, all privacy-relevant SecurityInfos SHOULD be stored in
ChipSecurity and SHOULD NOT be included in CardSecurity.

If PACE according [8], Terminal Authentication version 1 or Chip Authentication version 1 are
implemented, the ICC SHALL provide SecurityInfos in the elementary file DG14 contained in the
ePassport application.

Bundesamt für Sicherheit in der Informationstechnik 37

File Name EF.CardAccess EF.CardSecurity EF.ChipSecurity

File ID 0x011C 0x011D 0x011B

Short File ID 0x1C 0x1D 0x1B

Read Access ALWAYS PACE (m)
+ TA (o)

PACE
+ TA[authenticated privileged
terminals]

Write Access NEVER NEVER NEVER

Size variable variable variable

Content DER encoded
SecurityInfos

DER encoded ContentInfo
structure of type id-SignedData

DER encoded ContentInfo
structure of type id-SignedData

Table 2: Elementary Files CardAccess, CardSecurity and ChipSecurity

A. ASN.1 Specifications (Normative)

A.1.2.1. CardAccess (CONDITIONAL)

If present, the file CardAccess shall contain the relevant SecurityInfos that are required to access
applications:

• PACEInfo (REQUIRED)

• PACEDomainParameterInfo (CONDITIONAL)

◦ This structure(s) MUST be present if explicit domain parameters are used.

• PasswordInfo (OPTIONAL)

◦ This structure MAY be present to provide information about supported passwords.

• ChipAuthenticationInfo (CONDITIONAL)

◦ This structure(s) MUST be present if Chip Authentication in version 2 or 3 is supported and
read access to CardSecurity is restricted to authenticated terminals.

• ChipAuthenticationDomainParameterInfo (CONDITIONAL)

◦ This structure(s) MUST be present if Chip Authentication in version 2 or 3 is supported and
read access to CardSecurity is restricted to authenticated terminals.

• PSAInfo (CONDITIONAL)

◦ This structure MUST be present if Chip Authentication in version 3 is supported and read
access to CardSecurity is restricted to authenticated terminals.

• TerminalAuthenticationInfo (CONDITIONAL)

◦ This structure MUST be present if Terminal Authentication in version 2 is supported.

• PSMInfo (CONDITIONAL)

◦ This structure MUST be present if Pseudonymous Signature of Messages is supported and
read access to CardSecurity is restricted to authenticated terminals.

• CardInfo (RECOMMENDED)

• PrivilegedTerminalInfo (CONDITIONAL)

◦ This structure MUST be present if some Chip Authentication version 2 keys are only
available to privileged terminals and read access to CardSecurity is restricted to
authenticated terminals.

◦ It SHALL encapsulate the corresponding SecurityInfos, i.e. for each Chip
Authentication key that is restricted to privileged terminals a
ChipAuthenticationInfo and ChipAuthenticationDomainParameterInfo
MUST be included referencing the key identifier.

A.1.2.2. CardSecurity (CONDITIONAL)

If present, the file CardSecurity

• SHALL contain all SecurityInfos supported by the ICC (except for
PrivilegedTerminalInfo and EIDSecurityInfo for which the conditions as described
below apply)

38 Bundesamt für Sicherheit in der Informationstechnik

ASN.1 Specifications (Normative) A.

• SHALL contain all SecurityInfos contained in CardAccess except
PrivilegedTerminalInfo,

• if some Chip Authentication version 2 keys are only available to privileged terminals and no
PrivilegedTerminalInfo is contained in CardAccess, SHALL contain a
PrivilegedTerminalInfo, which encapsulates the corresponding SecurityInfos,

• SHALL contain the corresponding ChipAuthenticationPublicKeyInfo for each key
referenced by a ChipAuthenticationInfo of version 1 or 2 (excluding keys encapsulated
in PrivilegedTerminalInfo). Generation-specific keys SHOULD be used instead of
chip-individual keys, and

• SHOULD NOT contain EIDSecurityInfo.

The SecurityInfos contained in CardSecurity MUST be signed using the data structure specified in
A.1.2.5.

A.1.2.3. ChipSecurity (OPTIONAL)

If present, the file ChipSecurity

• SHALL contain all SecurityInfos supported by the ICC. In particular, the file

◦ SHALL contain all SecurityInfos contained in CardAccess, and

◦ SHALL contain the corresponding ChipAuthenticationPublicKeyInfo for each key
referenced by a ChipAuthenticationInfo. For each ChipAuthenticationInfo
encapsulated in PrivilegedTerminalInfo, the corresponding
ChipAuthenticationPublicKeyInfo MUST also be included in
PrivilegedTerminalInfo. All keys encapsulated in PrivilegedTerminalInfo
SHOULD be chip-individual keys.

• It is RECOMMENDED that EIDSecurityInfo is used to provide hashes of (static) data groups
related to personal data of the holder.

The SecurityInfos contained in ChipSecurity MUST be signed using the data structure specified in
A.1.2.5.

A.1.2.4. ePassport DG14 (CONDITIONAL)

If PACE according to [8], Terminal Authentication version 1 or Chip Authentication version 1 are
implemented by the chip, the ICC SHALL also provide SecurityInfos in data group DG14 of the
ePassport application. It is RECOMMENDED that DG14 and ChipSecurity (if present) contain the same
keys.

A.1.2.5. Signature Format for CardSecurity and ChipSecurity

The files CardSecurity and ChipSecurity SHALL be implemented as SignedData according to [7]3 with
content type id-SecurityObject within the field encapContentInfo. The Security Objects
SHALL be signed by the Document Signer. The Document Signer Certificate MUST be included in
SignedData. The following Object Identifier SHALL be used to identify the content type:

id-SecurityObject OBJECT IDENTIFIER ::= {

3 i.e. a ContentInfo structure with content type id-signed-data and content of type SignedData.

Bundesamt für Sicherheit in der Informationstechnik 39

A. ASN.1 Specifications (Normative)

 bsi-de applications(3) eID(2) 1
}

The data structure SignedData is defined as follows; more details can be found in [7]:

SignedData ::= SEQUENCE{
 version CMSVersion,
 digestAlgorithms DigestAlgorithmIdentifiers,
 encapContentInfo EncapsulatedContentInfo,
 certificates [0] IMPLICIT CertificateSet OPTIONAL,
 crls [1] IMPLICIT RevocationInfoChoices OPTIONAL,
 signerInfos SignerInfos
}

DigestAlgorithmIdentifiers ::= SET OF DigestAlgorithmIdentifier

EncapsulatedContentInfo ::= SEQUENCE {
 eContentType ContentType,
 eContent [0] EXPLICIT OCTET STRING OPTIONAL
}

ContentType ::= OBJECT IDENTIFIER

SignerInfos ::= SET OF SignerInfo

SignerInfo ::= SEQUENCE {
 version CMSVersion,
 sid SignerIdentifier,
 digestAlgorithm DigestAlgorithmIdentifier,
 signedAttrs [0] IMPLICIT SignedAttributes OPTIONAL,
 signatureAlgoritm SignatureAlgorithmIdentifier,
 signature SignatureValue,
 unsignedAttrs [1] IMPLICIT UnsignedAttributes OPTIONAL
}

SignerIdentifier ::= CHOICE {
 issuerAndSerialNumber IssuerAndSerialNumber,
 subjectKeyIdentifier [0] SubjectKeyIdentifier
}

SignatureValue ::= OCTET STRING

Within SignerInfos, the field signedAttrs SHALL consist of the content-type attribute and the field
unsignedAttrs SHALL NOT be present.

40 Bundesamt für Sicherheit in der Informationstechnik

ASN.1 Specifications (Normative) A.

A.2. Key Agreement

PACE, Chip Authentication, Restricted Identification and the pseudonym generation within
Pseudonymous Signatures are based on key agreement protocols. This appendix specifies the general
algorithms, formats and protocols. An overview can be found in table 3.

A.2.1. Domain Parameters

With the exception of domain parameters contained in PACEInfo, all domain parameters SHALL be
provided as AlgorithmIdentifier, the data structure is defined as follows; more details can be
found in [6]:

AlgorithmIdentifier ::= SEQUENCE {
 algorithm OBJECT IDENTIFIER,
 parameters ANY DEFINED BY algorithm OPTIONAL
}

Within PACEInfo, the ID of standardized domain parameters described in Table 4 SHALL be
referenced directly. Explicit domain parameters provided in the field parameterID by
PACEDomainParameterInfo or in pSParameterID by PSPublicKeyInfo MUST NOT use those
IDs reserved for standardized domain parameters.

A.2.1.1. Standardized Domain Parameters

Standardized domain parameters described in Table 4 SHOULD be used4. The following object identifier
SHOULD be used to reference standardized domain parameters in an AlgorithmIdentifier:

standardizedDomainParameters OBJECT IDENTIFIER ::= {
 bsi-de algorithms(1) 2
}

4 The selection of suitable key lengths is not within the scope of this Technical Guideline.

Bundesamt für Sicherheit in der Informationstechnik 41

Algorithm / Format DH ECDH

Key Agreement Algorithm PKCS#3 [26] ECKA [4]

X.509 Public Key Format X9.42 [1] ECC [4]

TLV Public Key Format TLV, cf. Appendix D.3.2 TLV, cf. Appendix D.3.3

Public Key Compression SHA-1 [24] X-Coordinate

Ephemeral Public Key
Validation

RFC 2631 [25] ECC [4]

Table 3: Algorithms and Formats for Key Agreement

A. ASN.1 Specifications (Normative)

Within an AlgorithmIdentifier this object identifier SHALL reference the ID of the standardized
domain parameter as contained in Table 4 as INTEGER.

Note: Usage of the standardized domain parameter IDs 0, 8 and 9 is deprecated.

A.2.1.2. Explicit Domain Parameters

Explicit domain parameters may be contained in the following structures:

• PACEDomainParameterInfo,

• ChipAuthenticationPublicKeyInfo,

• ChipAuthenticationDomainParameterInfo,

• PSPublicKeyInfo, and

• RestrictedIdentificationDomainParameterInfo

The object identifier dhpublicnumber or id-ecPublicKey for DH or ECDH, respectively, SHALL
be used to reference explicit domain parameters in an AlgorithmIdentifier:

dhpublicnumber OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) ansi-x942(10046) number-type(2) 1
}

42 Bundesamt für Sicherheit in der Informationstechnik

 ID Name Size Type Reference

0 1024-bit MODP Group with 160-bit Prime Order Subgroup 1024/160 GFP [18]

1 2048-bit MODP Group with 224-bit Prime Order Subgroup 2048/224 GFP [18]

2 2048-bit MODP Group with 256-bit Prime Order Subgroup 2048/256 GFP [18]

3 - 7 RFU

8 NIST P-192 (secp192r1) 192 ECP [23], [18]

9 BrainpoolP192r1 192 ECP [19]

10 NIST P-224 (secp224r1)* 224 ECP [23], [18]

11 BrainpoolP224r1 224 ECP [19]

12 NIST P-256 (secp256r1) 256 ECP [23], [18]

13 BrainpoolP256r1 256 ECP [19]

14 BrainpoolP320r1 320 ECP [19]

15 NIST P-384 (secp384r1) 384 ECP [23], [18]

16 BrainpoolP384r1 384 ECP [19]

17 BrainpoolP512r1 512 ECP [19]

18 NIST P-521 (secp521r1) 521 ECP [23], [18]

19-31 RFU

* This curve cannot be used with the integrated mapping.

Table 4: Standardized Domain Parameters

ASN.1 Specifications (Normative) A.

id-ecPublicKey OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) ansi-x962(10045) keyType(2) 1
}

In the case of elliptic curves domain parameters MUST be described explicitly in the ECParameters
structure, i.e. named curves and implicit domain parameters MUST NOT be used.

A.2.1.3. PACE, Chip Authentication and Pseudonymous Signatures

The ICC MAY support more than one set of domain parameters (i.e. the chip may support different
algorithms and/or key lengths) for PACE, Chip Authentication version 1, 2 and 3, PSM and PSC.

• Domain parameters contained in EF.CardAccess, i.e. PACEDomainParameterInfo,
ChipAuthenticationDomainParameterInfo (for Chip Authentication version 2 or 3),
are unprotected and may be insecure. Using insecure domain parameters may lead to attacks,
e.g. using insecure domain parameters for PACE will leak the used password.

◦ ICCs MUST support at least one set of standardized domain parameters for PACE and Chip
Authentication version 2 and 3, if the respective protocols are implemented, as specified in
table 4.

◦ Terminals MUST NOT use unverified domain parameters for PACE or Chip Authentication
version 2 and 3, i.e. only standardized domain parameters or domain parameters explicitly
known by the terminal to be secure are to be used.

• Domain parameters contained in ChipAuthenticationDomainParameterInfo and
ChipAuthenticationPublicKeyInfo and PSPublicKeyInfo are protected by the
Security Object.

◦ Chip Authentication in version 1 MUST provide at least one set of explicit domain
parameters.

A.2.1.4. Restricted Identification

The domain parameters for Restricted Identification are defined by the Document Verifier and MUST
be provided together with the Sector Public Key in a public key data object as part of Restricted
Identification (cf. Appendix D.3 and Appendix B.4.1). The hash of this public key data object MUST be
contained in the Terminal Certificate as Terminal Sector extension (cf. Appendix C.3.2). The ICC MUST
verify the Sector Public Key using the Terminal Sector extension.

A.2.2. Ephemeral Public Keys

A.2.2.1. PACE and Chip Authentication

The domain parameters contained in PACEInfo or PACEDomainParameterInfo and
ChipAuthenticationDomainParameterInfo or ChipAuthenticationPublicKeyInfo
MUST be used by the terminal for the generation of an ephemeral public key for PACE and Chip
Authentication, respectively. Ephemeral public keys MUST be exchanged as plain public key values.
More information on the encoding can be found in Appendix D.3.4.

Bundesamt für Sicherheit in der Informationstechnik 43

A. ASN.1 Specifications (Normative)

Note: The validation of ephemeral public keys is REQUIRED. For DH, the validation algorithm requires
the ICC to have a more detailed knowledge of the domain parameters (i.e. the order of the used
subgroup) than usually provided by PKCS#3.

A.2.2.2. Restricted Identification

For Restricted Identification ephemeral public keys are not used.

A.2.2.3. Public Key Compression

The terminal's compressed ephemeral public key Comp(~PK PCD) as required for Terminal
Authentication is defined as follows:

• For DH the compressed ephemeral public key is the SHA-1 hash of the DH public value, i.e. an
octet string of fixed length 20.

• For ECDH the compressed ephemeral public key is the x-coordinate of the ECDH public point,
i.e. an octet string of fixed length ⌈log256 p⌉ .

A.2.3. Key Derivation Function

Let KDFEnc(K , [r])=KDF(K ,[r],1), KDFMAC(K , [r])=KDF(K , [r],2), be key derivation functions to
derive encryption and authentication keys, respectively, from a shared secret K and an optional nonce
r . Let KDFπ(π)=KDF(f (π),3), be a key derivation function to derive encryption keys from a

password  . The encoding of passwords, i.e. K= f (π) is specified in Table 5.

The key derivation function KDF(K , [r] ,c), is defined as follows:

Input: The following inputs are required:

• The shared secret value K (REQUIRED)

• A nonce r (OPTIONAL)

• A 32-bit, big-endian integer counter c (REQUIRED)

Output: An octet string keydata.

Actions: The following actions are performed:

1. keydata=H (K∥r∥c)

2. Output octet string keydata

The key derivation function KDF(K , [r] ,c) requires a suitable hash function denoted by H (), i.e the
bit-length of the hash function SHALL be greater or equal to the bit-length of the derived key. The hash
value SHALL be interpreted as big-endian byte output.

The nonce r is used for Chip Authentication version 2 only.

Note: The shared secret K is defined as an octet string. If the shared secret is generated with ECKA [4],
the x-coordinate of the generated point SHALL be used.

44 Bundesamt für Sicherheit in der Informationstechnik

ASN.1 Specifications (Normative) A.

A.2.3.1. 3DES

To derive 112-bit 3DES [20] keys the hash function SHA-1 [24] SHALL be used and the following
additional steps MUST be performed:

• Use octets 1 to 8 of keydata to form keydataA and octets 9 to 16 of keydata to form keydataB;
additional octets are not used.

• Adjust the parity bits of keydataA and keydataB to form correct DES keys (OPTIONAL).

A.2.3.2. AES

To derive 128-bit AES [21] keys the hash function SHA-1 [24] SHALL be used and the following
additional step MUST be performed:

• Use octets 1 to 16 of keydata; additional octets are not used.

To derive 192-bit and 256-bit AES [21] keys SHA-256 [24] SHALL be used. For 192-bit AES keys the
following additional step MUST be performed:

• Use octets 1 to 24 of keydata; additional octets are not used.

A.2.4. Authentication Token

The authentication token used in PACE and Chip Authentication in version 2 SHALL be computed over
a public key data object (cf. Appendix D.3) containing the object identifier of the protocol used, i.e. PACE
or Chip Authentication (as indicated in MSE:Set AT, cf. Appendix B.14.1), and the received ephemeral
public key using an authentication code and the key K MAC derived from the key agreement.

A.2.4.1. 3DES

3DES [20] SHALL be used in Retail-mode according to ISO/IEC 9797-1 [15] MAC algorithm 3 / padding
method 2 with block cipher DES and IV=0.

A.2.4.2. AES

AES [21] SHALL be used in CMAC-mode [22] with a MAC length of 8 bytes.

Bundesamt für Sicherheit in der Informationstechnik 45

Password Encoding

MRZ SHA-1(Serial Number || Date of Birth || Date of Expiry)

CAN Character String (cf. Appendix D.2.1.4)

PIN Character String (cf. Appendix D.2.1.4)

PUK Character String (cf. Appendix D.2.1.4)

Table 5: Encoding of Passwords

A. ASN.1 Specifications (Normative)

A.3. PACE

A.3.1. PACE with DH

For PACE with DH the respective algorithms and formats from Table 3 and Table 6 MUST be used.

A.3.2. PACE with ECDH

For PACE with ECDH the respective algorithms and formats from Table 3 and Table 7 MUST be used.

A.3.3. Encrypted Nonce

The ICC SHALL randomly and uniformly select the nonce s∈R{02l−1} as a binary bit string of
length l, where l is a positive multiple of the block size in bits of the respective block cipher E  chosen
by the ICC.

46 Bundesamt für Sicherheit in der Informationstechnik

OID Mapping Sym. Key Secure Auth.

Cipher Len Messaging Token

id-PACE-DH-GM-3DES-CBC-CBC Generic 3DES 112 CBC / CBC CBC

id-PACE-DH-GM-AES-CBC-CMAC-128 Generic AES 128 CBC / CMAC CMAC

id-PACE-DH-GM-AES-CBC-CMAC-192 Generic AES 192 CBC / CMAC CMAC

id-PACE-DH-GM-AES-CBC-CMAC-256 Generic AES 256 CBC / CMAC CMAC

id-PACE-DH-IM-3DES-CBC-CBC Integrated 3DES 112 CBC / CBC CBC

id-PACE-DH-IM-AES-CBC-CMAC-128 Integrated AES 128 CBC / CMAC CMAC

id-PACE-DH-IM-AES-CBC-CMAC-192 Integrated AES 192 CBC / CMAC CMAC

id-PACE-DH-IM-AES-CBC-CMAC-256 Integrated AES 256 CBC / CMAC CMAC

Table 6: Object Identifiers for PACE with DH

OID Mapping Sym. Key Secure Auth.

Cipher Len Messaging Token

id-PACE-ECDH-GM-3DES-CBC-CBC Generic 3DES 112 CBC / CBC CBC

id-PACE-ECDH-GM-AES-CBC-CMAC-128 Generic AES 128 CBC / CMAC CMAC

id-PACE-ECDH-GM-AES-CBC-CMAC-192 Generic AES 192 CBC / CMAC CMAC

id-PACE-ECDH-GM-AES-CBC-CMAC-256 Generic AES 256 CBC / CMAC CMAC

id-PACE-ECDH-IM-3DES-CBC-CBC Integrated 3DES 112 CBC / CBC CBC

id-PACE-ECDH-IM-AES-CBC-CMAC-128 Integrated AES 128 CBC / CMAC CMAC

id-PACE-ECDH-IM-AES-CBC-CMAC-192 Integrated AES 192 CBC / CMAC CMAC

id-PACE-ECDH-IM-AES-CBC-CMAC-256 Integrated AES 256 CBC / CMAC CMAC

Table 7: Object Identifiers for PACE with ECDH

ASN.1 Specifications (Normative) A.

• The nonce s SHALL be encrypted in CBC mode according to ISO 10116 [9] using the key
K

=KDF


  derived from the password  and IV=0.

• The nonce s SHALL be converted to a random generator using an algorithm-specific mapping
function Map.

Note: Several different algorithms exist for implementing the mapping of the nonce to ephemeral
domain parameters. Currently, all specified mappings implementing D=MapDPICC , s  map the
nonce to an ephemeral generator. It is RECOMMENDED to implement the mapping as a randomized
function.

A.3.4. ECDH Mapping

Let G and
~
GMapped be the static and an ephemeral base point on the elliptic curve.

A.3.4.1. Generic Mapping

The function Map : G↦~GMapped is defined as
~
GMapped=s⋅G+H , where H ∈〈G 〉 is chosen s.t.

logG H is unknown. The point H SHALL be calculated by an anonymous Diffie-Hellman Key
Agreement [4].

Note: The key agreement algorithm ECKA prevents small subgroup attacks by using compatible
cofactor multiplication.

A.3.4.2. Integrated Mapping

The Integrated ECDH Mapping is specified by ICAO [8].

A.3.5. DH Mapping

Let g and ~g Mapped be the static and an ephemeral generator.

A.3.5.1. Generic Mapping

The function Map : g↦~g Mapped is defined as ~gMapped=g s⋅h, where h∈⟨ g ⟩ is chosen s.t. log g h is
unknown. The group element h SHALL be calculated by an anonymous Diffie-Hellman Key
Agreement.

Note: The public key validation method described in RFC 2631 [25] MUST be used to prevent small
subgroup attacks.

A.3.5.2. Integrated Mapping

The Integrated DH Mapping is specified by ICAO [8].

Bundesamt für Sicherheit in der Informationstechnik 47

A. ASN.1 Specifications (Normative)

A.4. Chip Authentication

A.4.1. Chip Authentication version 1 and 2

A.4.1.1. Chip Authentication Key Pair

The Key Pair(s) for Chip Authentication version 1 and 2 MUST be stored on the ICC.

• The private key SHALL be stored securely in the ICC’s memory.

• The public key SHALL be provided as SubjectPublicKeyInfo in the
ChipAuthenticationPublicKeyInfo structure.

• The domain parameters MAY be additionally provided as AlgorithmIdentifier in the
ChipAuthenticationDomainParameterInfo structure.

The data structures SubjectPublicKeyInfo and AlgorithmIdentifier are defined as follows;
more details can be found in [6]:

SubjectPublicKeyInfo ::= SEQUENCE {
 algorithm AlgorithmIdentifier,
 subjectPublicKey BIT STRING
}

AlgorithmIdentifier ::= SEQUENCE {
 algorithm OBJECT IDENTIFIER,
 parameters ANY DEFINED BY algorithm OPTIONAL
}

The ICC MAY support more than one Chip Authentication Key Pair (i.e. the chip may support different
algorithms and/or key lengths). In this case the local key identifier MUST be disclosed in the
corresponding ChipAuthenticationInfo, ChipAuthenticationPublicKeyInfo, and
ChipAuthenticationDomainParameterInfo (cf. A.1.1.2 for further details on the keyId).

A.4.1.2. Chip Authentication version 1 and 2 with DH

For Chip Authentication version 1 and 2 with DH the respective algorithms and formats from Table 3
and Table 8 MUST be used. For Chip Authentication in version 1 PKCS#3 [26] MUST be used instead of
X9.42 [1].

48 Bundesamt für Sicherheit in der Informationstechnik

OID Sym. Key Secure Auth.

Cipher Length Messaging Token

id-CA-DH-3DES-CBC-CBC 3DES 112 CBC / CBC CBC

id-CA-DH-AES-CBC-CMAC-128 AES 128 CBC / CMAC CMAC

id-CA-DH-AES-CBC-CMAC-192 AES 192 CBC / CMAC CMAC

id-CA-DH-AES-CBC-CMAC-256 AES 256 CBC / CMAC CMAC

Table 8: Object Identifiers for Chip Authentication with DH

ASN.1 Specifications (Normative) A.

A.4.1.3. Chip Authentication version 1 and 2 with ECDH

For Chip Authentication version 1 and 2 with ECDH the respective algorithms and formats from Table 3
and Table 9 MUST be used.

A.4.2. Chip Authentication Version 3

A.4.2.1. Static keys for Chip Authentication version 3

Chip Authentication version 3 requires static keys on the ICC for Pseudonymous Signature
Authentication. See A.6 for the requirements.

The ICC MAY support more than one set of static keys for Pseudonymous Signature Authentication or
domain parameters for key agreement during Chip Authentication version 3 (i.e. the chip may support
different algorithms and/or key lengths). In this case, the local key identifier MUST be disclosed in the
corresponding ChipAuthenticationInfo, ChipAuthenticationDomainParameterInfo,
PSAInfo, and PSPublicKeyInfo (cf. A.1.1.2 for further details on the keyId).

For each supported set of static keys for Pseudonymous Signature Authentication, the ICC SHALL grant
access to at least one pseudonym without explicit authorization of the terminal (i.e. ps1-authInfo or
ps2-authInfo SHALL have value '0' in PSAInfo).

A.4.2.2. Sector Public Keys

The Sector Public Keys for Chip Authentication version 3 are used within Pseudonymous Signature
Authentication. See A.6.2 for the requirements.

A.4.2.3. Chip Authentication version 3 based on ECDH and ECSchnorr

For the Diffie Hellman Key Agreement during Chip Authentication version 3, the respective algorithms
of Table 3 and Table 9 MUST be used.

For Pseudonymous Signature Authentication the algorithms and formats of Table 3 and Table 10
SHALL be used. The Pseudonymous Signature MUST be of plain signature format as defined in
Appendix A.6.5.

Bundesamt für Sicherheit in der Informationstechnik 49

OID Sym. Key Secure Auth.

Cipher Length Messaging Token

id-CA-ECDH-3DES-CBC-CBC 3DES 112 CBC / CBC CBC

id-CA-ECDH-AES-CBC-CMAC-128 AES 128 CBC / CMAC CMAC

id-CA-ECDH-AES-CBC-CMAC-192 AES 192 CBC / CMAC CMAC

id-CA-ECDH-AES-CBC-CMAC-256 AES 256 CBC / CMAC CMAC

Table 9: Object Identifiers for Chip Authentication with ECDH

A. ASN.1 Specifications (Normative)

A.5. Restricted Identification

A.5.1. ICC Private Key

The generation of the private key SK ID is out of the scope of this specification. If SK ID is generated as
encrypted sequential counter or as encrypted document number, the secret encryption key SHALL be
generated and stored securely by a third party.

A.5.2. Sector Public Keys

The Sector Public Keys MUST be generated by a (trusted) third party.

• If the third party MUST be able to link sector-specific identifier across sectors, then the third
party SHALL generate Sector Key Pairs and store the Sector Private Keys securely.

• If the third party MUST NOT be able to link sector-specific identifier across sectors, then the
third party SHALL generate Sector Public Keys in a way that the corresponding private keys are
unknown.

A.5.3. Restricted Identification with DH

For Restricted Identification with DH the respective algorithms and formats from Table 3 and Table 11
MUST be used.

50 Bundesamt für Sicherheit in der Informationstechnik

OID Hash

id-RI-DH-SHA-1 SHA-1

id-RI-DH-SHA-224 SHA-224

id-RI-DH-SHA-256 SHA-256

id-RI-DH-SHA-384 SHA-384

id-RI-DH-SHA-512 SHA-512

Table 11: Object Identifiers for Restricted Identification with DH

OID Hash

id-PSA-ECDH-ECSchnorr-SHA-256 SHA-256

id-PSA-ECDH-ECSchnorr-SHA-384 SHA-384

id-PSA-ECDH-ECSchnorr-SHA-512 SHA-512

Table 10: Object Identifiers for PSA based on ECSchnorr with ECDH

ASN.1 Specifications (Normative) A.

A.5.4. Restricted Identification with ECDH

For Restricted Identification with ECDH the respective algorithms and formats from Table 3 and Table
12 MUST be used. Input to the hash function SHALL be the x-coordinate of the point generated by
ECKA [4].

A.6. Pseudonymous Signatures

A.6.1. Static keys for Pseudonymous Signatures

The static keys for Pseudonymous signatures MUST be stored on the ICC.

• The private keys SHALL be stored securely in the ICC’s memory.

• The ICC's public key including the domain parameters and the group manager's public key
SHALL be provided as SubjectPublicKeyInfo in the PSPublicKeyInfo structure.

To indicate public keys for Pseudonymous Signatures, the following algorithm identifier SHALL be used
within the SubjectPublicKeyInfo:

• The algorithm SHALL be of type ecPSPublicKey.

• The parameters SHALL indicate the associated cryptographic parameters and MUST consist of a
sequence containing

◦ the domain parameters encoded as algorithm identifier according appendix A.2.1.

◦ the group manager public key encoded as ECPoint.

ecPSPublicKey OBJECT IDENTIFIER ::= { bsi-de algorithms(1) ecc(1) keytype(2)
3 }

The ICC MAY support more than one set of static keys for Pseudonymous Signatures (i.e. the chip may
support different algorithms and/or key lengths). In this case, the local key identifier MUST be disclosed
in the corresponding PSAInfo, PSMInfo, PSCInfo and PSPublicKeyInfo (cf. also A.1.1.2 for
further details on the keyId for PSA).

A.6.2. Sector Public Keys

The Sector Public Keys for Chip Authentication version 3 and Pseudonymous Signatures MUST be
generated by a (trusted) third party.

Bundesamt für Sicherheit in der Informationstechnik 51

OID Hash

id-RI-ECDH-SHA-1 SHA-1

id-RI-ECDH-SHA-224 SHA-224

id-RI-ECDH-SHA-256 SHA-256

id-RI-ECDH-SHA-384 SHA-384

id-RI-ECDH-SHA-512 SHA-512

Table 12: Object Identifiers for Restricted Identification with ECDH

A. ASN.1 Specifications (Normative)

If the third party must be able to link sector-specific identifier across sectors, then the third party
SHALL generate Sector Key Pairs and store the Sector Private Keys securely.

If the third party must not be able to link sector-specific identifier across sectors, then the third party
SHALL generate Sector Public Keys in a way that the corresponding private keys are unknown.

A.6.3. Digital Signature Information

As part of the pseudonymous signature protocol, the ICC SHALL include the object identifier (including tag
0x06 and length) of the protocol that is used as signature information ID DSI into signature computation.

A.6.4. Projected representation of a public key

For computation and verification of Pseudonymous Signatures, projected representations of public keys are
used as described in the following:

• For ECSchnorr, the projected representation Π(PK) of a public key is the x-coordinate of the

public point, i.e. an octet string of fixed length ⌈ log256 p⌉ .

A.6.5. Pseudonymous Signatures of Messages or Credentials based on
ECSchnorr

The algorithms and formats of Table 3 and Table 13 SHALL be used for Pseudonymous Signature of
Messages and Credentials, respectively.

For the Pseudonymous Signature based on EC-Schnorr, the plain signature format SHALL be used, i.e.
the signature (e , s1, s2) SHALL be encoded as an octet string as octet string e||S 1||S2 format, where
e is of hash length and S 1 and S 2 are the integers s1 and s2 encoded as octet string with length

equal to the length of the order of the base point, respectively.

A.6.5.1. Credentials for PSC

The data that is signed by the ICC during Pseudonymous Signature of Credentials MUST have the
following structure

52 Bundesamt für Sicherheit in der Informationstechnik

OID Hash

id-PSM-ECDH-ECSchnorr-SHA-256 SHA-256

id-PSM-ECDH-ECSchnorr-SHA-384 SHA-384

id-PSM-ECDH-ECSchnorr-SHA-512 SHA-512

id-PSC-ECDH-ECSchnorr-SHA-256 SHA-256

id-PSC-ECDH-ECSchnorr-SHA-384 SHA-384

id-PSC-ECDH-ECSchnorr-SHA-512 SHA-512

Table 13: Object Identifiers for PSM and PSC based on ECSchnorr with ECDH

ASN.1 Specifications (Normative) A.

• A discretionary data template containing a sequence of discretionary data objects with order as
given by the file IDs or data object tags as specified in the command data field of the
corresponding command APDU.

• Each discretionary data object contains the logical content of the corresponding data group or
Specific Attribute, respectively.

A.7. Terminal Authentication

A.7.1. Public Key References

Public keys to be used for Terminal Authentication MUST be contained in CV Certificates according to
the certificate profile defined in Appendix C.1. Each CV Certificate MUST contain two public key
references, a Certificate Holder Reference and a Certification Authority Reference:

Certificate Holder Reference: The Certificate Holder Reference is an identifier for the public key
provided in the certificate that SHALL be used to reference this public key.

Certification Authority Reference: The Certification Authority Reference is a reference to the (external)
public key of the certification authority that SHALL be used to verify the signature of the certificate.

Note: As a consequence, the Certification Authority Reference contained in a certificate MUST be equal
to the Certificate Holder Reference in the corresponding certificate of the issuing certification
authority.

The Certificate Holder Reference SHALL consist of the following concatenated elements: Country Code,
Holder Mnemonic, and Sequence Number. Those elements MUST be chosen according to Table 15 and
the following rules:

1. Country Code

The Country Code SHALL be the ISO 3166-1 ALPHA-2 code of the certificate holder’s country.

Bundesamt für Sicherheit in der Informationstechnik 53

Data Object

Discretionary Data Template

Discretionary Data

...

Table 14: Credential data format for PSC

Encoding Length

Country Code ISO 3166-1 ALPHA-2 2F

Holder Mnemonic ISO/IEC 8859-1 9V

Sequence Number ISO/IEC 8859-1 5F
F: fixed length (exact number of octets)
V: variable length (up to number of octets)

Table 15: Certificate Holder Reference

A. ASN.1 Specifications (Normative)

2. Holder Mnemonic

The Holder Mnemonic SHALL be assigned as unique identifier as follows:

• The Holder Mnemonic of a CVCA SHALL be assigned by the CVCA itself.

• The Holder Mnemonic of a DV SHALL be assigned by the domestic CVCA.

• The Holder Mnemonic of an IS SHALL be assigned by the supervising DV.

3. Sequence Number

The Sequence Number SHALL be assigned by the certificate holder.

• The Sequence Number MUST be numeric or alphanumeric:

– A numeric Sequence Number SHALL consist of the characters “0”...”9”.

– An alphanumeric Sequence Number SHALL consist of the characters “0”...”9” and “A”...”Z”.

• The Sequence Number MAY start with the ISO 3166-1 ALPHA-2 country code of the certifying
certification authority, the remaining three characters SHALL be assigned as alphanumeric
Sequence Number.

• The Sequence Number MAY be reset if all available Sequence Numbers are exhausted.

A.7.2. Public Key Import

Public keys imported by the certificate validation procedure (cf. Section 2.5) are either permanently or
temporarily stored on the ICC.

Note: The ICC SHOULD reject to import a public key, if the Certificate Holder Reference is already
known to the ICC.

A.7.2.1. Permanent Import

Public keys contained in CVCA Link Certificates SHALL be permanently imported by the ICC and
MUST be stored securely in the ICC's memory. A permanently imported public key and its metadata
SHALL fulfill the following conditions:

• It MAY be overwritten after expiration by a subsequent permanently imported public key.

• It MUST

◦ either be overwritten by a subsequent permanently imported public key with the same
Certificate Holder Reference

◦ or the import MUST be rejected.

• It MUST NOT be overwritten by a temporarily imported public key.

Enabling and disabling a permanently imported public key MUST be an atomic operation.

A.7.2.2. Temporary Import

Public keys contained in DV and Terminal Certificates SHALL be temporarily imported by the ICC. A
temporarily imported public key and its metadata SHALL fulfill the following conditions:

• It SHALL NOT be selectable or usable after a power down of the ICC.

54 Bundesamt für Sicherheit in der Informationstechnik

ASN.1 Specifications (Normative) A.

• It MUST remain usable until the subsequent cryptographic operation is successfully completed
(i.e. PSO:Verify Certificate or External Authenticate).

• It MAY be overwritten by a subsequent temporarily imported public key.

A terminal MUST NOT make use of any temporarily imported public key but the most recently
imported.

A.7.2.3. Imported Metadata

For each permanently or temporarily imported public key the following additional data contained in
the certificate (cf. Appendix C.1) MUST be stored:

• Certificate Holder Reference

• Certificate Holder Authorization (effective role and effective authorization)

• Certificate Effective Date

• Certificate Expiration Date

• Certificate Extensions (where applicable)

The calculation of the effective role (CVCA, DV, or Terminal) and the effective authorization of the
certificate holder is described in Section 2.7.

Note: The format of the stored data is operating system dependent and out of the scope of this
specification.

A.7.2.4. EF.CVCA

Support for the elementary file EF.CVCA is CONDITIONAL. If the ICC supports Terminal
Authentication in version 1 it MUST make the references of CVCA public keys suitable for inspection
systems available in a transparent elementary file EF.CVCA contained in the ePassport application as
specified in Table 16.

This file SHALL contain a sequence of Certification Authority Reference (CAR) data objects (cf.
Appendix D.2) suitable for Terminal Authentication.

• It SHALL contain at most two Certification Authority Reference data objects.

• The most recent Certification Authority Reference SHALL be the first data object in this list.

Bundesamt für Sicherheit in der Informationstechnik 55

File Name EF.CVCA

File ID 0x011C (default)

Short File ID 0x1C (default)

Read Access BAC or PACE (conditional to protocol support)

Write Access NEVER (internally updated only)

Size 36 bytes (fixed) padded with octets of value 0x00

Content [CARi][||CARi-1][||0x00..00]

Table 16: Elementary File EF.CVCA

A. ASN.1 Specifications (Normative)

• The file MUST be padded by appending octets of value 0x00.

The file EF.CVCA has a default file identifier and short file identifier. If the default values cannot be used,
the (short) file identifier SHALL be specified in the OPTIONAL parameter efCVCA of the
TerminalAuthenticationInfo. If efCVCA is used to indicate the file identifier to be used, the
default file identifier is overridden. If no short file identifier is given in efCVCA, the file EF.CVCA MUST
be explicitly selected using the given file identifier.

A.7.3. Terminal Authentication with RSA

For Terminal Authentication with RSA the following algorithms and formats MUST be used.

A.7.3.1. Signature Algorithm

RSA [17], [27] as specified in Table 17 SHALL be used. The default parameters to be used with RSA-PSS
are defined as follows:

• Hash Algorithm: The hash algorithm is selected according to Table 17.

• Mask Generation Algorithm: MGF1 [17], [27] using the selected hash algorithm.

• Salt Length: Octet length of the output of the selected hash algorithm.

• Trailer Field: 0xBC

A.7.3.2. Public Key Format

The TLV-Format [14] as described in Appendix D.3.1 SHALL be used.

• The object identifier SHALL be taken from Table 17.

• The bit length of the modulus SHALL be 1024, 1280, 1536, 2048, or 3072.

• The bit length of the exponent SHALL be at most 32.

A.7.4. Terminal Authentication with ECDSA

For Terminal Authentication with ECDSA the following algorithms and formats MUST be used.

56 Bundesamt für Sicherheit in der Informationstechnik

OID Signature Hash Parameters

id-TA-RSA-v1-5-SHA-1 RSASSA-PKCS1-v1_5 SHA-1 N/A

id-TA-RSA-v1-5-SHA-256 RSASSA-PKCS1-v1_5 SHA-256 N/A

id-TA-RSA-v1-5-SHA-512 RSASSA-PKCS1-v1_5 SHA-512 N/A

id-TA-RSA-PSS-SHA-1 RSASSA-PSS SHA-1 default

id-TA-RSA-PSS-SHA-256 RSASSA-PSS SHA-256 default

id-TA-RSA-PSS-SHA-512 RSASSA-PSS SHA-512 default

Table 17: Object Identifiers for Terminal Authentication with RSA

ASN.1 Specifications (Normative) A.

A.7.4.1. Signature Algorithm

ECDSA with plain signature format [4] as specified in Table 18 SHALL be used.

A.7.4.2. Public Key Format

The TLV-Format [14] as described in Appendix D.3.3 SHALL be used.

• The object identifier SHALL be taken from Table 18.

• The bit length of the curve SHALL be 160, 192, 224, 256, 320, 384 or 512.

• Domain Parameters SHALL be compliant to [4].

A.7.5. Authenticated Auxiliary Data for Terminal Authentication Version 2

Usage of auxiliary data APCD in Terminal Authentication is CONDITIONAL. It MUST be used if further
operations performed by the terminal require authenticated auxiliary data (details can be found in the
following sections):

• For age verification, the terminal MUST commit to the required date of birth.

• For document validity verification, the terminal MUST commit to the current date.

• For municipality ID verification, the terminal MUST commit to (parts of) the municipality ID.

• For PSM, the terminal MUST commit to the messages to be signed.

• For Data Group Content verification, the terminal MUST commit to the required data to be
verified.

Authenticated auxiliary data MUST be structured as specified in Table 19:

• An authentication data object that contains a sequence of discretionary data templates.

• Each discretionary data template contains an object identifier and a discretionary data object.
The content of the discretionary data object is defined by the object identifier.

Bundesamt für Sicherheit in der Informationstechnik 57

OID Signature Hash

id-TA-ECDSA-SHA-1 ECDSA SHA-1

id-TA-ECDSA-SHA-224 ECDSA SHA-224

id-TA-ECDSA-SHA-256 ECDSA SHA-256

id-TA-ECDSA-SHA-384 ECDSA SHA-384

id-TA-ECDSA-SHA-512 ECDSA SHA-512

Table 18: Object Identifiers for Terminal Authentication with ECDSA

A. ASN.1 Specifications (Normative)

This structure SHALL be used as input for the signature computation during Terminal Authentication.
Only after a successful authentication of the terminal, the ICC SHALL interpret and make the data
contained in the discretionary data object available for further operations. Depending of the
application, the terminal MAY transmit additional discretionary data templates than listed in the
following. Discretionary data templates with unknown object identifier SHOULD be ignored by the
ICC.

Note: If the authentication data object contains more than one discretionary data template with the
same object identifier, the data of the last discretionary data template SHALL be made available for
further operations.

A.7.5.1. Object Identifier

The following object identifier SHALL be used to identify authenticated auxiliary data:

id-AuxiliaryData OBJECT IDENTIFIER ::= {
 bsi-de applications(3) mrtd(1) 4
}

A.7.5.2. Age Verification

The following object identifier SHALL be used for age verification:

id-DateOfBirth OBJECT IDENTIFIER ::= {id-AuxiliaryData 1}

The discretionary data object SHALL contain the date of birth encoded as Date (cf. Part 2) that is
required by the terminal. The ICC SHALL compare the stored date of birth to the required date of birth.
Age Verification is successful if the stored date of birth is not after the required date of birth.

A.7.5.3. Document Validity Verification

The following object identifier SHALL be used for document validity verification:

id-DateOfExpiry OBJECT IDENTIFIER ::= {id-AuxiliaryData 2}

58 Bundesamt für Sicherheit in der Informationstechnik

Data Object

Authentication

Discretionary Data Template

Object Identifier

Discretionary Data

Discretionary Data Template

Object Identifier

Discretionary Data

...

Table 19: Authenticated Auxiliary Data

ASN.1 Specifications (Normative) A.

The discretionary data object SHALL contain the current date of the terminal encoded as Date (cf. Part
2). The ICC SHALL compare the stored date of expiry to the current date. Document Validity
Verification is successful if the stored date of expiry is not before the given current date.

A.7.5.4. Municipality ID Verification

The following object identifier SHALL be used for municipality ID verification:

id-MunicipalityID OBJECT IDENTIFIER ::= {id-AuxiliaryData 3}

The discretionary data object SHALL contain (parts of) the municipality ID encoded as OctetString
(cf. Part 2). The ICC SHALL compare the leftmost octets of the stored municipality ID to the transmitted
(part of the) requested municipality ID. Municipality ID Verification is successful if the leftmost octets
of the stored data are identical to the transmitted data.

A.7.5.5. Pseudonymous Signature of Messages

The following object identifier SHALL be used to authenticate a message to be signed by the ICC via
PSM:

id-PSM-Message OBJECT IDENTIFIER ::= {id-AuxiliaryData 4}

The discretionary data object SHALL contain the hash value of the input to be signed encoded as
Octet String. When a Pseudonymous Signature is requested by the Terminal after authentication,
the ICC SHALL verify that the hash of the transmitted input was contained in the authenticated
auxiliary data using the hash function defined by Terminal Authentication. If this verification fails, the
ICC MUST deny to sign the input via PSM.

A.7.5.6. Data Group Content Verification

The following object identifiers SHALL be used for Data Group Content verification

id-DGContent OBJECT IDENTIFIER ::= {id-AuxiliaryData 5}

id-DGContent-DG1 OBJECT IDENTIFIER ::= {id-DGContent 1}
id-DGContent-DG2 OBJECT IDENTIFIER ::= {id-DGContent 2}
id-DGContent-DG3 OBJECT IDENTIFIER ::= {id-DGContent 3}
id-DGContent-DG4 OBJECT IDENTIFIER ::= {id-DGContent 4}
id-DGContent-DG5 OBJECT IDENTIFIER ::= {id-DGContent 5}
id-DGContent-DG6 OBJECT IDENTIFIER ::= {id-DGContent 6}
id-DGContent-DG7 OBJECT IDENTIFIER ::= {id-DGContent 7}
id-DGContent-DG8 OBJECT IDENTIFIER ::= {id-DGContent 8}
id-DGContent-DG9 OBJECT IDENTIFIER ::= {id-DGContent 9}
id-DGContent-DG10 OBJECT IDENTIFIER ::= {id-DGContent 10}
id-DGContent-DG11 OBJECT IDENTIFIER ::= {id-DGContent 11}
id-DGContent-DG12 OBJECT IDENTIFIER ::= {id-DGContent 12}
id-DGContent-DG13 OBJECT IDENTIFIER ::= {id-DGContent 13}
id-DGContent-DG14 OBJECT IDENTIFIER ::= {id-DGContent 14}
id-DGContent-DG15 OBJECT IDENTIFIER ::= {id-DGContent 15}
id-DGContent-DG16 OBJECT IDENTIFIER ::= {id-DGContent 16}
id-DGContent-DG17 OBJECT IDENTIFIER ::= {id-DGContent 17}
id-DGContent-DG18 OBJECT IDENTIFIER ::= {id-DGContent 18}
id-DGContent-DG19 OBJECT IDENTIFIER ::= {id-DGContent 19}

Bundesamt für Sicherheit in der Informationstechnik 59

A. ASN.1 Specifications (Normative)

id-DGContent-DG20 OBJECT IDENTIFIER ::= {id-DGContent 20}
id-DGContent-DG21 OBJECT IDENTIFIER ::= {id-DGContent 21}
id-DGContent-DG22 OBJECT IDENTIFIER ::= {id-DGContent 22}

The discretionary data object SHALL contain the data encoded as BIT STRING. The ICC SHALL
compare the data with the binary logical content of the corresponding data group. Data Group
Verification is successful if the transmitted data is identical with the logical content of the
corresponding data group.

Note: To support Data Group Content Verification for further data groups in future, the list of object
identifiers will be continued accordingly.

A.8. Enhanced Role Authentication

A.8.1. Data format of Attribute Request

For Enhanced Role Authentication, Attribute Requests stored on the ICC SHALL be of the following type.
RequestInfos ::= SET OF RequestInfo

RequestInfo ::= SEQUENCE {
requestType OBJECT IDENTIFIER,
requiredData ANY DEFINED BY requestType,
optionalData ANY DEFINED BY requestType OPTIONAL

}

A.8.2. Data format of Specific Attributes

The following ASN.1 structure SHALL be used to store Attributes for Enhanced Role Authentication on the
ICC.

Attribute ::= SEQUENCE {
attributeType OBJECT IDENTIFIER,
requiredData ANY DEFINED BY attributeType
optionalData ANY DEFINED BY attributeType

}

60 Bundesamt für Sicherheit in der Informationstechnik

ISO 7816 Mapping (Normative) B.

B. ISO 7816 Mapping (Normative)
In this Appendix the protocols for PACE, Chip Authentication and Terminal Authentication are mapped
to ISO 7816 APDUs (Application Protocol Data Units).

B.1. PACE

The following sequence of commands SHALL be used to implement PACE. Secure messaging is
CONDITIONAL. It MUST be used for the second execution of PACE if the protocol is executed twice:

1. MSE:Set AT

2. General Authenticate

The command MSE:Set AT contains the following data objects (see B.14.1 for details).

Tag Comment

0x80 Cryptographic mechanism reference REQUIRED

0x83 Password reference REQUIRED

0x84 Reference for computing a session key CONDITIONAL

0x7F4C Certificate Holder Authorization Template CONDITIONAL

0x65 Certificate Extensions CONDITIONAL

The protocol specific data objects SHALL be exchanged in a chain of General Authenticate commands
as shown below:

Step Description Protocol Command Data Protocol Response Data

1. Encrypted Nonce - Absent5 0x80 Encrypted Nonce

2. Map Nonce 0x81 Mapping Data 0x82 Mapping Data

3. Perform Key Agreement 0x83 Ephemeral Public Key 0x84 Ephemeral Public Key

4. Mutual Authentication 0x85 Authentication Token 0x86 Authentication Token

0x87 Certification Authority
Reference
(CONDITIONAL)

0x88 Certification Authority
Reference
(CONDITIONAL)

The Certificate Authority Reference(s) are REQUIRED if PACE is used with a Certificate Holder
Authorization Template, i.e. if PACE is to be followed by Terminal Authentication version 2. In this case
the data object 0x87 SHALL contain the most recent Certificate Authority Reference with respect to the
terminal type indicated in the Certificate Holder Authorization Template. The data object 0x88 MAY
contain the previous Certificate Authority Reference.

5 This implies an empty Dynamic Authentication Data Object.

Bundesamt für Sicherheit in der Informationstechnik 61

B. ISO 7816 Mapping (Normative)

Note: The domain parameters for PACE supported by the chip are made available in EF.CardAccess (cf.
Appendix A.1.2). If more than one set of domain parameters is supported, the terminal MUST select the
domain parameters to be used within MSE:Set AT.

B.1.1. Encrypted Nonce

The encrypted nonce (cf. Appendix A.3.3) SHALL be encoded as octet string.

B.1.2. Mapping Data

The exchanged data is specific to the used mapping.

B.1.2.1. Generic Mapping

The ephemeral public keys (cf. Appendix A.2.2 and Appendix D.3.4) SHALL be encoded as elliptic curve
point (ECDH) or unsigned integer (DH).

B.1.2.2. Integrated Mapping

The Integrated Mapping is specified by ICAO [8].

B.1.3. Authentication Token

The authentication token (cf. Appendix A.2.4) SHALL be encoded as octet string.

B.1.4. Certification Authority Reference

The ICC SHALL return the Certificate Authority References of appropriate CVCA public keys stored on
the ICC:

• The references MUST be dynamically chosen to suit the terminal type indicated by PACE.

• It SHALL return at most two Certification Authority Reference data objects.

• The most recent Certification Authority Reference SHALL be contained in data object 0x87.

B.2. Chip Authentication

The following command SHALL be used with secure messaging to implement Chip Authentication in
version 1 with 3DES Secure Messaging:

1. MSE:Set KAT

Note: MSE:Set KAT MUST NOT be used for any other algorithms than id-CA-DH-3DES-CBC-CBC
and id-CA-ECDH-3DES-CBC-CBC, i.e. Secure Messaging is restricted to 3DES.

The following sequence of commands SHALL be used with secure messaging

• to implement Chip Authentication in version 1 with AES and

• to implement Chip Authentication in version 2.

62 Bundesamt für Sicherheit in der Informationstechnik

ISO 7816 Mapping (Normative) B.

Additionally, this sequence MAY be used to implement Chip Authentication version 1 with 3DES.

1. MSE:Set AT

2. General Authenticate

The command MSE:Set AT contains the following data objects (see B.14.1 for details).

Tag Comment

0x80 Cryptographic mechanism reference REQUIRED

0x84 Reference of a private key CONDITIONAL

0xE0 Template for Session Context Identifier CONDITIONAL

The protocol specific data objects SHALL be exchanged with a General Authenticate command as
shown below:

Step Description Protocol Command Data Protocol Response Data

1. Chip Authentication 0x80 Ephemeral Public Key 0x81 Nonce

0x82 Authentication Token

Note: Support of Protocol Response Data is CONDITIONAL: It MUST be provided for version 2 but
MUST NOT be provided for version 1.

Note: The public keys for Chip Authentication supported by the chip are made available in the Security
Objects (cf. Appendix A.1.2). If more than one public key is supported, the terminal MUST select the
corresponding private key of the chip to be used within MSE:Set AT.

The following sequence of commands SHALL be used with secure messaging to implement Chip
Authentication Version 3:

1. MSE:Set AT

2. General Authenticate

3. MSE:Set AT

4. General Authenticate

The first MSE:Set AT command of step 1 contains the following data objects (see B.14.1 for details).

Tag Comment

0x80 Cryptographic mechanism reference REQUIRED

0x84 Reference of a private key REQUIRED

0xE0 Template for Session Context Identifier CONDITIONAL

The protocol specific data objects for the key agreement during Chip Authentication Version 3 SHALL
be exchanged in command number 2 by means of a General Authenticate command as shown below.

Step Description Protocol Command Data Protocol Response Data

1. Perform Key Agreement 0x80 Ephemeral Public Key 0x81 Ephemeral Public Key

Table 20: Chip Authentication Version 3 - General Authenticate command for Key Agreement

Bundesamt für Sicherheit in der Informationstechnik 63

B. ISO 7816 Mapping (Normative)

The MSE:Set AT command of step 3 contains the following data objects (see B.14.1 for details).

Tag Comment

0x80 Cryptographic mechanism reference REQUIRED

0x84 Reference of a private key REQUIRED

The protocol specific data objects for PSA during Chip Authentication Version 3 SHALL be exchanged in
command number 4 with a General Authenticate command as shown below.

Step Description Protocol Command Data Protocol Response Data

1. Compute Pseudonymous
Signature

0x80 Sector Public Key 0x82 1st Pseudonym Public
Key (CONDITIONAL)

0x83 2nd Pseudonym Public
Key (CONDITIONAL)

0x84 Pseudonymous
Signature

Table 21: Chip Authentication Version 3 - General Authenticate command for PSA

The ICC MUST compute the Pseudonymous Signature over the context-specific data object 0x81 of step
2 (including tag 0x81 and length) encapsulating the ICC's ephemeral public key.

If applicable, the steps 3. and 4. MAY be repeated with a different ICC's private key and/or different
Terminal Sector Public keys.

Note: The ICC's private key pair for Chip Authentication Version 3 supported by the chip are indicated
in the relevant Security Objects. If more than one private key is supported, the Terminal MUST select
the private key to be used within MSE:Set AT.

Note: If Chip Authentication Version 3 is supported by the ICC, this protocol SHALL be available in the
Master File. Availability on application level is application-specific.

B.2.1. Ephemeral Public Key

The ephemeral public keys (cf. Appendix A.2.2 and Appendix D.3.4) SHALL be encoded as elliptic curve
point (ECDH) or unsigned integer (DH).

B.2.2. Nonce

The nonce SHALL be encoded as octet string of size 8 octets.

B.2.3. Authentication Token

The authentication token (cf. Appendix A.2.4) SHALL be encoded as octet string.

64 Bundesamt für Sicherheit in der Informationstechnik

ISO 7816 Mapping (Normative) B.

B.2.4. Sector Public Key

The Sector Public Key PK Sector for Chip Authentication Version 3 SHALL be encoded as elliptic curve
point (cf. D.2.1.2). The domain parameters SHALL NOT be included.

B.2.5. Pseudonym Public Key

The Pseudonym Public Key SHALL be encoded as an elliptic curve point (cf. A.2.2 and D.3.4). The
domain parameters SHALL NOT be included.

B.2.6. Pseudonymous signature

The pseudonymous signature SHALL be encoded as an octet string according to A.6.5.

B.3. Terminal Authentication

The following sequence of commands SHALL be used with secure messaging to implement Terminal
Authentication:

1. MSE:Set DST

2. PSO:Verify Certificate

3. MSE:Set AT

4. Get Challenge

5. External Authenticate

Steps 1 and 2 are repeated for every CV certificate to be verified (CVCA Link Certificates, DV Certificate,
Terminal Certificate).

The command MSE:Set DST contains the following data objects (see B.14.4 for details).

Tag Comment

0x83 Reference of a public key REQUIRED

The Command MSE:Set AT contains the following data objects (see B.14.1 for details).

Tag Comment

0x80 Cryptographic mechanism reference REQUIRED

0x83 Reference of a public key REQUIRED

0x67 Auxiliary authenticated data CONDITIONAL

0x91 Ephemeral Public Key REQUIRED

For Terminal Authentication in version 2 the ICC MUST in addition support the usage of Get Challenge
before step 1, i.e. the ICC MUST keep a generated challenge upon usage by External Authenticate.

Bundesamt für Sicherheit in der Informationstechnik 65

B. ISO 7816 Mapping (Normative)

B.4. Restricted Identification

The following sequence of commands SHALL be used with secure messaging to implement Restricted
Identification:

1. MSE:Set AT

2. General Authenticate

The command MSE:Set AT contains the following data objects (see B.14.1 for details).

Tag Comment

0x80 Cryptographic mechanism reference REQUIRED

The protocol specific data objects SHALL be exchanged with General Authenticate commands as shown
below, command chaining MUST NOT be used. At least one of the steps MUST be executed:

Step Description Protocol Command Data Protocol Response Data

1. Restricted Identification
(CONDITIONAL)

0xA0 1st Sector Public Key 0x81 1st Sector-specific
Identifier

2. Restricted Identification
(CONDITIONAL)

0xA2 2nd Sector Public Key 0x83 2nd Sector-specific
Identifier

Note: The private keys for Restricted Identification supported by the chip are indicated in the relevant
Security Objects (cf. Appendix A.1.2). If more than one private key is supported, the terminal MUST
select the private key to be used within MSE:Set AT.

Note: If Restricted Identification is supported by the ICC, availability of the protocol is
application-specific.

B.4.1. Public Key

The Sector Public Key PK Sector SHALL be encoded as public key data object without tag 0x7F49 (i.e.
0x7F49 is replaced by 0xA0/0xA2, respectively) (cf. Appendix D.3), the domain parameters MUST be
included.

B.4.2. Sector-specific Identifier

The sector-specific identifier I ID
Sector SHALL be encoded as octet string.

B.5. Pseudonymous Signature of Messages or Credentials

The following sequence of commands SHALL be used to implement the Pseudonymous Signature of a
Message:

1. MSE:Set DST

2. PSO: Compute Digital Signature

The Command MSE:Set DST contains the following data objects (see B.14.4 for details).

66 Bundesamt für Sicherheit in der Informationstechnik

ISO 7816 Mapping (Normative) B.

Tag Comment

0x80 Cryptographic mechanism reference REQUIRED

0xE1 File Reference CONDITONAL

x84 Reference of a private key REQUIRED

The protocol specific data objects SHALL be exchanged in a PSO:Compute Digital Signature
command as shown below.

Step Description Protocol Command Data Protocol Response Data

1. Compute Pseudonymous
Signature of a Message

0x80 Sector Public Key 0x82 Pseudonym Public Key
(CONDITIONAL)

0x81 Input to be signed
(CONDITIONAL)

0x83 Pseudonym Public Key
(CONDITIONAL)

0x84 Pseudonymous
Signature

Table 22: Pseudonymous Signature of Messages - PSO:Compute Digital Signature command

The input to be signed MUST be present if PSM is performed. In this case, the hash value of the input
using the hash function of Terminal Authentication MUST have been sent to the ICC by the terminal in
authenticated auxiliary data as part of Terminal Authentication. The ICC MUST compute the
Pseudonymous Signature over plain value of tag 0x81.

For PSC, the input MUST be absent. In this case, the ICC MUST compute the Pseudonymous Signature
over the data template defined in A.6.5.1 encapsulating the content of the files and Attributes as
indicated in the MSE:Set DST command.

Note: If the terminal requests a Specific Attribute to be included into the Pseudonymous Signature of
Credentials computation and the terminal is not authorized to get access to all Terminal Sectors, the
ICC MUST require the terminal to present its user ID before execution of the protocol.

Note: If the terminal requests Specific Attributes to be included into the Pseudonymous Signature of
Credentials computation and the terminal is authorized to get access to all Terminal Sectors, the ICC
MUST include the Specific Attributes in the same order into the data template of case, the ICC MUST
compute the Pseudonymous Signature over the data template defined in A.6.5.1 as in the Get Data
response according to B.10.5.

Note: The private keys for Pseudonymous Signature supported by the chip are indicated in the relevant
Security Objects. If more than one private key is supported, the Terminal MUST select the private key to
be used within MSE:Set DST.

Note: If Pseudonymous Signatures of Messages and/or Pseudonymous Signatures of Credentials are
supported by the ICC, availability of PSM and/or PSC is application-specific.

B.5.1. Sector Public Key

The Sector Public Key PK Sector SHALL be encoded as elliptic curve point (ECDH) (cf. A.2.2 and D.3.4).
The domain parameters SHALL NOT be included.

Bundesamt für Sicherheit in der Informationstechnik 67

B. ISO 7816 Mapping (Normative)

B.5.2. Pseudonym Public Key

The Pseudonym Public Key SHALL be encoded as an elliptic curve point (cf. A.2.2 and D.3.4). The
domain parameters SHALL NOT be included.

B.5.3. Pseudonymous signature

The pseudonymous signature SHALL be encoded as an octet string according to Appendix A.6.5
(ECDH).

B.6. Auxiliary Data Verification

One or both of the following commands SHALL be used with secure messaging to implement Age
Verification, Document Validity Verification and Municipality ID Verification:

• Verify

• Compare

For the remaining verification functions, the following command MUST be used with secure messaging
for implementation:

• Compare

The following authenticated auxiliary data MUST have been sent to the ICC as part of Terminal
Authentication:

• For Age Verification the terminal MUST have sent the required date of birth.

• For Document Validity Verification, the terminal MUST have sent the current date.

• For Municipality ID Verification, the terminal MUST have sent the (part of the) municipality ID.

• For Data Group Content Verification, the terminal MUST have sent the required data to be
compared with a data group.

B.7. PIN Management

B.7.1. Unblock or Change PIN

The following command SHALL be used with secure messaging to implement unblocking and/or
changing of the PIN:

1. Reset Retry Counter

• To set a new PIN and reset the retry counter the terminal SHALL use Reset Retry Counter
with the new PIN as data.

• To reset the retry counter the terminal SHALL use Reset Retry Counter with no data.

Usage of the command SHALL be restricted to authorized terminals: Before using this command the
terminal must either authenticate as Authentication Terminal with effective authorization for PIN
Management or by using PACE with the PUK/PIN.

68 Bundesamt für Sicherheit in der Informationstechnik

ISO 7816 Mapping (Normative) B.

B.7.2. Activate or Deactivate PIN

The following command SHALL be used with secure messaging to activate the PIN:

1. Activate

The following command SHALL be used with secure messaging to deactivate the PIN:

1. Deactivate

Usage of the command SHALL be restricted to authorized terminals: Before using this command the
terminal must authenticate as Authentication Terminal with effective authorization for PIN
Management.

B.8. eSign Application

Commands for installing, updating, and using the eSign Application are out of scope of this
specification.

B.9. Reading Data Groups

The APDUs for selecting and reading EAC-protected data groups already specified by ICAO [8] SHALL
be used (i.e. Select File and Read Binary). In accordance with ICAO specifications any unauthorized
access to EAC-protected data groups SHALL be denied and the ICC MUST respond with status bytes
0x6982 (“Security status not satisfied”).

B.10. Enhanced Role Authentication

Usage of the commands of this section SHALL be restricted to authenticated terminals.

Note: Within this section, the commands Put Data/Get Data/Delete Data are specified only as
interfaces for Enhanced Role Authentication. It is not required to support the whole functionalities of
data objects (e.g. access control management).

B.10.1. User Presentation

The following commands SHALL be used with secure messaging to implement the presentation of the
user for writing Attribute Requests or reading/deleting Specific Attributes.

1. Perform User Operation:Present User

• The terminal SHALL present the hash of its Sector Public key as user ID in the data field of
the command APDU

• The ICC MUST verify that the received hash is contained in the Terminal Sector extension
as defined in C.3.2.1 of the terminal's CV Certificate.

If the user ID is unknown to the ICC, the ICC MUST return a warning 0x62XX to the terminal. In this
case, the ICC SHALL create the respective user by assigning an accessible data container to the user ID
and personalizing the access conditions of the data container.

Bundesamt für Sicherheit in der Informationstechnik 69

B. ISO 7816 Mapping (Normative)

Note: The moment when a data container is created is implementation specific and out of scope of this
document.

Note: The presentation of the user ID MUST only be valid within the corresponding session context.

B.10.2. Writing Attribute Requests

The following commands SHALL be used with secure messaging to implement writing of an Attribute
Request into the ICC's Attribute Request Container:

1. Put Data

• The terminal SHALL send the RequestInfos in the data field of the command APDU

Note: The ICC MUST require the terminal to present its user ID before writing an Attribute Request.

Writing Attribute Requests SHALL be restricted to authorized terminals.

B.10.3. Reading Attribute Requests

The following command SHALL be used with secure messaging to implement reading of an Attribute
Request from the ICC

1. Get Data

• The ICC's response APDU MUST contain the RequestInfos in the data field.

Reading Attribute Requests SHALL be restricted to authorized terminals (Attribute Providers).

B.10.4. Writing Specific Attributes

The following command SHALL be used with secure messaging to implement writing of Attributes on
the ICC

1. Put Data

• The terminal SHALL use the tag P1/P2=0x00FF with a list of discretionary data tags 0x53
each containing a Specific Attribute in the command data field.

Writing Attribute SHALL be restricted to authorized terminals (Attribute Providers).

B.10.5. Reading Specific Attributes

The following command SHALL be used with secure messaging to implement reading of an Attribute
from the ICC

1. Get Data

• If the terminal has effective authorization to access to Specific Attributes for all Terminal
Sectors, the response data field MUST contain the Specific Attributes for each Terminal
Sector contained in a discretionary data template 0x73. Otherwise, the response MUST
contain the Specific Attributes linked to the presented terminal's Sector Public Key.

70 Bundesamt für Sicherheit in der Informationstechnik

ISO 7816 Mapping (Normative) B.

Note: If the terminal's effective authorization is restricted to read Specific Attributes linked to the
Terminal Sector, the ICC MUST require the terminal to present its user ID before execution of the
command.

Usage of this command SHALL be restricted to authenticated terminals with effective authorization for
reading Specific Attributes.

B.10.6. Deleting Specific Attributes

The following command SHALL be used with secure messaging to implement deleting of an Attribute
from the ICC

1. Delete Data

• If the terminal has effective authorization to delete to Specific Attributes for all Terminal
Sectors, the ICC MUST delete the Specific Attributes for each Terminal Sector. Otherwise,
the ICC MUST delete only the Specific Attributes linked to the presented terminal's Sector
Public Key.

Note: If the terminal's effective authorization is restricted to delete Specific Attributes linked to the
Terminal Sector, the ICC MUST require the terminal to present its user ID before execution of the
command.

Usage of this command SHALL be restricted to authenticated terminals with effective authorization for
deleting Specific Attributes.

B.10.7. Writing and Reading and Erasing Generic Attributes

For reading and writing Generic Attributes the commands Read Binary, Update Binary and Erase Binary are
specified in [12].

B.11. Switching of Session Context

If switching of Session Context is supported by the ICC, the PACE Session Context MUST be stored
immediately before restarting secure messaging or switching from PACE session context to another
session context.

The storage of the Chip Authentication Session Context is indicated within the command MSE: Set AT
of Chip Authentication Version 2 or Version 3.

To restore a stored Session Context, the following command SHALL be used with Secure Messaging:

1. MSE:Set AT

The command MSE:Set AT contains the following data objects.

Tag Comment

0xE1 Template for Session Context Identifier REQUIRED

Note: The current DF and current EF (and for Chip Authentication Session Context also a presented
user ID) are part of the session context and MUST be updated by the ICC as part of restoring the session
context accordingly.

Bundesamt für Sicherheit in der Informationstechnik 71

B. ISO 7816 Mapping (Normative)

B.11.1. Session Context Identifier

The Session Context identifier is an integer encoded as single octet(see D.2.1.1) that MAY have values
between 0 and maxSCNo. The identifier 0 is reserved for the default Session Context and MUST NOT be
used for storing a Chip Authentication Session Context.

B.12. Extended Length

Depending on the size of the cryptographic objects (e.g. public keys, signatures), APDUs with extended
length fields MUST be used to send this data to the ICC. For details on extended length see [12].

B.12.1. ICCs

For ICCs support of extended length is CONDITIONAL. If the cryptographic algorithms and key sizes
selected by the issuing state require the use of extended length, the ICCs SHALL support extended
length. In this case, to support terminals without extended length transport capability, ICCs of eIDAS
token SHOULD additionally support receiving extended length APDUs using Envelope/Get Response
TPDUs as specified in Appendix E.

If the ICC supports extended length, this MUST be indicated in the ATR/ATS or in EF.ATR/INFO as
specified in [12].

B.12.2. Terminals

For terminals support of extended length is REQUIRED. A terminal SHOULD examine whether or not
support for extended length is indicated in the ICC’s ATR/ATS or in EF.ATR/INFO before using this
option. The terminal MUST NOT use extended length for APDUs other than the following commands
unless the exact input and output buffer sizes of the ICC are explicitly stated in the ATR/ATS or in
EF.ATR/INFO.

• PSO:Verify Certificate

• PSO:Compute Digital Signature

• MSE:Set KAT

• General Authenticate

• External Authenticate

B.12.3. Errors

The ICC SHALL indicate extended length errors with status bytes 0x6700.

B.13. Command Chaining

Command chaining is only used for the General Authenticate command. For details on command
chaining see [12].

72 Bundesamt für Sicherheit in der Informationstechnik

ISO 7816 Mapping (Normative) B.

B.13.1. ICCs

For ICCs support of command chaining is REQUIRED and support for command chaining MUST be
indicated in the historical bytes of the ATR/ATS or in the EF.ATR/INFO as specified in [12].

B.13.2. Terminals

For terminals support of command chaining is REQUIRED. A terminal SHOULD test whether or not
the ICC supports command chaining before using this option.

B.13.3. Errors

If the ICC expects the end of the chain, but receives a command that is not marked as the last
command, the ICC SHALL indicate that the last command in a chain was expected with status bytes
0x6883.

B.14. APDU Specification

In the following, the APDUs required to implement the protocols are described. The ICC SHALL
implement the APDUs as described but MAY deviate from the description if the APDUs are used in
other contexts.

The omitted CLA byte SHALL be set to indicate secure messaging with authenticated header, command
chaining and application specific encoding as required by the protocols (cf. Appendix F.3).

The sender of a command or response APDU MUST transmit the data objects in the data field in the
order as defined in the following. The receiver SHOULD be capable to process APDUs with data objects
given in any order.

B.14.1. MSE:Set AT

The command MSE:Set AT is used to select and initialize the following protocols: PACE, Chip
Authentication, Terminal Authentication, and Restricted Identification.

Command

INS 0x22 Manage Security Environment

P1/P2 0xC1A4 PACE:
Set Authentication Template for mutual authentication.

0x41A4 Chip Authentication / Restricted Identification:
Set Authentication Template for internal authentication.

0x81A4 Terminal Authentication:
Set Authentication Template for external authentication.

0x01A4 Restoring Session Context:
Used to indicate restoring of a stored Session Context

Data 0x80 Cryptographic mechanism reference
Object Identifier of the protocol to select (value only, Tag
0x06 is omitted). This data object is REQUIRED for all

CONDITIONAL

Bundesamt für Sicherheit in der Informationstechnik 73

B. ISO 7816 Mapping (Normative)

protocols except Terminal Authentication in version 1.

0x83 Reference of a public key / secret key
This data object is REQUIRED for the following protocols:
– For PACE to indicate the password to be used:

0x01: MRZ
0x02: CAN
0x03: PIN
0x04: PUK

– For Terminal Authentication to select the public key of
the terminal by its ISO 8859-1 encoded name.

CONDITIONAL

0x84 Reference of a private key / Reference for computing a session
key
This data object is REQUIRED for the following protocols
(cf. Appendix A.2):
– For PACE to indicate the identifier of the domain

parameters to be used if the domain parameters are
ambiguous, i.e. more than one set of domain parameters
is available for PACE.

– For Chip Authentication to indicate the identifier of the
private key (including protocol version) to be used if
Chip Authentication Version 3 is supported or the
private key is ambiguous (cf. A.1.1.2).

– For Restricted Identification to indicate the private key
to be used i.e. more than one private key is available for
Restricted Identification.

CONDITIONAL

0x67 Auxiliary authenticated data
This data object is REQUIRED for Terminal Authentication
(version 2) if auxiliary data verification or PSM shall be
used.

CONDITIONAL

0x91 Ephemeral Public Key
This data object is REQUIRED for Terminal Authentication
if the terminal's ephemeral public key PK PCD is unknown
or ambiguous to the ICC when Terminal Authentication is
performed (i.e. version 2). In this case the terminal's
compressed ephemeral public key Comp PK PCD  MUST
be sent to the ICC.

CONDITIONAL

0x7F4C Certificate Holder Authorization Template
This data object (defined in C.1.5) is REQUIRED for PACE if
Terminal Authentication version 2 shall be used after
PACE.

CONDITIONAL

0x65 Certificate Extensions
This data object is REQUIRED for PACE if Terminal
Authentication version 2 shall be used after PACE and the
ICC supports Authorization Extensions.
In this case, it MUST encapsulate a sequence of
Authorization Extensions.

If the ICC does not support Authorization Extensions, this
data object SHOULD be omitted.

CONDITIONAL

74 Bundesamt für Sicherheit in der Informationstechnik

ISO 7816 Mapping (Normative) B.

0xE0 If the ICC supports switching of Session Contexts, this
template MUST be present for Chip Authentication Version
2 and the Key Agreement phase of Chip Authentication
Version 3 in case the corresponding Session Context shall
be stored immediately before switching to another Session
Context.
In this case, the template MUST encapsulate a tag 0x81
containing the identifier of the Session Context.

If the ICC does not support switching of Session Contexts,
this template SHOULD be omitted.

CONDITIONAL

0xE1 This REQUIRED for Restoring Session Context to indicate
that a stored Session Context shall be restored.
In this case, the template SHALL encapsulate a data object
0x81 containing the identifier of the Session Context to be
restored.

Otherwise, this template MUST be omitted.

CONDITIONAL

Response

Data – Absent

Status
Bytes

0x9000 Normal operation
The protocol has been selected and initialized.

0x6A80 Incorrect parameters in the command data field
– Algorithm not supported or initialization failed.
– Terminal Type indicated by Certificate Holder Authorization Template is not

authorized to use referenced password. (PACE)

0x6A88 Referenced data not found
The referenced data (i.e. password, private key, public key, domain parameter) is not
available.

PACE 0x63CX Warning
The password has been selected. X indicates the number of remaining verification
tries, if not equal to the initial value:
X=1: The password is suspended. The password MUST be resumed.
X=0: The password is blocked. The password MUST be unblocked.

PACE 0x6283 Warning
The password is deactivated.

other Operating system dependent error
The initialization of the protocol failed.

Bundesamt für Sicherheit in der Informationstechnik 75

Note:

• Some operating systems accept the selection of an unavailable public key and return an error
only when the public key is used for the selected purpose.

• Resuming and unblocking a password requires explicitly setting the CAN or the PUK using
MSE:Set AT.

B. ISO 7816 Mapping (Normative)

B.14.2. General Authenticate

The command General Authenticate is used to perform the following protocols: PACE, Chip
Authentication, and Restricted Identification.

Command

INS 0x86 General Authenticate

P1/P2 0x0000 Keys and protocol implicitly known.

Data 0x7C Dynamic Authentication Data
Protocol specific data objects.

REQUIRED

Response

Data 0x7C Dynamic Authentication Data
Protocol specific data objects.

CONDITIONAL, see
below

Status
Bytes

0x9000 Normal operation
The protocol (step) was successful.

0x6300 Authentication failed
The protocol (step) failed.

0x63CX Authentication failed
The protocol (step) failed. X indicates the number of remaining verification tries:
X=1: The password is suspended. The password MUST be resumed.
X=0: The password is blocked. The password MUST be unblocked.

0x6982 Security status not satisfied
The terminal is not authorized to perform the protocol (e.g. the password is blocked,
deactivated, or suspended).

0x6983 Authentication method blocked
The password is blocked.

0x6984 Reference data not usable
The password is deactivated.

0x6985 Conditions of use not satisfied
The password is suspended.

0x6A80 Incorrect parameters in data field
Provided data is invalid.

other Operating system dependent error
The protocol (step) failed.

Note: The ICC MAY indicate a blocked, deactivated, or suspended password by responding with status
bytes 0x6982 instead of using status bytes 0x6983, 0x6984, or 0x6985, respectively.

The response Dynamic Authentication Data object 0x7C

• MUST be present if the operation is successful, i.e. the Status Bytes are 0x9000,

• MUST be absent in case of an execution error or checking error, i.e. if the Status Bytes are in the
range 0x6400 - 0x6FFF, and

• MAY be absent in case of a warning, i.e. if the Status Bytes are in the range 0x6200 – 0x63FF.

Note: The General Authenticate command with TPDU chaining is not supported for communication
protocol T=0 according to [11].

76 Bundesamt für Sicherheit in der Informationstechnik

ISO 7816 Mapping (Normative) B.

B.14.3. MSE:Set KAT

The command MSE:Set KAT is used to perform Chip Authentication version 1 with 3DES.

Command

INS 0x22 Manage Security Environment

P1/P2 0x41A6 Set Key Agreement Template for computation.

Data 0x91 Ephemeral Public Key
Ephemeral public key PK PCD (cf. Appendix A.2) encoded
as plain public key value.

REQUIRED

0x84 Reference of a private key
This data object is REQUIRED if the private key is
ambiguous, i.e. more than one key pair is available for Chip
Authentication (cf. Appendix A.1.1.2, Appendix A.4.1.1 and
Appendix A.4.2.1).

CONDITIONAL

Response

Data – Absent

Status
Bytes

0x9000 Normal operation
The key agreement operation was successfully performed. New session keys have
been derived.

0x6A80 Incorrect Parameters in the command data field
The validation of the ephemeral public key failed. The previously established session
keys remain valid.

other Operating system dependent error
The previously established session keys remain valid.

B.14.4. MSE:Set DST

The command MSE:Set DST is used to setup certificate verification for Terminal Authentication and to
setup signature computation for PSM or PSC .

Bundesamt für Sicherheit in der Informationstechnik 77

B. ISO 7816 Mapping (Normative)

Command

INS 0x22 Manage Security Environment

P1/P2 0x81B6 Set Digital Signature Template for verification.

0x41B6 Set Digital Signature Template for computation

Data 0x80 Cryptographic mechanism reference
This data object is REQUIRED for PSM or PSC to indicate
the object identifier of the protocol to select (value only,
Tag 0x06 is omitted).

CONDITIONAL

0xE1 File reference
The data object is REQUIRED for PSC and MUST contain
the following content:

• 0x80: MAY be present and encapsulate the
concatenation of two byte file IDs for data group
content to be integrated into the signature
computation.

• 0x81: MAY be present and contain the content
0x00FF encoded as plain octet string (without tag
and length) if the Specific Attribute of the terminal
is to be integrated into signature computation.

CONDITIONAL

0x83 Reference of a public key
This data object is REQUIRED for Terminal Authentication
and contains the ISO 8859-1 encoded name of the public
key to be set

CONDITIONAL

0x84 Reference of a private key
This data object is REQUIRED for PSM or PSC

CONDITIONAL

Response

Data – Absent

Status
Bytes

0x9000 Normal Operation
The key has been selected for the given purpose.

0x6A88 Referenced data not found
The selection failed as the public key is not available.

other Operating system dependent error
The key has not been selected.

Note: Some operating systems accept the selection of an unavailable public key and return an error
only when the public key is used for the selected purpose.

B.14.5. PSO:Verify Certificate

The command PSO:Verify Certificate is used to verify and import certificates for Terminal
Authentication.

78 Bundesamt für Sicherheit in der Informationstechnik

ISO 7816 Mapping (Normative) B.

Command

INS 0x2A Perform Security Operation

P1/P2 0x00BE Verify self-descriptive certificate.

Data 0x7F4E Certificate body
The body of the certificate to be verified.

REQUIRED

0x5F37 Signature
The signature of the certificate to be verified.

REQUIRED

Response

Data – Absent

Status
Bytes

0x9000 Normal operation
The certificate was successfully validated and the public key has been imported.

other Operating system dependent error
The public key could not be imported (e.g. the certificate was not accepted).

B.14.6. Get Challenge

The command Get Challenge is used to perform Terminal Authentication.

Command

INS 0x84 Get Challenge

P1/P2 0x0000

Data – Absent

Le 0x08 REQUIRED

Response

Data rPICC 8 bytes of randomness.

Status 0x9000 Normal operation

Bytes other Operating system dependent error

B.14.7. External Authenticate

The command External Authenticate is used to perform Terminal Authentication.

Command

INS 0x82 External Authenticate

P1/P2 0x0000 Keys and Algorithms implicitly known.

Data Signature generated by the terminal. REQUIRED

Response

Data – Absent

Status
Bytes

0x9000 Normal operation
The authentication was successful. Access to data groups will be granted according to
the effective authorization of the corresponding verified certificate.

Bundesamt für Sicherheit in der Informationstechnik 79

B. ISO 7816 Mapping (Normative)

Response

0x6300 Warning
Signature verification failed.

0x6982 Security status not satisfied
The authentication failed as the current authentication level of the terminal does not
allow to use Terminal Authentication (e.g. Terminal Authentication was already
performed, etc.).

0x6985 Conditions of use not satisfied
Terminal type set by PACE does not match terminal type contained in certificate
chain.

other Operating system dependent error
The authentication failed.

B.14.8. PSO: Compute Digital Signature

The command PSO:Compute Digital Signature is used to perform PSM or PSC.

Command

INS 0x2B Perform Security Operation

P1/P2 0x0200 Compute Digital Signature

Data 0x73 Discretionary Data Template
Protocol specific data objects.

REQUIRED

Response

Data 0x73 Discretionary Data Template
Protocol specific data objects.

CONDITIONAL, see
below

Status
Bytes

0x9000 Normal operation
The protocol (step) was successful.

0x6982 Security status not satisfied
The terminal is not authorized to perform the protocol

0x6A80 Incorrect parameters in data field
Provided data is invalid.

other Operating system dependent error
The protocol (step) failed.

The response Discretionary Data Template 0x73

• MUST be present if the operation is successful, i.e. the Status Bytes are 0x9000,

• MUST be absent in case of an execution error or checking error, i.e. if the Status Bytes are in the
range 0x6400 - 0x6FFF, and

• MAY be absent in case of a warning, i.e. if the Status Bytes are in the range 0x6200 – 0x63FF.

B.14.9. Compare

The command Compare is used to verify authenticated auxiliary data, i.e. to perform age verification,
document validity verification, Municipality ID verification, phone number verification, email address
verification, or data group content verification.

80 Bundesamt für Sicherheit in der Informationstechnik

ISO 7816 Mapping (Normative) B.

Command

INS 0x33 Compare

P1 0x00 Compare Binary

P2 0x00 Comparison defined by OID

Data Object Identifier of the auxiliary data to be compared REQUIRED

Response

Data – Absent

Status
Bytes

0x9000 Normal operation
Comparison successful.

0x6340 Comparison failed
Comparison failed.

0x6A88 Referenced data not found
The referenced data was not found.

0x6982 Security status not satisfied
The terminal is not authorized to perform verification.

other Operating system dependent error
The protocol (step) failed.

B.14.10. Verify

The command Verify is used to verify authenticated auxiliary data, i.e. to perform age verification,
document validity verification, or Municipality ID verification.

Note: Due to the application specific coding the proprietary class (with secure messaging and no
chaining) MUST be used, i.e. CLA=0x8C.

Command

INS 0x20 Verify

P1/P2 0x8000 Verify authenticated auxiliary data.

Data Object Identifier of the auxiliary data to be verified. REQUIRED

Response

Data – Absent

Status
Bytes

0x9000 Normal operation
Verification successful.

0x6300 Verification failed
Verification failed.

0x6A88 Referenced data not found
The referenced data was not found.

0x6982 Security status not satisfied
The terminal is not authorized to perform verification.

other Operating system dependent error
The protocol (step) failed.

Bundesamt für Sicherheit in der Informationstechnik 81

B. ISO 7816 Mapping (Normative)

B.14.11. Reset Retry Counter

The command Reset Retry Counter is used to unblock or change the PIN.

Command

INS 0x2C Reset Retry Counter

P1 0x02-0x03 see below

P2 0x03: PIN

Data Context specific reset data depending on P1:
P1=0x02: new PIN
P1=0x03: Absent

REQUIRED

Response

Data – Absent

Status
Bytes

0x9000 Normal operation
Unblocking or changing of the PIN was successful.

0x6982 Security status not satisfied
The terminal is not authorized to unblock or change the PIN.

other Operating system dependent error
Unblocking or changing of the PIN failed.

B.14.12. Activate

The command Activate is used to set the PIN to the state activated.

Command

INS 0x44 Activate

P1 0x10 Activate PIN referenced by parameter P2.

P2 0x03: PIN

Data Absent

Response

Data – Absent

Status
Bytes

0x9000 Normal operation
PIN state has been set to activated.

0x6982 Security status not satisfied
The terminal is not authorized to change the PIN state.

other Operating system dependent error
Changing of the PIN state failed.

B.14.13. Deactivate

The command Deactivate is used to set the PIN to the state deactivated.

82 Bundesamt für Sicherheit in der Informationstechnik

ISO 7816 Mapping (Normative) B.

Command

INS 0x04 Deactivate

P1 0x10 Deactivate PIN referenced by parameter P2.

P2 0x03: PIN

Data Absent

Response

Data – Absent

Status
Bytes

0x9000 Normal operation
PIN state has been set to deactivated.

0x6982 Security status not satisfied
The terminal is not authorized to change the PIN state.

other Operating system dependent error
Changing of the PIN state failed.

B.14.14. Perform User Operation:Present User

The command Perform User Operation:Present User is used to present the user for writing Attribute
Requests and reading Attributes.

Command

INS 0x14 Perform User Operation

P1/P2 0x0080 Present User

Data 0x7F21 The data object MUST contain a Discretionary Data Template 0x73 encapsulating the
following content:

• 0x80: Hash of Sector Public key

Response

Data – Absent

Status
Bytes

0x9000 Normal operation
Operation successful

0x62XX Warning: Unknown user ID

other Operating system dependent error

B.14.15. Put Data

The command Put Data is used for Enhanced Role Authentication to store attribute requests and
specific attributes on the ICC.

Command

INS 0xDA Put Data

P1/P2 0xFF01 Store attribute request

0x00FF Store specific attribute

Data Context-specific data depending on P1/P2 and the effective authorization of the

Bundesamt für Sicherheit in der Informationstechnik 83

B. ISO 7816 Mapping (Normative)

terminal
P1/P2=0xFF01: Tag 0x53 containing the ASN.1 structure Attribute Request.
P1/P2=0x00FF: Concatenation of tags 0x53 each containing a specific attribute to be
stored on the ICC.

Response

Data – Absent

Status
Bytes

0x9000 Normal operation
Operation successful

0x6982 Security status not satisfied
The terminal is not authorized to perform the operation

other Operating system dependent error

Note: The Coding of P1/P2=0x00FF appends the content of the currently selected EF supporting DOs or
currently selected DO, respectively.

B.14.16. Get Data

The command Get Data is used for Enhanced Role Authentication to read attribute requests and
specific attributes from the ICC.

Command

INS 0xCA Get Data

P1/P2 0xFF01 Get attribute request

0x00FF Read Specific Attributes: Get Current Template

Data Absent

Response

Data Context-specific data depending on P1/P2 and the effective authorization of the
terminal
P1/P2=0xFF01: ASN.1 structure RequestInfos
P1/P2=0x00FF: Concatenation of Discretionary Data Templates 0x73 encapsulating

• 0x80: Terminal Sector (CONDITIONAL)
MUST be present if and only if the terminal is authorized to access all
Specific Attributes

• Concatenation of tags 0x53: Specific Attribute (REQUIRED)

Status
Bytes

0x9000 Normal operation
Operation successful

0x6982 Security status not satisfied
The terminal is not authorized to perform the operation

other Operating system dependent error

Note: The Coding of P1/P2=0x00FF retrieves the content of the currently selected EF supporting DOs
or currently selected DO, respectively.

84 Bundesamt für Sicherheit in der Informationstechnik

ISO 7816 Mapping (Normative) B.

B.14.17. Delete Data

The command Delete Data is used for Enhanced Role Authentication to delete Specific Attributes from
the ICC.

Command

INS 0xEE Delete Data

P1/P2 0x0000

Data Absent

Response

Data – Absent

Status
Bytes

0x9000 Normal operation
Operation successful

0x6982 Security status not satisfied
The terminal is not authorized to perform the operation

other Operating system dependent error

Bundesamt für Sicherheit in der Informationstechnik 85

C. CV Certificates (normative)

C. CV Certificates (normative)

C.1. Certificate Profile

Self-descriptive card verifiable (CV) certificates according to ISO 7816 (cf. [12], [13], [14]) and the
certificate profile specified in Table 23 SHALL be used. Details on the encoding of the data objects used
in the certificate profile can be found in Appendix D.2.

C.1.1. Certificate Profile Identifier

The version of the profile is indicated by the Certificate Profile Identifier. Version 1 as specified in Table
23 is identified by a value of 0.

C.1.2. Certification Authority Reference

The Certification Authority Reference is used to identify the public key to be used to verify the
signature of the certification authority (CVCA or DV). The Certification Authority Reference MUST be
equal to the Certificate Holder Reference in the corresponding certificate of the certification authority
(CVCA Link Certificate or DV Certificate). Details on the Certification Authority Reference can be found
in Appendix A.7.1.

C.1.3. Public Key

Details on the encoding of public keys can be found in Appendix D.3.

86 Bundesamt für Sicherheit in der Informationstechnik

Data Object Cert

CV Certificate m

Certificate Body m

Certificate Profile Identifier m

Certification Authority Reference m

Public Key m

Certificate Holder Reference m

Certificate Holder Authorization Template m

Certificate Effective Date m

Certificate Expiration Date m

Certificate Extensions o

Signature m

Table 23: CV Certificate Profile

CV Certificates (normative) C.

C.1.4. Certificate Holder Reference

The Certificate Holder Reference is used to identify the public key contained in the certificate. Details
on the Certificate Holder Reference can be found in Appendix A.7.1.

C.1.5. Certificate Holder Authorization Template

The role and authorization of the certificate holder SHALL be encoded in the Certificate Holder
Authorization Template. This template is a sequence that consists of the following data objects:

1. An object identifier that specifies the terminal type and the format of the template.

2. A discretionary data object that encodes the relative authorization, i.e. the role and
authorization of the certificate holder relative to the certification authority.

The content and evaluation of the Certificate Holder Authorization Template is described in Appendix
Part 4 of this Technical Guideline.

C.1.6. Certificate Effective/Expiration Date

Indicates the validity period of the certificate. The Certificate Effective Date MUST be the date of the
certificate generation.

C.1.7. Certificate Extensions for Terminal Authentication Version 2

Certificates MAY contain extensions as defined in Appendix C.3.

C.1.8. Signature

The signature on the certificate SHALL be created over the encoded certificate body (i.e. including tag
and length). The Certification Authority Reference SHALL identify the public key to be used to verify
the signature.

C.2. Certificate Requests

Certificate requests are reduced CV certificates that may carry an additional signature. The certificate
request profile specified in Table 24 SHALL be used. Details on the encoding of the data objects used in
the certificate request profile can be found in Appendix D.2.

C.2.1. Certificate Profile Identifier

The version of the profile is identified by the Certificate Profile Identifier. Version 1 as specified in Table
24 is identified by a value of 0.

Bundesamt für Sicherheit in der Informationstechnik 87

C. CV Certificates (normative)

C.2.2. Certification Authority Reference

The Certification Authority Reference SHOULD be used to inform the certification authority about the
private key that is expected by the applicant to be used to sign the certificate. If the Certification
Authority Reference contained in the request deviates from the Certification Authority Reference
contained in the issued certificate (i.e. the issued certificate is signed by a private key that is not
expected by the applicant), the corresponding certificate of the certification authority SHOULD also be
provided to the applicant in response.

Details on the Certification Authority Reference can be found in Appendix A.7.1.

C.2.3. Public Key

Details on the encoding of public keys can be found in Appendix D.3.

C.2.4. Certificate Holder Reference

The Certificate Holder Reference is used to identify the public key contained in the request and the
resulting certificate. Details on the Certificate Holder Reference can be found in Appendix A.7.1.

C.2.5. Certificate Extensions for Terminal Authentication Version 2

Requests for certificates MAY contain extensions as defined in Appendix C.3.

C.2.6. Signature(s)

A certificate request may have two signatures, an inner signature and an outer signature:

88 Bundesamt für Sicherheit in der Informationstechnik

Data Object Req

Authentication c

CV Certificate m

Certificate Body m

Certificate Profile Identifier m

Certification Authority Reference r

Public Key m

Certificate Holder Reference m

Certificate Extensions o

Signature m

Certification Authority Reference c

Signature c

Table 24: CV Certificate Request Profile

CV Certificates (normative) C.

Inner Signature (REQUIRED)

The certificate body is self-signed, i.e. the inner signature SHALL be verifiable with the public key
contained in the certificate request. The signature SHALL be created over the encoded certificate
body (i.e. including tag and length).

Outer Signature (CONDITIONAL)

– The signature is OPTIONAL if an entity applies for the initial certificate. In this case the request
MAY be additionally signed by another entity trusted by the receiving certification authority (e.g.
the national CVCA may authenticate the request of a DV sent to a foreign CVCA).

– The signature is REQUIRED if an entity applies for a successive certificate. In this case the request
MUST be additionally signed by the applicant using a recent key pair previously registered with
the receiving certification authority.

If the outer signature is used, an authentication data object SHALL be used to nest the CV Certificate
(Request), the Certification Authority Reference and the additional signature. The Certification
Authority Reference SHALL identify the public key to be used to verify the additional signature. The
signature SHALL be created over the concatenation of the encoded CV Certificate and the encoded
Certification Authority Reference (i.e. both including tag and length).

C.3. Certificate Extensions for Terminal Authentication Version 2

The certificate extension is a sequence of discretionary data templates, where every discretionary data
template SHALL contain a sequence of the following data objects also shown in Table 25:

1. An object identifier that specifies the content and the format of the extension.

2. One or more context specific data objects that contain the encoded extension.

The following base object identifier is used to identify the certificate extensions:

Bundesamt für Sicherheit in der Informationstechnik 89

Data Object

Certificate Extensions

Discretionary Data Template

Object Identifier

Context Specific Data Object 1

...

Context Specific Data Object n

Discretionary Data Template

Object Identifier

Context Specific Data Object 1

...

Context Specific Data Object m

...

Table 25: Certificate Extensions

C. CV Certificates (normative)

id-extensions OBJECT IDENTIFIER ::= {
 bsi-de applictions(3) mrtd(1) 3
}

This Part of the Technical Guideline defines application independent extensions. Additional application
specific extensions are defined in Part 4.

Note: The certificate validation procedure described in Section 2.5.1 does not take certificate extensions
into account. Thus, extensions are uncritical attributes and the ICC MUST NOT reject certificates due to
unknown extensions. Unknown extensions and extensions irrelevant for the ICC SHOULD NOT be
imported.

C.3.1. Authorization Extensions

A special type of certificate extension are Authorization Extensions. These extensions convey
authorizations additional to those in the Certificate Holder Authorization Template contained in the
certificate. Authorization Extensions contain exactly one discretionary data object that encodes the
relative authorization.

Authorization Extensions SHALL be evolving, i.e. new authorization bits MAY be appended to the
leftmost authorization bit in future versions of this Technical Guideline (cf. Table 26). Appended
authorization bits that are not supported by the ICC SHALL be ignored by the ICC.

90 Bundesamt für Sicherheit in der Informationstechnik

Authorization Extension
(before evolution)

Discretionary Data Template

Object Identifier

Authorization Bit Mask

b8s+

7

b8s+

6

b8s+

5

... b2 b1 b0

Bits to be appended
↓

c8t+7 c8t+6 c8t+5 ... c2 c1 c0

Authorization Extension
(after evolution)

Discretionary Data Template

Object Identifier

Authorization Bit Mask

c8t+7 ... c2 c1 b8s+

7

b8s+

6

... b1 b0

Table 26: Evolution of Authorization Extensions

CV Certificates (normative) C.

C.3.2. Terminal Sector

C.3.2.1. Terminal Sector for Restricted Identification

The following object identifier SHALL be used for this extension:

id-sector OBJECT IDENTIFIER ::= {id-extensions 2}

This extension MUST be supported for Restricted Identification and Enhanced Role Authentication.

The following context specific data objects are used to encode the terminal sector:

• 0x80: Hash of 1st sector public key data object (cf. Appendix D.3).

• 0x81: Hash of 2nd sector public key data object (cf. Appendix D.3).

The hash function to be used SHALL be defined by the hash function used to sign the certificate. The
public key itself is not contained in the certificate and MUST be provided by the terminal as part of
Restricted Identification. The ICC SHALL compute the hash over the received public key and compare it
to the received hash.

Note: Context-specific tagging is used for the sector public key in Restricted Identification (cf. Appendix
B.4.1). The ICC MUST replace the context-specific tag 0xA0 by the application-specific tag 0x7F49 before
computing the hash value.

C.3.2.2. Terminal Sector for Pseudonymous Signatures

The following object identifier SHALL be used to identify the terminal sector extension for the
Pseudonymous Signature (PS terminal sector):

id-PS-Sector OBJECT IDENTIFIER ::= { id-extensions 3 }

A concatenation of the following context-specific data object is used to encode the PS terminal sector.
The data object MAY occur more than once.

• 0xA0: Discretionary Data Template consisting of

◦ 0x80: ID of the domain parameters for Pseudonymous Signature

◦ 0x81: Hash of Sector Public Key encoded as elliptic curve point, i.e. (without domain
parameters).

The hash function to be used SHALL be defined by the hash function used to sign the certificate. The
public key itself is not contained in the certificate and MUST be provided by the terminal as part of the
Pseudonymous Signature.

The ICC SHALL compute the hash of the received Sector Public Key and SHALL verify that the hash value
matches with the hash value encoded in one of the corresponding data templates of the certificate extension.

C.4. Certificate Policy

It is RECOMMENDED that each CVCA and every DV publishes a certificate policy and/or a certification
practice statement.

Bundesamt für Sicherheit in der Informationstechnik 91

C. CV Certificates (normative)

C.4.1. Procedures

The certificate policy SHOULD specify the following procedures:

• Entity identification, authentication, and registration;

• Certificate application, issuance, and distribution;

• Compromise and disaster recovery;

• Auditing.

C.4.2. Usage Restrictions

The certificate policy SHOULD imply restrictions on the devices used to store/process corresponding
private keys and other sensitive (personal) data:

• Physical and operational security;

• Access control mechanisms;

• Evaluation and certification (e.g. Common Criteria Protection Profiles);

• Data Protection.

92 Bundesamt für Sicherheit in der Informationstechnik

DER Encoding (Normative) D.

D. DER Encoding (Normative)
The Distinguished Encoding Rules (DER) according to X.690 [16] SHALL be used to encode both ASN.1
data structures and (application specific) data objects. The encoding results in a Tag-Length-Value (TLV)
structure as follows:

Tag: The tag is encoded in one or two octets and indicates the content.

Length: The length is encoded as unsigned integer in one, two, or three octets resulting in a maximum
length of 65535 octets. The minimum number of octets SHALL be used.

Value: The value is encoded in zero or more octets.

D.1. ASN.1

The encoding of data structures defined in ASN.1 syntax is described in X.690 [16].

D.2. Data Objects

Table 27 gives an overview on the tags, lengths, and values of the data objects used in this specification.

Bundesamt für Sicherheit in der Informationstechnik 93

Name Tag Len Value Comment

Object Identifier 0x06 V Object Identifier –

Certification Authority
Reference

0x42 16V Character String Identifies the public key of the issuing certification authority
in a certificate.

Discretionary Data 0x53 V Octet String Contains arbitrary data.

Certificate Holder Reference 0x5F20 16V Character String Associates the public key contained in a certificate with an
identifier.

Certificate Expiration Date 0x5F24 6F Date The date after which the certificate expires.

Certificate Effective Date 0x5F25 6F Date The date of the certificate generation.

Certificate Profile Identifier 0x5F29 1F Unsigned Integer Version of the certificate and certificate request format.

Signature 0x5F37 V Octet String Digital signature produced by an asymmetric cryptographic
algorithm.

Certificate Extensions 0x65 V Sequence Nests certificate extensions.

Authentication 0x67 V Sequence Contains authentication related data objects.

Discretionary Data Template 0x73 V Sequence Nests arbitrary data objects.

CV Certificate 0x7F21 V Sequence Nests certificate body and signature.

Public Key 0x7F49 V Sequence Nests the public key value and the domain parameters.

Certificate Holder
Authorization Template

0x7F4C V Sequence Encodes the role of the certificate holder (i.e. CVCA, DV,
Terminal) and assigns read/write access rights.

Certificate Body 0x7F4E V Sequence Nests data objects of the certificate body.

F: fixed length (exact number of octets), V: variable length (up to number of octets)

Table 27: Overview on Data Objects (sorted by Tag)

D. DER Encoding (Normative)

D.2.1. Encoding of Values

The basic value types used in this specification are the following: (unsigned) integers, elliptic curve
points, dates, character strings, octet strings, object identifiers, and sequences.

D.2.1.1. Unsigned Integers

All integers used in this specification are unsigned integers. An unsigned integer SHALL be converted to
an octet string using the binary representation of the integer in big-endian format. The minimum
number of octets SHALL be used, i.e. leading octets of value 0x00 MUST NOT be used.

Note: In contrast the ASN.1 type INTEGER is always a signed integer.

D.2.1.2. Elliptic Curve Points

The conversion of Elliptic Curve Points to octet strings is specified in [4]. The uncompressed format
SHALL be used.

D.2.1.3. Dates

A date is encoded in 6 digits d 1⋯d 6 in the format YYMMDD using timezone GMT. It is converted to
an octet string o1⋯o6 by encoding each digit d j to an octet o j as unpacked BCDs 1≤ j≤6 .

The year YY is encoded in two digits and to be interpreted as 20YY, i.e. the year is in the range of 2000 to
2099.

94 Bundesamt für Sicherheit in der Informationstechnik

DER Encoding (Normative) D.

D.2.1.4. Character Strings

A character string c1⋯cn is a concatenation of n characters c j with 1≤ j≤n . It SHALL be
converted to an octet string o1⋯on by converting each character c j to an octet o j using the ISO/IEC
8859-1 character set. For informational purposes the character set can be found in Table 28.

The character codes 0x00-0x1F and 0x7F-0x9F are unassigned and MUST NOT be used. The conversion
of an octet to an unassigned character SHALL result in an error.

D.2.1.5. Octet Strings

An octet string o1⋯on is a concatenation of n octets o j with 1≤ j≤n . Every octet o j consists of 8
bits.

D.2.1.6. Object Identifiers

An object identifier i1 . i2 .⋯. in is encoded as an ordered list of n unsigned integers i j with 1≤ j≤n .
It SHALL be converted to an octet string o1⋯on−1 using the following procedure:

1. The first two integers i1 and i2 are packed into a single integer i that is then converted to the
octet string o1 . The value i is calculated as follows:

Bundesamt für Sicherheit in der Informationstechnik 95

Code 0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2 SP ! " # $ % & ’ () * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [\] ^ _

6 ‘ a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~

8

9

A NBSP ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « ¬ SHY ® ¯

B ° ± ² ³ ´ µ ¶ · ¹ º » ¼ ½ ¾ ¿

C À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï

D Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ ß

E à á â ã ä å æ ç è é ê ë ì í î ï

F ð ñ ò ó ô õ ö ÷ ø ù ú û ü ý þ ÿ

SP: Space, NBSP: Non-breaking Space, SHY: Soft Hyphen
Table 28: ISO/IEC 8859-1 Character Set

D. DER Encoding (Normative)

2. The remaining integers i j are directly converted to octet strings o j−1 with 3≤ j≤n .

More details on the encoding can be found in [16].

Note: The unsigned integers are encoded as octet strings using the big-endian format as described in
Appendix D.2.1.1, however only bits 1-7 of each octet are used. Bit 8 (the leftmost bit) set to one is used
to indicate that this octet is not the last octet in the string.

D.2.1.7. Sequences

A sequence D1⋯Dn is an ordered list of n data objects D j with 1≤ j≤n . The sequence SHALL be
converted to a concatenated list of octet strings O1⋯On by DER encoding each data object D j to an
octet string O j .

D.3. Public Key Data Objects

A public key data object contains a sequence of an object identifier and several context specific data
objects:

• The object identifier is application specific and refers not only to the public key format (i.e. the
context specific data objects) but also to its usage.

• The context specific data objects are defined by the object identifier and contain the public key
value and the domain parameters.

The format of public keys data objects used in this specification is described below.

D.3.1. RSA Public Keys

The data objects contained in an RSA public key are shown in Table 29. The order of the data objects is
fixed.

D.3.2. Diffie Hellman Public Keys

The data objects contained in a DH public key are shown in Table 30. The order of the data objects is
fixed.

96 Bundesamt für Sicherheit in der Informationstechnik

i=i1⋅4 0i2

Data Object Abbrev. Tag Type CV Certificate

Object Identifier 0x06 Object Identifier m

Composite modulus n 0x81 Unsigned Integer m

Public exponent e 0x82 Unsigned Integer m

Table 29: RSA Public Key

DER Encoding (Normative) D.

Note: The encoding of key components as unsigned integer implies that each of them is encoded over
the least number of bytes possible, i.e. without preceding bytes set to 0x00. In particular, a DH public
key may be encoded over a number of bytes smaller than the number of bytes of the prime.

D.3.3. Elliptic Curve Public Keys

The data objects contained in an EC public key are shown in Table 31. The order of the data objects is
fixed, CONDITIONAL domain parameters MUST be either all present, except the cofactor, or all absent
as follows:

• Self-signed CVCA Certificates SHALL contain domain parameters.

• CVCA Link Certificates MAY contain domain parameters.

• DV and Terminal Certificates MUST NOT contain domain parameters. The domain parameters
of DV and terminal public keys SHALL be inherited from the respective CVCA public key.

• Certificate Requests MUST always contain domain parameters.

D.3.4. Ephemeral Public Keys

For ephemeral public keys the format and the domain parameters are already known. Therefore, only
the plain public key value, i.e. the public value y for Diffie-Hellman public keys and the public point Y
for Elliptic Curve public keys, is used to convey the ephemeral public key in a context specific data
object.

Bundesamt für Sicherheit in der Informationstechnik 97

Data Object Abbrev. Tag Type

Object Identifier 0x06 Object Identifier

Prime modulus p 0x81 Unsigned Integer

Order of the subgroup q 0x82 Unsigned Integer

Generator g 0x83 Unsigned Integer

Public value y 0x84 Unsigned Integer

Table 30: DH Public Key

Data Object Abbrev. Tag Type CV Certificate

Object Identifier 0x06 Object Identifier m

Prime modulus p 0x81 Unsigned Integer c

First coefficient a 0x82 Unsigned Integer c

Second coefficient b 0x83 Unsigned Integer c

Base point G 0x84 Elliptic Curve Point c

Order of the base point r 0x85 Unsigned Integer c

Public point Y 0x86 Elliptic Curve Point m

Cofactor f 0x87 Unsigned Integer c

Table 31: EC Public Keys

E. Envelope/Get Response (Normative)

E. Envelope/Get Response (Normative)
To support terminals without extended length transport capability, chips of part-2 documents
SHOULD support receiving extended length command APDUs/transmitting extended length response
APDUs via Envelope/Get Response as a transport mechanism. The mechanism is designed to separate
the construction of (secured) APDUs from the transport of the APDUs between chip and (local)
terminal, allowing a (remote) terminal to construct APDUs without knowledge about the transport
capabilities of the (local) terminal.

A terminal MAY support this mechanism.

To convey an extended length command APDU via Envelope, the following steps are performed:

1. The terminal constructs the APDU, including applying Secure Messaging, if applicable. The
terminal SHALL split the APDU in chunks, such that each chunk fits into the data field of a
standard length command TPDU.

2. The chunks SHALL be transmitted as data fields of a chain of Envelope TPDUs to the chip. The
terminal SHALL NOT apply Secure Messaging to the Envelope TPDUs and SHALL set the
Chaining Bit of CLA for all but the last Envelope of the chain.

3. The chip receives the chain of the Envelope TPDUs and SHALL reconstruct the extended length
APDU from the data fields. The resulting APDU SHALL be processed by the chip. This includes
processing Secure Messaging, if applicable.

If a command APDU is received via Envelope as described above, the chip SHALL transmit the response
APDU via Get Response as specified below.

1. The response APDU SHALL be transformed into a Secure Messaging response, if applicable.

2. The (transformed) APDU SHALL be transmitted in chunks as data fields of response TPDUs to
Get Response command TPDUs. The status words of these Get Response response TPDUs
SHALL be set to 0x9000 for the last chunk and to 0x61XX for all other chunks, respectively.

The terminal MUST send appropriate Get Response TPDUs immediately after the last Envelope TPDU.
The chip MAY dispose the response data if the terminal sends any other command.

Note: If the terminal is not capable of transporting extended length APDUs and the response to a
command APDU is to be expected to exceed the length of a standard length APDU, the terminal
SHOULD transmit the command APDU via Envelope TPDUs, in order to trigger the chip to use the Get
Response TPDU mechanism for transporting the response APDU.

Note: The security status is not affected by the usage of Envelope/Get Response, e.g. Secure Messaging
is not affected by using plain Envelope/Get Response TPDUs.

98 Bundesamt für Sicherheit in der Informationstechnik

Envelope/Get Response (Normative) E.

E.1. Envelope

Command

CLA 0x00
0x10

Last command TPDU of a chain
Any other command TPDU of a chain

INS 0xC2 Envelope

P1/P2 0x0000

Lc Length of Data field REQUIRED

Data Part of a command APDU, such that the resulting
Envelope TPDU is a standard length TPDU.

REQUIRED

Le MUST be absent

Response

Data MUST be absent

Status
Bytes

0x9000 Normal operation

0x61XX More response data available
SW2 MUST be equal to '00' or optionally encode the number of response data bytes
available

other Operating system dependent error

E.2. Get Response

Command

CLA 0x00

INS 0xC0 Get Response

P1/P2 0x0000

Lc MUST be absent

Data MUST be absent

Le Maximum length of response data field expected REQUIRED

Response

Data Part of Response APDU REQUIRED

Status
Bytes

0x9000 Normal operation
The complete response APDU has been transmitted, no more data available

0x61XX More response data available
SW2 MUST be equal to '00' or optionally encode the number of data bytes still
available

other Operating system dependent error

Bundesamt für Sicherheit in der Informationstechnik 99

F. Secure Messaging (Normative)

F. Secure Messaging (Normative)
Secure Messaging provides a secure channel (i.e. encrypted and authenticated) between ICC and
terminal. Secure Messaging can be set up by Chip Authentication, PACE, or Basic Access Control. The
provided security level however depends on the mechanism used to set up Secure Messaging.

F.1. Session

A session is started when secure messaging is established. The session only ends with the release of
secure messaging, e.g. by sending a command APDU without secure messaging. The state of a session is
not changed by using Envelope/Get Response TPDUs.

Within a session the secure messaging keys (i.e. established by Chip Authentication, PACE, or Basic
Access Control) may be changed.

Note: The ICC MAY implicitly select the Master File when a session is terminated.

F.2. Session Context

The ICC MAY support switching of Session Contexts. Support is REQUIRED if the ICC supports
multiple Extended Access Control executions in one session.

The PACE Session Context SHALL comprise at least:

• the verification state of passwords

• the Secure Messaging state, i.e. Secure Messaging keys and Send Sequence Counter

• the confined authorization

• the Terminal Certificates of the session for which Terminal Authentication was already performed.

• The current DF and the current EF.

The CA Session Context SHALL comprise at least:

• the verification state of passwords

• the Secure Messaging state, i.e. Secure Messaging keys and Send Sequence Counter

• effective access rights

• Authenticated Auxiliary Data

• the Terminal Sector.

• The current DF and the current EF.

• A presented user ID.

F.3. Message Structure of Secure Messaging APDUs

As this guideline only considers command APDUs with even instruction byte, this Appendix solely
takes into account Secure Messaging for command/response pairs where the command APDU has an
even INS byte.

Secure Messaging Data Objects SHALL be used according to Table 32 in the following order:

100 Bundesamt für Sicherheit in der Informationstechnik

Secure Messaging (Normative) F.

• Command APDU: [DO‘87’] [DO‘97’] DO‘8E’
• Response APDU: [DO‘87’] DO‘99’ DO‘8E’

All secure messaging data objects SHALL be encoded in DER (cf. Appendix D.2). The actual value of Lc
will be modified to Lc’ after application of secure messaging. If required, an appropriate data object may
optionally be included into the APDU data part in order to convey the original value of Le. In the
protected command APDU the new Le byte SHALL be set to ‘00’.

Note: Secure messaging MUST be indicated by using class byte CLA = ‘XC’, with a bit mask X, where bit 8
(set to 0) indicates the interindustry class and bit 5 (set to 1) indicates command chaining.

F.3.1. Command APDU

The command with applied Secure Messaging therefore SHALL have the following structure,
depending on the case of the respective unsecured command:

Case 1: CH || Lc’ || DO’8E’ || new Le

Case 2: CH || Lc’ || DO’97’ || DO’8E’ || new Le

Case 3: CH || Lc’ || DO’87’ || DO’8E’ || new Le

Case 4: CH || Lc’ || DO’87’ || DO’97’ || DO’8E’ || new Le

with CH: Command Header (CLA INS P1 P2)

F.3.2. Response APDU

The response with applied Secure Messaging SHALL have the following structure, depending on the
case of the respective unsecured command:

Case 1: DO’99’ || DO’8E’ || SW1SW2

Case 2: DO’87’ || DO’99’ || DO’8E’ || SW1SW2

Case 3: DO’99’ || DO’8E’ || SW1SW2

Case 4: DO’87’ || DO’99’ || DO’8E’ || SW1SW2

F.3.3. Padding

The data to be encrypted SHALL be padded according to ISO 7816-4 [12] using padding-content
indicator 0x01. For the calculation of the cryptographic checksum the APDU SHALL be padded
according to ISO 7816-4 [12].

Bundesamt für Sicherheit in der Informationstechnik 101

Name Tag Len Command Response

Padding-content indicator followed by cryptogram 0x87 V c c

Protected Le 0x97 2V c x

Processing Status 0x99 2F x m

Cryptographic Checksum 0x8E 8F m m

F: fixed length (exact number of octets), V: variable length (up to number of octets)

Table 32: Usage of Secure Messaging Data Objects

F. Secure Messaging (Normative)

Note: Padding is always performed by the secure messaging layer not by the underlying cryptographic
algorithm.

F.3.4. Examples

Three Examples are provided at the end of this section:

• Figure 4 shows the transformation of an unprotected command APDU to a protected command
APDU in the case Data and/or Le are available. If no Data is available, leave building DO ’87’ out.
If Le is not available, leave building DO ’97’ out.

• Figure 5 shows the transformation of an unprotected command APDU to a protected command
APDU in the case Data and Le are not available.

• Figure 6 shows the transformation of an unprotected response APDU to a protected response
APDU in the case Data are available. If no Data is available, leave building DO ’87’ out.

F.4. Cryptographic Algorithms

Secure Messaging is based on either 3DES [20] or AES [21] in encrypt-then-authenticate mode, i.e. data
is encrypted first and afterwards the formatted encrypted data is input to the authentication
calculation. The session keys SHALL be derived from PACE or Chip Authentication using the key
derivation function described in Appendix A.2.3.

Note: If a command does not contain command data, no encryption applies for the command. If a
response does not contain response data, no encryption applies for the response.

F.4.1. 3DES

3DES is specified in [20].

F.4.1.1. 3DES Encryption

For message encryption two key 3DES SHALL be used in CBC-mode according to ISO 10116 [9] with key
K Enc and IV=0.

F.4.1.2. 3DES Authentication

For message authentication 3DES SHALL be used in Retail-mode according to ISO/IEC 9797-1 [15] MAC
algorithm 3 with block cipher DES, key K MAC and IV=0. The datagram to be authenticated SHALL be
prepended by the Send Sequence Counter.

F.4.2. AES

AES is specified in [21].

102 Bundesamt für Sicherheit in der Informationstechnik

Secure Messaging (Normative) F.

F.4.2.1. AES Encryption

For message encryption AES SHALL be used in CBC-mode according to ISO 10116 [9] with key K Enc and
IV=E K Enc , SSC .

F.4.2.2. AES Authentication

For message authentication AES SHALL be used in CMAC-mode [22] with K MAC with a MAC length of
8 bytes. The datagram to be authenticated SHALL be prepended by the Send Sequence Counter.

F.5. Send Sequence Counter

An unsigned integer SHALL be used as Send Sequence Counter (SSC). The bitsize of the SSC SHALL be
equal to the blocksize of the block cipher used for Secure Messaging, i.e. 64 bit for 3DES and 128 bit for
AES.

The SSC SHALL be increased every time before a command or response APDU is generated, i.e. if the
starting value is x, in the next command the value of the SSC is x1. The value of SSC for the first
response is x2.

If Secure Messaging is restarted, the SSC is used as follows:

• The commands used for key agreement are protected with the old session keys and old SSC.
This applies in particular for the response of the last command used for session key agreement.

• The Send Sequence Counter is set to its new start value, i.e. within this specification the SSC is
set to 0.

• The new session keys and the new SSC are used to protect subsequent commands/responses.

F.6. Secure Messaging Termination

The ICC MUST abort Secure Messaging if and only if a plain APDU is received or a Secure Messaging
error occurs:

• If expected Secure Messaging data objects are missing, the ICC SHALL respond with status bytes
0x6987

• If Secure Messaging data objects are incorrect, the ICC SHALL respond with status bytes 0x6988

If Secure Messaging is aborted, the ICC SHALL delete the stored session keys and reset the terminal’s
access rights.

Bundesamt für Sicherheit in der Informationstechnik 103

F. Secure Messaging (Normative)

104 Bundesamt für Sicherheit in der Informationstechnik

Figure 4: Transformation of a command APDU

Header

CLA, INS, P1, P2

Lc

Lc

Data

Data

Le

Le

Header
Data padded to multiple of block size

k bytes k bytes x bytes '80' ['00' .. '00']

'87' L '01'

Le

Data encryption

Encrypted Data

Formatted Encrypted Data '97' L Le'80 00 00 00' ['00' .. '00']Header '80' ['00' .. '00']

MAC calculation

'87' L '01' Encrypted Data '97' L LeLc'Header '00''8E 08' MAC

Figure 5: Transformation of a command APDU if no data is available

Header

CLA, INS, P1, P2

Header

Header '80' ['00' .. '00']

MAC calculation

Lc'Header '00''8E 08' MAC

Secure Messaging (Normative) F.

Bundesamt für Sicherheit in der Informationstechnik 105

Figure 6: Transformation of a response APDU

Data

Data

Status

SW1-SW2

Data padded to multiple of block size

k bytes k bytes x bytes '80' ['00' .. '00']

'87' L '01'

SW1-SW2

Data encryption

Encrypted Data

Formatted Encrypted Data '99 02' SW1-SW2 '80' ['00' .. '00']

MAC calculation

'87' L '01' Encrypted Data '99 02' SW1-SW2 SW1-SW2'8E 08' MAC

F. Secure Messaging (Normative)

Bibliography
[1] ANSI. Public Key Cryptography for the Financial Services Industry: Agreement of

Symmetric Keys Using Discrete Logarithm Cryptography, ANSI X9.42-2003, 2003
[2] Bradner, Scott. Key words for use in RFCs to indicate requirement levels, RFC 2119, 1997
[3] BSI. PKIs for Machine Readable Travel Documents – Protocols for the Management of

Certificates and CRLs, TR-03129, 2009
[4] BSI. Elliptic Curve Cryptography (ECC), TR-03111,
[5] BSI. eCard-API-Framework - ISO24727-3 Interface, TR-03112-4,
[6] Cooper, David; Santesson, Stefan; Farrell, Stephen; Boeyen, Sharon; Housley, Russell and

Polk, Tim. Internet X.509 public key infrastructure - certificate and certificate revocation
list (CRL) profile, RFC 5280, 2008

[7] Housley, Russel. Cryptographic message syntax (CMS), RFC 5652, 2009
[8] ICAO. Machine Readable Travel Documents, ICAO Doc 9303, 2015
[9] ISO/IEC 10116:2006. Information technology − Security techniques − Modes of operation

for an n-bit block cipher, 2006
[10] ISO/IEC 7816-15. Identification cards – Integrated circuit cards – Part 15: Cryptographic

Information Application, 2004
[11] ISO/IEC 7816-3:2006. Identification cards – Integrated circuit cards – Part 3: Cards with

contacts — Electrical interface and transmission protocols, 2006
[12] ISO/IEC 7816-4:2013. Identification cards – Integrated circuit cards – Part 4:

Organization, security and commands for interchange, 2013
[13] ISO/IEC 7816-6:2004. Identification cards – Integrated circuit cards – Part 6: Interindustry

data elements for interchange, 2004
[14] ISO/IEC 7816-8:2004. Identification cards – Integrated circuit cards – Part 8: Commands

for security operations, 2004
[15] ISO/IEC 9797-1:1999. Information technology − Security techniques − Message

Authentication Codes (MACs) − Part 1: Mechanisms using a block cipher, 1999
[16] ITU-T. Information Technology – ASN.1 encoding rules: Specification of Basic Encoding

Rules(BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER),
X.690, 2002

[17] Jonsson, Jakob and Kaliski, Burt. Public-key cryptography standards (PKCS)#1: RSA
cryptography specifications version 2.1, RFC 3447, 2003

[18] Lepinski, Matt; Kent, Stephen. Additional Diffie-Hellman Groups for Use with IETF
Standards, RFC 5114, 2008

[19] Lochter, Manfred; Merkle, Johannes. Elliptic Curve Cryptography (ECC) Brainpool
Standard Curves and Curve Generation, RFC 5639, 2010

[20] NIST. Data Encryption Standard (DES), FIPS PUB 46-3, 1999
[21] NIST. Specification for the Advanced Encryption Standard (AES), FIPS PUB 197, 2001
[22] NIST. Recommendation for Block Cipher Modes of Operation: The CMAC Mode for

Authentication, Special Publication 800-38B, 2005
[23] NIST. Digital Signature Standard (DSS), FIPS 186-4, 2013
[24] NIST. Secure hash standard, FIPS PUB 180-4, 2015
[25] Rescorla, Eric. Diffie-Hellman key agreement method, RFC 2631, 1999
[26] RSA Laboratories. PKCS#3: Diffie-Hellman key-agreement standard, RSA Laboratories

Technical Note, 1993
[27] RSA Laboratories. PKCS#1 v2.2: RSA cryptography standard, RSA Laboratories Technical

Note, 2012
[28] SOG-IS. Crypto Evaluation Scheme - Agreed Cryptographic Mechanisms, Crypto

Working Group,

106 Bundesamt für Sicherheit in der Informationstechnik

	Contents
	1 Introduction
	1.1 Requirements for ICCs and Terminals
	1.2 Cryptography requirements
	1.3 Terminology
	1.4 Abbreviations

	2 Public Key Infrastructure
	2.1 Country Verifying CA
	2.2 Document Verifiers
	2.3 Card Verifiable Certificates
	2.4 Certificate Scheduling
	2.5 Certificate Validation
	2.5.1 General Procedure
	2.5.2 Example Procedure

	2.6 Initial State of the ICC's trust-point(s)
	2.7 Effective Authorization
	2.7.1 Confined Authorization (eIDAS token only)
	2.7.2 Interpretation (all document types)

	2.8 Terminal Sector
	2.8.1 Sector Key Pair
	2.8.2 Sector-Specific Revocation of ICCs
	2.8.3 Generation of Revocation Lists
	2.8.4 Sector-specific Whitelisting of ICCs
	2.8.5 Validity Period
	2.8.6 Migrating Terminals

	3 Management of Attributes
	3.1 Specific Attributes
	3.1.1 Reading and deleting Specific Attributes
	3.1.2 Writing Specific Attributes

	3.2 Generic Attributes
	3.3 Attribute Requests

	A. ASN.1 Specifications (Normative)
	A.1. Information on Supported Security Protocols
	A.1.1. Supported Protocols
	A.1.1.1. PACE
	A.1.1.2. Chip Authentication
	A.1.1.3. Terminal Authentication
	A.1.1.4. Restricted Identification
	A.1.1.5. Pseudonymous Signatures of Messages (PSM)
	A.1.1.6. Pseudonymous Signatures of Credentials (PSC)
	A.1.1.7. CardInfo (eIDAS token only)
	A.1.1.8. EIDSecurityInfo (eIDAS token only)
	A.1.1.9. PrivilegedTerminalInfo (eIDAS token only)
	A.1.1.10. Other Protocols

	A.1.2. Storage on the Chip
	A.1.2.1. CardAccess (CONDITIONAL)
	A.1.2.2. CardSecurity (CONDITIONAL)
	A.1.2.3. ChipSecurity (OPTIONAL)
	A.1.2.4. ePassport DG14 (CONDITIONAL)
	A.1.2.5. Signature Format for CardSecurity and ChipSecurity

	A.2. Key Agreement
	A.2.1. Domain Parameters
	A.2.1.1. Standardized Domain Parameters
	A.2.1.2. Explicit Domain Parameters
	A.2.1.3. PACE, Chip Authentication and Pseudonymous Signatures
	A.2.1.4. Restricted Identification

	A.2.2. Ephemeral Public Keys
	A.2.2.1. PACE and Chip Authentication
	A.2.2.2. Restricted Identification
	A.2.2.3. Public Key Compression

	A.2.3. Key Derivation Function
	A.2.3.1. 3DES
	A.2.3.2. AES

	A.2.4. Authentication Token
	A.2.4.1. 3DES
	A.2.4.2. AES

	A.3. PACE
	A.3.1. PACE with DH
	A.3.2. PACE with ECDH
	A.3.3. Encrypted Nonce
	A.3.4. ECDH Mapping
	A.3.4.1. Generic Mapping
	A.3.4.2. Integrated Mapping

	A.3.5. DH Mapping
	A.3.5.1. Generic Mapping
	A.3.5.2. Integrated Mapping

	A.4. Chip Authentication
	A.4.1. Chip Authentication version 1 and 2
	A.4.1.1. Chip Authentication Key Pair
	A.4.1.2. Chip Authentication version 1 and 2 with DH
	A.4.1.3. Chip Authentication version 1 and 2 with ECDH

	A.4.2. Chip Authentication Version 3
	A.4.2.1. Static keys for Chip Authentication version 3
	A.4.2.2. Sector Public Keys
	A.4.2.3. Chip Authentication version 3 based on ECDH and ECSchnorr

	A.5. Restricted Identification
	A.5.1. ICC Private Key
	A.5.2. Sector Public Keys
	A.5.3. Restricted Identification with DH
	A.5.4. Restricted Identification with ECDH

	A.6. Pseudonymous Signatures
	A.6.1. Static keys for Pseudonymous Signatures
	A.6.2. Sector Public Keys
	A.6.3. Digital Signature Information
	A.6.4. Projected representation of a public key
	A.6.5. Pseudonymous Signatures of Messages or Credentials based on ECSchnorr
	A.6.5.1. Credentials for PSC

	A.7. Terminal Authentication
	A.7.1. Public Key References
	A.7.2. Public Key Import
	A.7.2.1. Permanent Import
	A.7.2.2. Temporary Import
	A.7.2.3. Imported Metadata
	A.7.2.4. EF.CVCA

	A.7.3. Terminal Authentication with RSA
	A.7.3.1. Signature Algorithm
	A.7.3.2. Public Key Format

	A.7.4. Terminal Authentication with ECDSA
	A.7.4.1. Signature Algorithm
	A.7.4.2. Public Key Format

	A.7.5. Authenticated Auxiliary Data for Terminal Authentication Version 2
	A.7.5.1. Object Identifier
	A.7.5.2. Age Verification
	A.7.5.3. Document Validity Verification
	A.7.5.4. Municipality ID Verification
	A.7.5.5. Pseudonymous Signature of Messages
	A.7.5.6. Data Group Content Verification

	A.8. Enhanced Role Authentication
	A.8.1. Data format of Attribute Request
	A.8.2. Data format of Specific Attributes

	B. ISO 7816 Mapping (Normative)
	B.1. PACE
	B.1.1. Encrypted Nonce
	B.1.2. Mapping Data
	B.1.2.1. Generic Mapping
	B.1.2.2. Integrated Mapping

	B.1.3. Authentication Token
	B.1.4. Certification Authority Reference

	B.2. Chip Authentication
	B.2.1. Ephemeral Public Key
	B.2.2. Nonce
	B.2.3. Authentication Token
	B.2.4. Sector Public Key
	B.2.5. Pseudonym Public Key
	B.2.6. Pseudonymous signature

	B.3. Terminal Authentication
	B.4. Restricted Identification
	B.4.1. Public Key
	B.4.2. Sector-specific Identifier

	B.5. Pseudonymous Signature of Messages or Credentials
	B.5.1. Sector Public Key
	B.5.2. Pseudonym Public Key
	B.5.3. Pseudonymous signature

	B.6. Auxiliary Data Verification
	B.7. PIN Management
	B.7.1. Unblock or Change PIN
	B.7.2. Activate or Deactivate PIN

	B.8. eSign Application
	B.9. Reading Data Groups
	B.10. Enhanced Role Authentication
	B.10.1. User Presentation
	B.10.2. Writing Attribute Requests
	B.10.3. Reading Attribute Requests
	B.10.4. Writing Specific Attributes
	B.10.5. Reading Specific Attributes
	B.10.6. Deleting Specific Attributes
	B.10.7. Writing and Reading and Erasing Generic Attributes

	B.11. Switching of Session Context
	B.11.1. Session Context Identifier

	B.12. Extended Length
	B.12.1. ICCs
	B.12.2. Terminals
	B.12.3. Errors

	B.13. Command Chaining
	B.13.1. ICCs
	B.13.2. Terminals
	B.13.3. Errors

	B.14. APDU Specification
	B.14.1. MSE:Set AT
	B.14.2. General Authenticate
	B.14.3. MSE:Set KAT
	B.14.4. MSE:Set DST
	B.14.5. PSO:Verify Certificate
	B.14.6. Get Challenge
	B.14.7. External Authenticate
	B.14.8. PSO: Compute Digital Signature
	B.14.9. Compare
	B.14.10. Verify
	B.14.11. Reset Retry Counter
	B.14.12. Activate
	B.14.13. Deactivate
	B.14.14. Perform User Operation:Present User
	B.14.15. Put Data
	B.14.16. Get Data
	B.14.17. Delete Data

	C. CV Certificates (normative)
	C.1. Certificate Profile
	C.1.1. Certificate Profile Identifier
	C.1.2. Certification Authority Reference
	C.1.3. Public Key
	C.1.4. Certificate Holder Reference
	C.1.5. Certificate Holder Authorization Template
	C.1.6. Certificate Effective/Expiration Date
	C.1.7. Certificate Extensions for Terminal Authentication Version 2
	C.1.8. Signature

	C.2. Certificate Requests
	C.2.1. Certificate Profile Identifier
	C.2.2. Certification Authority Reference
	C.2.3. Public Key
	C.2.4. Certificate Holder Reference
	C.2.5. Certificate Extensions for Terminal Authentication Version 2
	C.2.6. Signature(s)

	C.3. Certificate Extensions for Terminal Authentication Version 2
	C.3.1. Authorization Extensions
	C.3.2. Terminal Sector
	C.3.2.1. Terminal Sector for Restricted Identification
	C.3.2.2. Terminal Sector for Pseudonymous Signatures

	C.4. Certificate Policy
	C.4.1. Procedures
	C.4.2. Usage Restrictions

	D. DER Encoding (Normative)
	D.1. ASN.1
	D.2. Data Objects
	D.2.1. Encoding of Values
	D.2.1.1. Unsigned Integers
	D.2.1.2. Elliptic Curve Points
	D.2.1.3. Dates
	D.2.1.4. Character Strings
	D.2.1.5. Octet Strings
	D.2.1.6. Object Identifiers
	D.2.1.7. Sequences

	D.3. Public Key Data Objects
	D.3.1. RSA Public Keys
	D.3.2. Diffie Hellman Public Keys
	D.3.3. Elliptic Curve Public Keys
	D.3.4. Ephemeral Public Keys

	E. Envelope/Get Response (Normative)
	E.1. Envelope
	E.2. Get Response

	F. Secure Messaging (Normative)
	F.1. Session
	F.2. Session Context
	F.3. Message Structure of Secure Messaging APDUs
	F.3.1. Command APDU
	F.3.2. Response APDU
	F.3.3. Padding
	F.3.4. Examples

	F.4. Cryptographic Algorithms
	F.4.1. 3DES
	F.4.1.1. 3DES Encryption
	F.4.1.2. 3DES Authentication

	F.4.2. AES
	F.4.2.1. AES Encryption
	F.4.2.2. AES Authentication

	F.5. Send Sequence Counter
	F.6. Secure Messaging Termination

