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Notations and Glossary

gcd The greatest common divisor gcd(a, b) is that natural number with the property that
it divides both a and b and that any other natural number also dividing the numbers a
and b is already a divisor of gcd(a, b).

Fn Field with n elements, also called Galois field GF(n).

Zn Ring of residue classes modulo n in Z, also called Z/nZ.

lcd The lowest or least common multiple lcm(a, b) of two integers a, b ∈ Z is the smallest
positive integer that is both a multiple of a and a multiple of b.

φ Euler’s phi function φ : Z → Z, also known as Euler’s totient function, is defined as
φ(n) := Card({a ∈ N : 1 ≤ a ≤ n, gcd(a, n) = 1}) = Card(Z∗

n).

R∗ Unit group of the commutative ringR.

Card Number of elements Card(M) of a finite setM .

Ceiling function Ceiling function ⌈·⌉ : R→ Z, defined as ⌈x⌉ := min{z ∈ Z : z ≥ x}.

Floor function Floor function ⌊·⌋ : R→ Z, defined as ⌊x⌋ := max{z ∈ Z : z ≤ x}.

A

AES Advanced encryption standard, block cipher standardised byNIST in FIPS 197 [84]with
ablock size of 128bits. According to the lengthof thekeys adistinction ismadebetween
AES-128, AES-192 and AES-256. Apart from related-key attacks against AES-192 and
AES-256, there are no known attacks against AES that provide a significant advantage
over generic attacks on block ciphers.

Asymmetric cryptography Generic term for cryptographic mechanisms in which the execution of
some cryptographic operations (such as the encryption of amessage or the verification
of a signature) can be performed by parties that do not know the secret data.

Authenticated encryption scheme Encryption schemes that ensurenot only the confidentiality but
also the integrity of the data being encrypted.

Authentication Objective of secure identificationof a personor information-processing system. In
the context of the present Technical Guideline, this involves persons or systems that are
the sourceordestinationof a communication connectionandauthentication is realised
by making use of a cryptographic secret.

Authentication tag Cryptographic checksum on data that is designed to reveal both accidental er-
rors and the intentional modification of the data.

Authenticity Property of veracity, verifiability and reliability of a person, a system or data.
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B

Backward secrecy (of cryptographic protocols) Also known as future secrecy or post-compromise
security property of a cryptographic protocol that ensures that encryptedmessages re-
main secret even if a key has been compromised in the past.

Birthday problem The birthday problem (also birthday paradox) is the phenomenon that intuitive
estimation of certain probabilities is often incorrect. For example, the probability that
among 23 people at least two of themhave their birthdays on the sameday in the year is
over 50%, which most people misjudge by a power of ten. In the context of cryptogra-
phy, this effect plays a role in cryptographic hash functions, among other things, which
are supposed to calculate a unique hash value from an input. It is much easier to find
two random inputs that have the same hash value than to find another input that has
the same hash value as a given one (see also collision attack).

Block cipher Key-dependent, efficiently computable, invertible mapping that maps plaintexts of
a fixed given bit length n to ciphertexts of the same length. Without knowledge of the
key, it should be practically infeasible to distinguish the output of the block cipher from
the output of a random bijective mapping.

Brute-force attack Also called exhaustion method (exhaustion for short); attack method based on
an automated, often systematic trial and error of all possibilities, for example to deter-
mine secret keys or passwords. If sufficiently long keys are used, brute-force attacks
onmodern encryption algorithms are practically impossible, as the required computa-
tional effort (and thus the time and/or costs) would be too high. Since the performance
ofmodern hardware is continuously increasing and the time required to try out all keys
of a certain length is reduced as a result, the minimum key length must be chosen suf-
ficiently large and increased regularly in order to prevent attacks by exhaustion.

C

Challenge-response-authentication Protocol for authenticating to a counterpart on the basis of
knowledge. In this process, a verifier poses a challenge which the proving party must
solve (response) in order to prove that he knows a certain piece of information without
revealing this information itself.

Chinese Remainder Theorem, CRT Theorem concerning the existence and uniqueness of solutions
of congruence systems. Let n1, . . . , nk ∈ N be pairwise coprime natural numbers, let
n := n1 · . . . · nk be their product and let a1, . . . , ak ∈ Z be arbitrary. Then the system
of congruences

x = a1 mod n1,

...

x = ak mod nk

has a unique solution x ∈ {0, . . . , n− 1}.

Chosen-ciphertext attack Cryptographic attack in which the attacker can can gather information
by obtaining the plaintexts of chosen ciphertexts. The attacker’s aim is usually to deci-
pher a given ciphertext that does not belong to any of these plaintext-ciphertext com-
promises. Depending onwhether the attacker knows this ciphertext before or after the
end of the attack, a distinction is made between adaptive and non-adaptive chosen-
ciphertext attacks.
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Chosen-plaintext attack Cryptographic attack inwhich the attacker can gather information by ob-
taining the ciphertexts of chosen plaintexts.

Cipher block chaining mode (CBC-mode) Mode of operation of a block cipher in which a plaintext
block is XORedwith the ciphertext block generated in the previous step before encryp-
tion. For secure use, only unpredictable initialisation vectors such as a randomnumber
must be used.

Collision attack Attack on a cryptolographic hash function with the aim of finding two different
input values mapped to an identical hash value. In contrast to preimage attacks, both
input values (and thus also the hash value) can be chosen arbitrarily.

Collision resistance A function h : M → N is called collision resistant if it is practically impossible
to find x, y ∈M , x ̸= y with h(x) = h(y).

Confidentiality Objective of binding read access to an information to the right of access. In the
cryptographic context, this means that access to the content of a message should only
be possible for the holders of a secret cryptographic key.

Counter mode (CTR-mode) Mode of operation in which block ciphers can be operated to generate
a stream cipher from them. Here, a nonce is encrypted and XORed with the plaintext.
The special feature of the counter mode compared to other modes of operation is the
fact that the initialisation vector consists of anonce to be newly chosen for each cipher-
text block, combined with a counter that is incremented with each further block. The
combination can be made, for example, by concatenation, addition or XOR.

Counter with cipher block chaining mode (counter with CBC-MAC, CCM-mode) Mode of operation
of a block cipher that combines the counter mode for encryption with the CBC-MAC
mode for integrity, thus turning a block cipher into an authenticated encryption algo-
rithm that is capable of guaranteeing both confidentiality and integrity. With CCM, it
must be ensured that an initialisation vector is not used twice with the same key, since
CCM is derived from the counter mode and the latter represents a stream cipher.

Cryptographic agility, crypto-agility A cryptosystem is considered crypto-agile if its components,
for example cryptographic algorithms, key lengths, key generation schemes or tech-
nical implementation, can be replaced by other components without having to make
significant changes to the rest of the overall system.

D

Data authentication Protection of the integrity of a message by means of cryptographic mecha-
nisms.

Dictionary attack Attack method to determine an unknown password (or user name) by system-
atically trying out a password list (also called wordlist or dictionary). The success of
such attacks is based on the fact that user-chosen passwords are often easy to guess in
practice, for example if they consist of regular or only slightly modified dictionary en-
tries or are used in a similar form in various places, so that password lists from previous
security incidents lead to a successful attack.

Diffie-Hellman-problem (DH) Problem of calculating gab given g, ga, gb in a cyclic group G gen-
erated by g ∈ G. The difficulty of this problem depends on the representation of the
group. The DH problem is easily solvable by adversaries who are able to calculate dis-
crete logarithms inG.
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Discrete-logarithm-problem (DL) Problem of calculating d given gd in a cyclic group G generated
by g ∈ G. The difficulty of this problem depends on the representation of the group.

Disk encryption Complete encryption of a data carrier with the objective that no confidential in-
formation can be read from the encrypted system, at least when it is switched off.

DLIES Discrete logarithm integrated encryption scheme, hybrid authenticated encryption
scheme based on DH in F∗

p.

E

ECIES Elliptic curve integrated encryption scheme, hybrid authenticated encryption scheme
based on DH in elliptic curves.

EME-OAEP EncodingMethod for Encryption-Optimal Asymmetric Encryption Padding, padding
scheme for RSA, see also OAEP.

Ephemeral key A cryptographic key is called ephemeral if it is generated for each execution of a
cryptographic protocol (for example key agreement, signature generation). Depending
on the application, further requirements may be imposed on the respective key type,
among them uniqueness per message or session.

F

Factorization problem Number theoretic problem in which a composite number is to be decom-
posed into the product of its prime factors or, more generally, a non-trivial divisor is to
be determined.

Fault attack Attack on a cryptographic system in which the attacker uses or actively causes an in-
correct execution of a cryptographic operation.

Forward secrecy (of cryptographic protocols) Security property of a cryptographic protocol that
states that the disclosure of long-term cryptographic secrets does not enable an ad-
versary to compromise previous sessions of the protocol [29]. It must be noted that
for any protocol, forward secrecy can only be reached if a random number generator
that guarantees at least Enhanced Backward Secrecy according to [42] was used within
the protocol for the generation of the ephemeral keys. If future sessions that have not
been manipulated by an adversary are also to remain protected in the case that all
long-term secrets are compromised, a random number generator that additionally
provides Enhanced Forward Secrecy [42] must be used when generating the ephemeral
keys.

Forward secrecy (of deterministic random number generators) Security property of a deterministic
randomnumber generator that states that future output values of the randomnumber
generator cannot be predictedwithmore than negligible advantage by adversarieswho
only knowprevious output values of the randomnumber generator, but not its internal
state, andwhose computational power is below a limit given by the security level of the
deterministic random number generator [42].

G

GCM Galois countermode,modeof operation for block ciphers, which constructs an authen-
ticated encryption scheme on the basis of a block cipher and supports authentication
of non-encrypted data.
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GMAC Message authentication code resulting fromause ofGCMwithout data to be encrypted.

H

Hash function Function h : M → N that is efficiently computable and for which M is signifi-
cantly larger thanN . The output of a hash function is called hash value, message digest
or simply hash. If h is both collision resistant and resistant to the calculation of first
and second preimages, then h is called a cryptographic hash function. In the present
Technical Guideline, the term hash function refers to a cryptographic hash function.

Hybrid encryption Combination of symmetric and asymmetric encryption that combines the ad-
vantages (efficiency respective convenient key exchange) of both techniques. Thereby,
the sender selects a randomsymmetric key, the so-called sessionkey, anduses it to sym-
metrically encrypt the data to be protected. He then encrypts the session asymmetri-
cally with the recipient’s public key and sends it together with the encrypted message.
The recipient first decrypts the session key with his private key and therewith subse-
quently the actual message.

I

Information-theoretic security A cryptographic mechanism is called information-theoretically se-
cure if any adversary fails in an attempt to break themechanism due to lack of informa-
tion. In this case, the security objective confidentiality will be achieved irrespective of
the computing power available to the adversary, as long as the assumptions about the
system information accessible to the adversary are correct. Information-theoretically
secure mechanisms exist in many areas of cryptography, for example for the encryp-
tion of data (One Time Pad), for the authentication of data (Wegman-CarterMAC), or in
the area of secret sharing (Shamir’s secret sharing algorithm, see also Chapter 7). Usu-
ally there are no security guarantees inmechanisms of this kind if the prerequisites for
the operation of the mechanism are not exactly met.

Initialisation vector (IV) Input to a cryptographic primitive used to establish an initial state. Usu-
ally, initialisation vectorsmust be (pseudo-)random, but in some applications itmay be
sufficient if they are unpredictable or do not repeat.

Instance authentication Proof of the possession of a secret by a user or an information processing
system to another party.

Integrity Objective of binding thewrite access to an information to the right tomodify the infor-
mation. In the cryptographic context, this means that a message can only be changed
unnoticed using a certain secret cryptographic key.

K

Key derivation function Cryptographic function that generates one or more other keys from one
or several secret input value(s), such as a master key, password or passphrase. Key-
dependent cryptographic hash functions are commonly used as key derivation func-
tions.

Key encapsulation mechanism, KEM Cryptographic technique with which a session key, which is
usually intended for usewith a symmetric encryptionmechanism, is transmitted using
an asymmetric encryption mechanism, see also hybrid encryption.
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Key length For symmetric cryptographic mechanisms, the key length, also known as key size, is
the bit length of the secret key. For RSA (signature and encryption algorithms), the bit
length of the RSA modulus n is referred to as key length. For schemes based on the
Diffie-Hellman problem or discrete logarithms in F∗

p (DLIES, DH key exchange, DSA),
the key length is defined as the bit length of p. For schemes based on theDiffie-Hellman
problem or discrete logarithms in an elliptic curve C over the finite field Fn (ECIES,
ECDH, ECDSA and variants), the key length is the bit length of n.

Key stretching Cryptographic key derivation technique designed to make a weak key, usually a
password, more secure by ensuring that more resources (time, memory) are required
for brute-force attacks. It must be impossible to calculate the strengthened key from
the initial key with less effort.

L

Learning with errors, LWE Mathematical problem consisting of solving a linear systemof equation
containing errors.

M

MAC Message authentication code, a key-dependent cryptographic tag. Without knowledge
of the key, it should be practically infeasible for an attacker to distinguish the MACs
of non-repeating messages from random data. In this case, no adversary can success-
fully forge tags with a probability considerably above 2−t, where t denotes the length
of the authentication tags. Specifications for the length of t depend highly on the given
application.

Man-in-the-middle-attack Type of attack in which an attacker inserts himself unnoticed either
physically or – nowadaysmostly – logically between twoormore communication part-
ners in order to, for example, read ormanipulate information. The attacker thus enters
„in the middle“ of the communication by pretending to be the receiver to the sender
and the sender to the receiver.

Min-entropy The min-entropy of a discrete random variable X is defined as − log2(p), where p
denotes the probability of the most likely value forX .

Mode of operation of a block cipher A mode of operation is a construction to describe how mes-
sages longer than the block size of the block cipher are encrypted by the cipher. Only
the combination of block cipher and mode of operation allows messages longer than
the block length to be encrypted. Usually, the message is divided into several blocks
and brought to a suitable length by so-called padding. An initialisation vector can ad-
ditionally randomise the scheme of the key.

N

Nonce A (cryptographic) nonce is an arbitrary number to be used only once in a cryptographic
communication. It is often a random or pseudo-random number issued in an authen-
tication protocol to ensure that old communications cannot be reused in replay attacks.
Nonces are also often encountered as initialization vectors and in cryptographic hash
functions.
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O

OAEP Optimal Asymmetric Encryption Padding, cryptographic padding scheme often used
together with RSA encryption. The OAEP is a special form of a Feistel network with
which, in the random oracle model, an encryption method that is semantically secure
under chosen plaintext attacks can be constructed from any trapdoor function. If used
with RSA as trapdoor function, the resultingmethod is also proved secure against cho-
sen ciphertext attacks. In general, an OAEP achieves the following two goals: It adds
an element of randomness which can be used to convert a deterministic encryption
scheme into a probabilistic scheme, and it prevents partial decryption of ciphertexts
(or other information leakage) by ensuring that an adversary cannot recover any por-
tion of the plaintext without being able to invert the trapdoor one-way permutation.

One-way function Mathematical function that is easy to calculate but difficult to invert. Here,
„easy“ and „hard“ are to be understood in the sense of computational complexity the-
ory, specifically the theory of polynomial time problems. In a broader sense, functions
are also referred to in this way for which no inversion is yet known that can be com-
puted practically in a reasonable amount of time. A one-way permutation is a one-way
function that is also a permutation, that is, a bijective one-way function. Trapdoor one-
way functions, also called trapdoor functions, as well as trapdoor permutations repre-
sent a special type of one-way functions. They can only be inverted efficiently if some
additional information is known. Trapdoor functions are used in asymmetric encryp-
tion methods such as RSA.

P

Padding Term for fillingmessageswith padding data before encrypting them. Padding ismainly
used to bring given data into the format specified by an algorithm or protocol, to ran-
domise the result (for example, the ciphertext or digital signature) of a cryptographic
mechanism, or to hide the beginning and end of the relevant data of a transmitted ci-
phertext.

Partition encryption Partition encryption refers to the complete encryption of a partition of a data
medium. The mechanisms used are similar to those used for hard disk encryption.

Pepper Secret string chosen by a server to be appended to a password before calculating a hash
value to further complicate dictionary and brute force attacks, also referred to as secret
salt by NIST. The pepper is not stored in the same database as the hash value, but is
stored in a different and as secure as possible place.

Personal identification number (PIN) In the context of this Technical Guideline, a PIN is under-
stood to be a password consisting only of the digits 0-9.

Post-Quantum Cryptography (PQC) Cryptographic algorithms implementedon classical hardware
that are thought to be secure even against attacks by a quantum computer.

Preimage attack Attack on a cryptographic hash function with the aim of finding a preimage for a
given hash value of an unknown input value (first-preimage attack) or to find another
preimage for a given input value that provides the same hash value (second-preimage
attack).

Preimage resistance A function h : M → N is called preimage resistant if it is practically impossi-
ble to find an x ∈M with h(x) = y for a given y ∈ N . It is called resistant to calculation
of second preimages, if for given x, y with h(x) = y it is practically impossible to com-
pute an x′ ̸= xwith h(x′) = y.
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Pseudo Random Function, PRF Family of efficiently computable functions that are practically in-
distinguishable from a random oracle.

Public-key cryptography See Asymmetric cryptography.

Public key infrastructure System, that can create, distribute, store, verify and revoke digital certifi-
cates and is generally used for the management of public keys in the context of asym-
metric cryptographic mechanisms.

Q

Quantum Key Distribution (QKD) Protocols that make use of quantum mechanical effects for se-
cure key exchange.

R

Rainbow table Data structure that allows a fast, memory-efficient search for the original input
(usually a password) of a given hash value. The search via a table is considerably faster
than with the brute-forcemethod, but thememory requirement is significantly higher
(time-memory tradeoff).

Random oracle Theoretical black box that responds to every unique query with a (truly) random
response chosen uniformly from its output domain. If a query is repeated, it responds
the same way every time that query is submitted. Random oracles are typically used
when cryptgraphic proofs cannot be carried out usingweaker assumptions on the cryp-
tographic hash function, as due to their construction they fulfill the classical properties
of a cryptographic hash function (strong collision resistance and resistance to the cal-
culation of first and second preimages) in a perfect way. A system that is proven secure
when every hash function is replaced by a random oracle or a security security proof
that uses a random oracle is said to be secure in the random oracle model, as opposed
to secure in the standard model of cryptography (the standard model is the model of
computation in which the adversary is only limited by the amount of time and com-
putational power available).

Random oracle model See Random oracle.

Related-key attack Attack on a cryptographic mechanism in which an attacker can query encryp-
tions and possibly decryptions not only under the actually used key K , but also under
a number of other keys not known to the attacker, which are related to K in a way
known to the attacker. This model is very advantageous for the attacker, yet there are
situations in which related-key attacks can be practically relevant, for example in the
context of constructing a cryptographic hash function based on a block cipher.

RSA Asymmetric cryptographic algorithm (named after its inventors Ronald Rivest, Adi
Shamir and Leonard Adleman) that can be used for encryption and digital signatures
and is based on the difficulty of the factorisation problem.

S

Salt Randomly chosen string appended to a given plaintext before it is further processed
(for example, before input to a hash function) to increase the entropy of the input. Salts
are often used for storing and transmitting passwords to make rainbow tables more
difficult to use.
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Secret sharing Amechanism for distributing secret data (for example a cryptographic key) to sev-
eral parties or storage media. The original secret can only be reconstructed by evalu-
ating several shared secrets. For example, a secret-sharing scheme may require that at
least k of a total of n shared secrets must be known in order to reconstruct the crypto-
graphic key to be protected.

Security Level (of Cryptographic Mechanisms) A cryptographic mechanism achieves a security
level of n bits if there are costs associated with each attack against the mechanism
that breaks the mechanism’s security objective with a high probability of success,
equivalent to 2n calculations of the encryption function of an efficient block cipher
(for example, AES).

Seed Start value with which a random number generator is initialised in order to generate a
sequence of random numbers or pseudo-random numbers. If the same seed is used in
deterministic randomnumber generators, the same sequence of pseudo-randomnum-
bers is output.

Shannon entropy TheShannonentropyof adiscrete randomvariableX is definedas−
∑

x∈W
px log2(px),

where W is the range of values of X and px is the probability of X taking the value
x ∈W , that is px = P(X = x).

Side-channel attack Attack on a cryptographic system that exploits the results of physical mea-
surements on the system (for example, energy consumption, electromagnetic emana-
tion, runtime of an operation) to gain insight into sensitive data. Side-channel attacks
are of very high relevance for the practical security of information-processing systems.

Symmetric cryptography Generic term for cryptographicmechanisms inwhich all parties involved
must havepre-distributed shared secrets in order to be able to perform the entiremech-
anism.

T

TDEA Triple DES.

Trapdoor one-way function, Trapdoor function, Trapdoor permutation See One-way function.

U

Uniform distribution In the context of this Technical Guideline, uniformly distributed generation
of a randomnumber from a base setM means that the generating process is practically
indistinguishable from an ideally random (that means, from a truly random, equally
distributed, independent) drawing of elements fromM .

V

Volume encryption See partition encryption.
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1. Introduction

In this technical guideline, the Federal Office for Information Security (BSI) provides an assessment
of the security of selected cryptographic mechanisms, combined with a long-term orientation for
their use. The recommendations made are reviewed annually and adapted if necessary. However,
no claim is made to completeness, that means mechanisms not listed are not necessarily consid-
ered to be insecure by the BSI. Conversely, it is also wrong to conclude that cryptographic systems
which only use the mechanisms recommended in this Technical Guideline as basic components
are automatically secure: The requirements of the concrete application and the linking of different
cryptographic and non-cryptographic mechanisms can lead to the fact that the recommendations
madehere cannot be implementeddirectly or that vulnerabilities arise. Due to these considerations,
it must be emphasised in particular that the recommendationsmade in this Technical Guideline do
not anticipate any decisions, for example as in the course of governmental evaluation and approval
processes.
This Technical Guideline addresses primarily, in a recommendatorymanner, developers who are

planning to introduce new cryptographic systems from 2024 onwards. For this reason, this docu-
ment deliberately refrains frommentioning cryptographic mechanisms which, although still con-
sidered secure at the present time, can no longer be recommended in themedium-term, since they
show, if not yet exploitable, at least theoretical weaknesses. In the development of new crypto-
graphic systems, various other documents issued by the BSI may also play a role, including [43, 44,
48, 45, 46, 49, 37, 40, 38, 47]. For certain applications, the specifications contained in these documents
– in contrast to the recommendations of this Technical Guideline – are binding. A discussion of the
regulations contained can be found in [58]. The following two sections first describe the security
objectives as well as the selection criteria of the recommended cryptographic mechanisms. Fur-
ther, very general information on the practical implementation of the recommended mechanisms
is given.
The recommended cryptographic mechanisms for the following applications are listed in Chap-

ters 3 to 8:

2 Asymmetric Encryption and Key Agreement,

3 Symmetric Encryption and Key Agreement,

4 Cryptographic Hash Functions,

5 Data Authentication,

6 Instance Authentication,

7 Secret Sharing and

8 RandomNumber Generators.

In the respective sections, the required (minimum) key lengths and other constraints to be observed
are stated as well.
Often, various cryptographic algorithms must be combined with each other in order to ensure

that a mechanism meets the security requirements placed on it. For example, it is often necessary
not only to encrypt confidential data, but a recipient must also be sure who sent the data and/or
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whether it was manipulated during transmission. Therefore, the data to be transmitted must ad-
ditionally be authenticated by means of an adequate method. Another example for the need of
the combination of cryptographic primitives are key agreement procedures. Here, it is important to
knowwithwhom the key agreement is carried out in order to be able to eliminate so-calledman-in-
the-middle attacks andunknownkey share attacks [16]. This is achievedby schemeswhich combine
key agreement and instance authentication. For these two application scenarios, Annex A specifies
corresponding schemes that are constructed by combining the schemes listed in Chapters 3 to 8
and that meet the security level required in this Technical Guideline. In addition, Annex B recom-
mends frequently used functions and algorithms that are required, for example, for key derivation
for symmetric mechanisms or for the generation of prime numbers and other system parameters
for asymmetric mechanisms. Finally, in Appendix C, recommendations are made for the use of se-
lected cryptographic protocols. In the current version of this Technical Guideline, this only applies
to the protocols SRTP andMLS; recommendations for TLS, IPsec and SSH have been transferred to
the Technical Guidelines TR-02102-2 [33], TR-02102-3 [34] and TR-02102-4 [35] respectively.

1.1. Security Objectives and Selection Criteria

The security of cryptographic mechanisms essentially depends on the strength of the underlying
cryptographic primitives. For this reason, this Technical Guideline only recommends mechanisms
that can be assessed and evaluated on the basis of the results of many years of analysis and discus-
sion. Other factors of central importance for security are the concrete implementations of the algo-
rithms and the reliability of background systems, such as the public key infrastructures required for
the secure exchange of certificates. The realisation of concrete implementations is not considered
here, nor are possible problems related to patent law. Even though care was taken in the selection
of the mechanism to ensure that the algorithms are free of patents, this cannot be guaranteed by
the BSI. In addition, this Technical Guideline contains individual notes to possible difficulties and
problems arising during in the implementation of cryptographic mechanisms, but these remarks
are not to be understood as an exhaustive list of such problems.
Overall, all cryptographic mechanisms specified in this Technical Guideline achieve a security

level of at least 120 bits when used with the parameters specified in the individual sections. The bit
lengths recommended in this Technical Guideline for use in new cryptographic systems are based
on this minimum level only to the extent that no recommended mechanism falls below it. The ef-
fective strength of the recommended mechanisms is in many cases higher than 120 bits. Thus, a
securitymargin against possible future progress in cryptanalysis is provided. As alreadymentioned
before, the converse is not true: mechanisms not specified in this Technical Guideline can never-
theless achieve the required level of security.
Table 1.1 shows the key lengths of selected algorithms and types of algorithms forwhich a security

level of 120 bits is just achieved according to current knowledge.

Symmetric Schemes Asymmetric Schemes

Ideal Block Cipher Ideal MAC RSA DSA1/DLIES ECDSA/ECIES

120 120 2800 2800 240

Table 1.1: Examples of key lengths for a security level of at least 120 bits.
1 The use of the DSA signature algorithm (see Section 5.3.2) is in this Technical Guide-

line only recommended until 2029 due to its low prevalence and the discontinuation

in [98].

Table 1.2 summarises the recommended key lengths of different types of cryptographic primitives.
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Block Cipher MAC RSA DH Fp ECDH ECDSA

128 128 3000 3000 250 250

Table 1.2: Recommended key lengths for various
cryptographic mechanisms.

Key exchange schemes based on Diffie-Hellman are to be handled in Tables 1.1 and 1.2 in accor-
dance with DSA/ECDSA.
In many applications, other security parameters besides the key length play a role in the overall

security of a cryptographic system. In the caseofmessage authentication codes (MACs), for example,
the length of the digest output is an important security parameter in addition to the key length.
Ideally, a MAC should in practice be indistinguishable for an attacker from a random function with
a corresponding digest length. As long as this criterion is met, the attacker is left with the option of
generating fake messages by guessing, with a per-attempt probability of success of 2−n when n is
the tag length. In many applications, n = 96 can be considered acceptable in such a situation, that
is a tag length of n = 96 bits.
In case of block ciphers, the block width is a security parameter independent of the key length.

In the absence of structural attacks on a block cipher, the most significant impact of a small block
width is that keys have to be exchanged more frequently. The exact impact depends on the used
mode of operation. This Technical Guideline does not recommend block ciphers that have a block
width of less than 128 bits.
An important type of cryptographic primitives that do not process secret data at all are crypto-

graphic hash functions. Here, the length of the digest value returned is themost important security
parameter and should be at least 200 bits for general applications to achieve the minimum level of
security required by this Technical Guideline. The hash functions recommended in Chapter 4 have
a minimum hash length of 256 bits; deviations from this rule for special applications are discussed
at appropriate places in this Technical Guideline.

1.2. General Remarks

Reliability of Predictions on the Security of Cryptographic Mechanisms When determining the
size of system parameters (such as key length, size of the image domain for hash functions, etc.)
not only the best algorithms known today for breaking the corresponding mechanisms and the
performance of today’s computers have to be taken into account, but above all a forecast of the
future development of both aspects, see in particular also [73, 72, 47].
The development of the performance of classical computers can be estimated relatively well to-

day. Fundamental scientific progress (either in terms of attack algorithms or, for example, the de-
velopment of a cryptographically relevant quantum computer), on the other hand, cannot be pre-
dicted. Therefore, any prediction beyond a period of six to seven years is difficult, especially for
asymmetricmechanisms, and even for this period of six to seven years, the predictions can turn out
to bewrongdue tounforeseendevelopments. The informationprovided in this TechnicalGuideline
is therefore only limited to a period until the end of 2030.

General Guidelines for Handling Confidential Data with Long-Term Protection Requirements
Since an attacker can store data and decrypt it later, there remains a fundamental risk to the
long-term protection of confidentiality. This results in the following direct consequences:

• The transmission and storage of confidential data should be reduced to the necessary extent.
This applies not only to plaintexts, but also, for example, in particular to the avoidance of stor-
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ing session keys on any kind of non-volatile media, as well as their undelayed secure deletion
as soon as they are no longer needed.

• The cryptosystem must be designed in such a way that a transition to larger key lengths and
stronger cryptographic mechanisms is possible (cryptoagility).

• For data whose confidentiality has to remain secure in the long-term, it is recommended to
choose for the encryption of the transmission via generally accessible channels such as the In-
ternet, the strongest possiblemechanisms of the recommended ones in this Technical Guide-
line. In most contexts, for example, AES-256 is considered stronger than AES-128 due to its
longer key length. However, since such general assessments are difficult – in the concrete ex-
ample, for example, in some (constructed) scenarios AES-192 and AES-256 are weaker than
AES-128 against the best known attacks (see [15]) – the advice of an expert should already be
sought at an early stage if possible.

• With regard to the selection of cryptographic components for a new application, it should
generally be taken into account that the overall system is in general not stronger than the
weakest component. Therefore, if a security level of, for example, 256 bits is aimed at for
the overall system, all components must at least meet this security level. Selecting individual
components that achieve a higher level of security against the best known attacks than the
overall system may still make sense under certain circumstances, because this increases the
robustness of the system against advances in cryptanalysis.

• In order to minimise the possibility of side-channel attacks and implementation errors, in
the case of software implementations of the cryptographicmechanisms presented here, pref-
erence should be given to the use of open-source libraries over proprietary developments if
it can be assumed that the functions used in the library have been subjected to broad public
analysis. When evaluating a cryptosystem, the trustworthiness of all system functions must
be assessed; in particular, this also includes dependencies of the solution on properties of the
hardware used.

Focus of this Document The security assessment of the cryptographic mechanisms recom-
mended in this Technical Guideline is carried out without taking the concrete use case into
consideration. Other security requirements may arise for specific scenarios which may not be met
by the mechanisms recommended in this Technical Guideline. Examples include the encryption
of storage devices, the encrypted storage and processing of data on systems operated by external
providers („Cloud Computing“ or „Cloud Storage“) or cryptographic applications on devices with
extremely low computational resources („Lightweight Cryptography“). References to some of the
mentioned application scenarios can be found in Section 1.6. This document can therefore support
the development of cryptographic infrastructures, but cannot replace the assessment of the overall
system by a cryptologist or anticipate the results of such an evaluation.

General Recommendations for the Development of Cryptographic Systems The following list
summarises some principles that are generally recommended to be observed in the development of
cryptographic systems:

• When planning systems for which cryptographic components are intended, collaboration
with experts in the cryptographic field should be sought at an early stage.

• The cryptographic mechanisms must be implemented in trusted technical components in
order to achieve the required level of security aimed for in this Technical Guideline.
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• The implementations of the cryptographic mechanisms and protocols themselves must be
included in the security analysis to prevent, for example, side-channel attacks or implemen-
tation weaknesses.

• If the conformity of a product with the requirements of this Technical Guideline is to be
shown, the security of technical components and implementations has to be demonstrated
according to the applicable protection profile provided by Common Criteria certificates or
similar mechanisms of the BSI, for example in the course of an approval.

• After development and before productive use of a cryptographic system, an evaluation of the
system should be carried out by independent experts who were not involved in the devel-
opment. An assessment of the procedural security by the developers alone should not be
considered reliable, even if the developers of the system have good cryptographic knowledge.

• The consequences of a failure of the security mechanisms used must be thoroughly docu-
mented. Wherever possible, the system should be designed in such a way that the failure or
manipulation of individual system components is detected immediately and the security ob-
jectives are preserved by means of a transition to an adequate secure state.

1.3. Cryptographic Remarks

A cryptographic mechanism can often be used for different applications, for example signature
methods can be used for both data authentication as well as for instance authentication. In gen-
eral, different keys should be used for different applications. Another example is symmetric keys
for encryption and symmetric data authentication. In concrete implementations, it must be en-
sured that different keys are used for each of the two mechanisms, which in particular cannot be
derived from each other, see also Section A.1.
In some places, this Technical Guideline only provides an informative description of the crypto-

graphic primitives. However, since cryptographic security can only be assessed within the frame-
work of the exact specification and the protocol used in each case, the corresponding standards
referred to here must be observed. Further specific information is given, if necessary, in the corre-
sponding sections.

1.4. Implementation Aspects

Besides the cryptanalytic security of the algorithms, the security of their implementation, for ex-
ample against side-channel and fault attacks, is crucial for the security of a cryptosystem. This is
especially true for symmetric encryption methods. A detailed treatment of this topic is beyond the
scope of this Technical Guideline, especially since the countermeasures to be taken in individual
cases are also highly dependent on the concrete implementation. At this point, only the following
general measures are recommended:

• Whenever it is possible with reasonable effort, cryptographic operations should be carried
out in security-certified hardware components (for example, on a suitable smart card) and the
keys used should not leave these components.

• Attacks that can be carried out by remote, passive attackers are inherently difficult to detect
and can therefore lead to significant unnoticed data leakage over a long period of time. These
include, for example, attacks exploiting variable bit rates, file lengths or variable response
times of cryptographic systems. It is recommended to thoroughly analyse the effects of such
side-channels on system security when developing a new cryptographic system and to take
the results of the analysis into account in the development process.
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• Both attacks on symmetric and asymmetric mechanisms have recently increasingly used at-
tack methods based on mechanisms from the field of machine learning (ML) or artificial in-
telligence (AI). Neural networks in particular often achieve state-of-the-art results. It is be-
coming apparent that AI-based methods could be superior to the classic attack methods that
are currently most commonly used (for example based on correlations or templates) in some
use cases. Therefore, an AI-side-channel guide containing more detailed recommendations
on this topic is in preparation.

• At the protocol level, the occurrence of error oracles should be prevented. This can be done
most effectively by protecting all ciphertexts by a MAC. The authenticity of the ciphertext
should be checked before any other cryptographic operations are performed and no further
processing of non-authentic ciphertexts should take place.

As in other contexts, the general recommendation already mentioned several times applies here
in particular to always use, wherever possible, components that have already been subjected to in-
tensive analysis by a broad public and to involve experts in the development of new cryptographic
systems from an early stage onwards.

1.5. Dealing with Legacy Algorithms

There are algorithms against which no practical attacks are known so far andwhich still have a high
prevalence and thus a certain importance in some applications, but which are basically considered
no longer state-of-the-art for new systems. We briefly discuss themost important examples below.

HMAC-MD5 The lackof collision resistanceofMD5 is not yet an immediate problem in theHMAC
constructionwithMD5 as the hash function [10], since the HMAC construction only requires a very
weak form of collision resistance from the hash function. However, it seems fundamentally inad-
visable to use primitives in new cryptosystems that have been completely broken in their original
function. Systems using MD5 for cryptographic purposes are therefore not compliant with this
Technical Guideline.

HMAC-SHA1 SHA1 is not a collision-resistant hash function. The generation of SHA1 collisions,
while requiring moderate effort, is practically possible [75, 74, 107], even though, according to cur-
rent knowledge, there are no known weaknesses when using SHA1 in constructions that do not
require collision resistance (for example, as the basis for an HMAC, as part of the mask generation
function in RSA-OAEP, or as a component of a pseudorandom number generator). However, as a
basic security measure, it is recommended to use a hash function of the SHA2 or SHA3 family in
these applications as well.

RSA with PKCS1v1.5 padding In principle, it is not recommended to use this format in new sys-
tems, neither for encryption nor for signature generation, since there are padding procedures with
RSA-OAEP or RSA-PSSwithmore solid theoretical security properties. In addition, RSA implemen-
tations with PKCS1v1.5 padding have proven to be more vulnerable to attacks that exploit side-
channel information or implementation errors.

1.6. Other Relevant Aspects

Finally, we would like to explicitly mention some important topics that are either not covered or
not covered in detail in this Technical Guideline. The list explicitly does not claim to be complete.
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Key Lengths for Information Requiring Long-Term Protection and in Systems with a Long In-
tended Period of Use For the purposes of this section, information requiring long-term protection
means informationwhose confidentiality is intended to bemaintained significantly longer than the
period of time for which this Technical Guideline makes predictions about the suitability of cryp-
tographic mechanisms, that means well beyond 2030. A reliable prognosis about the suitability of
cryptographic mechanisms over the entire life cycle of a system is no longer possible in this case.
It is recommended to provide protection mechanisms that go significantly beyond the minimum
requirements of this Technical Guideline with the help of an expert. The following are examples of
different ways to minimise risk:

• When developing new cryptographic systems with a projected long period of use, it is advis-
able to provide for the possibility of future operation with higher key lengths already during
development. A possible future need to change the mechanisms used or the implementation
of suchmechanism changes should also be taken into account during the development of the
original system („cryptoagility“).

• Already when introducing the system, higher asymmetric key lengths than required in this
Technical Guideline should be used. An obvious option is to aim for a uniform security level
of≥ 128 bits for all system components. Guidance on theminimum asymmetric key lengths
required for different security levels can be found in Table 2.2.

• Overall, the amount of information requiring long-term protection that is transmitted over
public networks should be reduced to what is absolutely necessary. This applies in particu-
lar to information that is transmitted after encryption with a hybrid or asymmetric crypto-
graphic mechanism.

For a more detailed discussion regarding long-term secure key lengths for asymmetric crypto-
graphic mechanisms that are currently in wide use, we refer to [30, 72].

Lightweight Cryptography In this context, particularly restrictive requirements arise with regard
to the computing time andmemory requirements of the cryptographicmechanisms used. Depend-
ing on the application, the security requirements may also differ from the classical ones.

Response Times of a System When using cryptographicmechanisms in areas where tight specifi-
cations on the response times of the systemmust be adhered to, special situationsmay occur which
are not dealt with in this guideline. The recommendations on the use of SRTP in Appendix C cover
parts of this topic.

Hard Disk Encryption In the context of hard disk encryption, the problem arises that in most
application scenarios neither encryption with data expansion nor a significant expansion of the
amount of data that needs to be read from or written to the storage medium is acceptable. None
of the recommended encryption modes is directly suitable as the basis of a hard disk encryption
solution. Provided that an attacker cannot combine images of the state of the hard disk at several
different points in time, XTS-AES offers relatively good security properties and good efficiency [87].
However, if the attacker can create copies of the encrypted storage medium at a larger number of
different points in time, a certain, not necessarily insignificant, leakage of information must be as-
sumed. For example, by comparing two images of a hard disk encrypted with XTS-AES made at
different points in time, the attacker can immediately see which plaintext blocks on the hard disk
have been changed within this period and which have not.
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Disk Encryption of SSD Disks In connection with the encryption of a solid state drive (SSD), it is
important to note that the SSD controller does not implement the overwriting of logical storage
addresses physically in-place, but distributes them to different physical storage areas. Thus, the
current state of an SSD always contains information about certain previous states of the storage
medium. An attackerwith good knowledge of how the SSD controller works can potentially exploit
this to track successive states of a logical storage address. A single image of the encrypted SSDmay
thus be more valuable to an attacker than a single image of a classical hard disk.

Cloud Storage Similar problems as with the encryption of data media arise with the encrypted
storage of entire logical drives on remote systems that are not under the control of the data owner
(so-called cloud storage). If the provider of the remote server or its security measures cannot be
trusted to a high degree, it must be assumed that an attacker can create disk images at any time
without being noticed. If files with sensitive data are stored on a storage system that is regularly
under foreign control, cryptographically strong file encryption should be applied before transmis-
sion. This also applies if the data is encrypted using volume encryption before it is transferred to the
storagemedium. The use of a volume encryption solution alone is only recommended if it includes
effective cryptographic protection against manipulation of the data and if the other requirements
for the use of the corresponding mechanism in general cryptographic contexts are met (for exam-
ple, the requirement of unpredictable initialisation vectors). In particular, mechanisms should be
selected in such a way that, unlike in XTS mode, no significant leakage of information through fre-
quency analysis of successive states is to be expected when a block of data is written repeatedly.

Physical Aspects The present Technical Guideline essentially only addresses those aspects of the
security of cryptographic systems that can be reduced to the underlying primitives. Physical aspects
such as the emission security of information-processing systems or cryptographic systems whose
security is based on physical effects (for example, quantum cryptographic systems) are not or only
marginally covered in this Technical Guideline, nor are side-channel attacks, fault attacks and other
physical security issues. Any comments in this regard are to be understood explicitly as exemplary
references to potential risks without any claim to completeness.

Traffic Flow Analysis None of the mechanisms and protocols for data encryption described in
this Technical Guideline achieve by themselves the objective of security against traffic flow analy-
sis (so-called traffic flow confidentiality). Traffic flow analysis – that is, an analysis of an encrypted
data stream taking into account the source, destination, time of existence of a connection, size of
the transmitted data packets, data rate and time of transmission of the data packets – can allow
significant conclusions to be drawn about the content of encrypted transmissions, see for example
[6, 25, 106]. Traffic flow confidentiality is an objective that can usually only be fully achieved with a
great deal of effort and is therefore not feasible inmany applications that process sensitive informa-
tion. However, it should be checked in each individual case by experts to what extent andwhat kinf
of confidential information information is disclosed in a given cryptosystem through traffic flow
analysis (and of course other side-channel attacks). Depending on the particular situation, the out-
come of such an evaluationmay necessitate significant changes to the overall system. It is therefore
recommended that the resistance of a cryptographic system to disclosure of sensitive information
through traffic flow analysis be considered as an objective from the outset in the development of
new systems.

Endpoint Security The security of the endpoints of a cryptographically secured connection is es-
sentially for the security of the transmitted data. When designing a cryptographic system, it must
be clearly documented which system componentsmust be trusted to achieve the intended security
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objectives, and these components must be hardened against compromise in a manner appropri-
ate to the context of use. Appropriate considerations must encompass the entire life cycle of the
data to be protected as well as the entire life cycle of the cryptographic secrets generated by the sys-
tem. Cryptographicmechanisms can reduce the number of components of an overall systemwhose
trustworthiness must be ensured in order to prevent data leakage, but they cannot solve the basic
problem of endpoint security.

Quantum-Safe Cryptography Encryption methods may need to protect data once transmitted
for a long time. Attacks by future quantum computers should therefore be considered as part of
risk management. On the other hand, the standardisation of quantum computer-resistant cryp-
tographic mechanisms has not yet been completed, and at the present time there is also not as
much knowledge about their secure implementation as is the case with classical public key meth-
ods. Chapter 2 provides some preliminary recommendations for dealing with issues in this area.
An overview of the current state of development of the technology underlying quantum comput-
ing can be found in the study [47], among others.
This Technical Guideline does not provide any recommendations, or at least no comprehensive

recommendations, with regard to the implementation ofmechanisms in the previouslymentioned
areas. It is therefore advised that in the development of cryptographic systems as a whole – but
especially in these areas – experts from the relevant fields should be involved in the development
work from the very beginning.
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2. Asymmetric Encryption Schemes and Key
Agreement

Key agreement schemes are used to exchange a shared secret encryption key over an insecure chan-
nel. In practice, asymmetric encryption methods (also known as public key encryption methods)
are usually only used for the transmission of symmetric keys, as they are considerably less efficient
than symmetric encryptionmethods. This chapter deals with both asymmetric encryption and key
agreement mechanisms.
The security of current “classical” asymmetric methods is based on the assumed difficulty of cer-

tain mathematical problems, where “classical” is to be understood in the sense of “provides protec-
tionagainst attacks that canbe implementedonclassical hardware”. Theunderlyingproblemsof the
classical asymmetric methods that are currently used in practice are inmost cases the factorization
problem (Factorization problem) and the discrete logarithm problem (Discrete-logarithm-problem
(DL)).
However, even if no efficient classical algorithms for solving these problems are currently known,

Shor’s algorithm [105] from the 1990s provides a corresponding quantum algorithm. If a sufficiently
large quantum computer is available, Shor’s algorithm is able to efficiently solve the factorization
and the discrete logarithm problem and thus break the classical asymmetric encryption. It is there-
fore recommended to use quantum-safe key derivation methods (see Section 2.4) for systems de-
signed to protect information that requires long-term protection. Since the quantum-safemethods
are comparatively new or have been less investigated, especially with regard to implementation
security, this Technical Guideline currently only recommends the hybrid use (see Section 2.2) of
quantum-safe methods in combination with classical methods.
It is absolutely essential that key agreement schemes are combined with instance authentication

schemes, sinceotherwise there is noway todecidewithwhichparty thekeyagreement is performed.
This chapter only deals with the key derivation and encryption methods without the additionally
required authenticationmechanism. For a secure key agreement, themethods described heremust
be embedded in corresponding protocols that among others further ensure the authenticity of the
communication partners. For this reason, we give only general ideas for key agreement schemes in
this chapter and refer to Section A.2 for specific key agreement schemes that also include instance
authentication.
After successful key agreement, both communication partners are in possession of a shared secret

(or several secrets in the case of hybrid key agreement). For recommended methods for generating
symmetric keys from this secret or these secrets, see Section 2.2.
Essentially, the use of a key derivation function is recommended for this task. In some situations,

it may make sense to allow a pre-distributed secret to enter the key derivation function. This can
be used, for example, to separate different user groups. Also, additional protection against attacks
on the key agreement scheme can be achieved in this way. With regard to a separation of different
user groups, it can also be reasonable to take further public data into account that is specific to both
communication partners in the key derivation.

Remark 2.1When cryptographic keys are negotiated with a key agreement scheme or transmitted
securely with a key transport scheme, these keys or the cryptographicmechanisms using these keys
have at most the same security level as the key agreement or key transport scheme. Since there
is a possibility that an attacker records the communication during key agreement or key transport,
changed recommendations for key agreement or key transport schemes also have an impact on pre-
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viously negotiated or transmitted keys. For example, if the key agreement or key transport scheme
loses conformance to this Technical Guideline, the keys negotiated or transferredwith it should also
no longer be used.

The asymmetric cryptographic mechanisms recommended in this document require as com-
ponents further subcomponents, such as hash functions, message authentication codes, random
number generators, key derivation functions and/or block ciphers, which in turn must also meet
the requirements of the present Technical Guideline in order to achieve the desired level of security.
Relevant standards [59] sometimes recommend the use of mechanisms that are not recommended
in the present Technical Guideline. In principle, it is recommended to observe the following prin-
ciples when implementing a standard:

• For cryptographic subcomponents, only the respective mechanisms recommended in this
Technical Guideline should be used.

• If in this TechnicalGuidelinemechanisms are recommended that are standardised exclusively
with a non-recommended subcomponent, this subcomponent is to be regarded as recom-
mended in the context of the mechanism.

• If this is not compatible with standards compliance, an expert must be involved and the final
decisions made regarding the chosen cryptographic subcomponents have to be documented
in detail and justified from a security point of view.

In the selection of the recommended asymmetric encryption schemes, care has been taken to
ensure that only probabilistic algorithms1 are recommended here. In particular each time a cipher-
text is computed, a new randomvalue is needed. Some of the requirements for these randomvalues
cannot be met directly by generating equally distributed values of fixed bit length. More details on
these random values are given in the sections on the corresponding schemes.

Remark 2.2 (Side-Channel Attacks and Fault Attacks) Depending on the situation at hand, vari-
ous types of side-channel attacks and/or fault attacks may be relevant to asymmetric encryption
schemes and/or asymmetric digital signature schemes. This topic cannot be dealt with comprehen-
sively in the present Technical Guideline. The security of an implementation against side-channel
and fault attacks must therefore always be examined on a case-by-case basis. Detailed recommen-
dations on this topic can be found for cryptographic mechanisms based on elliptic curves in [46]
and for RSA, Fp-DH and corresponding signature methods in [45].

Remark 2.3 (Public Key Infrastructures) The asymmetric encryption methods described in this
Technical Guideline do not in themselves offer any protection against man-in-the-middle attacks.
The security guarantees of the describedmechanisms are therefore only valid ifman-in-the-middle
attacks can be reliably prevented by additional mechanisms. For this, an authentic distribution of
the public keys of all participants must be ensured.
This can be done in various ways, usually a public key infrastructure (PKI) is used. In a PKI, the

problem of authentic distribution of public keys is reduced to the distribution of the root certifi-
cates of the PKI. When planning a PKI for an asymmetric encryption or signature procedure, it is
recommended to consider the aspects listed below. This is not an exhaustive list of development re-
quirements for public key infrastructures, butmerely a list of comparatively generic aspects that are
recommended to be considered when developing a PKI; for more information see also [39]. During
the development and evaluation of a concrete system, further requirements usually arise, which are
not considered here. The development of a suitable PKI for a new cryptographic application is not
a trivial task and should therefore only be dealt with in close consultationwith appropriate experts.

1The RSA algorithm itself is not probabilistic, but the padding method for RSA recommended here is.
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• When issuing certificates, the PKI should verify that the applicant is in possession of a private
key to his public key. This can be done, for example, by a challenge-response mechanism for
instance authentication, which requires knowledge of the private key. It is also conceivable
to generate the key pairs in an environment that is secure from the PKI’s point of view, if it is
combined with a secure transport of the generated key pairs to the end user.

• There should be possibilities for the deactivation of certificates in a timely manner and it
should not be possible for an attacker to prevent a verifying party from having the informa-
tion about the current status of a certificate available at the time of verification without being
noticed.

• Certificates should only be issued with a limited validity period.

• All certificate issuers must be trustworthy.

• A certificate should indicate whether it authorises the signing of further certificates. In gen-
eral, any system that comes into contact with a certificate should be able to clearly determine
what this certificate may be used for.

• The length of certificate chains should be limited upwards (by a value as low as possible).

2.1. Use of Quantum-Safe Mechanisms

The classical, asymmetric key agreement and encryptionmechanism that are currently used are un-
der increasing threat by the ongoing development of sufficiently large quantum computers. Even if
the quantum computers available today are not yet capable of breaking cryptographicmechanisms,
the threat is already relevant today. In particular, for data with longer-term protection require-
ments, since encrypted data can already be stored for later decryption (“Store Now, Decrypt Later”).
In addition, potentially long migration times to new cryptographic algorithms must be taken into
account. It is therefore advisable to use quantum-safe mechanisms in the very near future, es-
pecially for systems that process data with longer-term protection requirements. These methods
should only be used in combination with a classical key derivation method; further details can be
found in Section 2.2.

Remark2.4 In the context of post-quantumcryptography, a cryptographicmethodwhose secret key
is based on the combination of a secret key from a quantum-safe method with a secret key from a
classical method is also referred to as “hybridmethod” or “hybrid key agreement”. This term should
not be confused with the term “Hybrid encryption”, which refers to the combination of symmetric
and asymmetric encryption. However, it is usually clear from the context which notion is meant,
so that in the sequel no further clarification is given unless necessary.

A fundamentally different approach to key agreement than post-quantum cryptography (PQC)
is offered by quantum key distribution (QKD). In contrast to post-quantum cryptography, QKD ad-
dresses the problem of establishing a secure communication channel by making use of quantum
physical effects. However, the practical restrictions of QKD, such as limited transmission distances
and the need to use specialised hardware, are severely limiting compared to the use of PQC mech-
anisms. Therefore, QKD is only suitable for specific use cases. Furthermore, since no standardised
protocols with associated security proofs are available yet, the BSI is not making any recommenda-
tions of suitable protocols at this time. As soon as the necessary preconditions aremet, the BSI plans
in the medium-term tomake recommendations on protocols, authenticationmechanisms and the
use of QKD. Irrespective of this, the BSI does not and will not recommend the use of the one-time
pad alone with keys obtained via QKD or via other key agreement mechanisms in the future.
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2.2. Key Derivation and Hybridisation

After a key agreement, both parties are in possession of a shared secret fromwhich symmetric keys,
for example for encryption and data authentication, can be derived using a key derivation function.
For recommended mechanisms for key derivation, please refer to Section B.1.1.
In general, the quantum-safe methods recommended in this Technical Guideline are not yet

given the same confidence as the established classicalmethods, as they among others have not been
equally well investigated with regard to side-channel resistance or implementation security. This
Technical Guideline therefore recommends the use of a quantum-safe mechanism only in combi-
nation with a classical key derivation mechanism. Hybrid key agreement should be secure as long
as one of the methods used is secure. It is hereby important to consider in detail how the shared
secrets are combined with each other and how context-dependent information is included so that
the desired property mentionend before is actually achieved.
For recommended mechanisms for hybrid key derivation, please refer to Section B.1.2.

2.3. Classical Asymmetric Mechanisms

In simplified terms, themost practically relevant asymmetric encryption and signaturemethods are
based either on the difficulty of the problem of calculating discrete logarithms in suitable represen-
tations of finite cyclic groups (Discrete-logarithm-problem (DL)) or on the difficulty of decompos-
ing large integers into their prime factors (Factorization problem). Occasionally, the question arises
whichof these twoapproaches is to be considered cryptographicallymore secure. ThepresentTech-
nical Guideline regards the factorisation of large numbers, the RSA problem, the problem of com-
puting discrete logarithms in suitable fields Fp (p prime), the problem of computing discrete loga-
rithms in suitable elliptic curves, and the corresponding Diffie-Hellman problems as well-studied
hard problems, and there is no reason in this respect to prefer mechanisms based on factorisation
tomechanisms based on discrete logarithms, or vice versa. For particularly high security levels, the
use of ECmechanisms is advantageous for efficiency reasons, see also Table 2.2.

Remark 2.5 For asymmetricmechanisms, there are usually different equivalent, practically relevant
representations of the private and public keys. The bit length of the keys on a storage medium can
vary depending on the chosen representation of the keys. For the exact definition of the key length
for the recommended asymmetric cryptographic mechanisms, we therefore refer to the entry Key
length in the glossary.

The following Table 2.1 provides an overview of the recommended classical asymmetric encryp-
tion and key agreement schemes as well as key lengths l in bits.

Scheme RSA DLIES ECIES DH ECDH

Key Length l in bits 3000 3000 250 3000 250
Reference [82] [1] [1, 59] [1, 102] [1, 102]
More detailed information in Section 2.3.2 Section 2.3.3 Section 2.3.4 Section 2.3.5 Section 2.3.6

Table 2.1: Recommended classical asymmetric encryption and key derivation schemes as well as
key lengths and normative references.

Remark 2.6 The current recommendations result in only a small buffer between the minimum se-
curity level of about 125 bits achieved by the recommended EC bit lengths and the security level
of 120 bits targeted in this Technical Guideline. In certain applications that have particularly high
demands on security or whose security must be guaranteed substantially exceeding the prediction
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period of this Technical Guideline, it may therefore make sense to provide significantly longer key
lengths for ECmechanisms in order to increase the security buffer. The key length requirements of
theCountry SigningCA from [38], for example, can be explained in thisway. Since the security of EC
mechanisms depends on the assumption that an attacker cannot use any of themathematical struc-
ture of a given elliptic curve to calculate discrete logarithms faster than the Pollard-Rho algorithm
allows, it is conceivable that in the coming years the requirements of the present Technical Guide-
line will be increased in this area as a basic precaution. It is also recommended as a basic security
measure to use curve parameters in EC algorithms that have been generated verifiably at random,
whose construction has been comprehensibly documented and whose security has been subjected
to a thorough analysis. An example of such curve parameters are the Brainpool curves [76].

2.3.1. Equivalent Key Lengths for Symmetric and Classical Asymmetric Cryptographic
Mechanisms

The recommendations of this Technical Guideline on the key lengths of classical asymmetric cryp-
tographicmechanisms are based on calculations of equivalences of symmetric and asymmetric key
lengths, which are based on the following basic assumptions:

• Formechanisms based on elliptic curves: It is assumed that no that over the prediction period
of this Technical Guideline, no attacks become known that solve the Diffie-Hellman problem
on the used curve significantly faster than the calculation of discrete logarithms on the same
curve. It is further assumed that the computation of discrete logarithms on the elliptic curve
used is not possible with significantly less complexity (measured by the number of group op-
erations performed) than for generic representations of the same cyclic group.2 For a generic
group G, a complexity of computing discrete logarithms of ≈

√
|G| group operations is as-

sumed.

• For RSA andmechanisms based on discrete logarithms in F∗
p: It is assumed that over the pre-

diction period of this Technical Guideline, no attacks become known that are more efficient
than the general number field sieve when the parameters are chosen as recommended in this
Technical Guideline. For RSA and mechanisms based on discrete logarithms in F∗

p, the same
key lengths are recommended. In the case of mechanisms based on discrete logarithms, it is
assumed that nomechanism exists to solve theDiffie-Hellmanproblem in a subgroupU ⊂ F∗

p

with ord(U) prime more efficiently than by computing discrete logarithms in U .

• It is assumed that there is no application of attacks using quantum computers.

These assumptions are pessimistic from an attacker’s point of view in that they contain no scope
for structural progress in cryptanalysis of asymmetric mechanisms. Progress incompatible with
the above assumptionsmay be of a very specific nature and relate, for example, to new insights into
a single elliptic curve. Although in principle a calculation with 2120 elementary operations is not
considered practical for the period of time relevant to this Technical Guideline, all recommended
key lengths are above the minimum 120-bit security level targeted in this document.
With regard to mechanisms whose security is based on the difficulty of calculating discrete log-

arithms, especially discrete logarithms in elliptic curves, attacks that require oracle access to oper-
ations with a user’s private key may also be relevant. Such attacks can significantly speed up the
calculation of discrete logarithms in a group, see for instance attacks using a static-Diffie-Hellman
oracle [23, 26].
For the assessment of runtimes, we follow [31]. In particular, as in [31], we assume that factoris-

ing a 512-bit number of arbitrary form is roughly equivalent to the computational cost of 250 DES

2Algorithms operating on a generic representation of a group have only black-box access to elements and group oper-
ations. Intuitively, one can think of something like an oracle that accepts encrypted group elements and outputs the
result of group operations in encrypted form.
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log2(R) ECDLP Factorisation/DLP in F∗
p

60 120 700
70 140 1000
100 200 1900
128 256 3200
192 384 7900
256 512 15500

Table 2.2: Approximate computational effortR (in multiples of the computational effort for a
simple cryptographic operation, for example the one-time evaluation of a block cipher on a block)
for the computation of discrete logarithms in elliptic curves (ECDLP) or the factorisation of general
composite numbers with the specified bit lengths.

operations. Using the methods given there – without any security margins for progress in factori-
sation techniques or techniques for efficient computation of discrete logarithms in the respective
groups, respectively – yields approximately the equivalences reproduced in Table 2.2 (compare [31,
Table 7.2] and [30, Table 4.1]).
For recommended key lengths, please refer to Table 2.1.

2.3.2. RSA

The RSA algorithm, named after its inventors R. Rivest, A. Shamir and L. Adleman, is an asymmetric
cryptographic mechanism that can be used for both encryption and digital signing. It uses a key
pair consisting of a private key, which is used to decrypt or sign data, and a public key, which is used
to encrypt or verify signatures. The security of themechanism is based on the assumed difficulty of
decomposing integers into the product of their prime factors.

Key Generation

1.) Choose two prime numbers p and q randomly and independently of each other. The numbers
p and q should be of comparable bit length and not too close to each other. Otherwise if,
for example, p and q are chosen independently from a too narrow interval, attacks based on
knowledge of the leading bits of p and q are possible.

More details on the procedure for prime number generation can be found in Section B.5. If
p and q are chosen according to Section B.5, the previously mentioned vulnerability does not
occur.

For more details on the procedure for generating prime numbers, see Section B.5.

2.) Choose the public exponent e ∈ N under the constraints

gcd
(
e, (p− 1) · (q − 1)

)
= 1 and 216 + 1 ≤ e ≤ 2256 − 1.

3.) Calculate the private exponent d ∈ N as a function of e under the constraint

e · d = 1 mod lcm(p− 1, q − 1).

Then (n, e) represents the public key, where n = p · q is the so-called modulus, and d is the pri-
vate key. In addition to the private key d, the two prime numbers p and q must also be kept secret,
otherwise everyonewould be able to calculate the private exponent from the public key (n, e) as de-
scribed under Item 3. It is recommended not to store any data from the key generation persistently
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except the generated keys and to overwrite all generated data in the computer memory after the
key generation. It is further recommended to store the private key on a protected storage medium
and/or encrypted in such a way that only authorised users can perform decryption operations.

Remark 2.7 (i) The order of the choice of exponents during key generation, that means first the
choice of e and then that of d, is intended to prevent the random choice of small private expo-
nents, see [20].

(ii) When using probabilistic prime number tests to generate the two primes p and q, the proba-
bility that one of the numbers is composite after all should be atmost 2−120, see Section B.5 for
suitable methods.

Encryption and Decryption For the encryption and decryption, please refer to the standard [82].
It is to be noted that in addition the message must be formatted to the bit length of the modulus n
before theprivate keyd is applied. The formattingproceduremust be chosen carefully, the following
procedure is recommended:

EME-OAEP, see [82].

Table 2.3: Recommended formatting method for the RSA encryption algorithm.

Using the older PKCS#1v1.5 paddings is not recommended, as variants of Bleichenbacher’s at-
tack [17] have repeatedly turned out to be problematic, see for example [18] for a recent example.

Key Length The length of the modulus n should be at least 3000 bit.
A necessary condition for the security of the RSA mechanism is that it is practically impossible

to decompose themodulus n into its prime factors without knowledge of p and q. With the recom-
mended minimum bit length of 3000 bits, this is the case according to current knowledge.

Remark 2.8 Since the modulus n is very large, the bit representations of the numbers used in the
computer are also very long. The Chineses Remainder Theorem allows the computations when
en- or decrypting or signing messages to be performed in the two smaller groups of sizes p and
q instead of in one group of size n, and the result to be combined afterwards. Since p, q ≪ n,
this computation is more efficient overall. This variant is also called CRT-RSA after the acronym
of the Chinese remainder theorem (CRT). The private key in this case consists of the components
(n, d, p, q, dp, dq, qinv), where

dp = d mod p− 1, dq = d mod q − 1, qinv = q−1 mod p.

2.3.3. DLIES Encryption Scheme

ADiscrete Logarithm IntegratedEncryption Scheme is a hybrid encryption schemewhere the security
of the asymmetric component is based on the difficulty of the Diffie-Hellman problem in a suitable
subset of F∗

p. In the following, we describe a version of DLIES that is compatible with the rest of the
recommendations in this Technical Guideline, closely following [1] in the description of the scheme.
A DLIES requires the following components:

• Symmetric encryption scheme EK : All combinations of block cipher and operating mode
recommended in this policy are suitable for this purpose.
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• Message Authentication Code MACKM : The mechanisms recommended in section 5.2 may
be used.

• Key derivation function H : For example, H can be a hash function if its output is at least the
length of the entire symmetric key material to be derived. Alternatively, the key derivation
function recommended in Section B.1 or one of the key derivation functions proposed in [59]
may be used to generate derived key material of the desired length from the given data.

In addition, aDLIES requires keymaterial as described in the following section on key generation.

Key Generation

1.) Randomly choose a prime q of appropriate bit length (see subsection on key lengths).

2.) Randomly choose k of a bit length that ensures that kq is of the length of the key to be gener-
ated. Repeat this step until p := kq + 1 is prime.

3.) Choose an x ∈ Z∗
p such that xk ̸= 1 mod p and set g := xk . Then g is an element of order q in

Z∗
p.

4.) Randomly choose a number a ∈ {2, . . . , q − 1} and setA := ga.

Then (p, g, A, q) is the public key and a is theprivatesecret key.

Encryption Given are a message M ∈ {0, 1}∗ and a public key (p, g, A, q) that can be reliably
assigned to the authorised recipient E of the message. For encryption, the sender S chooses a ran-
dom number b ∈ {1, . . . , q − 1} and calculates B := gb, X := Ab and from these h := H(X).
Suffiently many bits are taken from h to form a keyK for the symmetric encryption method and a
key KM for the MAC. From the message M , S computes the ciphertext C := EK(M) and a MAC
T := MACKM (C) and sends the triple (B, C, T ) to the receiver E.

Decryption Receiver E receives (B, C, T ) and computes X := Ba and therewith further h :=
H(X), K and KM . It calculates T ′ := MACKM (C) and checks whether T = T ′. If this is not
the case, the decryption process stops. If, on the other hand, T = T ′, then E recovers the message
throughM = E−1

K (C).

Key Length The length of the prime number p should be at least 3000 bits. The length of the
prime q should be at least 250 bits in both cases. F

Remark 2.9 The DLIES mechanism is a probabilistic algorithm, since several random numbers are
required during key generation, including a randomnumber b ∈ {1, . . . , q−1} thatmust be chosen
randomlywith respect to the uniform distribution on {1, . . . , q−1}. For recommended algorithms
for generating the random number b, please refer to section B.4.

Remark 2.10 The efficiency of the key generation mechanism described at the beginning of the
section can be increased by having multiple users use the values (p, q, g) so that they can be pre-
computed once. Alternatively, it is also possible to use published parameters. In this case, the
present Technical Guideline recommends using the MODP groups from [70] or the ffdhe groups
from [53], in each case combined with the choice of suitable key lengths (this means that, for in-
stance, MODP-1536 is not regarded as suitable, independently of the projected period of use). In
each of the previously mentioned groups, q = (p − 1)/2 and g = 2. The use of a common p by
multiple users is recommended only when log2(p) ≥ 3000, since the computation of discrete loga-
rithms can be simplified by precomputation attacks that depend only on the parameter p.
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2.3.4. ECIES Encryption Scheme

An Elliptic Curve Integrated Encryption Scheme (ECIES) is a hybrid encryption scheme in which the
security of the asymmetric component is based on the Diffie-Hellman problem in the particular
elliptic curve used. In the following, we describe a version of ECIES that is compatible with the
other recommendations of the present Technical Guideline, closely following [1] in the description
of the scheme.
The description of ECIES reproduced here is almost completely identical to the description of the

closely related mechanism DLIES in Section 2.3.3. The main reason for treating the two schemes
separately are potential difficulties that could arise from different notations and the different rec-
ommendations regarding secure key lengths for the two mechanisms. ECIES-HC in [59] is recom-
mended as a normative reference. For an overview of the standardisation of ECIES and DLIES, we
refer to [78].
An ECIES requires the following components:

• Symmetric encryption scheme EK : All combinations of block cipher and operating mode
recommended in this policy are suitable for this purpose.

• Message Authentication Code MACKM : The mechanisms recommended in Section 5.2 may
be used.

• Key derivation function H : For example, H can be a hash function if its output is at least the
length of the entire symmetric key material to be derived. Alternatively, the key derivation
function recommended in Section B.1 or one of the key derivation functions proposed in [59]
may be used to generate derived key material of the desired length from the given data.

In addition, an ECIES requires key material as described in the following section on key genera-
tion.

Key Generation

1.) Generate cryptographically strong EC system parameters (p, a, b, P, q, i), see Section B.3.

2.) Choose d randomly and uniformly distributed in {1, . . . , q − 1}.

3.) SetG := d · P.

The EC systemparameters (p, a, b, P, q, i) togetherwithG form the public key and d is the private
key. It is recommended to use the curve parameters given in Table B.4.

Encryption Given are a message M ∈ {0, 1}∗ and a public key (p, a, b, P, q, i, G) that can be reli-
ably assigned to the authorised recipient E of the message. For encryption, the sender S chooses a
randomnumber k ∈ {1, . . . , q−1} and calculatesB := k ·P ,X := k ·G and from these h := H(X).
Sufficiently many bits are taken from h to form a keyK for the symmetric encryption method and
a key KM for the MAC. From the message M , S computes the ciphertext C := EK(M) and a MAC
T := MACKM (C) and sends the triple (B, C, T ) to the receiver E.

Decryption Receiver E receives (B, C, T ) and calculates X := d · B and therewith h := H(X), K
and KM . He determines T ′ := MACKM (C) and checks whether T = T ′ holds. If it does not, it
aborts the decryption process. If T = T ′, then E recovers the message byM = E−1

K (C).
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Key Length For the order q of the base point P should be at least q ≥ 250.
A necessary condition for the security of the ECIESmechanism is that it is practically impossible

to solve the Diffie-Hellman problem in the subgroup generated by P . This is the case for the curve
parameters recommended in Table B.4 according to the current state of knowledge.

Remark 2.11 The presented ECIES mechanism is a probabilistic algorithm, since in the second step
of the key generation a random number k ∈ {1, . . . , q − 1}must be chosen randomly with respect
to the uniform distribution on {1, . . . , q − 1}. For recommended algorithms for generating the
random number k, please refer to Section B.4.

2.3.5. Diffie-Hellman Key Agreement

The security of this mechanism is based on the assumed difficulty of the Diffie-Hellman problem
in groups (respective subgroups of) F∗

p, where p is a prime number.

System Parameters

1.) Randomly choose a prime number p.

2.) Choose an element g ∈ F∗
p with ord(g) prime and q := ord(g) ≥ 2250.

The triple (p, g, q) must be authentically exchanged in advance between the parties A and B in-
volved in the communication, where the same systemparametersmay in principle be used bymany
users. For the generation of suitable system parameters see Remark 2.10.

Key Agreement

1.) A chooses a random value x ∈ {1, . . . , q−1} according to the uniform distribution and sends
QA := gx to B.

2.) B chooses a random value y ∈ {1, . . . , q− 1} according to the uniform distribution and sends
QB := gy to A.

3.) A calculates (gy)x = gxy .

4.) B calculates (gx)y = gxy .

The key agreement, too, must be secured by means of strong authentication to prevent man-
in-the-middle attacks. The negotiated shared secret is gxy . A mechanism for the subsequent key
derivation from this secret is recommended in Section B.1.

Key Length The length of p should be at least 3000 bits.

Remarks on the Implementation A number of implementation errors are common in the imple-
mentation of the Diffie-Hellman protocol. Some of these implementation problems are discussed
in [102]. It is recommended that particular attention be paid to [102, Section 7].

2.3.6. EC Diffie-Hellman Key Agreement

The security of this mechanism is based on the assumed difficulty of the Diffie-Hellman problem
in elliptic curves.
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System Parameters Choose cryptographically strong EC system parameters (p, a, b, P, q, i) ac-
cording to B.3. Let the elliptic curve thus defined be denoted by C and let G be the cyclic subgroup
generated byP . The system parameters (p, a, b, P, q, i)must be authentically exchanged in advance
between the partiesA andB involved in the communication.

Key Agreement

1.) A chooses a random value x ∈ {1, . . . , q−1} according to the uniform distribution and sends
QA := x · P to B.

2.) B chooses a random value y ∈ {1, . . . , q− 1} according to the uniform distribution and sends
QB := y · P to A.

3.) A calculates x ·QB = xy · P .

4.) B calculates y ·QA = xy · P .

The key agreement, too, must be secured by means of strong authentication. The negotiated
secret is xy · P . A mechanism for subsequent key derivation from this secret is recommended in
Section B.1.
Wherever possible, it is recommended to test on both sides during the execution of the key agree-

ment whether the points QA and QB have been chosen according to the requirements of the pro-
tocol and to abort the protocol if not. If the above protocol is executed correctly, QA ∈ G, QB ∈ G,
QA ̸= O and QB ̸= O should hold. As part of the test of QA, QB ∈ G, it should also be explicitly
checked whetherQA, QB ∈ C . Further remarks can be found in [37, Section 4.3.2.1].

Key Length The length of q should be at least 250 bits.

Remarks on the Implementation There are several common implementation errors when imple-
menting a Diffie-Hellman key exchange. Some of these implementation problems are addressed
in [102]. It is recommended to observe [102, Section 7], furthermore the remarks in [37, Section 4.3]
and the AIS 46 [46] should be taken into account.

2.4. Quantum-Safe Asymmetric Mechanisms

The quantum-safe asymmetric mechanisms for key agreement that are currently being standard-
ised are either based on lattices or binary codes. The methods were designed specifically as “key
encapsulation mechanism” (KEM, see Key encapsulation mechanism, KEM) due to their intended
use, i.e. the distribution or agreement of key material.

2.4.1. FrodoKEMKey Agreement

FrodoKEM is a lattice-based method based on the learning with errors problem (LWE, see Learn-
ing with errors, LWE). NIST has decided not to standardise FrodoKEM because ML-KEM (see Sec-
tion 2.4.3), which is also based on LWE, is more efficient. However, since FrodoKEM, unlike ML-
KEM, is based on unstructured grids, it is considered the more conservative choice. FrodoKEM is
currently being standardised at ISO; future versions of this Technical Guideline will reference the
corresponding standard.
FrodoKEM with the following parameters is considered to be cryptographically suitable for the

long-term protection of confidential information at the security level targeted in this Technical
Guideline:
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FrodoKEM-976 and FrodoKEM-1344, see [3, Section 2.5].

Table 2.4: Recommended parameters for FrodoKEM.

2.4.2. Classic McEliece Key Agreement

ClassicMcEliece is a code-basedKEM.Theunderlyingmechanism,which is instantiatedwith binary
Goppa codes, is about as old as the RSA mechanism and is therefore considered conservative and
very thoroughly analysed. One disadvantage are the comparatively large public keys; on the other
hand, Classic McEliece has very short ciphertexts.
Classic McEliece is currently being standardised by ISO and possibly also by NIST after the 4th

round of the standardisation process. Future versions of this Technical Guideline will reference
corresponding standards.
Classic McEliece with the following parameters is considered to be cryptographically suitable for

the long-term protection of confidential information at the security level targeted in this Technical
Guideline:

• mceliece460896, mceliece6688128 and mceliece8192128, see [2, Section 7],

• mceliece460896f,mceliece6688128f andmceliece8192128f (faster variants), see [2, Section
7].

Table 2.5: Recommended parameters for ClassicMcEliece-KEM.

2.4.3. ML-KEM (CRYSTALS-Kyber) Key Agreement

As part of its PQC standardisation process, NIST is expected to publish a standard for the ML-KEM
method (also known as CRYSTALS-Kyber) in the course of 2024. This is a lattice-based KEM whose
security is related to the “module learning with errors” problem. BSI intends to include ML-KEM
in the recommendations of this Technical Guideline after publication of the standard with the pa-
rameter sets corresponding to NIST Security Strength Categories 3 and 5.
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3. Symmetric Encryption Schemes

This chapter deals with symmetric encryption schemes, that is, schemes in which the encryption
and decryption keys are identical – in contrast to asymmetric schemes, where the private key prac-
tically cannot be calculated from the public key without additional information. For asymmetric
encryption methods, which in practice are usually only used as key transport schemes, please refer
to Chapter 2.
Symmetric encryption schemes are used to guarantee the confidentiality of data that is trans-

mitted, for example, via a public channel such as the telephone or Internet. Authenticity and/or
integrity of the data is usually not automatically guaranteed. For integrity protection, see Chapter 5
and Section A.1. Even in cases where at first glance the protection of the confidentiality of transmit-
ted data seems to be the dominant or even the only security objective, neglecting integrity-securing
mechanisms can easily lead to weaknesses in the overall cryptographic system, which then also
makes the system vulnerable to attacks on confidentiality. In particular, such vulnerabilities can
arise from certain types of active side-channel attacks, for an example see for instance [108].
The development of fault-tolerant quantum computers has a much less severe impact on the

security of symmetric mechanisms than on the security of asymmetric mechanisms. The use of
Grover’s algorithm [54] could theoretically accelerate the search of the key space of symmetric
mechanisms quadratically. Whether an acceleration compared to a classic exhaustive search
of the key space can also be achieved in practice is the subject of current research and has not
been definitively answered yet, see e.g. [68]. Nevertheless, especially for applications with high or
long-term protection requirements or long-living systems it is advisable to use a key length of 256
bits for the symmetric encryption methods recommended below.
Furthermore, this chapter also presents symmetric key agreement and transport schemes as well

as key update mechanisms.

3.1. Block Ciphers

General Recommendations A block cipher is an algorithm that encrypts a plaintext of fixed bit
length (for example 128 bits) bymeans of a key to a ciphertext of the same bit length. This bit length
is also called block size of the cipher. For the encryption of plaintexts of other lengths, block ciphers
are applied in different modes, see Section 3.1.1. For new cryptographic applications, only block
ciphers whose block size is at least 128 bits should be used.
The following block ciphers are recommended for use in new cryptographic systems:

AES-128, AES-192, AES-256, see [84].

Table 3.1: Recommended block ciphers.

In Version 1.0 of the present Technical Guideline, other block ciphers were also recommended.
However, their security has been examined much less intensively since the end of the AES-
competition than that of the Rijndael algorithm, which emerged from the competition as the
winner and thus future AES. This applies both to classical cryptanalytic attacks and to other
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security aspects, for example the side-channel resistance of concrete implementations. For this
reason, the present version of this Technical Guideline does not recommend any other block
ciphers besides AES.

Related-Key Attacks and AES Related-key attacks assume that the attacker has access to encryp-
tions or decryptions of known or chosen plaintexts or ciphertexts under different keys that have a
relationship to each other that is known to the attacker (for example, differ in exactly one bit po-
sition of the key). Certain attacks of this kind against round-reduced versions of AES-256 [14] and
against unmodified versions of AES-192 as well as AES-256 [15] represent the only known crypt-
analytic techniques so far against which AES shows a significantly worse behaviour than an ideal
cipher with corresponding key length and block size.

At this point in time, these findings on the security of AES under specific types of related-key at-
tacks have no impact on the recommendations made in this Technical Guideline. In particular, a
related-key boomerang attack onAES-256 from [15] with computation time and data complexity of
299.5 is not considered to violate themedium-term security level of 120 bits targeted in this Techni-
cal Guideline due to the technical prerequisites of related-key boomerang attacks. The best known
attacks against AES that do not require related-keys achieve only a slight advantage over generic
attacks [19].

3.1.1. Modes of Operation

Asmentioned in Section 3.1, a block cipher only provides amechanism for encrypting plaintexts of
a single fixed length. To encrypt plaintexts of arbitrary length, an encryption scheme for plaintexts
of (approximately) arbitrary length must be constructed from the block cipher using an appropri-
ate mode of operation. Another effect of a cryptographically strong mode of operation is that the
resulting encryption schemewill in some respects be stronger than the underlying block cipher, for
example if the mode of operation randomises the encryption process, making it difficult to recog-
nise multiple encryptions of the same plaintexts.

Various modes of operation for block ciphers can initially only handle plaintexts whose length
is a multiple of the block size. In this case, the last block of a given plaintext may be too short and
must be padded accordingly. Formatting by filling this last block to the required block size is also
called padding. In Section 3.1.3 suitable padding mechanisms are presented. However, among the
recommended modes of operation for block ciphers, only the CBCmode requires a padding step.

The simplest way to encrypt a plaintext whose length is already a multiple of the block size is to
encrypt each plaintext block with the same key; this mode of operation is also called the Electronic
Code Book (ECB). However, the use of the ECB mode of operation leads to the fact that the same
plaintext blocks are encrypted into the same ciphertext blocks. The ciphertext thus at least provides
information about the structure of the plaintext and, if the entropy per block of the plaintext is low,
it may be possible to reconstruct parts of the plaintext by frequency analysis. For this reason, the
n-th cipher block should not only depend on the n-th plaintext block and the key used but also on
an additional value, such as the (n− 1)-th ciphertext block or a counter.

This is the case for the following recommended modes of operation, which are adequate for the
block ciphers listed in Table 3.1:
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• Counter with Cipher Block Chaining Message Authentication (CCM), see [85],

• Galois/Counter Mode (GCM), see [86],

• Cipher Block Chaining (CBC), see [83], and

• Counter Mode (CTR), see [83].

Table 3.2: Recommended modes of operation for block ciphers.

Remark 3.1 Both GCMmode and CCMmode provide cryptographically secure data authentication
in addition to encryption if the tag length is sufficient. For the other two modes of operation, it
is generally recommended to provide separate mechanisms for data authentication in the overall
system. Ideally, no decryption or other further processing should take place for unauthenticated
encrypted data. If unauthenticated encrypted data is decrypted and further processed, then there
are increased residual risks with regard to the exploitation of error oracles, see for example [108].

3.1.2. Conditions of Use

Themodes of operation listed in Section 3.1.1 require initialisation vectors and furthermore certain
other conditions must be met for secure operation, which are summarised below:

For CCM:

• The lengthof the authentication tagmust be chosen appropriately. For general cryptographic
applications, a tag length of ≥ 96 bits is recommended. In general, attackers can modify ci-
pher rate or authenticated data undetected with a success probability of ≈ 2−t per attempt
when using tag length t in CCM mode. When using tag lengths lower than those recom-
mended here, the associated residual risks must be carefully examined by an expert.

For GCM:

• For GCM initialisation vectors, a bit length of 96 bits is recommended in [86]. This recom-
mendation is followed by the present Technical Guideline, in particular with reference to the
results from [67].1 In [86], it is required that the probability of repetition of initialisation vec-
tors under a given key should be ≤ 2−32. This implies a key change after at most 232 calls
of the authenticated encryption function. If the initialisation vectors are generated deter-
ministically, it must be demonstrated that a repetition of initialisation vectors over the entire
lifetime of a key is not possible.

• For general cryptographic applications, GCM with a length of the GCM tags of at least 96
bits should be used. For special applications, shorter tags can be used after consultation with
experts. In this case, the guidelines on the number of allowed calls to the authentication
function with a common key from [86] must be strictly adhered to.

For CCM, GCM and CTRmode:

• Initialisation vectors must not repeat within the lifetime of a key. More precisely, no two
AES encryptions (that means applications of the underlying AES block cipher) with the same
input values (key, message) must ever be performed. Failure to comply with this condition

1In [67], errors in previously accepted security proofs on Galois/Counter mode are pointed out and a corrected anal-
ysis of the security of GCM is presented. In this corrected analysis, an IV length of exactly 96 bits turned out to be
advantageous.
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will result in a potentially complete loss of confidentiality for the affected plaintext blocks, in
the case of the GCM, additionally also of integrity.2

For CBC:

• Only unpredictable initialisation vectors are to be used.

To generate unpredictable initialisation vectors, various methods are recommended in Sec-
tion B.2. For applications where the initialisation vector requirements given here cannot be met, it
is strongly advised to consult an expert.

3.1.3. Padding Schemes

As already explained in Section 3.1.1, the CBC mode requires an additional padding step: it may
happen during the partitioning of a plaintext to be encrypted that the last plaintext block is smaller
than the block size of the cipher used.
The following padding schemes are recommended in this Technical Guideline:

• ISO-Padding, see [61, Padding Method 2] and [83, Appendix A],

• Padding according to[57, Section 6.3],

• ESP-Padding, see [69, Section 2.4].

Table 3.3: Recommended padding schemes for block ciphers.

Remark 3.2 In CBC mode of operation, care must be taken to ensure that an attacker cannot learn
from error messages or other side-channels whether the padding of an introduced data packet was
correct [108]. More generally, in encryption schemes where an attacker can make changes to the
ciphertext in such a way as to result in controlled changes to the plaintext, no side-channel in-
formation must be available to tell whether a given ciphertext corresponds to a valid plaintext or
whether it is of invalid format.

3.2. Stream Ciphers

In case of stream ciphers, a key stream is first generated from a key and an initialisation vector, that
is, a pseudo-randomsequence of bits that is thenXOR-addedbitwise to themessage to be encrypted.
At the moment, no dedicated stream ciphers are recommended, but AES in counter mode (AES-
CTR) can be considered a stream cipher. If a stream cipher is used, it is strongly recommended to
protect the integrity of the transmitted information by separate cryptographic mechanisms. An
attacker can make bit-precise changes to the plaintext in the absence of such mechanisms.

3.3. Symmetric Key Agreement Schemes, Key Transport and Key Update

In addition to key agreement schemes, key transport schemes are also of practical importance. In
a key transport scheme, secret key data is generated by one party and transported securely to one
or more recipients. The generating entity can be a trusted third party or one of the parties involved

2If the repetition of a nonce cannot be precluded, it may be advisable to use the AES-GCM-SIV mode [55], in which
confidentiality and integrity of a message are ensured even in the case of a nonce repetition.
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in the communication. In the latter case, it is recommended that all parties involved only use self-
generated keys for the transmission of their own sensitive data. At this point, the recipients have no
control over the distributed session keys.
Finally, this chapter also deals with key update schemes. Here, two parties already share a com-

mon secret and derive a new key from it at the end of a key change period. This can be achieved
either by deriving new session keys from a permanent master key or by an update procedure that
generates a new key from the current key and possibly other data. Various factors must be taken
into account when determining the lifetime of keymaterial, among them the type of key, the envi-
ronment of use or the sensitivity of the data to be protected. Further information on this topic can
be found, for example, in [96].

Remark 3.3 (Asymmetric versus Symmetric Key Agreement Schemes) Asymmetric key agreement
schemes can be used to achieve security properties that cannot be realised using symmetric cryp-
tography alone. For example, both recommended classical asymmetric key agreement schemes
have the property that an adversary who knows all the long-term secrets3 (if any) of the two parties
involved in the communication still cannot determine the key negotiated during an uncompro-
mised protocol execution if he cannot efficiently solve the mathematical problem underlying the
asymmetricmechanismused (here: the Diffie-Hellman problem). In comparison, in symmetric key
agreement schemes, at most the security objective post-compromise security can be achieved, that
means an attacker who knows all the long-term secrets of the two parties involved cannot deter-
mine the results of previous properly performed key agreements.4

Key Transport In general, all of the previously recommended symmetric encryption schemes can
be used for the transport of session keys. It is recommended to combine an encryption scheme from
Section 3.1 3 with a MAC from Section 5.2 (in Encrypt-then-MACmode) to ensure a manipulation-
resistant transmission of the key material.

Key Agreement Key agreement schemes, too, can be realised solely on the basis of symmetric
schemes provided that the existence of a common long-term secret can be assumed. Key Estab-
lishment Mechanism 5 from [62] represents a suitable scheme. If an implicit key confirmation by
possession of the same session keys is not sufficient for the given cryptographic application, it is rec-
ommended to extend this protocol by a further key confirmation step. As key derivation function,
the mechanism recommended in Section B.1 should be used.

Key Update In some situations it may be necessary to synchronously exchange the keys used in
a cryptographic system for all parties involved without a new key exchange or further communi-
cation. In this case, key update mechanisms can be used. Assuming that the master key Kt of a
cryptosystem is to be replaced at time t via such a mechanism, we recommend to define

Kt+1 := KDF(s, Label,Context, L, Kt).

Here, KDF denotes a two-step cryptographic key derivation function according to [95, Section 5],
and s is the salt value used in the expansion step. The parameters Label and Context enter the
expansion step provided in [95] according to [97]. Here, Label is a string that identifies the function
of the key to be derived and Context contains information about the further protocol context. The
parameter L denotes the length of the key Kt+1 to be derived and also enters into the expansion
step.

3Here, by long-term secret we refer to the long-term secrets that have to be used to secure the connection against man-
in-the-middle attacks.

4Merkle puzzles are an exception in this respect in that they constitute a public key key agreement scheme using only
symmetric primitives [81]. However, this mechanism is only of academic relevance.
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In this mechanism, it is absolutely essential to ensure that different derivation parameters are
used for any derivation of further key material fromKt than those used for the derivation ofKt+1.
It is recommended to enforce this by using appropriate label values and furthermore to encode in
label or context at least also the cryptoperiod t. As an additionalmeasure, itmay furthermake sense
to use a new salt value for each key derivation. It is recommended to securely deleteKt immediately
after Kt+1 has been calculated, as well as all intermediate results of the calculation. For further
recommendations on the implementation of these schemes, please refer to [95, 97].
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4. Hash Functions

Hash functions H : {0, 1}∗ → {0, 1}n play an important role in many cryptographic mechanisms,
for example when deriving cryptographic keys or authenticating data. They map a bit string m ∈
{0, 1}∗ of arbitrary length1 to a bit string h ∈ {0, 1}n of fixed length n ∈ N.
Hash functions used in cryptographic mechanisms, must – depending on the application –meet

the following three conditions:

One-Way Property: For given h ∈ {0, 1}n, it is practically impossible to find a value m ∈ {0, 1}∗
withH(m) = h.

2nd-Preimage-Property: For given m ∈ {0, 1}∗, it is practically impossible to find a value m′ ∈
{0, 1}∗\{m}withH(m) = H(m′).

Collision Resistance: It is practically impossible to find two values m, m′ ∈ {0, 1}∗ with m ̸= m′

andH(m) = H(m′).

A hash functionH satisfying all of the above conditions is called cryptographically strong.
these three terms can each be described mathematically more precisely by comparing the best

known attacks against these properties with optimal generic attacks. The length of the hash output
is a security parameter of crucial importance, as it determines the effort of generic attacks. For the
minimum security level required in this Technical Guideline of 120 bits, at least the requirement
n ≥ 240must be imposed on hash functionH : {0, 1}∗ → {0, 1}n because of the birthday problem.
At this point, it is not necessary to distinguish different cases depending on the period of use of
a system, since the hash mechanisms recommended in this Technical Guideline all already have a
digest length of≥ 256 bits.

Remark 4.1 There are cryptographic applications of hash functions in which not all three specified
properties of a cryptographically strong hash function are required. Conversely, there are other rel-
evant cryptographic requirements for hash functions that do not follow from the three stated prop-
erties. One example is the property of Zero Finder Resistance (resistance to the search for preimages
of the hash value zero, [22]), which is relevant in the context of ECDSA signatures. All of the hash
functions recommended in this Technical Guideline have no known cryptographicweaknesses that
are of relevance to the recommended cryptographic mechanisms in which they are used.

The development of fault-tolerant quantum computers has a much less severe impact on the
security of hash functions than on the security of asymmetric mechanisms. The use of Grover’s
algorithm [54] could theoretically accelerate the search of preimages quadratically. Furthermore,
quantumalgorithms are theoretically able to find collisions of a hash functionwith anoutput length
of n bits within 2

n
3 calls of the hash function (see [21, 110]). Whether an acceleration compared to

a classic search of preimages or collisions can also be achieved in practice is the subject of current
research and has not been definitively answered (see e.g. [68]). Nevertheless, especially for applica-
tions with high or long-term protection requirements or long-living systems it is advisable to use
the hash functions recommended below with an output length of at least 384 bits.
According to current knowledge, the following hash functions are considered to be cryptograph-

ically strong and are therefore applicable for allmechanismsmentioned in this Technical Guideline:

1Specifications of real hash functions usually include a length restriction, but this is so high that it is not exceeded by
real input strings.
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• SHA-256, SHA-512/256, SHA-384 and SHA-512, see [89].

• SHA3-256, SHA3-384, SHA3-512, see [90].

Table 4.1: Recommended hash functions.

Remark 4.2 (i) For the hash function SHA1, examples of hash collisions were first published in
[107]. Owing to significant cryptanalytic progress [74, 75], the cost of computing sucha collision
has since been reduced to order-of-magnitude of several thousand euros, and even chosen-
prefix collisions are within the reach of academic adversaries. SHA1 should therefore never
be used as a secure cryptographic hash function. This does not rule out its use in other cryp-
tographic applications, for example as part of an HMAC construction, but this should also be
avoided.

(ii) Even a single collision of a hash function can lead to insecurity in signature algorithms, see for
example [77] and [52].

(iii) Both the hash functions of the SHA2 family and those of the SHA3 family are considered cryp-
tographically strong. With regard to classical attacks on collision resistance and one-way prop-
erties, as far as is currently known, there is no practically relevant difference between the two
families of functions. In other application scenarios, however, there are differences; the func-
tions of the SHA3 family, for example, are resistant to length extension attacks, see also [9].
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5. Data Authentication

In the context of this Technical Guideline, data authentication refers to cryptographic mechanisms
that ensure that data transmitted or stored have not beenmodified by unauthorised persons and/or
applications. For this purpose a prover (usually the sender of the data) uses a cryptographic key to
calculate a tag of the data to be authenticated. A verifier (usually the recipient of the data) of the
data) then verifies whether the received tag of the data to be authenticated corresponds to the one
he would have expected if the data were authentic and the correct key was used.
A distinction is made between symmetric and asymmetric schemes for data authentication. In

symmetric schemes, the prover and the verifier use the same cryptographic key. In this case, a third
party cannot check who calculated the tag or whether it was calculated correctly. For asymmetric
schemes, the private key is used for the calculation of the tag and verifiedwith the associated public
key. This is usually implemented by digital signatures (see Section 5.3).
When symmetric methods for data authentication are used, the verifier of amessage can in prin-

ciple also generate forged messages. Thus, such mechanisms are only suitable if the additional risk
of compromise resulting from the distribution of the symmetric key and its availability to (at least)
two parties is acceptable. In addition, it must be uncritical if the verifying party forges a message.
If one of these conditions is not met, symmetric data authentication methods are unsuitable and
digital signatures must be used. In scenarios where these properties are unproblematic, the use of
symmetric methods is more efficient. A standard scenario in which the use of symmetric meth-
ods for data authentication offers itself is the integrity-secured transport of encrypted data over a
network after negotiation of ephemeral keys.

5.1. Security Objectives

Whenusing cryptographicmechanisms for data authentication, a clarificationof the security objec-
tives to be achieved in the respective scenario is crucial for the selectionof themechanisms. Roughly
speaking, the following scenarios can be distinguished, which are important in many applications:

• Ensuring the integrity of data transmitted over a network on the way from the sender to the
receiver: In this use case, the sender and receiver usually have a common secret, and the re-
ceiver has no interest in producing forged transmissions. The use of a symmetricmethods for
data authentication is therefore natural.

• Ensuring the non-repudiation of amessage: Here it should be ensured that the owner of a par-
ticular key can be reliably identified as the originator of a message and that the author him-
self cannot create a signed message in such a way that doubts can subsequently arise about
the validity of the signature. In such situations, the verifier of a message must not have the
corresponding signature key, so in this case only the use of digital signatures is possible. In
addition, dependingon the specific scenario and the sought level of protection, theprivate sig-
nature key may also have to be protected from inspection by the signature provider himself.
This is the case, for example, if there is a risk that the signer might subsequently invalidate
past signatures by deliberately distributing his own private key. In addition, it must be en-
sured that themessage is displayed to the recipient in the sameway as to the creator, and that
any unsigned parts (for example, the unsigned subject line in the case of a signed e-mail) are
unambiguously identifiable as such for the recipient as well as for the creator.
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• Protection of an asymmetric key exchange against man-in-the-middle attacks: In this use
case, no common secret is available, so that integrity-protected transmission of the key ex-
change messages must be ensured by means of digital signatures.

Remark 5.1 In some application scenarios, there may be special requirements for the security func-
tions involved. For example, a code signature pursues the security objective of the integrity of the
transmitted application as well as the non-repudiation of possibly contained malicious function-
ality in the delivered software, although the signed data can usually neither be meaningfully dis-
played to the recipient or to the originator nor can their content be checked with reasonable effort.
The security functionality of a secure displaying component on the originator’s side thus transfers
completely to the originator’s quality assurance processes and to the security of the technical com-
ponents used by him.

Remark 5.2When processing authenticated data, only those data components that have actually
been signedmust be considered to have data integrity. Enforcing this principle is not always trivial,
partly because cases critical to an application may never appear in legitimately signed data. Es-
pecially when using more complex signature formats (for example XML signatures) or in contexts
where security objectives are to be enforced by digital signatures that were not foreseen during the
development of the components used, it should therefore always be thoroughly checked by an ex-
pert whether additional safeguards may be required.

Remark 5.3 The authenticity of signed datamay still not be sufficiently confirmedby a signature, for
example if replay attacks are possible. Such attacks must be prevented by additional measures. In
general, this can be achieved by a suitable combination of data authentication schemes withmeth-
ods for performing challenge-response-based instance authentication. In some situations (for ex-
ample, software or key updates), checking version counters or timestamps covered by the signature
may also be sufficient.

5.2. Message Authentication Code (MAC)

Message authentication codes are symmetric methods for data authentication, usually based on
block ciphers or hash functions. They are used when large amounts of data are to be authenticated
or when the verification or creation of tags must be particularly efficient for other reasons. The
prerequisite in this case is that the proving and the verifying party have agreed on a common sym-
metric key in advance. Frequently, both the confidentiality as well as the authenticity of the data
have to be ensured. Such mechanisms are discussed in Section A.1. In Chapter 2, methods which
allow the exchange of keys over insecure channels are presented.
The development of fault-tolerant quantum computers has a much less severe impact on the

security of symmetric mechanisms than on the security of asymmetric mechanisms. The use of
Grover’s algorithm [54] could theoretically accelerate the search of the key space of symmetric
mechanisms quadratically. Whether an acceleration compared to a classic exhaustive search of
the key space can also be achieved in practice is the subject of current research and has not been
definitively answered (see e.g. [68]). Nevertheless, especially for applications with high or long-term
protection requirements or long-living systems it is advisable to use a key length of 256 bits for the
message authentication codes methods recommended below.
Inprinciple, the following schemes are considered secure if, for theCMACandGMACscheme, one

of the block ciphers listed in Table 3.1 is used, and for the HMAC scheme one of the hash functions
listed in Table 4.1 is used. Furthermore, the length of the key for all schemes should at least be 16
bytes:
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• CMAC, see [92],

• HMAC, see [10],

• KMAC128, KMAC256, see [91],

• GMAC, see [86].

Table 5.1: Recommended MAC schemes.

When using these schemes, the following aspects must be observed:

• CMAC, HMAC and KMAC are pseudorandom functions, whereas GMAC is not. Furthermore,
compared to the other twomethods, GMAC requires a 96-bit nonce as initialisation vector.

• A tag length of≥ 96 bits is recommended for general cryptographic applications in all of the
above schemes. Shorter tag lengths may only be used after experts have weighed up all the
circumstances affecting the application in question. For GMAC tags, there are forgery attacks
with a success probability of 2−t+log2(n) per attempt known, where t denotes the tag length
and n is the number of blocks of the message. and This probability increases further upon
detection of successful forgeries [50]. This means that GMAC (and thus also the authenti-
cated encryption mode GCM) provides weaker integrity protection for the same tag length
than is expected for CMAC or HMAC with the respective block ciphers or hash functions
recommended in this Technical Guideline. The practical relevance of these attacks increases
considerably when short authentication tags (< 96 bits) are used. The use of short tags with
GMAC/GCM is therefore strongly discouraged.

• When using the HMAC scheme, the tag length should be truncated to no more than half the
output length of the hash function.

• With regard to the GMAC scheme, the other remarks on the operating conditions for GCM
from Section 3.1.2 apply accordingly as far as the authentication function is concerned.

• The authentication keys used must be protected in an equally safe manner as other crypto-
graphic secrets in the same context.

• In general, all requirements from [10, 92, 91, 86] must be met in the respective scheme used
and their compliance must be documented.

The following table summarises the recommendations on key and checksum length when using
MACmechanisms:

Scheme CMAC HMAC KMAC128 KMAC256 GMAC

Key length ≥ 128 ≥ 128 ≥ 128 ≥ 256 ≥ 128
Recommended tag length ≥ 96 ≥ 128 ≥ 96 ≥ 96 ≥ 96

Table 5.2: Parameters for recommended MAC schemes.
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5.3. Signature Algorithms

In signature algorithms, the data to be signed is first hashed before the tag and/or the signature is
calculated with the private key of the proving party from this hash value. The verifier then checks
the signature with the corresponding public key. As with asymmetric encryption schemes, it must
not be possible to calculate the signature without knowledge of the private key. This implies in
particular that it must not be practically possible to derive the private key from the public key.
To distribute the public keys to the verifiers, usually a public key infrastructure is used. In any

case, a reliable way (protected against manipulation) to distribute the public keys is essential, as
with all public key schemes. However, an in-depth discussion of the technical and organisational
options for solving this problem exceeds the scope of this Technical Guideline, so the topic is only
considered in the margins.
For the specification of signature algorithms, the following algorithms are to be specified:

• An algorithm for the generation of key pairs.

• A hash function that maps the data to be signed to a data block of fixed bit length.

• An algorithm for the signing the hashed data and an algorithm for the verification of the sig-
nature.

Basically all of the hash functions listed in Table 4.1 are suitable for the calculation of the hash
value, so it remains to specify the algorithms and key lengths listed under the first and third point,
respectively. In addition, we give recommendations for minimum key lengths.
Table 5.3 provides an overview of the signature methods recommended in the following. All rec-

ommended mechanisms can be used for signing data as well as for issuing certificates.

• RSA, see [60]

• DSA1, see [63],

• DSA variants on elliptic curves:

– ECDSA, see [37],

– ECKDSA/ECKCDSA, ECGDSA, see [37, 63], and

• Merkle signatures2, more precisely XMSS or LMS and their multi-tree variants according
to [94].

Table 5.3: Recommended signature algorithms.
.
1 The use of the DSA signature algorithm (see Section 5.3.2) is in this Technical Guideline only recommended until

2029 due to its low prevalence and the discontinuation in [98].
2 Merkle signatures differ in essential points from the other signature algorithms recommended here. For a more

detailed description of the most important aspects, see Section 5.3.4.3

According to the current state of knowledge, with a suitable choice of security parameters, all sig-
nature mechanisms recommended here achieve a comparable level of security if the private keys
are reliably kept confidential and, in particular, cannot be determined by exploiting implementa-
tion weaknesses, such as for instance side channels, fault attacks or mathematical attacks directed
against a specific kind of key generation.
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Remark 5.4With the exception ofDS 3 (compare Table 5.4) the recommended asymmetric signature
algorithms are probabilistic algorithms.1 Thus, each time a signature is calculated, a new random
value is required; further requirements for these random values are specified in the corresponding
sections.

Remark 5.5 Due to the threat posed to classical signature algorithms by the ongoing development of
sufficiently large quantum computers, a migration to quantum-safe algorithms should take place.
This Technical Guideline already recommends stateful hash-based signature algorithms (see Sec-
tion 5.3.4.3), which are already standardised, but only suitable for special use cases.

As part of its PQC standardisation process, NIST is expected to publish a standard for the SLH-
DSA (also known as SPHINCS+) andML-DSA (also known as CRYSTALS-Dilithium) schemes before
the end of 2024. These are stateless hash-based respective lattice-based signature schemes. The BSI
intends to include SLH-DSA and ML-DSA with the parameter sets corresponding to NIST Security
Strength Categories 3 and 5 in the recommendations of this Technical Guideline after publication
of the corresponding standards.

This Technical Guideline recommends the use of a quantum-safe signature scheme only in com-
bination with a classic signature scheme. Hybridisation should be implemented in such a way that
the hybrid signature scheme is secure as long as at least one of the schemes is secure. A natural
and robust hybridisation is the concatenation of a quantum-safe signature with a classic signature
so that the concatenated signature is accepted as valid if all individual signatures are valid. Care
should be taken here to generate keymaterial for hybrid signatures specifically for this purpose and
not to use it for non-hybrid signatures as well.

Provided that the implementation security of stateful and stateless hash-based procedures is
properly considered, hash-based signatures can in principle also be used on their own (i.e. not
hybrid).

Remark 5.6Merkle signatures, unlike all other signature algorithms listed in this Technical Guide-
line, are considered secure against attacks using quantum computers [24]. Moreover, they are the
only schemementioned here that is forward secure in the sense of [11].

5.3.1. RSA

The security of the RSA scheme is based on the assumed difficulty of calculating e-th roots in Zn,
where n is an integer of unknown factorisation into two prime factors p, q and e is an exponent
coprime to φ(n) = (p− 1)(q − 1).

KeyGeneration The key generation is analogous to that of the RSA encryption scheme, for details
see Section 2.3.2. The signature verification key is of the form (n, e), where n = p · q is composite, e
is invertible modulo φ(n) and 216 < e < 2256, and the signature key is d := e−1 mod φ(n).

Generation and Verification of Signatures For signature generation and/or verification we refer
to [60]. Here, the hash value of themessagemust be padded to the bit length of themodule n before
the private key d is applied. The padding scheme must be chosen carefully (see for example [27]);
the following schemes are recommended:

1The RSA algorithm itself is deterministic, but not the here recommended padding procedures to RSA (except DS 3).
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• EMSA-PSS, see [82].

• Digital Signature Scheme (DS) 2 and 3, see [65].

Table 5.4: Recommended padding schemes for the RSA signature algorithm.

Key Length The length of the modulus n should be at least 3000 bits.

5.3.2. Digital Signature Algorithm (DSA)

The security of theDSAmethod is based on the assumeddifficulty of calculating discrete logarithms
in F∗

p.

Key Generation

1.) Choose two prime numbers p and q such that q | (p− 1).

2.) Choose x ∈ F∗
p and calculate g := x(p−1)/q mod p.

3.) If g = 1, go to 2.).

4.) Randomly choose a number a ∈ {2, . . . , q − 1} and setA := ga.

Then (p, q, g, A) is the public key and a is the private key.

Generation and Verification of Signatures For the signature generation and verification we refer
to [63] and [88]. Both signature generation and signature verification require a cryptographic hash
function. Oneof thehash functions recommended in this guideline shouldbeusedand the lengthof
thehashvalues should correspond to thebit lengthof q. If noneof thehash functions recommended
in Table 4.1 has a suitable hash length, the k leading bits of the hash output should be used, where k
denotes the bit length of q. If the length LH of the hash value is shorter than the bit length of q, the
resulting signature algorithm will have a security level of (at most) LH/2 bits.

Key Length The length of the prime number p should be at least 3000 bits.

Remark 5.7 The use of the DSA signaturemethod is in this Technical Guideline only recommended
until 2029 due to its low prevalence and the discontinuation in [98].

Remark 5.8 The DSA method is a so-called probabilistic algorithm, since a random number k ∈
{1, . . . , q − 1} is needed to calculate the signature. Here, k should be chosen with respect to the
uniformdistribution on {1, . . . , q−1}, since otherwise attacks exist, compare [100]. Two algorithms
for calculating k are presented in Section B.4.

Remark 5.9 Regarding the generation of the system parameters, see Remark 2.10.

5.3.3. DSA Versions based on Elliptic Curves

The security of these mechanisms is based on the assumed difficulty of calculating discrete loga-
rithms in elliptic curves.
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Key Generation

1.) Generate cryptographically strong EC system parameters (p, a, b, P, q, i), see Section B.3.

2.) Choose d randomly and uniformly distributed in {1, . . . , q − 1}.

3.) SetG := d · P .

Then the EC system parameters (p, a, b, P, q, i) together with G form the public key and d the
private key.

Generation and Verification of Signatures The following algorithms are recommended in this
Technical Guideline:

• ECDSA, see [37].

• ECKDSA/ECKCDSA, ECGDSA, see [37, 63].

Table 5.5: Recommended signature algorithms based on elliptic curves.

For the generation and verification of signatures, a cryptographic hash function is required. In
general, all hash functions recommended in this Technical Guideline are suitable. The length of
the hash values should correspond to the bit length of q. The other remarks on the choice of hash
function from Section 5.3.2 apply accordingly.

Key Length All signature algorithms listed in Table 5.5 ensure a security level of n bits if q ≥ 22n

holds for the order q of the base point P and it is assumed that the calculation of discrete loga-
rithms on the curves used is not possible more efficiently than with generic mechanisms. It is rec-
ommended to choose q ≥ 2250.

Remark 5.10 Like the DSA scheme, all of the signature algorithms recommended in this section are
probabilistic algorithms. Here too, a random value k ∈ {1, . . . , q − 1} must be chosen according
to the uniform distribution on {1, . . . , q − 1}, since otherwise attacks exist, compare [100]. Two
methods for calculating k are presented in Section B.4.

5.3.4. Quantum-Safe Signature Schemes

Due to the threat posed to classical signature algorithms by the ongoing development of sufficiently
large quantum computers, a migration to quantum-safe algorithms should take place. To this aim,
this Technical Guideline recommends quantum-safe signature schemes.
This Technical Guideline recommends the use of a quantum-safe signature scheme only in com-

bination with a classic signature scheme. Hybridisation should be implemented in such a way that
the hybrid signature scheme is secure as long as at least one of the schemes is secure. A natural
and robust hybridisation is the concatenation of a quantum-safe signature with a classic signature
so that the concatenated signature is accepted as valid if all individual signatures are valid. Care
should be taken here to generate keymaterial for hybrid signatures specifically for this purpose and
not to use it for non-hybrid signatures as well.
Provided that the implementation security of stateful and stateless hash-based procedures is

properly considered, hash-based signatures can in principle also be used on their own (i.e. not
hybrid).
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5.3.4.1. SLH-DSA (SPHINCS+)

As part of its PQC standardisation process, NIST is expected to publish a standard for the SLH-DSA
(also known as SPHINCS+) scheme before the end of 2024. This a stateless hash-based lattice-based
signature scheme. The BSI intends to include SLH-DSA with the parameter sets corresponding to
NIST Security Strength Categories 3 and 5 in the recommendations of this Technical Guideline after
publication of the corresponding standard.

5.3.4.2. ML-DSA (CRYSTALS-Dilithium)

As part of its PQC standardisation process, NIST is expected to publish a standard for the ML-DSA
(also known as CRYSTALS-Dilithium) scheme before the end of 2024. This is a lattice-based signa-
ture scheme. The BSI intends to include ML-DSA with the parameter sets corresponding to NIST
Security Strength Categories 3 and 5 in the recommendations of this Technical Guideline after pub-
lication of the corresponding standard.

5.3.4.3. Merkle Signatures

In contrast to the signature algorithms described so far, the security of the signature methods de-
scribed in [94] (XMSS, XMSSMT, LMS undHSS) is based only on the cryptographic strength of a hash
function and a family of pseudorandom functions, but not on the assumed difficulty of a mathe-
matical problem (like the determination of a prime factorisation or the calculation of discrete log-
arithms in selected groups). In particular, no assumptions on the absence of efficient algorithms
for these problems from algorithmic number theory are required. According to current knowledge
it is therefore generally assumed that, unlike the other signature methods recommended in this
Technical Guideline, Merkle signatures are also secure against attacks using quantum computers.2

The generally low complexity-theoretic assumptions underlying the security of Merkle signa-
tures make Merkle signatures appear to be a good scheme for the generation of long-term secure
signatures. This is also true under the assumption that attacks by quantum computers are not used
during the period of time in which the signature is to remain valid.
However, when using the Merkle signatures recommended in this Technical Guideline – unlike

in case of the rest of the signature schemes described in this Technical Guideline – only a limited
number of messages can be authenticated with a given public key. With the single-tree variants
XMSS and LMS, the computing time for generating the public key is proportional to this maximum
number of messages that can be authenticated with a key pair and is thus comparatively long. If a
large number of messages are to be signed without intermediate generation and authenticated dis-
tribution of a new public key, the use of the multi-tree variants XMSSMT and HSS is recommended.

Remark 5.11 In [101], an attack against SLH-DSA (formerly SPHINCS+) with SHA-256 as the under-
lying hash function is described. This attack reduces the security of the attacked SLH-DSA instance
by approximately 40 bits, i.e. instead of the claimed security level of 256 bits, this SLH-DSA instance
only offers a security level of approximately 216 bits. Theoretically, the idea of this attack can be
transferred to LMS/HSS in combination with SHA-256, so that this attack should be taken into ac-
count when using such LMS/HSS instances. However, the security level of 120 bits targeted in this
Technical Guideline is achieved by parameter sets that are standardised in [94] evenwhen the attack
is accounted for.

5.3.5. Long-Term Preservation of Evidentiary Value for Digital Signatures

If the intended period of time over which the authenticity and integrity of the data to be protected
by means of a data authentication system is to remain secure significantly exceeds the prediction

2A discussion of quantum security of the collision resistance of hash functions can be found in [12].
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periodof this TechnicalGuideline, it is irrespective of thepresent recommendationsonmechanisms
and key lengths for digital signatures recommended to take into account the possibility of a future
migration of the system to new signature algorithms or longer signature keys already during the
development. This should include mechanisms for the signature renewal of old signed documents
using the updated schemes. More information on this topic can be found in Technical Guideline
TR-03125 (TR-ESOR) [41].
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6. Instance Authentication

In this Technical Guideline, instance authentication refers to cryptographic protocols in which a
prover confirms to a verifier the possession of a secret. For symmetric mechanisms, this secret is
a symmetric key, which has to be exchanged in advance. In case of instance authentication with
asymmetric mechanisms, the proving party shows that he is in possession of a private key. A public
key infrastructure (PKI) is usually required for this, so that the verifier can assign the correspond-
ing public key to the proving party. Password-based schemes are primarily used to unlock smart
cards or other cryptographic components. Here, the owner of the component proves that he is in
possession of a password or PIN.
Authentication should – where reasonable and possible – be mutual and can be accompanied by

key agreement to ensure the confidentiality and integrity of any subsequent communication, see
Chapter 2 for recommended key exchange and key agreement schemes and Section A.2 for recom-
mended protocols that combine both schemes.
In this chapter, for the first two schemes (Sections 6.1 and 6.2), only general ideas about instance

authentication are provided and the corresponding cryptographic primitives are recommended.
For the required cryptographic protocols it is referred to Section A.2. In particular, among others
recommendations for key lengths can be found there.

6.1. Symmetric Schemes

The possession of the secret key is demonstrated by the prover (P) to the verifier (V) by sending a
random value r to V. For the scheme to reach theminimum security level aimed at in this Technical
Guideline, r should have at least 120 bits of min-entropy. If a large number of authentications are
performed with the same secret key, then the probability of a collision of two of these challenge
values should be limited to≤ 2−32. P uses the shared keyK to calculate an authentication code for
themessage r and sends it back toV,whoverifies it. Such schemes are also calledChallenge-Response
Methods, see Table 6.1 for a schematic representation.

Prover (P) Verifier (V)

Choose random value r
r←−

(Challenge)
Calculate authentication code c

c−→
(Response)

Verify authentication code

Table 6.1: Schematic representation of a Challenge-Response method for instance authentication.

The calculation and verification of the authentication code depends on the selected scheme. In
principle, all encryption schemes recommended in Chapter 3 and all MAC schemes recommended
in Section 5.2 can be used. For recommended bit lengths and constraints on the random values
used, see Section A.2.
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6.2. Asymmetric Schemes

Also for asymmetric mechanisms, challenge-response protocols are used for instance authentica-
tion. Here, the prover uses his secret key to calculate a tag for a random value r sent by the verifier.
The verifier then verifies the tag with the help of the corresponding public key. In general, all of the
schemes recommended in Chapter 2 can be used for this purpose. For recommended bit lengths
and constraints on the random values used, see also Section A.2.

Remark 6.1 Even though the signature algorithms recommended in Section 5.3 for data authentica-
tion can also be used for instance authentication, it has to be ensured that the used keys are different,
meaning that a key used to generate signatures is not used for instance authentication. This must
also be indicated in the corresponding certificates for the public keys.

6.3. Password-BasedMethods

Passwords for unlocking the cryptographic keys made available on cryptographic components (for
example signature cards) are usually short, so that the owner of the component can remember the
password. In many situations, the permitted character set is also restricted to the digits 0-9; in this
case, one also speaks of PIN instead of password. In order to nevertheless reach an adequate security
level, the number of access attempts is usually limited.

6.3.1. Recommended Password Lengths for Access to Cryptographic Hardware
Components

The following constraints for password lengths and number of attempts for access to cryptographic
hardware components are recommended:

• It is generally recommended to use passwords with an entropy of at least log2(106) bits.
This can be achieved, for example, by assigning ideally random six-digit PINs.

• The number of consecutive unsuccessful access attempts must be tightly limited. With a
password entropy of log2(106) bits, a limit of three attempts is recommended.

Table 6.2: Recommended password lengths and number of access attempts for access protection of
cryptographic components.

Remark 6.2 If access passwords for cryptographic components are not (at least approximately) ide-
ally randomly generated by a technical process, but chosen by the user, it is strongly recommended
to raise the user’s awareness with respect to the choice of secure passwords. Furthermore, it is
recommended in this case to refrain from using purely numeric passwords (PINs). For passwords
formed over an alphabet containing at least the letters A-Z, a-z, 0-9 and, if applicable, special charac-
ters, a length of eight characters is recommended. In addition, it is recommended to take safeguards
to exclude passwords that are easy to guess (for example, individual words in the respective national
language or an important foreign language and dates in easy guessable formats).

Remark 6.3 In some applications, after consideration of all the circumstances by an expert, the use
of passwords with lower entropy than recommended above may also be compliant with this Tech-
nical Guideline. However, a single unauthorised access attempt should at least never succeed with
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a probability of success greater than ≈ 10−4. The number of consecutive unsuccessful access at-
temptsmust be tightly limited, where the exact limitations depend on the application. The residual
risks should be thoroughly documented and it is recommended to inform the authoriseduser of any
unauthorised access attempts, if possible, even if the component was not blocked subsequently.

Remark 6.4 (i) To prevent denial-of-service attacks or accidental blocking of the component,
there must be a mechanism to unblock the blocking. The entropy of the personal unblocking
key (PUK) should be at least 120 bits if offline attacks are possible.

(ii) If no offline attacks on the PUK are possible, it is recommended to use a PUK with a min-
entropy of 32 (for example 10 digits) and to irrevocably delete the cryptographic secrets con-
tained in the component after a relatively low number of access attempts (for example 20).

(iii) The general recommendation of at least about 20 bits of entropy for the password used in a
password-based authentication scheme applies only to authentication to a security compo-
nent that doesnot allowofoffline attacks and that can reliably enforce the stated restrictionson
the number of access attempts allowed. In other situations where these conditions are notmet
(for example, when a cryptographic secret is directly derived from the password that provides
access to sensitive information), it is recommended to choose passwords via a method that of-
fers at least 120 bits of entropy. For access to data or for authentication of transactions with
high protection requirements, single-factor authentication is generally not recommended. In-
stead, two-factor authentication bymeans of knowledge (knowing a password) and ownership
(of a secure hardware component) is recommended in this situation.

6.3.2. RecommendedMethod for Password-Based Authentication to Cryptographic
Hardware Components

For contact-based chip cards, cryptographic protection of the transmission of the PIN to the chip
card can currently be omitted if the card terminal itself can be considered as trustworthy and aphys-
ical tapping or manipulation of the information transmitted between reader and card is prevented
by suitable measures in the operational environment. However, cryptographic protection (with
regard to integrity and confidentiality of the transmitted identification data) is also recommended
here. In principle, the samemechanisms as for contactless cards are suitable for contact-based cards
as well.
In the case of contactless chip cards, the communication between the card reader and the chip

card can be read from a distance. Here, the password for activating the chip cannot simply be sent
from the card reader to the chip card.
The following password-based method is recommended for the access protection to contactless

chip cards:

PACE: Password Authenticated Connection Establishment, see [36].

Table 6.3: Recommended password-based method for the protection of access to contactless chip
cards.

The method recommended in Table 6.3 not only demonstrates to the contactless chip card that
the user is in possession of the correct password, but at the same time performs a key agreement
method, so that subsequently a confidential and authenticated communication can take place.
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Remark 6.5 Also with themethod recommended in Table 6.3, the number of attempts must be lim-
ited. It is recommended to block the chip card after three unsuccessful attempts. The further re-
marks from Section 6.3.1 apply accordingly.
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7. Secret Sharing

Inmany cases, cryptographic keys have to be stored over a long period of time. This requires in par-
ticular that copies of these keysmust bemade to prevent the loss of the keys. However, as the num-
ber of copies grows, so does the likelihood that the secret to be protected is compromised. Therefore,
in this chapter, we give a method that allows dividing a secret, such as a cryptographic key K , into
n shared secrets K1, . . . , Kn in such a way that any t ≤ n of these shared secrets are sufficient to
reconstruct the secret, but t − 1 shared secrets provide no information about K . Another applica-
tion of this scheme is to use a four-eyes principle or, more generally, a t-out-of-n-eyes principle, for
example to distribute the password for a cryptographic component among n different users so that
at least t users are required to reconstruct the password.
The secret-sharing algorithm presented here was developed by A. Shamir and is therefore also

called the Shamir secret-sharing mechanism, see [104]. We assume in the following that the secret
to be shared is a key K of bit length r, that is K = (k0, . . . , kr−1) ∈ {0, 1}r . To compute the shared
secrets for n users such that t users can reconstruct the secretK , we proceed as follows:

1.) Choose a prime p ≥ max(2r, n + 1) and set a0 :=
r−1∑
i=0

ki · 2i mod p.

2.) Independently choose t− 1 random values a1, . . . , at−1 ∈ {0, 1, . . . , p− 1} according to
the uniform distribution on {0, 1, . . . , p−1}. The values a0, a1, . . . , at−1 define a random
polynomial

f(x) =
t−1∑
j=0

ajxj mod p

over Fp, for which f(0) = a0 =
r−1∑
i=0

ki · 2i mod p holds.

3.) Calculate the valuesKi := f(i) for all i ∈ {1, . . . , n}.

Table 7.1: Calculation of the secret shares in Shamir’s Secret-Sharing algorithm.
.

Each shared secretKi is then handed over, along with i, to the i-th user.

Remark 7.1 The basis for the algorithm mentioned in Table 7.1 is the so-called Lagrange-
interpolation-formula, which allows to determine the coefficients a0, . . . , at−1 of an unknown
polynomial f of degree t− 1 from t points (xi, f(xi)) as follows:

f(x) =
t∑

i=1

[
f(xi)

∏
1≤j≤t

j ̸=i

x− xj

xi − xj

]
mod p.

In particular, a0 = f(0) (and thusK) can be calculated in this way from t given points.
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In order to reconstruct the secretK from t shared secretsKj1 , . . . , Kjt (with pairwise different jl),

one calculatesK = a0 =
r−1∑
i=0

ki · 2i mod p as follows:

1.) For all j ∈ {j1, . . . , jt} calculate the value cj =
∏

1≤l≤t
jl ̸=j

jl
jl−j mod p.

2.) CalculateK = a0 =
t∑

l=1
cjl

Kjl
mod p.

Table 7.2: Reassembly of the shared secret in Shamir’s secret-sharing algorithm.

Both when dividing into shared secrets in Table 7.1 and when recombining them in Table 7.2,
note, that in each case the calculation is carried out in Fp, that means modulo p.

Remark 7.2 The condition p ≥ max(2r, n + 1) ensures that on the one hand the secret can be rep-
resented as an element of Fp and on the other hand that at least n independent partial secrets can
be generated. The algorithm achieves information-theoretic security, which means that it is not
possible even for an attacker with unlimited resources to reconstruct the distributed secret without
learning t shared secrets or a value derived from the knowledge of t shared secrets in a suitable way.
The security of the scheme therefore does not depend on any further security parameters apart

from the stated condition. However, organisational and technical measures must be taken to en-
sure that an attacker cannot gain knowledge of t shared secrets. Any communication about the
shared secrets must therefore be encrypted and authenticated, as far as it is physically possible for
an attacker to eavesdrop, record or manipulate this communication.
Moreover, information-theoretic security is only given if for i > 0, the ai are chosen truly at

random and according to the uniform distribution on Fp. In order to achieve at least complexity
theoretical security, a physical random generator of the functionality class PTG.3 or a determin-
istic random generator of the functionality class DRG.3 or DRG.4 should be used to generate the
ai. The values returned from this random generator must be post-processed to follow the uniform
distribution on Fp; suitable methods for this can be found in Section B.4.
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8. RandomNumber Generators

Themajority of cryptographic applications require randomnumbers, for example, to generate cryp-
tographic long-term or ephemeral keys, system parameters or for instance authentication. This
applies to symmetric and asymmetric encryption schemes as well as to signature, authentication
and paddingmethods. In general, unsuitable random number generators can substantially weaken
strong cryptographic mechanisms, so special care must be taken in cryptographic applications to
ensure that suitable random number generators are used. Thus – in contrast to, for example, nu-
merical simulations or experiments, in which reproducibility can play an important role – in the
cryptographic context, unpredictability and secrecy of the random numbers and/or the values de-
rived from them are indispensable properties for most applications. Even if an adversary knows
long subsequences of random numbers, this should not allow him to determine their predecessors
or successors.
Usually, the goal in generating random numbers is to produce output values uniformly dis-

tributed on {0, 1}n. However, in some cases, random numbers with certain other distributions
are needed. For this reason, Appendix B contains algorithms that can be used to calculate random
values with desired properties (for example, uniformly distributed on {0, . . . , q − 1}) from the
output values of a random number generator.
In the German certification scheme, the AIS 20 [43] (for deterministic random number genera-

tors) and AIS 31 [44] (for physical random number generators) are binding. Of central importance
is the mathematical-technical annex [42] common to them, which defines functionality classes for
physical random number generators (PTG.1 - PTG.3), for deterministic random number generators
(DRG.1 - DRG.4) and for non-physical non-deterministic random number generators (NTG.1). Fur-
thermore, [42] explains the mathematical background and illustrates the concepts with numerous
examples.
In the following sections, the different types of randomnumber generators are discussed inmore

detail. The main recommendations for the use of random number generators in general crypto-
graphic applications can be summarised as follows:

• Whenusing a physical randomnumber generator, it is generally recommended to use a PTG.3
generator. This is especially true for the generation of ephemeral keys when computing digi-
tal signatures and Diffie-Hellman based key negotiation. In cases where the use of a certified
cryptographic component is required for random number generation, this recommendation
only applies if correspondingly certified components are available. Otherwise, a PTG.3 gen-
erator can usually be constructed by cryptographic post-processing of the output of a PTG.2
generator, implemented in software and compatiblewith the requirements of the PTG.3 func-
tionality class.

• For some specific cryptographic applications, PTG.2 generators are also sufficient, for example
when generating symmetric session keys orwhen generating a seed for a strong deterministic
random number generator. Random numbers from PTG.2-compliant random number gen-
erators have high entropy, butmay have some biases and/or dependencies. Theymay be used
in some circumstances if the resulting advantage to an adversary is demonstrably small. In
general, however, the direct use of PTG.2 randomnumber generators is discouraged. This ap-
plies in particular to applications in which the existence of even relativelyminor biases in the
distribution of the generated random numbers can lead to exploitable weaknesses, such as in
the generation of nonces in DSA-like signature procedures.

60 Federal Office for Information Security (BSI)



Technical Guideline – Cryptographic Algorithms and Key Lengths

• When using a deterministic random number generator, it is recommended to use a DRG.3 or
a DRG.4 generator whose seed is generated from a physical random source of class PTG.2 or
PTG.3. If no such random source is available, the use of a non-physical, non-deterministic
random number generator may also be considered in some circumstances. For example, a
DRG.3 generator can also be seededwith anNTG.1 generator, for further details please refer to
Sections 8.3 and 8.5. In comparison, when using PTG.3 or DRG.4 random number generators,
side-channel and fault attacks are also relevant, but only lead to the compromise of relatively
few generated random.

• In general, PTG.3 andDRG.4 generators have the advantage of an improved resistance to side-
channel and fault attacks compared to PTG.2 and DRG.3 generators. In the case of a PTG.3
generator, the permanent inflow of large amounts of entropy into the internal state means
that possible side-channel attacks against cryptographic post-processing are made consider-
ably more difficult, as an adversary can combine information about the internal state at two
consecutive points in time t and t + 1 only with great difficulty.

• In addition to the risk of long-term compromise through side-channel and fault attacks,
DRG.3 random number generators have an increased residual risk of long-term conceivable
cryptanalytic compromise compared to DRG.4 and PTG.3 generators if the random number
generator produces large amounts of key material worthy of long-term protection from a
single seed value.

• In the general case, a system security of n bits requires a min-entropy of the DRNG-seed of n
bits.

• For both physical and deterministic randomnumber generators, resistance to high attack po-
tential should be demonstrated in the respective application context.

8.1. Physical RandomNumber Generators

Physical random number generators use dedicated hardware (usually an electronic circuit), to gen-
erate „true“ randomness, that means unpredictable random numbers. This is usually done by ex-
ploiting the unpredictable behaviour of simple electrical circuits, as can be caused by various forms
of noise in the circuits. In the end, the entropy of the signal is usually physically based on quantum
effects or on the amplificationof environmental influences in a chaotic system,where the influences
cannot be controlled ormeasured separately. An adversary should only have a negligible (ideally no)
advantage over blindly guessing the random numbers even with knowledge of partial sequences of
randomnumbers or,more explicitly, the exact knowledge of the randomnumber generator includ-
ing the physical environmental conditions at the time of the generation of previous or subsequent
random numbers. Deterministic post-processing of the „raw noise data“ (usually digitised noise
signals) is often necessary to eliminate any biases or dependencies that may be present.
When using a physical random number generator, it is generally recommended to use a PTG.3

generator in the sense of AIS 31 (compare [42, Chapter 4]). This applies in particular to applica-
tions in which an adversary can, at least in principle, combine information about different random
numbers. If an implementation of the randomnumber generator in a certified cryptographic com-
ponent is required, the recommendation to use a PTG.3 generator only applies if suitable certified
components exist.
It is possible to construct a PTG.3 generator from a PTG.2 generator by cryptographically post-

processing the output of the PTG.2 generator in a suitable manner. This post-processing can usu-
ally be implemented in software. The exact requirements for post-processing can be found in [42].
Roughly speaking, the post-processingmust implement aDRG.3-compatible deterministic random
number generator and at least as much new entropy must always be added to the internal state of
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this randomnumber generator by a randomnumber generator of class PTG.2 as is requested by the
cryptographic application.
In short, PTG.2 or PTG.3 compliant random number generators must fulfil the following proper-

ties:

• The statistical properties of the random numbers can be described sufficiently well by a
stochastic model. Based on this stochastic model, the entropy of the random numbers can
be reliably estimated.

• The average entropy increase per random bit is above a given minimum limit (close to 1).

• The digitised noise signals are subjected to statistical tests online, which are suitable to detect
unacceptable statistical defects or degradation of statistical properties within a reasonable pe-
riod of time.

• A total failure of the noise source is de facto detected immediately. No randomnumbers gen-
erated after a total failure of the noise source must be output.

• The detection of a total failure of the noise source or unacceptable statistical defects of the
random numbers leads to a noise alarm. A noise alarm is followed by a defined, appropriate
response (for example, shutting down the noise source).

• (Only PTG.3-compliant random number generators): A (possibly additional) strong crypto-
graphic post-processing ensures that even in the case of an unnoticed total failure of the noise
source, the security level of a DRG.3-compliant deterministic random number generator is
still assured.

Hybrid random number generators combine security properties of deterministic and physical
random number generators. In addition to a strong noise source, hybrid physical random number
generators of functionality class PTG.3 have a strong cryptographic post-processing with memory.
This is typically realised by a cryptographic post-processing of the random numbers of a PTG.2-
compliant random number generator in an appropriate manner.
Thedevelopment and security-critical assessmentof physical randomnumber generators require

comprehensive experience in this field and it is recommended to seek advice of experts at an early
stage.

8.2. Deterministic RandomNumber Generators

Deterministic random number generators (also known as pseudorandom number generators) can
compute a pseudorandom bit sequence of practically any length from a fixed-length random value
called a seed. Publicly knownparameters can also be included in the computation. For this purpose,
the inner state of the pseudorandom number generator is first initialised with the seed. In each
step, the internal state is renewed, and a random number (usually a bit sequence of fixed length)
is derived from the internal state and output. Hybrid deterministic random number generators
refresh the inner state from time to time with „true“ random values (reseed/seed update). This can
be initiated in different ways, for example regularly or on request of the application. The inner
state of a deterministic random number generator must be reliably protected against readout and
manipulation. If a deterministic random number generator is used, then it is recommended to use
a DRG.3 or DRG.4-compliant random number generator against the attack potential „high“ in the
sense of AIS 20 (see [42]).
When using randomnumber generators of the functionality class DRG.3, a steady inflow of fresh

entropy into the internal state is desirable, even if it is not sufficiently regular or of high enough
quality to achieve DRG.4-compliance for the overall design. Roughly speaking, DRG.3 conformity
means:
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• It is practically impossible for an adversary to calculate predecessors or successors of random
numbers to a known subsequence of random numbers or to guess them with significantly
higher probability than would be possible without knowledge of this subsequence.

• It is practically impossible for an adversary to calculate previously output random numbers
based on knowledge of an internal state or to guess themwith significantly higher probability
than would be possible without knowledge of the internal state.

For DRG.4-compliance, even if an adversary knows the current internal state, it is not practically
possible for them to compute randomnumbers that are generated after the next reseed/seed update
or to guess themwith significantly higher probability thanwould be possible without knowledge of
the inner state.1 DRG.4-compliant generators also have certain advantages over DRG.3-compliant
random number generators in terms of implementation attacks.

8.3. Non-Physical Non-Deterministic RandomNumber Generators

For many cryptographic applications, for example in the field of e-business or e-government, nei-
ther a physical nor a deterministic random number generator is available, since these applications
are generally run on computers without certified cryptographic hardware. Instead, non-physical
non-deterministic randomnumber generators (NPTRNG) are generally used in these situations, ei-
ther directly or to seed a strong deterministic random number generator. A well-known exam-
ple of a non-physical non-deterministic random number generator is the Linux RNG (device file
/dev/random), which is analysed in detail in the study [5].
Like physical random number generators, NPTRNGs generate „true“ random numbers and rely

on security in the information-theoretic sense through sufficient entropy. However, they do not
use dedicated hardware for this, but system resources (system time, RAM contents, etc.) and/or
user interaction (for example, keystrokes or mouse movements). NPTRNGs are usually used on
systems that arenot specifically designed for cryptographic applications, for example, commercially
available PCs, laptops or smartphones.
A typical approach for generating randomnumbers using NPTRNGs is as follows: First, a long bit

string of „randomdata“ (more precisely: of non-deterministic data) is generated, where the entropy
per bit is usually rather low. This bit string is mixed with an internal state and random numbers are
then calculated from the internal state and output afterwards.
In themathematical-technical annex [42], a functionality class for such random number genera-

tors (NTG.1) is defined. For NTG.1 random number generators, it is roughly speaking required that
the amount of entropy collected during operation can be reliably estimated and that the output data
have a Shannon entropy of> 0.997 bits per output bit.
This means, among other things:

• The entropy of the internal state is estimated. If a random number is output, the entropy
counter is reduced accordingly.

• Random numbers may only be output if the value of the entropy counter is high enough.

• It is practically impossible for an adversary to calculate previously output random numbers
based on the knowledge of the internal state and the random bit strings previously used for
seed updates or to guess them with significantly higher probability than would be possible
without knowledge of the state and bit strings.

1Significantly higher probability here refers to a probability at least higher than the probability of guessing the true
randomvalues generated for the seedupdate. For each seedupdate, at least 120bits ofmin-entropymust be generated.
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It is crucial for NPTRNG that the entropy sources used by the random number generator cannot
be manipulated by an adversary in the sense of entropy reduction or become predictable if the ad-
versary has precise information about the execution environment. This requirement is not amatter
of course evenwhen using a principally goodNPTRNG. An example of a critical situation in this re-
spect is the use of virtualisation solutions [103]. In this situation, the output of an NPTRNG can, in
extreme cases, be completely predicted if the system is started twice from the same system image
and all entropy sources of the virtual system are controlled by the host computer.
If an NPTRNG is to be used as the sole or most important random source for a system intended

to process sensitive data, it is strongly recommended to always consult an expert.

8.4. Various Aspects

Hybrid random number generators combine security properties of deterministic and physical ran-
domnumber generators. The security of a hybrid deterministic randomnumber generator of func-
tionality class DRG.4 is primarily based on the complexity of the deterministic part, which belongs
to class DRG.3. During the use of the random number generator, new randomness is added again
and again. This can be done, for example, at regular intervals or at the request of an application.
In addition to a strong noise source, hybrid physical random number generators of functional-

ity class PTG.3 have a strong cryptographic post-processing with memory. Compared to PTG.2-
compliant random number generators, the PTG.3 functionality class also offers the advantage that
the random numbers have neither biases nor exploitable dependencies. Especially for applications
in which a potential adversary can, at least in principle, combine information about many random
numbers (for example, ephemeral keys), a physical randomnumber generator of functionality class
PTG.3 should be used.
The derivation of signature keys, ephemeral keys and prime numbers (for RSA) or the like from

the generated random numbers has to be done with suitable algorithms (for elliptic curves com-
pare [46]). Roughly speaking, a potential adversary should have as little information as possible
about the derived values (to be kept secret). Ideally, all values within the respective permissible
range of values occurwith the same probability, and different randomnumbers should at least have
no practically exploitable correlations. As explained in [42], the generation of secret signature keys,
ephemeral keys and primenumbers can also be the target of side-channel attacks, just like signature
algorithms (see for example [52, 45, 46]).

8.5. Seed Generation for Deterministic RandomNumber Generators

For the initialisation of a deterministic random number generator, a seed with sufficiently high
entropy is required. This seed should be generated with a physical random number generator of
the functionality classes PTG.2 or PTG.3. On PCs, a physical random number generator is usu-
ally not available, or at least such a random number generator has not been subjected to thorough
manufacturer-independent certification. In such cases, the use of a non-physical non-deterministic
random number generator is recommended; NTG.1-compliant random number generators (high
attack potential) are suitable for this purpose. Currently, there are noNTG.1-certified randomnum-
ber generators. Therefore, we give below suitable methods for seed generation for the two most
important PC operating systems.
However, the use of the methods for seed generation recommended in the following two sub-

sections can only be viewed as secure if the computer is under the user’s complete control and no
third-party components have direct access to the entire internal state of the computer, as may be
the case, for example, if the entire operating system runs in a virtual environment. This means for
example in particular that the existence of viruses or Trojan horses on this computer can be ruled
out. Users must be informed about these risks.
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8.5.1. GNU/Linux

The following mechanism is recommended for seed generation under the GNU/Linux operating
system:

Reading of data from the device file /dev/random.

Table 8.1: Recommended method for seed generation under GNU/Linux.

Remark 8.1 The randomness provided by the device file /dev/random has so far only been reviewed
by the BSI for certain kernel versions and found to be suitable when used in PC-like systems. The
Linux RNG is thereby assessed by the present Technical Guideline as generally suitable for general
cryptographic applications if the requirements of the functionality class DRG.3 or NTG.1 according
to [42] are fulfilled. However, since the underlying mechanisms differ considerably depending on
the kernel version used and the available random sources depend on the exact system environment,
an expert should always be consulted if /dev/random is to be used as the main random source in a
new system to be developed. A cryptographic evaluation of /dev/random in different Linux kernel
versions can be found in the BSI study [5]. A cross-check of the security properties of the Linux
random number generator in different Linux kernel versions with the functionality classes of AIS
20 and AIS 31 respectively is given in the kernel overviews included there.

Remark 8.2 The use of /dev/urandom can be problematic [56], as it does not check whether a suf-
ficient amount of system data has been collected for cryptographic purposes at initialisation of the
random number generator. On the other hand, /dev/random blocks in some kernel versions if the
internal entropy estimator falls below a specified bound. This can slow down randomnumber gen-
eration a lot, leading to usability problems.

Remark 8.3 In principle, /dev/random can be used not only to seed a pseudorandom generator, but
also to generate cryptographic keys directly.

8.5.2. Windows

In contrast to GNU/Linux operating systems, there is currently no function for the operating sys-
tems of theWindows family that guarantees adequate high entropy and has been examined by the
BSI. For the generation of secure seeds, several sources of entropy should be combined in an appro-
priate manner. For example, in Windows 10, to generate a seed value of at least 120 bits of entropy,
the following method may be considerable:

1.) Reading of 128 bits of random data into a 128-bit buffer S1 from the Windows API function
BCryptGenRandom().

2.) Obtaining a bit string S2 with at least 120 bits of entropy from a different source. Here, for exam-
ple, the following can be considered:

• Evaluation of the time intervals between successive keystrokes of the user: If these can be
demonstrably recorded with a precision of one millisecond, about three bits of entropy
per keystroke can be conservatively assumed for this. In order to estimate the temporal
resolution of the measured time intervals, the entire processing chain must be examined
for entropy-limiting factors. For example, it is possible that the accuracy of the internal
clock gives one resolution limit, the polling frequency of the keyboard another, and the
time interval within which the used system timers are being updated yet another. It is
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recommended to measure the distribution of the keyboard stroke times in practical tests
beforehand and to examine them for anomalies. The sequence of the recorded timings of
a sufficiently large number of keyboard events can then be encoded into a binary string
B. Subsequently, one sets S2 := SHA256(B) and the data collected in the process (like the
recorded data on keyboard stroke times) are cleared fromworkingmemory by overwriting
with zeros.

• User-initiated events: The times T1, T2, T3, T4, T5, T6 of six events initiated by the user are
recordedusing theWindowsAPI functionQueryPerformanceCounter(). This usually has
an accuracy of at least the order of a microsecond. One can, under the conditions,

(i) that eachTi cannot be estimatedmore precisely than to one second even ifTj is known
to the adversary for all j ̸= i,

(ii) that even if Tj is known to the adversary for all j ̸= i, the value of Ti cannot be con-
strained by other considerations (for example, to the polling frequency of the key-
board) to less than 220 possibilities if any interval of one second in length containing
Ti is given,

assume that the bit string T := T1||T2||T3||T4||T5||T6 contains about 120 bits of entropy
from the adversary’s point of view. As in the previous example, one sets S2 := SHA256(T )
and clears T from working memory.

It is not always easy to meet the requirements for independence and unpredictability of
user-initiated events. The problem here is that the time at which the software requests
the user to initiate an event may be tightly predictable if the timing of an earlier event is
known. The time that elapses between the request for an input and the user input itself
might also be more accurately predictable than in the range of seconds. The fulfilment of
the prerequisites and the plausibility of such entropy estimates must always be examined
in the each particular case at hand.

• In a similar way, mouse movements of the user can also be used to gather entropy. The
entropy contained in mouse movements cannot be estimated precisely without further
analysis. Therefore, a case-by-case analysis is always required, taking into account the type
and number of events recorded (pointer positions, and additionally time measurements if
necessary), so that it canbe ensured that themeasurements collected cannot be compressed
without loss to a data set of less than 120 bits in size. One then defines S2 again by a SHA2
hash over the recorded mouse events.

3.) In all cases, a seed value S for a suitable pseudorandom generator can then be derived by setting
S := SHA256(S1||S2). Ideally, as many independent entropy sources S1, . . . , Sn as possible are
used to achieve a desired level of security.

Remark 8.4 There is nothing known to the BSI indicating that in the above example a 128-bit value
obtained from BCryptGenRandom() does not already contain approximately 128 bits of entropy.
However, the exact operation of BCryptGenRandom() is not described in detail in publicly available
vendor documents, nor has the function been intensively studied by parties independent of the
vendor, as is the case, for example, for the randomnumber generator integrated into the Linux ker-
nel. Therefore, combining randomness from BCryptGenRandom()with output from other entropy
sources is recommended as a basic precaution.
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Appendix A.

Applications of Cryptographic Mechanisms

The mechanisms explained in the previous chapters often have to be combined in order to ensure
the protection of sensitive data. In particular, sensitive data to be transmitted should not only be
encrypted but also authenticated in order to enable a recipient to detect any changes.
Moreover, a key agreement must always be accompanied by an instance authentication and an

authentication of all messages transmitted during the key agreement, so that both parties can be
sure who they are communicating with. Otherwise, the communication can be compromised by
a so-called man-in-the-middle attack. Depending on the application, in addition to man-in-the-
middle attacks, other types of attacks on the authenticity of message transmission (for example,
replay attacks) can also threaten the security of an information-processing systemwithout instance
authentication or without data authentication. Therefore, in this chapter adequatemechanisms for
both encryption with data authentication and authenticated key agreement are provided.

A.1. EncryptionMethods with Data Authentication

In general, all mechanisms recommended in Chapter 3 or Section 5.2 can be used for the combina-
tion of encryption and data authentication.
The following two aspects must be observed:

• Encrypted data must always be transmitted authenticated. In addition, it is possible to trans-
mit non-confidential data authenticated but unencrypted. All other data of the same data
transmission is not authenticated.

• Encryption and authentication keys must be different and should not be derivable from each
other.

Remark A.1 For the authenticated transmission of encrypted data, the use of a MAC in Encrypt-
then-MACmode is recommended.

Remark A.2 It is possible to derive encryption and authentication keys from a shared key; this does
not contradict the second aspect above. Recommendedmechanisms are summarised in SectionB.1.

Remark A.3 If the security objective of non-repudiation of the plaintext is also sought in a trans-
mission of encrypted data, the plaintext should be secured by a digital signature. In this case, the
plaintext is thus first signed, then encrypted, and finally the encrypted transmission is protected by
a MAC against modification on the transmission path. Moreover, a signature on the ciphertext can
be reasonable if in addition the encrypted message should be non-repudiable or only the sender
(and not the legitimate recipient) should be able to change the ciphertext.

A.2. Key Agreement with Instance Authentication

As alreadymentioned, a key agreement must always be combined with an instance authentication.
After some general preliminary remarks, we provide schemes based either entirely on symmetric
algorithms or entirely on asymmetric algorithms.
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A.2.1. Preliminary Remarks

Objectives The objective of a key exchange schemewith instance authentication is that the parties
involved share a common secret afterwards and are sure with whom they share it at the end of the
protocol execution. For the derivation of symmetric keys for encryption and data authentication
schemes from this secret, see Section B.1.

Requirements on the Environment Symmetric schemes for an authenticated key exchange al-
ways assume the existence of pre-distributed secrets. In the case of asymmetric schemes it is usually
assumed that a public key infrastructure (PKI) that is able to reliably bind keys to identities and to
authenticate the origin of a key through appropriate certificates exists. Further, it is assumed that
the root certificates of the PKI have been made known to all parties involved via reliable channels
and that all parties are able to check the validity of all relevant certificates at any time.
For the practical implementation of the schemes presented, the following two conditions must

be fulfilled:

• The randomvalues used for the authentication have to be differentwith high probability each
time the protocol is executed. This can be achieved, for example, by choosing each time a
random value with respect to the uniform distribution on {0, 1}120.

• The random values used for key agreement must at least reach an entropy that corresponds
to the desired key lengths of the keys to be to be agreed upon. It is assumed at this point that
only symmetric keys are negotiated. In addition, each party involved in the key agreement
should contribute at least 120 bits of min-entropy to the key to be negotiated.

A.2.2. Symmetric Schemes

In principle, any scheme for instance authentication from Section 6.1 can be combined with any
scheme for key agreement from Section 3.3. The combination must be done in such a way that the
exchanged keys are actually authenticated and thus in particularman-in-the-middle attacks can be
excluded. The following mechanism is recommended for this application:

Key Establishment Mechanism 5 from [62].

Table A.1: Recommended Symmetric Scheme for Key Agreement with Instance Authentication.

Remark A.4 Any of the authenticated encryption schemes recommended in this Technical Guide-
line may be used as encryption methods in Key Establishment Mechanism 5 from [62] (see Sec-
tion A.1).

A.2.3. Asymmetric Schemes

Analogous to symmetric schemes, any scheme for instance authentication from Section 6.2 can be
combined with any mechanism for key agreement from Chapter 2. However, in order to prevent
errors in self-designed protocols the key agreement schemes listed in Table A.2 are recommended
for key agreement with instance authentication based on asymmetric schemes.
All recommended schemes require the existence of a mechanism for authentic distribution of

public keys as a precondition. This mechanismmust have the following properties:

• The public key generated by a user must be reliably bound to the user’s identity.
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• The associated private key should be reliably bound to the identity of the user (it should not
be possible for a user to register a public key under his identity to which he cannot use the
associated private key).

There are several ways to achieve this. An authentic key distribution can be achieved bymeans of
a PKI. The requirement that the owners of all certificates issued by the PKI should actually be users
of the associated private keys can be verified by the PKI performing one of the instance authenti-
cation protocols described in Section 6.2 with the applicant using his public key before issuing the
certificate.
If the PKI does not perform such a check, it is recommended to add a key confirmation step to

the schemes recommended below, inwhich it is verified that both parties have determined the same
shared secret K and in which this secret is bound to the identities of the two parties. For key con-
firmation, the scheme described in [93, Section 5.6.2] is recommended. The second recommended
mechanism (KAS2-bilateral-confirmation according to [93]) already includes this step.

• Elliptic Curve Key Agreement of ElGamal Type (ECKA-EG), see [37],

• Instance Authentication with RSA and Key Agreement with RSA, see KAS2-bilateral-
confirmation after [93, section 8.3.3.4],

• MTI(A0), see [66, Annex D.7].

Table A.2: Recommended asymmetric schemes for key agreement with instance authentication.

Remark A.5 In order to comply with the present Technical Guideline, care must be taken in the
specific implementation of the protocols that only the cryptographic components recommended
in this document are used.

Remark A.6 In the case of the ECKA-EG scheme, no mutual authentication takes place. Here, one
party merely proves to the other that it is in possession of a private key, and even this is done only
implicitly, through the possession of the negotiated secret after the execution of the protocol.
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Appendix B.

Additional Functions and Algorithms

For some of the cryptographicmethods recommended in this Technical Guideline, additional func-
tions and algorithms are required, for example, to generate systemparameters or to derive symmet-
ric keys from the output obtained by randomnumber generators or key agreement schemes. These
functions and algorithmsmust be carefully chosen in order to achieve the level of security required
in this Technical Guideline and to prevent cryptanalytic attacks.

B.1. Key Derivation

B.1.1. Key Derivation after Key Exchange

After a key agreement, both parties hold a shared secret. Im many applications, several symmetric
keys, for example for encryption and data authentication, have to be derived from this secret (see
also Remark A.2), which can be realised with the help of a key derivation function. In addition, the
following objectives can also be achieved by using a key derivation function:

• Binding of key material to protocol data (for example name of the sender, name of the recip-
ient,…) by using the protocol data in the key derivation function.

• Derivation of session keys or keys for different purposes from a master key also in purely
symmetric cryptosystems.

• Post-processing of random data to remove statistical biases in cryptographic key generation.

The following methods are recommended for all applications of key derivation functions:

• Two-Step KDF, see [95, Abschnitt 5]

• HKDF, see [71].

Table B.1: Recommended method for key derivation..

In the context of this Technical Guideline, it is in case of Two-Step KDF recommended to use
HMAC or AES-CMAC as MAC function, see in Section 5.2. The output of the MAC algorithmmust
not be shortened. For key lengths of 128 bits, according to [95, Table 4,5] both methods can be used
equally, for longer keys only the use of HMAC is recommended. If the key derivation is performed
with HMAC, the mechanism recommended here essentially corresponds to HKDF [71]. The only
difference to HKDF is the order of the message components, which is not relevant from a crypto-
graphic point of view, but may lead to interoperability problems.
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B.1.2. Key Derivation and Hybridisation

In general, the quantum-safe methods recommended in this Technical Guideline are not yet
given the same confidence as the established classical methods, as they among others have not
been equally well investigated with regard to side-channel resistance or implementation security.
This Technical Guideline therefore recommends the use of a quantum-safe mechanism only in
combination with a classical key derivation mechanism. Hybrid key agreement should be secure
as long as one of the methods used is secure. It is hereby important to consider in detail how the
shared secrets are combined with each other and how context-dependent information is included
so that the desired property mentionend before is actually achieved.

The following mechanisms are recommended for hybridisation in this Technical Guideline:

CatKDF and CasKDF, see [32].

Table B.2: Recommended hybridisation mechanisms.

B.1.3. Password-Based Key Derivation

In password-based key derivation, a cryptographic key (such as for hard disk encryption) is derived
directly from a password entered by a user. When using user-generated passwords, a security level
of 120 bits is usually unreachable due to the lack of entropy in human-generated passwords.

In such situations, this Technical Guideline primarily recommends to use aMACwith a secret key
used only for this purpose to derive the required secret from the password entered by the user. The
MAC should be computed on a cryptographically secure hardware element that is locally available
in the system that checks the password. AsMAC, a CMAC or HMACwith at least 128 bits key length
should be used and the password should be combined with a salt value of at least 32 bits length.
If authentication or key derivation fails, the hardware component should implement a delayed re-
sponse in order to prevent local brute force attacks. In this case, the quality of the passwords must
meet the requirements fromSection 6.3.1, whereby offline attacks can be considered as inapplicable.

If the use of a a cryptographic hardware token for password-based key derivation is not possible,
the hash function Argon2id [13] should be used. The security parameters of Argon2id and the
requirements for the passwords depend on the application scenario and should be discussed with
an expert.

B.2. Generation of Unpredictable Initialisation Vectors

As already mentioned in Section 3.1.2, initialisation vectors for symmetric encryption encryption
schemes that use the Cipher Block Chaining (CBC) mode of operation. must be unpredictable. This
does not mean that the initialisation vectors must be kept confidential, but only that a possible
attacker must not be able to practically guess initialisation vectors that will be used in the future.
Furthermore, the attacker must not be able to influence the choice of initialisation vectors either.

This Technical Guideline recommends the following two mechanisms for generating unpre-
dictable initialisation vectors, where n is the block size of the block cipher used: with the block
cipher and key currently in use and use the ciphertext as an initialisation vector.
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Random Initialisation Vectors: Generation of a random bit sequence of length n using a suit-
able random number generator (see Chapter 8) and using this bit sequence as an initiali-
sation vector.

Encrypted Initialisation Vectors: Use of a deterministic mechanism for the generation of pre-
initialisation vectors (for example a counter). Encryption of the pre-initialisation vector
with the block cipher and key currently in use and use of the ciphertext as the initialisa-
tion vector.

pre-initialisationvectors (for example a counter). Encryptionof thepre-initialisationvec-
torwith the block cipher to beused and akey that is different from the actual key (e.g. hash
value of the encryption key to be used), and use of the ciphertext as the initialisation vec-
tor.

Table B.3: Recommended methods for the generation of unpredictable initialisation vectors.

In the second method, it has to be ensured that the pre-initialisation vectors are not repeated
during the lifetime of the system. If a counter is used as a pre-initialisation vector, this means that
counter overflows must not occur during the entire lifetime of the system.

B.3. Generation of EC System Parameters

The security of asymmetric mechanisms based on elliptic curves is derived from the assumed diffi-
culty of computing discrete logarithms in these groups.
The following ingredients are needed to define EC system parameters:

1.) Prime number p,

2.) Curve parameters a, b ∈ Fp with 4a3 + 27b2 ̸= 0,which define an elliptic curve

E(Fp) = {(x, y) ∈ Fp × Fp; y2 = x3 + ax + b} ∪ {OE},

3.) Base point P onE(Fp).

The EC system parameters are then given by the values (p, a, b, P, q, i), where q := ord(P ) denotes
the order of the base pointP inE(Fp), p > 3, and i := Card

(
E(Fp)

)
/q is the is the so-called cofactor.

Not all EC system parameters are suitable for the asymmetric, elliptic curve-based schemes rec-
ommended in this Technical Guideline, since for some parameter constellations the discrete log-
arithm problem is efficiently solvable in the groups generated by these elliptic curves. Besides a
sufficient bit length of q, the following conditions must also be fulfilled, see [76] for more informa-
tion:

• The order q = ord(P ) of the base point P is a prime number different from p.

• pr ̸= 1 mod q for all 1 ≤ r ≤ 104.

• The class number of themaximal order belonging to the quotient field of the endomorphism
ring ofE is larger than 107.

EC system parameters that satisfy the above conditions are also referred to as cryptographically
strong.
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Remark B.1 It is recommended not to generate the EC system parameters on one’s own, but instead
to use standardised values that are provided by a trustworthy authority.

The system parameters listed in Table B.4 are recommended:

• brainpoolP256r1, see [76],

• brainpoolP320r1, see [76],

• brainpoolP384r1, see [76],

• brainpoolP512r1, see [76].

Table B.4: Recommended EC system parameters for asymmetric schemes that are based on elliptic
curves.

B.4. Generation of RandomNumbers for Probabilistic Asymmetric
Schemes

This Technical Guideline discusses several asymmetric mechanisms that require random numbers
k ∈ {0, . . . , q − 1} (for example, as ephemeral keys), where q is usually not a power of 2. Already in
the Remarks 2.11, 2.9, 5.8 and 5.10 it was pointed out that k should be chosen to be (at least nearly)
uniformly distributed if possible. In contrast, the random number generators presented in Chap-
ter 8 generate uniformly distributed randomnumbers on {0, 1, . . . , 2n−1} („randomn-bit strings“).
The task is thus to derive (at least nearly) uniformly distributed randomnumbers on {0, 1, . . . , q−1}
from these random numbers.
In Algorithms B.1 and B.2 two methods are presented that achieve this objective, where n ∈ N is

chosen such that 2n−1 ≤ q ≤ 2n − 1 holds, in other words q has bit length n.

Algorithmus B.1: Method 1 for computing random values on {0, . . . , q − 1}.
Input: q ∈ Nwith 2n−1 ≤ q ≤ 2n − 1
Output: k ∈ {0, 1, . . . , q − 1} equally distributed
1: Choose k ∈ {0, 1, . . . , 2n − 1} equally distributed.
2: while k ≥ q do
3: Choose k ∈ {0, 1, . . . , 2n − 1} equally distributed.
4: end while

Algorithmus B.2: Method 2 for computing random values on {0, . . . , q − 1}.
Input: q ∈ Nwith 2n−1 ≤ q ≤ 2n − 1
Output: k ∈ {0, 1, . . . , q − 1} (almost) equally distributed.
1: Choose k′ ∈ {0, 1, . . . , 2n+64 − 1} equally distributed.
2: Set k = k′ mod q.

Remark B.2 (i) Method 1 in AlgorithmB.1 converts a uniform distribution on {0, . . . , 2n−1} into
a uniform distribution on {0, . . . , q − 1}. More precisely, Method 1 yields the conditional dis-
tribution on {0, . . . , q− 1} ⊂ {0, . . . , 2n− 1}. In contrast, Method 2 in Algorithm B.2 does not
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produce a (perfect) uniform distribution on {0, . . . , q− 1} even for ideal random number gen-
erators with values in {0, . . . , 2n+64 − 1}. However, the deviations are so small that, according
to current knowledge, they cannot be exploited by an attacker.

(ii) The second method has the advantage that any existing skewnesses on {0, . . . , 2n+64 − 1} are
generally reduced. Therefore, only thismethod is recommended for PTG.2-compliant random
number generators. However, it should be noted that the direct use of PTG.2 generators is no
longer recommended.

(iii) The disadvantage of Method 1 is that the number of iterations (and thus the runtime) is not
constant. For some applications, however, it may be necessary to guarantee an upper bound
on the runtime. At this point it should be noted that the probability that a random number
uniformly distributed on k ∈ {0, 1, . . . , 2n−1} is less than q is greater than q/2n ≥ 2n−1/2n =
1/2.

B.5. Generation of Prime Numbers

B.5.1. Preliminary Remarks

When defining the system parameters for RSA-based asymmetric schemes, two prime numbers p
and q must be chosen. For the security of the schemes, it is necessary that these prime are kept
secret. This requires, in particular, that p and q are chosen randomly. With regard to the usability
of an application in which RSA-based schemes are used, it is also important that the prime number
generation can be performed efficiently. It should be noted that proprietary speed optimisations in
key generation can cause significant cryptographic weaknesses, see for example [99]. It is therefore
strongly recommended to use mechanisms that are publicly known and have been examined with
regard to their security.
Routines for the generation of random prime numbers are also needed for the generation of sys-

tem parameters for EC- or finite field arithmetic-based cryptosystems without special properties.
The requirements for these primes differ from those for the RSA mechanism in that primes need
not be kept secret, but instead it may be relevant that their generation is verifiable random. Further
details and references on this topic can be found in Section B.3.

B.5.2. Methods for Generating Prime Numbers

Three mechanisms are acceptable for generating random primes lying in a given interval [a, b]∩N,
which can be briefly summarised as follows:

1.) Uniform generation of random primes by rejection sampling;

2.) Uniform generation of an invertible residue class r with respect to B#, where B# is the pri-
morial of B, that means the product of all primes smaller than B, followed by the choice of a
prime of suitable size with residue r mod B# by rejection sampling;

3.) Generation of a random number s of suitable size which is coprime toB# and search for the
next prime in the arithmetic sequence given by s, s + B#, s + 2 ·B#, . . ..

The first two methods are equally recommended; the third method produces certain statistical
biases in the distribution of the generated primes, which are generally undesirable. However, it is
widely used in practice (see, for example, [109, Table 1]) and there is currently no evidence that the
induced statistical biases can be used for attacks. Therefore, this method is accepted as a legacy
method in this Technical Guideline.
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The following tables provide a more detailed description of the three methods supported by this
Technical Guideline:

Algorithmus B.3: Recommended Method 1 for prime number generation by rejection sampling.
Input: Interval I := [a, b] ∩ N
Output: p ∈ I prime
1: Choose p ∈ I odd and uniformly distributed on I .
2: while p composite do
3: Choose p ∈ I odd and uniformly distributed on I .
4: end while

Algorithmus B.4: Recommended Method 2 for prime number generation by efficiency-optimised
rejection sampling.
Input: Interval I := [a, b] ∩ N,B ∈ Nwith S := B#≪ b− a
Output: p ∈ I prim
1: Choose r in (Z/S)∗ uniformly distributed (equivalently, choose r < S randomly with

gcd(r, S) = 1).
2: Choose k ∈ N randomly such that p := kS + r ∈ I (equivalently, choose k equally distributed
on [⌈(a− r)/S⌉, ⌊(b− r)/S⌋]).

3: while p composite do
4: Choose k ∈ N randomly such that p := kS +r ∈ I (equivalently, choose k equally distributed

on [⌈(a− r)/S⌉, ⌊(b− r)/S⌋]).
5: end while

Algorithmus B.5: Legacy Method for prime number generation by incremental search.
Input: Interval I := [a, b] ∩ N,B ∈ Nwith S := B#≪ b− a
Output: p ∈ I prim
1: repeat
2: Choose r in (Z/S)∗ uniformly distributed (equivalently, choose r < S randomly with

gcd(r, S) = 1).
3: Choose k ∈ N randomly such that p := kS +r ∈ I (equivalently: choose k equally distributed

on [⌈(a− r)/S⌉, ⌊(b− r)/S⌋]).
4: while p composite, p ∈ I do
5: p← p + S
6: end while
7: until p prime

For reasons of efficiency, a probabilistic primality test is usually used as a primality test in the
algorithms described above. The following algorithm is recommended in this Technical Guideline:

Miller-Rabin, see [80, Algorithmus 4.24].

Table B.5: Recommended probabilistic primality test.

Remark B.3 (Miller-Rabin Algorithm) TheMiller-Rabin algorithm requires, in addition to the num-
ber p to be examined, a random value x ∈ {2, 3, . . . , p − 2}, the so-called basis. If x is uniformly

Federal Office for Information Security (BSI) 75



Technical Guideline – Cryptographic Algorithms and Key Lengths

distributed on {2, 3, . . . , p− 2}, the probability that p is composite although the Miller-Rabin algo-
rithm outputs that p is a prime, is at most 1/4.

Worst Case: To bound the probability that a fixed number p is output as a prime number bymeans
of theMiller-Rabin algorithm even though it is composite to 2−120, the algorithmmust be re-
peated 60 times, each timewith bases x1, . . . , x60 ∈ {2, 3, . . . , p−2} chosen independently of
each other with respect to the uniform distribution, see further Section B.4 for recommended
mechanisms for computing uniformly distributed random numbers on {2, 3, . . . , p− 2}.

Average Case: In order to test a randomly with respect to the uniform distribution chosen odd
number number p ∈ [2b−1, 2b − 1]with the desired certainty for its prime property, far fewer
iterations of the Miller-Rabin algorithm are sufficient than the estimate given above would
suggest, compare [28], [98, Appendix C] and [64, Annex A]. For example, for b = 1536, only
four iterations are needed to exclude, with a remaining error probability of 2−128, that p is is
composite, although the Miller-Rabin algorithm identifies p as a prime number [64]. Again,
the bases must be chosen independently of each other at random with respect to the uni-
form distribution on {2, 3, . . . , p−2}. The concrete number of necessary operations depends
on the bit length of p, since the numbers for which the worst-case estimates apply decrease
significantly in density as the size of the numbers increases.

Optimisations: To optimise the runtime of, for example, Algorithm B.3, it can be helpful to elimi-
nate composite numbers with very small factors by trial division or sieving techniques before
applying the probabilistic primality test. Such apreliminary test has onlyminor impact on the
probability that numbers classified as prime by the test are composite. The recommendations
on the required number of repetitions of the Miller-Rabin test therefore apply unchanged to
variants of the algorithm optimised in this way.

Other Comments: When generating prime numbers which are to be used in particularly security-
critical functions of a cryptosystem or whose generation is not very time-critical, it is recom-
mended in this Technical Guideline to perform a verification of the prime number property
with 60 rounds of the Miller-Rabin test, see also [88, 98]. This applies, for example, to prime
numbers that are generated once as permanent parameters of a cryptographic mechanism
and are then not changed for a long period of time and are possibly used by many users.

A random bit generator of the functionality class PTG.3, DRG.4, DRG.3, or NTG.1may be used
to generate the required random numbers. When using a deterministic random number
generator, the generation of uniformly distributed prime numbers is from an information-
theoretical point of view not possible, but this does not create a security risk: Under crypto-
graphic standard assumptions, a random number generator of the functionality class DRG.3
or DRG.4 generates random numbers with a distribution that cannot be distinguished from
an ideal distribution by any known attack with realistic practical effort when using classical
computers.

However, it should benoted in this context that the security level of the generatedRSAmoduli
may in this case be limited by the security level of the random bit generation. This would be
the case, for example, if a random bit generator with a security level of 120 bits were used to
generate RSA keys of a length of 4096 bits.

Alternative Primality Tests: The choice of a primality test is not security critical from a cryptana-
lytic point of viewas long as the selected test doesnotmisclassify primenumbers as composite
and as long as the probability that composite numbers pass the test is negligible. Therefore,
other tests for which these properties have been demonstrated in the literature may be used
in place of theMiller-Rabin test without loss of conformity to this Technical Guideline. How-
ever, the use of the verywidely knownMiller-Rabin algorithm is advantageouswith regard to,
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among other things, a verification of the correctness of an implementation as well as a check
of side-channel resistance.

B.5.3. Generation of Prime Number Pairs

To ensure the security of key pairs for which the underlying RSA moduli have been calculated by
multiplying two prime numbers generated independently of each other using one of the appro-
priate methods, it is important that the interval I := [a, b] ∩ N is not too narrow. If key pairs
are to be generated whose modulus N has a predetermined bit length n, it is natural to choose
I = [⌈2(n/2)

√
2 ⌉, ⌊2

(n/2)⌋] ∩ N. A different choice of I is compliant with this Technical Guideline if

the same interval I is used for p and q andCard(I) ≥ 2−8b.

B.5.4. Notes on the Security of the RecommendedMethods

In the following, π denotes the prime number function, which is defined as π(x) := Card({n ∈
N : n ≤ x, n prime}). According to the prime number theorem, π(x) is asymptotically equivalent
to x/ ln(x), that means,

lim
x→∞

π(x) · ln(x)
x

= 1.

The security of the methods for prime number generation recommended here is based on the fol-
lowing observations:
the incidence of prime numbers is independent of the chosen residue class

• All three methods can generate any prime number contained in the given interval if the un-
derlying random bit generator can generate all candidates from the respective interval.

• The first two methods generate primes whose distribution is practically indistinguishable
from a uniform distribution when the recommended security parameters are used. This is
obvious for the first method; for the second method it follows heuristically from Dirichlet’s
prime number theorem: The relative frequency of primes is asymptotically the same in all in-
vertible residue classesmoduloS, and the residue classmoduloS of the prime to be generated
is chosen according to the uniform distribution on (Z/S)∗.

• Strictly speaking, the argument for the security of the second method just given provides no
guarantee that for a concreteS and a concrete given interval I the frequency of primes during
the search does not in fact depend on the chosen residue class r mod S. Indeed, it is clear that
this asymptotic statementwill not be validwhenS approaches the order ofmagnitude of b−a.
However, it is reasonable to assume that there are no significant differences in terms of prime
density between the different residue classeswhen the number of primes in each residue class
is large. The interval I contains π(b) − π(a) primes, so for each residue class modS π(b)−π(a)

φ(S)
primes are expected. For numbers of the order of about 1000 bits, this expected value can be
estimated with a small relative error to b ln(a)−a ln(b)

ln(a) ln(b)φ(S) as long as φ(S) is small compared to the
numerator of the fraction. It is recommended to chooseS such that b ln(a)−a ln(b)

ln(a) ln(b)φ(S) ≥ 264 holds.

• The qualitative reasoning given above are sufficient to assess the second method as suitable.
In the literature, there are more detailed investigations of closely related methods for prime
number generation, see for instance [51].

• The thirdmethod generates primes that are not uniformly distributed, even though the biases
in the distribution of the generated primes are – according to current knowledge – considered
to be practically unexploitable by an attacker. The probability of a prime p in the interval I
being output by this method is proportional to the length of the prime-free section in the
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arithmetic sequence p − kS, p − (k − 1)S, . . . , p − S, p terminated by p. Since the prime
density in these arithmetic sequence tends to increase for large S, this effect is expected to be
most pronounced for S = 2. Again, however, in practice it means only a very limited loss of
entropy. One can limit the distribution bias upwards by terminating and restarting the search
with a new starting value if no prime has been found after a reasonable number T of steps: In
this case, all prime numbers following a gap of length≥ T are output with equal probability.

78 Federal Office for Information Security (BSI)



Technical Guideline – Cryptographic Algorithms and Key Lengths

Appendix C.

Protocols for Special Cryptographic Applications

This chapter deals with protocols that can be used as building blocks of cryptographic solutions. In
the current version of this Technical Guideline, this only concerns the protocols Secure Real-Time
Transport Protocol (SRTP) and Messaging Layer Security (MLS), as corresponding information for
TLS [33], IPsec [34] and SSH [35] has been moved to parts two to four of this Technical Guideline,
see [33, 34, 35].
In general, the use of established protocols in the development of cryptographic systems has the

advantage of being able to fall back on comprehensive public analysis. In contrast, in-house devel-
opments can easily contain vulnerabilities that are difficult for a developer to detect. It is therefore
recommended that, wherever possible, to prefer generally available, possibly standardised and ex-
tensively evaluated protocols to in-house protocol developments.

C.1. SRTP

SRTP is a protocol that supplements the audio and video protocol RTP (Real-Time Transport Proto-
col) with functions to ensure confidentiality and integrity of the transmittedmessages. It is defined
in RFC 3711 [8]. SRTPmust be combined with a keymanagement protocol as it does not provide its
ownmechanisms for negotiating a cryptocontext.
Within thisTechnicalGuideline, the following specifications are recommendedwhenusingSRTP:

• As a symmetric encryption scheme with combined integrity protection, AES in Ga-
lois/Counter Mode as in [79] is recommended.

• As an alternative encryption method, both AES in counter mode and in f8 mode as in [8] are
recommended. A SHA1-based HMACmay be used here as integrity protection, since the use
of hash functions of the SHA2 or SHA3 family is not specified in [8]. This HMAC may be re-
duced to 80 bits in the context of the protocol.

• MIKEY [4] should be used as the key management system. The following key management
procedures from [4] are recommended: DH key exchange with authentication via PKI, RSA
with PKI, and pre-shared keys. In general, only cryptographic mechanisms recommended in
this Technical Guideline should be used within MIKEY and SRTP as components.

• zRTP should only be used if it would involve disproportionate high effort to solve the problem
of key distribution by a public key mechanism using a PKI or by pre-distributing secret keys.

• It is strongly recommended to use the mechanisms provided in [8] for replay and integrity
protection in SRTP. The „sliding window approach“ from [8] should be used. For integrity
protection, mechanisms from Chapter 5 should be used.

In applications for the secure transmission of audio and video data in real time, particular atten-
tion should be paid to minimise the creation of side channels, for example through data transmis-
sion rate, the chronological order of different signals or other traffic analysis. Otherwise, attacks
such as those presented in [6] are possible.
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C.2. MLS

Messaging Layer Security (MLS) is a protocol for exchanging keys for secure communication in the
context of (group) messaging. It was developed to meet the need for end-to-end encryption and
confidentiality even in large group chats and represents a further development of the double ratchet
protocol. MLSprovides a protocol frameworkbasedon an asynchronous key encapsulationmethod
for tree structures, the so-called TreeKEM, which enables themembers of a group to derive and up-
date shared keys. The associated computational complexity scales with the logarithm of the group
size, allowing efficient and asynchronous distribution of group keys with forward secrecy and post-
compromise security.
The protocol requires the specification of a cipher suite, which consists of the protocol version

and the set of cryptographic algorithms to be used. In addition to the security level (in bits), the
following cryptographic algorithms must be specified:

• KEM algorithm used for HPKE in ratchet tree operations,

• AEAD algorithm used for HPKE and message protection,

• Hash algorithm used for HPKE and the MLS transcript hash,

• Signature algorithm used for message authentication.

For MLS 1.0, the following cipher suites are recommended in this Technical Guideline:

• MLS_128_DHKEMP256_AES128GCM_SHA256_P256, see [7, Section 17.1],

• MLS_256_DHKEMP384_AES256GCM_SHA384_P384, see [7, Section 17.1],

• MLS_256_DHKEMP521_AES256GCM_SHA512_P521, see [7, Section 17.1].

Table C.1: Recommended cipher suites for MLS 1.0.
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