

Security Evaluation of VeraCrypt

Authors and Acknowledgments
This study was executed by the Fraunhofer Institute for Secure Information Technology (SIT) on behalf of
the Federal Office for Information Security (BSI). This publication was authored by (in alphabetic order):

 Hülya Evkan
 Norman Lahr
 Ruben Niederhagen
 Richard Petri
 Andreas Poller (project lead)
 Philipp Roskosch
 Michael Tröger

The authors would like to thank Johannes Mittmann, Steven Arzt, Peter Weiland and Mounir Idrassi for
their valuable support and advice.

Project contact at Fraunhofer SIT

Fraunhofer Institute for Secure Information Technology
Andreas Poller
Rheinstrasse 75, D-64295 Darmstadt, Germany
E-Mail: andreas.poller@sit.fraunhofer.de
Phone: +49 6151 869-170
Internet: https://www.sit.fraunhofer.de

Federal Office for Information Security
Post Box 20 03 63
D-53133 Bonn
Phone: +49 22899 9582-0
E-Mail: bsi@bsi.bund.de
Internet: https://www.bsi.bund.de
© Federal Office for Information Security 2020

mailto:andreas.poller@sit.fraunhofer.de
https://www.sit.fraunhofer.de/

Executive Summary

Federal Office for Information Security 3

Executive Summary
VeraCrypt is a popular open-source tool for disk encryption available for Windows, Linux and macOS.
VeraCrypt is a successor of TrueCrypt, an encryption software whose development stopped in 2014 and
which is no longer maintained by its developers. VeraCrypt adopted most of TrueCrypt’s source code and to
this day shows considerable similarities to TrueCrypt.

This report summarizes the results of a year-long project of Fraunhofer Institute for Secure Information
Technology, Darmstadt, Germany on behalf of the Federal Office for Information Security (BSI), Bonn,
Germany. After starting off with an extensive research into the project evolution and related work, we
executed a security analysis of VeraCrypt with a focus on its cryptographic mechanisms and the security of
the application as a whole. During the research process we followed a security model that includes pertinent
usage scenarios including the use of VeraCrypt for secure online sharing of data and the use on public
systems and servers. Our research efforts included both automated and manual testing techniques, manual
code and documentation review, as well as the creation and use of dedicated test tools.

We found that although VeraCrypt is a well-acknowledged software project, it appears that the project is
still mostly driven by a single developer rather than a development team. The data we collected for
VeraCrypt’s development history indicate that the project did not follow an elaborated software-
development cycle with acknowledged best practices for software engineering, for instance, quality gates,
peer reviews, and documentation of code changes. The code base still mainly consists of code from the
TrueCrypt project that has been repeatedly criticized for its poor coding style as the case of differing
implementations of the random number generator for different operating systems still tellingly shows. The
inherited code base has not been cleaned up, moreover, the development still follows questionable coding
practices.

The basic functionality such as the parsing of container files and the interface to the kernel driver did not
show security issues in any of our tests. We also did not find vulnerabilities in the cryptographic algorithms
of VeraCrypt. However, VeraCrypt still uses the outdated and deprecated RIPEMD-160 hash algorithm and
we found peculiarities with respect to the implementation of the random number generators and the GOST
block encryption cipher. The recently integrated memory encryption has a weak rationale from a security
perspective and increases the cost of related attacks by a relevant margin in very limited scenarios only.

We recommend the VeraCrypt project to switch to well-acknowledged and reliable open-source libraries
for the implementation of cryptographic functions instead of proceeding to provide and use own outdated
cryptographic code in the VeraCrypt code base. We also recommend to switch to a state-of-the-art key
derivation function. As a final remark, we want to stress that VeraCrypt can only protect data effectively in
case of theft or loss of encrypted devices but not against any form of online attacks on a running system.
Also, VeraCrypt cannot provide any protection in scenarios where an attacker can visit a target system
multiple times.

In conclusion, we did not find substantial security issues in VeraCrypt. VeraCrypt in its current version does
seem to protect the confidentiality of data in an encrypted volume as long as the volume is not mounted.
Authenticity and integrity, however, are not protected. A mounted VeraCrypt volume is exposed to a
multitude of attack vectors including vulnerabilities of the host system. Hence, any volume-access scenario
exceeds the protection envelope of VeraCrypt. The development practices and the resulting code quality of
VeraCrypt are a cause for concern. Therefore, we cannot recommend VeraCrypt for sensitive data and
persons or applications with high security requirements. We recommend to execute similar security
assessments also for future versions of the software.

Contents

4 Federal Office for Information Security

Contents
1 Introduction ... 8

1.1 Overview of VeraCrypt ... 8

1.2 Project Scope and Methodology ... 9

1.3 Report Structure .. 10

1.4 Project Results .. 10

2 Evolution from TrueCrypt to VeraCrypt ... 11

2.1 Identifying the Source Code Bases to Compare ... 11

2.2 General Overview of the Development History ... 12

2.3 Full Source Code Comparison (“Full Diff”) ... 15

2.3.1 Approach.. 16

2.3.2 Detecting Linux and macOS Source Files .. 16

2.3.3 Changed Parts .. 17

2.4 Categorization of Source Code Commits .. 19

2.4.1 Tags .. 20

2.4.2 Results and Use for the Further Analysis ... 20

2.5 Changes in Cryptographic Functions ... 21

2.5.1 Cryptographic Primitives ... 21

2.5.2 Random Number Generation ... 23

2.5.3 Key Derivation ... 23

2.5.4 Hidden Volumes ... 24

2.6 Changes Related to Application Security .. 24

3 Security Model .. 28

3.1 Application Use Cases .. 28

3.1.1 Personal Computers .. 28

3.1.2 External Data Storage Devices for Personal Use ... 30

3.1.3 Sharing of Encrypted Data ... 30

3.1.4 Encrypted Server Systems and Virtual Machines ... 31

3.1.5 Publicly Accessible Systems ... 31

3.1.6 Further Usage Aspects .. 32

3.2 Security Goals ... 32

3.2.1 Primary Security Goal .. 32

3.2.2 Secondary Security Goals.. 32

3.3 Attack Scenarios ... 33

3.3.1 System Loss or Theft ... 33

3.3.2 Multi-Access Attacks... 34

3.3.3 Targeted Alteration of Data ... 35

Contents

Federal Office for Information Security 5

3.3.4 Privilege Escalation on Host System .. 36

3.3.5 Preparing Targeted Attacks .. 36

3.3.6 Blocking Access to Data ... 36

3.3.7 Side-Channel Attacks ... 37

3.3.8 Online Attacks ... 38

4 Security Analysis of Cryptographic Mechanisms ... 39

4.1 Encryption Schemes .. 39

4.1.1 Block Ciphers ... 39

4.1.2 Mode of Operation .. 39

4.1.3 Cascading Ciphers .. 40

4.2 Cryptographic Hash Functions ... 40

4.3 Key Derivation Function .. 41

4.3.1 Personal Iterations Multiplier ... 42

4.3.2 Keyfiles ... 42

4.4 Random Number Generation .. 43

4.4.1 Documentation ... 43

4.4.2 Windows Platform ... 44

4.4.3 Unix Platform .. 47

4.4.4 Considerations for Entropy ... 49

4.4.5 Changes in VeraCrypt 1.24 ... 50

4.5 Cryptographic Primitives... 50

4.5.1 Comparison with Public Sources... 51

4.5.2 Manual Source Code Examination ... 52

4.5.3 Known-Answer Tests ... 56

4.5.4 Randomness-Tests ... 57

4.6 Management of Secret Data .. 59

4.7 Memory Encryption ... 59

4.8 Recommendations .. 60

5 Application Security Review ... 62

5.1 Static Code Analysis ... 62

5.1.1 CppCheck... 62

5.1.2 TScanCode ... 64

5.1.3 Clang Static Analyzer .. 66

5.1.4 Clang-Tidy ... 69

5.1.5 VisualCodeGrepper ... 69

5.1.6 cpplint ... 71

5.2 Dynamic Code Analysis .. 72

5.2.1 Dr. Memory ... 72

Contents

6 Federal Office for Information Security

5.2.2 Valgrind .. 74

5.3 Inspection of the Windows Kernel Driver .. 75

5.3.1 Code Inspection .. 75

5.3.2 Dynamic Analysis ... 78

5.4 Security of Header Parser for Container Files ... 79

5.4.1 Fuzzer .. 79

5.4.2 Code Coverage ... 79

5.4.3 Corpus ... 80

5.4.4 Modification to VeraCrypt ... 80

5.4.5 Fuzzing the Decryption Routine .. 80

5.4.6 Remove Encryption/Decryption Layer and CRC Checks ... 81

5.4.7 Separating the Header Parsing Routine .. 81

5.4.8 Summary ... 82

5.5 Security of Third-Party Libraries .. 82

6 Code Quality and Documentation .. 83

6.1 Evaluation of VeraCrypt’s Code Quality .. 83

6.1.1 Programming Guidelines and Best Practices ... 83

6.1.2 Source Code Complexity ... 84

6.1.3 Code Duplicates .. 84

6.1.4 Build Process .. 84

6.1.5 Test Cases Review ... 85

6.1.6 Automated Analysis .. 85

6.2 Evaluation of Documentation ... 87

6.3 Summary .. 89

7 Previous Work on the Security of VeraCrypt ... 90

7.1 Academic Publications .. 90

7.1.1 PBKDF2 Key Derivation .. 90

7.1.2 Hidden Volumes ... 90

7.2 Security Analysis Reports .. 91

7.2.1 Open Crypto Audit Project: TrueCrypt - Security Assessment ... 91

7.2.2 Open Crypto Audit Project: TrueCrypt - Cryptographic Review ... 91

7.2.3 VeraCrypt 1.18 Security Assessment .. 91

7.2.4 Google Project Zero ... 92

7.2.5 Other CVEs .. 92

7.2.6 BSI Security Analysis of TrueCrypt .. 93

7.2.7 Summary of all Reported Security Issues... 93

7.3 Development Documentation ... 95

7.3.1 Reports in the SourceForge Forums ... 95

Contents

Federal Office for Information Security 7

7.3.2 Reports in the GitHub Issue Tracker .. 95

8 Bibliography ... 97

9 Appendix .. 100

9.1 Detailed Results of Tagging the Source Code Commits ... 100

9.1.1 Overview ... 100

9.1.2 Tag-Specific Statistics .. 100

9.2 Technical Information on Fuzzing Tests of the Header Parser for Container Files 110

9.2.1 Machine Used for Fuzzing ... 110

9.2.2 Corpus .. 110

9.3 Evaluation Methods in Related Work .. 113

9.4 Patch for the NIST STS Software ... 114

1 Introduction

8 Federal Office for Information Security

1 Introduction

1.1 Overview of VeraCrypt

Since the discontinuation of TrueCrypt was announced in May 2014, multiple projects emerged to carry on
the development of open-source hard drive encryption software on the basis of the TrueCrypt source code.
VeraCrypt is one popular fork of TrueCrypt incepted in the aftermath of TrueCrypt’s end of life. While
maintaining most of TrueCrypt’s design, architecture and code base, VeraCrypt aims on incrementally
improving and extending the original software. For this reason, VeraCrypt is often considered a natural
replacement in scenarios where TrueCrypt was in use before.

Encryption scopes

The possible encryption scopes remain unchanged in VeraCrypt compared to its predecessor TrueCrypt. In
general VeraCrypt allows the full encryption of partitions on a hard drive or to create an encryption
container file that can be mounted as a virtual disk. In both cases, VeraCrypt uses the term volume to point
to an encryption drive the user mounts either from a file or a partition.

For Windows as operating system, it is also possible to encrypt the full system partition. VeraCrypt provides
its own bootloader to start the system decryption after machine startup.

A third major feature are hidden volumes. Hidden volumes are volumes nested inside another outer volume.
The outer volume serves as a decoy allowing to deny the existence of the hidden volume, a property called
plausible deniability. A person in possession of the encrypted outer volume, perhaps even in possession of
the keys to decrypt it, cannot distinguish the space of the hidden volume in the outer volume from any
arbitrary random data. Consequently, the legitimate user of the hidden volume can plausibly deny its
existence if there does not exist further evidence that indicates otherwise.

Encryption modes and key management

VeraCrypt offers a range of well-known encryption algorithms to encrypt volumes. The user can even
choose to combine several encryption algorithms.

For starting volume decryption and encryption, the user needs to provide a volume password that
VeraCrypt uses to decrypt master keys stored in a volume header. In addition, one or multiple keyfiles can
be combined with the password. This way it is possible to some extend to implement an access scheme
relying on knowledge (password) and possession (keyfiles, e.g., on a USB flash drive). There also exists a
limited support for security tokens and smartcards. VeraCrypt itself, however, does not provide a
functionality where two or more passwords can be used independently or two or more passwords need to
be combined to decrypt a volume.

Once a volume is mounted as a drive, the de- and encryption is working transparently for the user, because
the file system handling is done by the operating system.

User interfaces

VeraCrypt provides three user interfaces to interact with the software. All three were already present for
TrueCrypt and underwent only limited changes:

• The bootloader user interface allows to enter a password during system boot as well as a parameter for
the key derivation function. It is only available if the user activated the full system encryption.

• The main graphical user interface provides access to all major functions such as creating and mounting
VeraCrypt volumes, managing keyfiles and configuring software options.

• The command line interface has similar capabilities as the graphical user interface but can be used in a
command line console, e.g., on headless computer systems.

1 Introduction

Federal Office for Information Security 9

1.2 Project Scope and Methodology

We executed this analysis on behalf on the Federal Office for Information Security (BSI) in the course of a
joint security evaluation project. The project goal was to extend the 2015 TrueCrypt security evaluation to
VeraCrypt as its successor. Consequently, both the 2015 TrueCrypt study and this VeraCrypt study share a
similar approach. For both studies, the Federal Office for Information Security commissioned Fraunhofer
SIT to investigate the security properties and features of the software, evaluate the software for security
weaknesses and examine whether it is aligned to state-of-the-art cryptographic requirements.

In detail, we performed the following steps:

• Tracking the evolution of VeraCrypt: We investigated the difference between TrueCrypt and
VeraCrypt both on the level of the software itself but also with a focus on how development actions take
place. To this end, we assessed in depth the development documentation of the software and changes on
source code level. Our goal was to provide insights into how the project moved forward since the
discontinuation of TrueCrypt with respect to how the software changed and how development work is
organized.

• Security modeling: We systematically collected and assessed potential usage scenarios and security
goals for VeraCrypt. We evaluated attack scenarios that can impede the achievement of the described
security goals. This security model is a starting point to guide the following steps in the security
assessment.

• Security analysis of cryptographic algorithms: Cryptographic algorithms are the very basis of every
encryption software. We started off with meticulously documenting the cryptographic algorithms in
VeraCrypt and checking them against current state-of-the-art standards and recommendations. This
includes an assessment of the random number generators used in VeraCrypt as a fundamental function
related to cryptographic mechanisms. We compared the implementation of cryptographic algorithms in
VeraCrypt to reference implementations from public sources while looking for deviations that might
affect the security of the software. We evaluated the cryptographic algorithms manually and with
known-answer tests. We also checked VeraCrypt’s handling of cryptographic secrets in a system’s main
memory.

• Application security review: Our security model showed that not only weak cryptography could
expose VeraCrypt users to security risks but also the overall application security can be a concern in
specific security scenarios. Hence, we evaluated VeraCrypt with automated code analysis tools and
through manual code inspection. We focused on the security of the kernel driver as a potential entry
point for attempts to undermine security measures of the operating system and container files as a
further entry point for external attackers. We explored both issues by using fuzzing techniques.

• Review of code quality and documentation: As a further indicator of the trustworthiness of VeraCrypt,
we evaluated the quality of the source and the software documentation.

• Review of related work: During the project we reviewed related work about the security of VeraCrypt
and TrueCrypt. This includes research publications from academia, non-governmental bodies and
industry, but also reports retrieved from VeraCrypt’s development management platform. The related
work steered our evaluation and allowed us to adopt, extend, and complement the evaluation methods
that were successfully applied by other researchers.

As agreed with the BSI, we focused primarily on the Windows and Linux version of VeraCrypt. We also left
out a comprehensive evaluation and discussion of the plausible deniability function (hidden volume feature,
see 1.1) since we did not consider it a relevant feature for a majority of VeraCrypt users.

We investigated VeraCrypt in version 1.23 as published by the VeraCrypt project in September 2018. In
October 2019, during the course of our study, a new version 1.24 of VeraCrypt was released. Together with
the BSI we decided to investigate some security-related changes in this new version. The resulting findings

1 Introduction

10 Federal Office for Information Security

of these extended investigations are marked in this report as pertinent to version 1.24. However, if not
stated otherwise the remainder of this report refers to version 1.23 only.

1.3 Report Structure

This report summarizes the results of our project. It is organized along the multiple steps in our research
project (cp. 1.2): Chapter 2 explains the development of VeraCrypt after the discontinuation of TrueCrypt.
The development history is examined in detail, differences are analyzed on source code level, on the level of
single source code commits, and with a focus on cryptographic primitives.

In Chapter 3, we describe the security model that we considered to select the security tests for execution in
the course of this project. It includes an analysis of potential usage scenarios, pertinent security goals and
attack scenarios to consider.

In Chapter 4, we document the results of our assessment of cryptographic algorithms including ciphers,
hash functions, key derivation functions and the random number generators. We also document our results
for assessing a recently introduced memory encryption function and the secure deletion of sensitive
cryptographic data from the program memory.

We discuss the various aspects of VeraCrypt’s application security starting with results from automated
code scanning tests in Chapter 5. We describe our inspection of the kernel driver interface and our fuzzing
tests for the container file processing routines. We also briefly discuss the security of third-party libraries
included into VeraCrypt.

Results from our evaluation of the code quality and the software documentation are described in Chapter 6.
Finally we discuss results of previous security evaluations in Chapter 7. The Appendix in Chapter 9 provides
further details about our testing procedures and results.

1.4 Project Results

Overall, we found that VeraCrypt is mostly the effort of a single developer (see 2.2). The code base increased
considerably over time since the VeraCrypt project started in 2012. Multiple changes in the code base
addressed security issues reported by other projects such as the Open Crypto Audit Project or Project Zero
(see 7.2). New block ciphers and hash functions were added to the project, while others were removed over
time (see 2.5).

The VeraCrypt project continues the coding practices of TrueCrypt including its failure to follow well-
acknowledged best practices (see 6.1). Moreover, no visible efforts took place to improve the quality of the
legacy code. The documentation was adopted from TrueCrypt and extended, but the descriptions differ
from the actual implementation in some regards (see 6.2).

While the cryptographic mechanisms show issues, none of these issues leads to a considerable security
weakness in most usage scenarios: The key derivation function is outdated (see 4.3), the random number
generators of Linux and Windows differ without any obvious reason (see 4.4), the impact of the memory
encryption introduced with version 1.24 is limited (see 4.7) and the block ciphers are prone to side-channel
attacks (see 4.5). VeraCrypt includes RIPEMD-160 as outdated hash function (see 4.2). We suggest the
developers to switch to a trustworthy cryptographic library instead of further maintaining the
cryptographic legacy code (see 4.8).

Our application security review did not reveal any security issue. The findings of the automated analysis
tools were checked manually and turned out to be negligible (see 5.1). The interface to the Windows kernel
driver passed our various security tests without any security-relevant findings (see 5.3). VeraCrypt’s routines
to parse the header of container files resisted our attack attempts with common fuzzing techniques (see 5.4).
Included third-party libraries are up to date without any currently known vulnerabilities (see 5.5).

2 Evolution from TrueCrypt to VeraCrypt

Federal Office for Information Security 11

2 Evolution from TrueCrypt to VeraCrypt
Before assessing the security of VeraCrypt in detail, we analyzed the development history of the software
with specific focus on the software’s evolution since the fork from TrueCrypt. We also analyzed the general
development history of VeraCrypt on the basis of data from GitHub and created and analyzed a full
comparison between TrueCrypt 7.1a and VeraCrypt 1.23 (“diff” or “full diff”). Furthermore we reviewed each
source code commit with respect to potential impact on software security. This section presents the results
of our efforts.

2.1 Identifying the Source Code Bases to Compare

To compare TrueCrypt and VeraCrypt and to track and evaluate the changes the VeraCrypt developers
made since branching of VeraCrypt it is necessary to have a reference code base for both software products.
We used the last stable source code version 7.1a as reference for the TrueCrypt source code. Likewise for
VeraCrypt the source code version 1.23 was considered, which was the latest stable version by the time this
analysis started.

VeraCrypt source code version 1.23 was retrieved from the official project site at GitHub1. Git commit
820509102 corresponds to the last stable version 1.23, dated September 12, 2018, which marks the
reference VeraCrypt source code used for the analysis.

The TrueCrypt source code version 7.1a can also be retrieved from the history of VeraCrypt’s GitHub
repository, which makes the analysis more convenient. However, attention needs to be paid to the fact that
the original TrueCrypt source code was only added gradually in two steps: The first, initial commit to the
repository dating back to June 22, 2013 adds the source code from the TrueCrypt “Windows Source ZIP”
archive. After this initial commit, the VeraCrypt GitHub repository actually mirrored the original full source
code of the TrueCrypt 7.1a Windows version. We cross-checked that the initial commit is identical to the
source code used for the previous security analysis of TrueCrypt version 7.1a3.

However, after the initial commit, the GitHub repository did not mirror the full cross-platform source code
base of TrueCrypt 7.1a, because source code specific for macOS and Linux from the original “tar.gz” source
code archive of TrueCrypt 7.1a was still missing. It was only added later in May 31, 2014 by commit
7ffce0284. Nevertheless, since the VeraCrypt developers changed the source in their repository between
the initial commit and the macOS and Linux source code commit, the repository did not reflect the original
full source code of TrueCrypt 7.1a anymore by May 31, 2014.

Hence, all further analysis described in this report was executed two-staged, considering the initial commit
from June 22, 2013 as reference point for the full Windows source code of TrueCrypt 7.1a, and the macOS
and Linux source code commit from May 31, 2014 as reference point for the macOS and Linux source code
parts of TrueCrypt 7.1a. When comparing versions in the repository, the later macOS and Linux source code
commit was factored out, i.e., not considered as a change performed by the VeraCrypt development team,
but as input originating from the original TrueCrypt sources.

1 https://github.com/veracrypt/VeraCrypt
2 commit 82050910f8c742631c733c475e6e6a8a1876d904
3 Compare

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Truecrypt/Truecryp
t.pdf

4 commit 7ffce028d04a6b13ef762e2b89c34b688e8ca59d

https://github.com/veracrypt/VeraCrypt
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Truecrypt/Truecrypt.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Truecrypt/Truecrypt.pdf

2 Evolution from TrueCrypt to VeraCrypt

12 Federal Office for Information Security

2.2 General Overview of the Development History

After identifying the source code versions that mark the range of the further analysis, we retrieved some
basic figures reflecting the general activities in the VeraCrypt project.

Figure 1: Number of code commits in the VeraCrypt project by year and month.

Development activity over time

As show in Figure 1, the number of commits (broken down to calendar year and month) varied since the
project’s inception5. Until mid-2014, only little development activity took place. After the announcement
that TrueCrypt is discontinued in May 2014, development pace increased considerably with a much higher
commit frequency. The commit of macOS- and Linux-specific source files from the original TrueCrypt
source — only few days after the discontinuation was announced — marks a turning point in this respect.

Specific time periods can be identified where the number of commits increases noticeably:

December 2014: User interface and program performance was improved and minor bugs were fixed.

January 2016: Handling of volumes on all platforms was improved and multiple bugs were fixed.

August 2016: New encryption algorithms were introduced. Significant implementation work on UEFI
boot was done. Vulnerabilities were fixed.

June and July 2017: Program libraries were updated. Documentation was extended. The user interface was
improved. Security fixes were introduced, as well as bug fixes in the bootloader component.

March 2018: The user interface was improved as well as the handling of Windows Secure Desktop6.
Further bugs were fixed.

It appeared that the developers did not continuously follow a coherent long-term development agenda.
There are productive bursts of work in the project in limited time periods. Prioritization of work, for
instance, which feature to work on next, is not visible in the data available on GitHub.

5 Figure generated with the tool gitstats available under http://gitstats.sourceforge.net/.
6 Technique for creating an isolated desktop environment in Windows to prevent other processes accessing

security-relevant elements of the graphical user interface. See also https://docs.microsoft.com/de-
de/windows/win32/api/winuser/nf-winuser-switchdesktop

http://gitstats.sourceforge.net/
https://docs.microsoft.com/de-de/windows/win32/api/winuser/nf-winuser-switchdesktop
https://docs.microsoft.com/de-de/windows/win32/api/winuser/nf-winuser-switchdesktop

2 Evolution from TrueCrypt to VeraCrypt

Federal Office for Information Security 13

Generally speaking only few comprehensive descriptions of self-contained features chosen for
implementation are available in the documentation. One example that we found is the Personal Iterations
Multiplier (PIM), which improves the header key derivation by increasing the number of its iterations,
thereby fixing a weakness of the original TrueCrypt source. This feature is broadly described on a dedicated
web page7. By contrast, other features such as EFI Boot or SecureBoot are described in the release notes but
lack similar extensive documentation.

Regarding the development documentation, the commit messages are in general detailed and work is
broken down in small commits, which supports the analysis of the development history. Isolated, single
commits often consist of small fixes or workarounds for issues.

Growth in lines of code over time

An indicator for how much the VeraCrypt developers newly contributed to the original TrueCrypt source
code is the development of the number of lines of code of the project, as shown in Figure 28.

There is a continuous increase in the number of line of code, with noticeable steps:

May 2014: Addition of Linux- and macOS-specific code parts of TrueCrypt 7.1a. This is the first commit.

July 2014: Removal of deprecated cryptographic algorithms led to a decrease of lines of code.

January 2015: Small-step increase in the lines of code due to the addition of VeraCryptExpander, a utility
for Windows that is able to expand a VeraCrypt encrypted volume.

August 2016: Windows XZip library files were added.

October 2016: Replacement of XZip library with zlib and libzip caused a further noticeable increase in lines
of code.

June 2017: Optimized assembly version of SHA-512 and SHA-256 is added to VeraCrypt.

Letting aside the first mentioned event of the addition of macOS- and Linux-specific source files from the
original TrueCrypt source, the code base overall increased by about 50% compared to the original TrueCrypt
source code.

Figure 2: Changes in the number of code lines over time.

7 See https://www.veracrypt.fr/en/Personal%20Iterations%20Multiplier%20(PIM).html
8 Figure generated with the tool cloc in version 1.74 incorporating every commit, aggregating all C, C++ and

Assembly code lines.

https://www.veracrypt.fr/en/Personal%20Iterations%20Multiplier%20(PIM).html

2 Evolution from TrueCrypt to VeraCrypt

14 Federal Office for Information Security

Number of commits by author

Analyzing how the number of code commits is distributed among developers indicates how the project is
internally organized. Table 1 shows the number of commits for the top five developers who did most
commits to the VeraCrypt project.

Table 1: Top 5 Authors of VeraCrypt in respect to code commits and active days. A vast majority of code
contributions came from a single developer.

Author Commits Active Days
Mounir Idrassi 1209 (94.38%) 467
kavsrf 10 (0.78%) 9
David Foerster 10 (0.78%) 4
Ettore Atalan 7 (0.55%) 5
TigerxWood 5 (0.39%) 5

It is remarkable that by far the largest amount of commits can be attributed to one single developer, Mounir
Idrassi, who appears to be the main developer in the project. A review process including other developers
seems to be non-existent. All other 30 remaining developers identified in the development history
contributed well below 1% of the commits, with only few active days in the project. These numbers suggest
that the VeraCrypt project is not an effort of a team, but rather of a single developer alone.

Time periods when commits take place

Analyzing the points in time when commits were executed can give further information about how the
project is organized and when work is achieved. As Figure 3 outlines, the most code commits to the project
generally take place during the months June, July, August and December.

Figure 3: Number of code commits by month.

2 Evolution from TrueCrypt to VeraCrypt

Federal Office for Information Security 15

Also, as Figure 4 shows, most commits were done on Sundays or Mondays, while the number of commits
was considerably lower on the other week days.

Figure 4: Number of code commits by week day.

When analyzing the hours of the day when commits take place, there is a notable peak of commits one hour
before and after midnight, as shown in Figure 5.

This data would support the assumption that the main developer works on VeraCrypt mostly in his spare
time, during vacations (e.g., summer and Christmas vacation periods) and the later hours of the day.
However, there might be other reasons for these patterns and the meaningfulness of this analysis may be
rather limited.

2.3 Full Source Code Comparison (“Full Diff”)

Since the fork of TrueCrypt into VeraCrypt, a considerable number of commits and changes was applied to
the code. Quantifying these changes with respect to their locations in the source code allowed us to focus
the security assessment on specific differences between both software products. To this end, we performed a
full source code comparison between TrueCrypt 7.1a and VeraCrypt 1.23, which was the latest stable version
by the time this analysis was done.

Figure 5: Number of commits by the hour of the day.

2 Evolution from TrueCrypt to VeraCrypt

16 Federal Office for Information Security

As already described in Section 2.1, the GitHub repository of VeraCrypt was used to create the comparison,
but during the process attention had to be paid on the issue that the full windows source of TrueCrypt 7.1a
was committed initially, while further additional cross-platform source was only committed at a later point
in time. Therefore, a simple diff between the initial repository commit and the commit tagged as version
1.23 would give meaningless results, because it would falsely factor in the Linux and macOS code as code
contributions of the VeraCrypt team. With the two-step approach described in the following Section 2.3.1,
this problem was avoided together with further issues that could distort the results.

2.3.1 Approach

The approach for performing the full source code comparison (“full diff”) comprises two steps: First,
preprocessing is performed in order to remove parts of the software project that do not represent program
logic and thus are not relevant for any further security analysis. Then the comparison (or “diff”) is executed
in two stages to cover all changes between the full source code base of TrueCrypt and VeraCrypt.

Preprocessing

Preprocessing is done for each commit that is considered for the complete diff.

• Extract the src/ directory ignoring all other directories. This way, files not related to actual
implementations of VeraCrypt’s functionality are removed. Examples for removed files are files for
internationalization, documentation and test cases as they are not relevant for the security analysis.

• Remove all files that do not contain source code and only keep c, cpp, h, asm and S files. For instance
pre-build binaries, files containing cryptographic material, make files, and xml files were removed as
changes in those files do not represent changes in VeraCrypt’s implementation.

• Remove all comments from each source code file. Comments may account for a considerable amount of
committed source-code file content, e.g., when license agreements were changed. Hence they may
distort and mislead any analysis attempting to quantify changes in the program logic.

• Fix differing encodings of line endings between Windows and Linux/macOS files. If the encoding of line
endings was not aligned, the comparison tool would falsely indicate changes when switches between
encodings occur.

• Remove all white spaces except new lines. Such as with coding line endings, this measure was also
performed to avoid false positives during source code comparison.

Executing the actual comparison (“diff”)

The complete comparison (“diff”) is performed in two stages: First all code changes were extracted that
happened after the initial source code commit to the VeraCrypt repository, but before the Linux and macOS
cross-platform source code of TrueCrypt 7.1a had been committed (cp. 2.1). In the next step, all code
changes were extracted that happened after the cross-platform source code had been submitted until the
commit representing VeraCrypt 1.23. This procedure yields two diffs, which were summed up to create the
complete diff of the two source code bases. From the complete diff, information was extracted about the
parts of the code changed most frequently.

2.3.2 Detecting Linux and macOS Source Files

VeraCrypt has been forked initially from the Windows sources of TrueCrypt. Linux and macOS source files
have been added later on (cp. 2.1). As the structure of the VeraCrypt source code is useful for further
analysis, platform-specific components are an important entity. The commit 7ffce0289, which added the

9 commit 7ffce028d04a6b13ef762e2b89c34b688e8ca59d

2 Evolution from TrueCrypt to VeraCrypt

Federal Office for Information Security 17

Linux and macOS sources and contains only platform-specific files, was further analyzed to reveal those
files and directories that actually contain macOS- or Linux-specific software code.

Unix: The directory src/Core/Unix contains files for Unix-based operating systems. There are
subdirectories for Linux, macOS, FreeBSD and Solaris.

Fuse: The directory src/Driver/Fuse contains files for using fuse10. This is a Unix-specific software
that is not relevant for Windows.

Core: The directory src/Core contains files that are not exclusively for Unix-based operating systems.
Multiple #ifdef TC_WINDOWS statements are contained in the source code, indicating that the code was
not designed as “Unix part” of the software.

Main: The directory src/Main contains source files implementing the graphical user interface (GUI).

Platform: The directory src/Platform/Unix contains sources for system-specific implementations,
e.g., interactions with the operating system or file system.

Volume: The directory src/Volume contains several cryptography-related implementations like
encryption modes and hash functions. Similar implementations can also be found in the src/Common
directory.

2.3.3 Changed Parts

Figure 6 was generated by counting lines of code changed in each file between the initial repository commit
and the commit tagged with version 1.23, and aggregating the numbers per source code subdirectory. Only
C, C++ or assembler source code files were considered and all comments were removed. The subdirectory
names seem to be expressive with respect to the functionality implemented in the contained source-code
files.

A new feature of VeraCrypt is the encryption of volumes that run in UEFI boot11. This may explain the
changes in the Mount, Driver and Volume folders.

10 https://github.com/libfuse/libfuse
11 https://www.heise.de/security/meldung/Verschluesselungs-Software-VeraCrypt-kann-jetzt-UEFI-

3301464.html

https://github.com/libfuse/libfuse
https://www.heise.de/security/meldung/Verschluesselungs-Software-VeraCrypt-kann-jetzt-UEFI-3301464.html
https://www.heise.de/security/meldung/Verschluesselungs-Software-VeraCrypt-kann-jetzt-UEFI-3301464.html

2 Evolution from TrueCrypt to VeraCrypt

18 Federal Office for Information Security

Cryptographic algorithms were also changed, added or removed, as seen in the Crypto subdirectory. The
setup routine was modified, and also the Graphical User Interface was changed as can be seen in the
Main/Forms directory. The zlib and the libzip libraries were added.

Figure 6: Number of lines changed per source code directory.

The files in the Common subdirectory were altered the most. Figure 7 shows the number of line changes per
file in the Common directory. In this figure, only changes in source-code files are shown, header files were
omitted.

The file Tests.c was modified as new test cases were added. The PKCS5 implementation also changed
heavily. The file Crypto.c also received substantial changes, removing or adding interfaces to different
ciphers.

The most changes within the Common subdirectory can be found in the file Dlgcode.c, which mostly
handles the creation and processing of user dialogs. The second most changes can be found in the file

2 Evolution from TrueCrypt to VeraCrypt

Federal Office for Information Security 19

BootEncryption.cpp, where handling, processing and verification of encrypted disks is implemented.
This file was continuously refactored.

Figure 7: Number of lines changed per file in the Common directory.

2.4 Categorization of Source Code Commits

Since the beginning of the VeraCrypt project up to its version 1.23, 1276 commits have been committed to
VeraCrypt’s GitHub repository. In order to filter commits that are important for this project, we manually
investigated and tagged each individual commit. This was done independently by two researchers.

Each researcher first investigated each commit message for whether it contains enough information to tag
the commit accordingly. If the researcher found the commit contains too little information to tag the

2 Evolution from TrueCrypt to VeraCrypt

20 Federal Office for Information Security

commit, the files changed by the commit were examined too. Each commit got at least one tag. A code book
containing the tags was created by the two research successively while they analyzed the commits. Both
researchers discussed and agreed on the tags. After the tagging was done, both cross-checked the tags they
applied to the commits and aligned their individual tagging when they diverged. Tagging was done
progressively; in case of doubt a tag was assigned rather than omitted. The results are presented in the
following.

2.4.1 Tags

The following tags were used for tagging commit messages:

Relevant for the security audit

crypto: Commits adding, deleting or modifying cryptography-related parts of VeraCrypt. This includes
hash functions, encryption or decryption routines and also parts of the software using those
implementations, e.g., a GUI element for selecting an algorithm.

security: Commits fixing security related issues or potential issues.

boot: Commits regarding parts for the boot process when using VeraCrypt for system encryption.static:
Commits applying changes to account for results from static analysis tools. These changes lead to better
code quality and reduced the risk of security issues in most of the cases.

driver: Commits regarding the driver for the abstraction between VeraCrypt and the operating system.

Operating systems

windows: Commits targeting explicitly the Windows platform.

linux: Commits targeting explicitly the Linux platform.

macos: Commits targeting explicitly the macOS platform.

freebsd: Commits targeting explicitly the FreeBSD platform.

Miscellaneous

code: Commits aimed on improving code quality.

volumes: Commits regarding VeraCrypt volumes.

partition: Commits regarding VeraCrypt partitions.

library: Commits changing external libraries or address version changes of external libraries.

version: Commits changing version numbers.

gui: Commits changing and extending the graphical user interface (GUI). This also includes language files
for internationalization.

docs: Commits changing or extending documentation and Readme files.

merge: Commits merging other branches into the master branch.

compile: Commits affecting the build system and changes related to compiler use and parameterization.

2.4.2 Results and Use for the Further Analysis

For the security evaluation of VeraCrypt, the following tags are of specific interest:

• crypto,

• security,

• boot,

2 Evolution from TrueCrypt to VeraCrypt

Federal Office for Information Security 21

• driver and

• static.

By singling out all commits with these tags, it is possible to analyze which files contain the most changes
relevant for the security assessment of VeraCrypt. The full statistics for these tags are provided in the
Appendix in Section 9.1.1. The detailed results in the Appendix give an overview of how often individual
files were changed by commits with the aforementioned tags. We used this data in the further analysis of
changes and for our security evaluation.

2.5 Changes in Cryptographic Functions

In this section, the changes between TrueCrypt and VeraCrypt are discussed in regard to the cryptographic
primitives, the generation of high-entropy randomness, the derivation of cryptographic material from user
inputs, and hidden volumes. We follow a top-down approach by investigating the publicly available
documentation of TrueCrypt and VeraCrypt12 as well as the VeraCrypt Release Notes13 and then cross-
checking the findings with the source code for plausibility.

2.5.1 Cryptographic Primitives

TrueCrypt as well as VeraCrypt provide several symmetric block ciphers for encryption, a mode of
operation for data stream encryption, as well as cryptographic hash functions.

Cryptographic primitives of TrueCrypt

TrueCrypt supports the following three symmetric encryption schemes:

• AES (1),

• Serpent (2), and

• Twofish (3).

Since Version 7.1a of TrueCrypt, XTS (4) is used as mode of operation for the block ciphers. The encryption
process uses two ciphers in cascade (5) in the following five different combinations:

• AES-Twofish,

• AES-Twofish-Serpent,

• Serpent-AES,

• Serpent-Twofish-AES, and

• Twofish-Serpent.

The mode of operation used before Version 7.1a of TrueCrypt was the LRW mode (6) in versions 4.1 to 4.3a
and the CBC mode (7) in versions 4.0 and earlier. Even though in the most recent version containers are
created using the XTS mode, TrueCrypt is backward-compatible with older versions and is able to handle
containers using LRW and CBC modes.

There are three cryptographic hash functions available in TrueCrypt:

• RIPEMD-160 (8),

• SHA-512 (9), and

• Whirlpool (10).

12 https://www.veracrypt.fr/en/Documentation.html
13 https://www.veracrypt.fr/en/Release Notes.html

https://www.veracrypt.fr/en/Documentation.html
https://www.veracrypt.fr/en/Release%20Notes.html

2 Evolution from TrueCrypt to VeraCrypt

22 Federal Office for Information Security

These hash functions are used, e.g., for key derivation and random number generation.

Cryptographic primitives of VeraCrypt

VeraCrypt provides the following encryption schemes (schemes provided in addition to those in TrueCrypt
are written in bold letters):

• AES,

• Serpent,

• Twofish,

• Camellia (11), and

• Kuznyechik (12).

VeraCrypt uses the same mode of operation for the symmetric block ciphers as TrueCrypt, the XTS mode of
operation. There now are ten different combinations of the symmetric block-cipher algorithms used in
cascade:

• AES-Twofish,

• AES-Twofish-Serpent,

• Camellia-Kuznyechik,

• Camellia-Serpent,

• Kuznyechik-AES,

• Kuznyechik-Serpent-Camellia,

• Kuznyechik-Twofish,

• Serpent-AES,

• Serpent-Twofish-AES, and

• Twofish-Serpent.

The cryptographic hash functions available for use in VeraCrypt are:

• RIPEMD-160,

• SHA-256,

• SHA-512,

• Streebog (13), and

• Whirlpool.

Summary

The two block ciphers Camellia and Kuznyechik and the two cryptographic hash functions SHA-256 and
Streebog have been added to VeraCrypt compared to TrueCrypt. The Magma (GOST) (14) cipher also had
been added in commit 0b2c8b0914 in VeraCrypt version 1.18a, but was deprecated with commit
d18ecc1a15 in version 1.19 in response to a security audit (15); however, the source code is still present in
the code repository for compatibility reasons. See Sections 4.1 and 4.2 for a detailed description and Section
4.5 for an analysis of the cryptographic functions in VeraCrypt.

14 commit 0b2c8b09c6eb3ddce22fa88c34a640881f8f2177
15 commit d18ecc1a37b5f83d70b204f0bcb097fb8525314f

2 Evolution from TrueCrypt to VeraCrypt

Federal Office for Information Security 23

The source code files for the encryption schemes and the hash functions are located in directory
src/Crypto/; the implementation of the XTS mode of operation is located mainly in file
src/Common/Xts.c, the cascade cipher in file src/Common/Crypto.c.

2.5.2 Random Number Generation

TrueCrypt and VeraCrypt are using a Random Number Generator (RNG) for the generation of cryptographic
keys, keyfiles, and salts. They maintain their own pool of entropy fed from various sources of entropy
depending on the operation system.

Random number generation in TrueCrypt

The size of the entropy pool is 320 B. On all supported operating systems, the sources of entropy include
mouse movements and keystrokes. On Linux and macOS, further entropy is derived from the OS sources
/dev/random and /dev/urandom. On Windows, also entropy from the MS Windows CryptoAPI,
network interface statistics, and further sources is used.

TrueCrypt provides functions to add entropy byte-wise to the pool and a function to “mix” or “diffuse” the
entropy in the pool, i.e., to spread added entropy over the entire pool, using a cryptographic hash function.
Before entropy is obtained from the pool, always new entropy from the respective sources is added and
mixed to the pool. The construction is based on work by Gutmann (16) and Ellison16 from the 1990s.

Random number generation in VeraCrypt

The RNG has received some modifications in VeraCrypt: SHA-256 has been added as choice for the hash
function for mixing the entropy pool. The Windows source code has been adapted for a 64-bit execution
environment and the CPU instructions RDRAND or RDSEED (17) as well as an entropy source based on CPU
timing jitter have been added as additional entropy sources.

Summary

In particular the Windows version of the random number generator has been changed in VeraCrypt by
adding additional sources of entropy. See Section 4.4 for a detailed description and analysis of random
number generation in VeraCrypt and Section 4.5.4 for randomness tests.

The Windows random number generator is mainly implemented in file src/Common/Random.c, the
Unix (Linux/macOS) version in file src/Core/RandomNumberGenerator.cpp.

2.5.3 Key Derivation

TrueCrypt and VeraCrypt are using a Key Derivation Function (KDF) to derive an encryption key from a
password chosen by the user. This so called header key is then used to encrypt the master key and other
metadata of a volume.

Key derivation in TrueCrypt

TrueCrypt is using PBKDF2 as defined in PKCS #5 V2 (RFC 2898) (18) as key derivation function with 512 bit
salt values. Its construction is based on the iterative evaluation of an HMAC (19) function. TrueCrypt allows
to choose any of the supported hash functions as primitive in the HMAC function. The iteration count is
fixed and generally set to 1000 (with the exception that 2000 iterations are used for RIPEMD-160 when not
used for boot volumes).

Key derivation in VeraCrypt

VeraCrypt is still using PBKDF2 for key derivation, but the implementation has significantly been modified.
Support for the newly introduced hash functions SHA-256 and Streebog has been added and legacy code for
SHA-1 has been removed. The iteration count has been increased (while providing a TrueCrypt

16 http://world.std.com/~cme/P1363/ranno.html

http://world.std.com/%7Ecme/P1363/ranno.html

2 Evolution from TrueCrypt to VeraCrypt

24 Federal Office for Information Security

compatibility mode) and optionally now the user can chose the number of iterations using a Personal
Iterations Multiplier (PIM, see Section 4.3.1). Several optimizations for speed and memory usage have been
introduced, e.g., pre-computation of hash-functions states for repetitive HMAC computations.

Summary

The code base for the key derivation function has significantly been altered for VeraCrypt. While RFC 2898
has been obsoleted by RFC 8018 (20), the basic construction of PBKDF2 has been taken over by RFC 8018.
However, nowadays key derivation functions that impose not only cost in time but also in memory are
preferred, e.g., bcrypt, scrypt and Argon2; Argon2 is recommended, e.g., in BSI TR-02102-1 (21). See Section
4.3 for a detailed analysis of the key derivation in VeraCrypt.

PBKDF2 is mainly implemented in file src/Common/Pkcs5.c.

2.5.4 Hidden Volumes

An additional encrypted volume can be hidden inside an encrypted volume in order to allow the user to
hide sensitive data even if he is forced to reveal his password.

Hidden volumes in TrueCrypt

For each encrypted container, TrueCrypt provides two slots for encrypted volume headers. If no hidden
volume is used, the second slot is filled with an encrypted zero block using a random key. Otherwise, two
volume headers are stored and the user can enter the password for either volume in the mount dialog and
the volume associated with the entered password is mounted. If only the password for the main volume is
provided, the setup behaves like a single volume without hidden volume. This means that data in the
hidden volume might get damaged when data is written to the mounted volume. In order to prevent data
loss in the hidden volume when data is written to the main volume, both passwords need to be provided at
mount time.

Hidden volumes in VeraCrypt

VeraCrypt uses the same approach for hidden volumes as TrueCrypt. However, a critical bug that allowed an
attacker to detect the presence of a hidden volume was fixed in VeraCrypt version 1.18a. Now, the second
slot is not only simply filled with an encrypted block of zeros when no hidden volume is used but a proper
volume header is created and encrypted with a random key in order to prevent distinguishing attacks.

Summary

VeraCrypt received a bug fix to prevent detection of the presence of hidden volumes.

2.6 Changes Related to Application Security

VeraCrypt introduced multiple changes affecting the security of the application that are not directly related
to cryptographic or security functions. We identified the changes using a detailed evaluation of commits
tagged with “security” as explained in Section 2.4.

Operating-system specific changes

Some commits marked with the tag “security” are specific to a certain operating system. Table 2 gives an
overview over the operating-system specific changes.

Table 2: Operating-system specific source-code commits tagged with “security”.

Operating Sytem Amount Relative Amount
Windows 76 66%
Linux/macOS 9 8%
Non specific 31 26%
Total 117 100%

2 Evolution from TrueCrypt to VeraCrypt

Federal Office for Information Security 25

The largest portion of these changes with 76 of the commits are related to Windows. These commits are
often vulnerability fixes or aim on preventing crashes due to race conditions or uninitialized memory. Also,
Windows-specific protection mechanisms are activated or mount problems are fixed.

The high number of Windows-related commits suggests that most users of VeraCrypt are using Windows,
so it appears that most bugs are reported for this operating system. However, another reasonable
explanation might be that as Windows is more widely used, security researchers focus on finding
vulnerabilities specifically in the Windows version of VeraCrypt.

Added exploit protections

With VeraCrypt, multiple protections against exploits were introduced. In June 2017, Address Space Layout
Randomization (ASLR) was integrated, which is a technique to impede the execution of exploit code by
randomizing the address of data in the process memory with every program start. This measure makes it
difficult for an attacker to predict the process memory layout which is hindering the development of
exploits (22).

Another important mitigation against memory-corruption vulnerabilities is a non-executable stack. Many
exploit techniques rely on a stack that is both writable and executable; marking the stack non-executable
can make it difficult to exploit vulnerabilities. The VeraCrypt developers fixed a related problem under
Linux in commit ba1fbb6817.

For the Windows driver, VeraCrypt changes the way non-paged memory is allocated. Windows 8 introduces
the functionality to allocate non-paged memory from a no-execute non-paged pool18. VeraCrypt uses
memory from this pool to further mitigate exploits.

In Windows, it is possible to use the so-called Secure Desktop mode19. This mode is used to protect against
password sniffing attacks or GUI manipulations by other processes and is used in VeraCrypt.

Change to safe functions

Some functions, especially functions handling character strings, are deemed unsafe. For example, some
unsafe string functions do not consider the length of the buffer they are writing to, resulting in buffer
overruns, which can in turn lead to vulnerabilities. Over time, the developers of VeraCrypt changed calls to
these unsafe functions to safer variants.

For example, in commit 016edc1520, the changes shown in Listing 1 were issued. The unsafe functions
strcpy and strncat were replaced with safer variants, in this case StringCbCopyA and
StringCbCatA from the Windows API strsafe.h21. These functions ensure that no data is written to the
memory after the end of the allocated buffer. These calls to unsafe functions were found with static analysis
tools (cp. commit with tag “static” as explained in Section 2.4).

- strcpy (outputFile, szDestDir);
- strncat (outputFile, OutputPackageFile, sizeof (outputFile) - strlen
(outputFile) - 1);
+ StringCbCopyA (outputFile, sizeof(outputFile), szDestDir);
+ StringCbCatA (outputFile, sizeof(outputFile), OutputPackageFile);

Listing 1: Example for a switch from unsafe to safe functions.

17 commit ba1fbb688edf7db0edf3ea9d24a95d5a5ef2260c
18 https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/no-execute-nonpaged-pool
19 https://docs.microsoft.com/en-us/windows/desktop/api/winuser/nf-winuser-switchdesktop
20 commit 016edc150b034d7401a1652bd3482d613ff4b9d4
21 https://docs.microsoft.com/en-us/windows/desktop/api/strsafe/nf-strsafe-stringcbcopya

https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/no-execute-nonpaged-pool
https://docs.microsoft.com/en-us/windows/desktop/api/winuser/nf-winuser-switchdesktop
https://docs.microsoft.com/en-us/windows/desktop/api/strsafe/nf-strsafe-stringcbcopya

2 Evolution from TrueCrypt to VeraCrypt

26 Federal Office for Information Security

Improving robustness

Some commit messages refer to fixes to source code causing program crashes. To lower the possibility of
crashes or vulnerabilities, multiple measures were introduced by the developers:

• Checks for null pointers were introduced to prevent null pointer de-references.

• On multiple occasions, variables are now correctly initialized.

• Multiple memory buffers are initialized with zeros.

• Correct error codes are returned when handling volumes.

• SSE22 instructions are only used if supported by the CPU.

• More potential runtime exceptions are caught.

Multiple commits refer to very specific fixes of crashes like a problem crashing Kaspersky Internet Security
2016 in commit 723fcfa623 or a rare failure of a call to the function FormatMessage in commit
59611b8b24.

Adding safe overwrite

On multiple occasions, changes were applied to overwrite obsolete data on disk or on memory thereby
making it harder to access it by an attacker.

• The password is wiped from memory to protect against attacks in which the clear text password is
extracted from the VeraCrypt process.

• The volume header is overwritten during the encryption of a partition. The number of times this
happens has been lowered by the VeraCrypt developer.

• Cached PIM values are wiped when passwords are wiped.

• The path to keyfiles is wiped from memory.

Fixed vulnerabilities

Various vulnerabilities were fixed over time by the VeraCrypt developers. There does not seem to be a clear
structure when which vulnerability is found and fixed. It appeared that fixes take place in an ad hoc manner
after a vulnerability is reported.

• Sensitive data is erased from memory using the method burn instead of the method memset. Both
methods can in general be used to overwrite data in memory, but memset may be removed by compilers
to increase performance, while burn cannot be removed and overwrites the given memory as intended.

• Kernel pointer disclosures were fixed.

• A vulnerability in CryptAcquireContext was fixed. A buffer overrun in the XML parser was fixed.
Error handling for the initialization of the random number generator was added.

• An evil-maid detection mechanism was introduced.

• A local elevation of privilege vulnerability because of an incorrect impersonation token was fixed.

• A DLL hijacking vulnerability affecting the installer was fixed, which was reported as CVE-2016-1281.
Among other mitigation strategies, the new Windows API is used to prevent such hijackings.

• A vulnerability was fixed enabling an attacker to detect if a hidden volume is present.

• Multiple memory leaks were fixed.

22 https://docs.oracle.com/cd/E26502_01/html/E28388/eojde.html
23 commit 723fcfa64dc2e4e4c6efc8a0c8d5cd05c0eaf944
24 commit 59611b8b378238e5a589a87061d06fe4f337d1a0

https://docs.oracle.com/cd/E26502_01/html/E28388/eojde.html

2 Evolution from TrueCrypt to VeraCrypt

Federal Office for Information Security 27

The Open Crypto Audit Project also found several vulnerabilities which were fixed in VeraCrypt after they
were reported:

• There was a possible “blue screen of death” attack.

• An integer overflow issue was fixed.

• The device name is now checked correctly.

• The bootloader decompressor was made more robust.

Summary

There have been multiple improvements to the application security of VeraCrypt. The focus seems to be
rather on Windows than on other platforms. To find vulnerabilities or problems in the code, the developers
claim to use static analysis tools, as well as manual methods.

3 Security Model

28 Federal Office for Information Security

3 Security Model
This chapter describes the security model used to steer the following security analysis. Section 3.1 explains
the considered application use cases in which VeraCrypt is usually operated and where VeraCrypt security
properties are expected to uphold against attacks on an IT system. The security goals collected in Section 3.2
systematically outline the protection to expect from using VeraCrypt. These goals are challenged by attack
scenarios or threats as described in Section 3.3 that can take place in the various use cases and can impose a
risk to achieving the described security goals. VeraCrypt is tested for weaknesses and vulnerabilities that
may allow implementing these attack scenarios, see Chapters 4 and 5.

Since the aim of this project is not a formal security verification of VeraCrypt, functional security
requirements are not derived. Instead, an attacker-centric analysis starting from described attack scenarios
is performed which leads directly to the security assessment presented in the remainder of this report.

3.1 Application Use Cases

In the following, multiple use cases are discussed regarding their specific implications on the use of
VeraCrypt. At a glance, these are:

• Personal computers. Encryption of mobile or stationary personal computers with one or multiple
users. Encryption can be restricted to single volumes or cover the whole system disk, see 3.1.1.

• External data storage devices. Encrypted external storage devices, such as external hard disks or USB
flash drives are used to transport or backup data, see 3.1.2.

• Sharing of encrypted data. Data are shared with encrypted volumes stored in online services such as
file sharing services, or with portable storage devices, see 3.1.3.

• Server systems and virtual machines. Encryption of volumes on a server system in a data center or on
a virtual machine in a virtualization environment, see 3.1.4.

• Public systems. Publicly accessible systems such as kiosk systems with encrypted volumes, see 3.1.5.

Finally, maintenance and decommissioning are discussed as further aspects of IT system use that may
apply to any of the aforementioned use case scenarios, see 3.1.6.

Considering a use case for the security model does not imply that from a security perspective it is
appropriate to use VeraCrypt in that scenario. It only implies that VeraCrypt can be operated without
obvious downsides making its use infeasible from a practical standpoint.

3.1.1 Personal Computers

We differentiate the uses cases for VeraCrypt on personal computers in two dimensions:

1. the overall system usage scenario in terms of portability, and the number of users, and

2. the scope of the encryption.

All possible configurations of the encryption scope of VeraCrypt can be combined with the different system
usage scenarios, and each combination achieves a different level of protection.

System usage

For the system usage, two crucial aspects are relevant: the degree of the system’s mobility defining the
degree of physical access by a potential attacker, and the number of users, i.e., single- and multi-user
systems.

• System mobility and physical access. An IT system protected by VeraCrypt can be a stationary system,
typically a work station computer at an office work place. The system is not routinely removed from this

3 Security Model

Federal Office for Information Security 29

designated environment, and removal is easy to discover. Physical access to the system is often limited to
selected persons by access control policies enforced through technical or organizational measures. This
limits the circle of people who have the ability to physically interact with the system, perhaps in a
malicious way. However, stationary systems often stay unattended for a longer time period, for instance,
outside office hours or in case the regular user is on vacation. They are also difficult to lock away during
times of temporary disuse.
By comparison, portable systems such as laptops are used rather differently: Their physical location
often changes, and it is not unusual to carry them outside a controlled physical environment such as a
secured office building. Portable systems might even be used in public places like public transport. In
general, policies to limit physical access to portable systems are more difficult to enforce in most usage
scenarios. Nevertheless, portable systems can be kept in closer proximity to their legitimate users,
because they can be taken along when the user changes location. Because of their smaller dimensions
compared to work stations, they can also easily be locked away in secure places during times of
temporary disuse, for example in a locked cabinet.

• Single- or multi-user systems. Personal computers might be used by a single user alone or by multiple
users. The latter is often the case for stationary systems, for instance in shared workspace environments.
But also if administrators have access to a system from time to time, they might do so by means of
dedicated user accounts allowing them to log into the system.
In case a system is used by different users, these users might have different access rights to the system’s
resources or services, for example, not all users might have the rights necessary to administrate the
system. In case multiple users require access to the same resource protected by VeraCrypt, they need to
share access credentials such as the VeraCrypt password and perhaps necessary keyfiles. A common
example is a system with a full system disk encryption, where users need to share the volume password
to boot into the operating system.
The circle of users for an IT system might also change over time. New users might be granted access to
the system, while access rights of former users might be revoked due to changes in the organization.

Encryption Scope

In all these mentioned usage scenarios, the scope of the encryption can be set rather differently. A full
system encryption that encrypts all data on the system, including the operating system, has the broadest
scope. However, in multi-user scenarios this comes with the disadvantage that VeraCrypt credentials need
to be shared among all legitimate users.

It is also possible to encrypt only specific data volumes on the system, such as a data partition on the
system’s hard drive, or to create a dedicated encryption container where sensitive data is stored. For both
options, there is a considerable risk that confidential data is accidentally stored in unencrypted areas of the
system’s drives. However, an encrypted container can be easily moved from one system to another, which
might have advantages in certain usage scenarios.

Summary of variants

• System usage

1. System mobility

− Stationary system

− Portable system

2. System sharing

− Single user using a dedicated personal system

− Multiple users sharing a single system

• Encryption scope

1. Full system encryption

3 Security Model

30 Federal Office for Information Security

2. Encrypted data volumes

3. Encrypted VeraCrypt containers

3.1.2 External Data Storage Devices for Personal Use

External data storage devices such as external hard disks, USB flash drives or memory cards are typically
used to transport data from one IT system to another, or to backup data from one system. Apart from
executing a firmware necessary to interface to the connected host IT system and transferring data from and
to the device, external storage devices do not process the stored data or compute any program code
provided from outside the device.

VeraCrypt can be used either to create an encrypted partition on an external storage device, or to create an
encrypted data container in an existing file system on the device. The device might be carried outside a
controlled (corporate) environment, e.g., to public places. Devices are prone to theft but also to getting lost,
in particular when devices have small physical dimensions.

An external storage device might also be shared with other users. This scenario is discussed in the following
Section 3.1.3, because it imposes specific challenges.

Summary of variants

1. Encrypted container stored on external storage device

2. Encrypted volume on external storage device

3.1.3 Sharing of Encrypted Data

Users could also distribute or share VeraCrypt containers, e.g., via network services, be it in a corporate
network or the internet. Users could upload encrypted containers to file sharing services such as Dropbox,
Google Drive or Nextcloud, and might grant other users access to these network shares. In intranets, file
servers running network protocols such as SMB can be used to store encrypted containers in remote
directories accessed by multiple users. Another possibility is to send and receive encrypted containers by
communication means such as e-mail or instant messengers.

For these scenarios of sharing data online, container encryption is the only appropriate operation mode of
VeraCrypt. While it might be possible to share snapshots of virtual drives also containing VeraCrypt
encrypted partitions, this approach has no practical benefit compared to using container encryption.

It is reasonable to assume that providers of online services used to share encrypted containers have full
access to these container files, i.e., to the cipher text. Moreover, they have the ability to change the overall
content of shared directories, i.e., they can add, alter or remove arbitrary files, including container files. In
addition, during file transfer over a network, weak or no network encryption might be applied thereby
allowing others than the legitimate users to get access to encrypted containers.

Instead of sharing encrypted data with online services, sharing can also take place with encrypted storage
devices (cp. 3.1.2). For instance, an encrypted USB flash drive can be used to handover data from one person
to another.

For all of these scenarios, sharing of data requires to share the credentials for decryption, too. This means
that more than one user is in possession of the VeraCrypt password and perhaps keyfiles required to decrypt
a volume or container.

Summary of variants

1. Sharing of encrypted container files with an online file sharing service such as Dropbox, Google Drive or
Nextcloud

3 Security Model

Federal Office for Information Security 31

2. Sharing of encrypted containers with fileservers in an intranet using conventional file sharing services
such as Windows file sharing or network folders

3. Distribution of encrypted containers via e-mail or messaging services

4. Sharing of an encrypted external storage device

3.1.4 Encrypted Server Systems and Virtual Machines

VeraCrypt can also be used to encrypt server systems. For a Windows server system, this could be a full
system disk encryption. For both Windows and Linux servers encrypted data partitions and containers can
be used as well.

Server systems are usually operated in a protected physical environment, like a data center or single server
room, with access policies restricted to administrative and maintenance personnel. However, server systems
are also a subject to theft and tampering in these environments, when measures and policies to enforce
physical security are insufficient. Attacks might not necessarily focus on the IT system as such, but on server
hardware as an asset.

Using VeraCrypt on server systems imposes operational challenges, e.g., entering passwords and perhaps
providing keyfiles to unlock encrypted partitions or containers at system boot time or when required for
operation. For instance, when using a full system disk encryption, a password needs to be entered during
system startup through a console connected to the server that can be accessed remotely or on site.

Encrypting disks with VeraCrypt on a virtual machine is a similar scenario to disk encryption on a server
system. Challenges to unlock devices—especially if required during boot-up time—remain. However, on a
virtual machine, the memory can be dumped easily by persons who administer the virtualization
environment, e.g., by creating a snapshot of the running machine.

Summary of variants

1. Full system encryption of a Windows server system

2. Encrypted data partition or container on a server system

3. Virtual machine instead of a physical server system.

3.1.5 Publicly Accessible Systems

Publicly accessible systems such as kiosk systems can also be an application environment for VeraCrypt.
These systems are placed in a public setting so that users having access to this space can interact with their
interfaces (touchscreens, keyboards, screens, printers, etc.) to use their services. The computing hardware
itself is usually surrounded by physical protections such as locked encasements.

However, these systems can be subject to theft, tampering and other kinds of misuse. While usually only
providing a frontend to remote services connected via network, these systems might nonetheless store
sensitive information such as configuration data, usage protocol records or even credentials to access
services or data.

Similar to server systems, publicly accessible systems need to be provided with passwords and keyfiles to
unlock the encrypted volume or container if required for the systems’ operation. For instance, if a full
system encryption is used, the credentials need to be provided during startup. This can be done, e.g., by
instructed personnel in the public area that has access to respective system interfaces such as a keyboard.

Summary of variants

1. Full system encryption of the publicly accessible system

2. Encrypted data partition or container on the publicly accessible system

3 Security Model

32 Federal Office for Information Security

3.1.6 Further Usage Aspects

Beside these system use cases, specific steps in an IT system’s lifecycle can be of importance from a security
perspective: During maintenance it can be necessary to provide specialized staff access to VeraCrypt
volumes, for instance, in case the system planned for maintenance has a full disk encryption with
VeraCrypt.

A further stage to consider is the decommissioning of IT systems or hard drives that contained VeraCrypt
volumes. Here, the question is as to whether it is required to erase the whole hard disk, perhaps with special
measures and equipment.

3.2 Security Goals

Using VeraCrypt aims on achieving multiple security goals that are discussed in the following; an overview
is given in Table 3. Complying with a security goal requires VeraCrypt to implement security measures
while potential attack scenarios or threats (discussed in Section 3.3) impose a risk to violate the security goal.

Table 3: Overview of the security goals relevant to the use of VeraCrypt

Priority Security Goal Potential Attack Scenarios (Threats)

Primary Data confidentiality

• System loss or theft (see 3.3.1)
• Multi-access attacks (see 3.3.2)
• Side-channel attacks (see 3.3.7)
• Online attacks (see 3.3.8)

Secondary

Data integrity • Targeted data alteration (see 3.3.3)

Data availability • Blocking data access (see 3.3.6)

IT system integrity
• Privilege escalation (see 3.3.4)
• Preparing targeted attacks (see 3.3.5)

3.2.1 Primary Security Goal

The primary goal of using VeraCrypt is to protect the confidentiality of data stored on a VeraCrypt volume
against unauthorized persons. Only authorized persons in legitimate possession of the passwords and
keyfiles to decrypt VeraCrypt volumes must be able to access data protected by VeraCrypt. This protection
promise stretches over multiple phases of an IT system’s lifecycle in particular operation, maintenance,
hand-over and decommissioning.

3.2.2 Secondary Security Goals

VeraCrypt achieves further security goals besides protecting the confidentiality of data. To some degree
VeraCrypt protects the integrity of the encrypted data. It does not prevent or even detect malicious
alterations of cipher text stored on disk. However, because VeraCrypt uses XTS as cipher mode alterations of
the cipher text cause unpredictable alterations of the plain text thereby largely reducing the likelihood that
targeted manipulation attempts succeed. For instance, attacks to modify program code stored in the plain
text data are likely to fail. Because the impact of alterations on the plain text is not only unpredictable but
also broadly distributed, alterations more likely cause observable system failures, which are easier to detect.

Also to a very limited extent VeraCrypt ensures the availability of the encrypted data, because VeraCrypt
provides mechanisms to backup the volume header. In case of data loss affecting the header, the volume can
still be decrypted. It is also possible to backup volume headers with special passwords dedicated for backup
purposes.

3 Security Model

Federal Office for Information Security 33

Furthermore, the use of VeraCrypt on an IT system shall not lead to additional risks to the integrity of the
IT system as such. VeraCrypt must not extend the attack surface of the IT system by creating new entry
points for adversaries to interfere with the system’s operation.

3.3 Attack Scenarios

This section describes the attack scenarios and threats that target the security goals of VeraCrypt described
in Section 3.2.

3.3.1 System Loss or Theft

Loss or theft of systems or storage devices protected by VeraCrypt is the most relevant attack scenario. An
attacker might gain possession of such a system either by accident or by a targeted action. Especially mobile
systems (cp. 3.1.1), external data storages (cp. 3.1.2) and kiosk systems (cp. 3.1.5) are prone to these attacks,
but also VeraCrypt volumes stored in online services (cp. 3.1.3) can easily be accessed by unauthorized third
parties. If IT systems or single data storage devices are decommissioned, they might also get easily into the
hands of a potential adversary.

These attack scenarios can be classified into two major categories, each with very different implications:

1. Scenarios where the attacker has only access to a VeraCrypt-encrypted disk or volume while a
potentially attached computing system is disabled or does not run VeraCrypt while the attack takes
place.

2. The attacker gets into possession of a system with a running instance of VeraCrypt actively encrypting
and decrypting a volume.

The first scenario is commonly associated with opportunistic attacks such as pick pocketing in public places.
Often, the attacker does not know that the targeted system is encrypted with VeraCrypt as the thief is more
interested in the value of the computing hardware rather than the system running on it. However, attacks
can also be strategic, and in case the attacker targets the data on the system, theft of a running system
provides more opportunities for successful attacks on the stored data.

VeraCrypt not actively running on obtained system / single disk or volume obtained

In case the attacker gets in possession of an IT system with encrypted VeraCrypt volumes but the system
does not run a VeraCrypt instance during the time of the attack, a brute-force attack on the password
and/or keyfiles can be applied. The attacker generates potential candidates for the password or keyfile and
tests whether they are the correct credentials. To this end, the attacker can use password dictionaries. The
attacker might also try to guess the master key used for the data encryption instead of attacking a password
or keyfile.

Brute-force attacks are supported by weak passwords or weak random number generators used to create
keys, but also weaknesses in cryptographic algorithms, both allowing to limit the search space for a key,
password or keyfile.

As an alternative to brute-force attacks, the attacker can also examine the obtained system for plain text
data from the encrypted VeraCrypt volume or credentials in plain text (forensic attack). This data might be
unintentionally stored on the system in plain text if the system has unencrypted volumes, and user
programs or the operating system accidentally copied data to these volumes without erasing it on
shutdown.

VeraCrypt is running on obtained system

In case the attacker comes into possession of a running system, further attack strategies can be applied. The
attacker can try to read out the content of the main memory for instance by means of a cold-boot attack (cf.
(23)) or attacks using system interfaces with entry points such as DMA (see (24) for an overview). It depends

3 Security Model

34 Federal Office for Information Security

on the system’s hardware and software configuration whether these attacks succeed, but, in any case, they
require a high level of technical skills.

If the attacker manages to read out the memory content, she can access the encryption master keys for
those VeraCrypt volumes that were mounted during the time of the attack. If no volumes were mounted,
but the legitimate user accessed them before the attack took place, there is a chance that keys and passwords
are still stored in the main memory if they were not properly deleted after un-mounting.

A further option is to attack the operating system to unlock the screen and input devices so that the attacker
can fully interact with the system and thereby obtains access to potentially mounted volumes. VeraCrypt
cannot protect against these kinds of attacks.

Summary

• Description: Adversary gains possession of an IT system or storage device with VeraCrypt-encrypted
volumes and attempts to decrypt the data.

• Affected security goal: Data confidentiality

• Most relevant scenarios:

− Personal computers (see 3.1.1)

− External storage devices (see 3.1.2)

− Sharing of encrypted data (see 3.1.3)

− Public systems (see 3.1.5)

− Decommissioning (see 3.1.6)

3.3.2 Multi-Access Attacks

Multi-access attacks assume that an attacker gets access to a VeraCrypt-protected IT system at least more
than one time. During the first visit, the attacker alters the system so that passwords or keyfiles entered to
the system are stored in a way the attacker can freely gather them during a second visit.

The second visit does not need to be physical. The attacker might also use remote data connections, for
instance via wireless networks, to receive stolen credentials. In case the attacker copied the encrypted data
already during the first visit, the attacker can then immediately start to decrypt it. If the attacker gets
physical access during the second visit, she can steal the IT system together with the collected credential
data.

Conventional methods to implement multi-access attacks are, for instance, attaching a key logger to the
system, altering the operating system to execute a key logging software, or installing a forged password
input screen into the bootloader software if a full-system encryption is present.

Systems that are not stored in secured areas with limited access, or are unattended for a longer time period
are particularly prone to these kinds of attacks. A case in point are notebooks stored in hotel rooms where
manipulations could be performed by hotel staff (an attack pattern commonly called “evil maid”)25. Multi-
access attacks can also be particularly relevant if IT systems are handed over to less trustworthy third parties
for maintenance reasons.

If the attacker was formerly a legitimate user of the IT system, she might also swap the header of an
encrypted VeraCrypt volume to a volume header bound to the credentials the attacker once used to decrypt
the data. If only the encryption password has changed during transfer of ownership but the volume was not
properly re-encrypted, the volume master key still remains unchanged and the attack succeeds.

25 This attack was already showcased for TrueCrypt, see

http://theinvisiblethings.blogspot.com/2009/10/evil-maid-goes-after-truecrypt.html

http://theinvisiblethings.blogspot.com/2009/10/evil-maid-goes-after-truecrypt.html

3 Security Model

Federal Office for Information Security 35

Summary

• Description: An adversary gets temporary, physical access to an IT system with VeraCrypt-encrypted
volumes and manipulates it in a way that it stores entered passwords and keyfiles in plaintext. During a
second physical or remote visit, the attacker retrieves these credentials and decrypts the VeraCrypt-
protected data.

• Affected security goal: Data confidentiality

• Most relevant scenarios:

− Personal computers (see 3.1.1)

− Server systems and virtual machines (see 3.1.4)

− Public systems (see 3.1.5)

3.3.3 Targeted Alteration of Data

In general, any attacker in possession of a VeraCrypt-encrypted volume can alter the encrypted data and
thus the plaintext content without having the required encryption password or keyfiles. The question is
whether an attacker might be able to alter data in an advantageous way. For instance, such a benefit could
be to damage program code stored on the volume with the consequence that its execution fails.

If a weak cipher mode was used such as CBC an attacker can specifically switch single bits in the
ciphertext26. Hypothetically, an attacker could also move a specific part of the ciphertext to another
position on the volume for causing a targeted change in the plaintext though VeraCrypt’s cryptographic
algorithms shall prevent such attacks if implemented correctly. Another possibility is to replay a part of the
cipher text, for instance, to reach a former state of the IT system.

In addition, there is a small but not unrealistic chance that an attacker succeeds in predicting the position
of certain files on the hard drive, especially system files of a standard operating system installation. In this
case, the attacker can try to damage these files on purpose. If systems are cloned from unified disk images,
the likelihood of a successful attack further increases.

The described attacks usually serve the purpose to prepare other attacks. For instance, damaging parts of the
operating system or setting it back to a former state might support attacks on the operating system itself,
such as overriding one of its access control mechanisms. However, these attacks require a high level of
technical skills, probable assumptions about the state and structure of the encrypted volume, and hence
have a rather small chance of success.

Summary

• Description: An adversary gets access to a VeraCrypt-encrypted volume and alters its ciphertext to
provoke a specific behavior of the IT system once it processes the data.

• Affected security goal: Data integrity

• Most relevant scenarios:

− Personal computers (see 3.1.1)

− Server systems and virtual machines (see 3.1.4)

− Public systems (see 3.1.5)

26 An example for this kind of attacks is given in https://www.jakoblell.com/blog/2013/12/22/practical-

malleability-attack-against-cbc-encrypted-luks-partitions/

https://www.jakoblell.com/blog/2013/12/22/practical-malleability-attack-against-cbc-encrypted-luks-partitions/
https://www.jakoblell.com/blog/2013/12/22/practical-malleability-attack-against-cbc-encrypted-luks-partitions/

3 Security Model

36 Federal Office for Information Security

3.3.4 Privilege Escalation on Host System

An IT system running VeraCrypt might have multiple users with different privileges on this system, for
instance administrator rights might not be granted to every system user. In such a scenario, a user with low
privileges might try to attack the VeraCrypt driver running with administrator privileges in the kernel
space to escalate her own privileges.

This can be achieved by injecting code through an unsafe driver interface to be executed in the higher
privileged kernel execution space. Another possibility is to trigger functions of the driver that were
accidentally exposed at the driver interface to perform actions not regularly allowed for the user.

For all these attack strategies, VeraCrypt serves as an entry point to perform other attacks. They are not
directly aiming on VeraCrypt-encrypted data. However, in cases escalating local privileges also enables
access to restricted mounts of VeraCrypt volumes, these attacks can also compromise the confidentiality of
VeraCrypt-protected data.

Summary

• Description: By exploiting erroneous or missing input checks at the interface of VeraCrypt’s kernel
driver an attacker escalates her access privileges on the IT system running VeraCrypt.

• Affected security goal: IT system integrity

• Most relevant scenario: Personal computer as multi-user system (see 3.1.1)

3.3.5 Preparing Targeted Attacks

VeraCrypt can also provide system-external entry points for attacks to compromise IT systems running
VeraCrypt. An attacker who has access to a VeraCrypt volume could try to manipulate this volume with the
result that the input routines processing the volume on a target system, for instance the volume header
parser, fall into an undefined state. Having this kind of weakness in an input routine may allow an attacker
to plant and execute malicious code on the vulnerable target system.

Persons who have legitimate access to a VeraCrypt volume come into question for these attacks. Such a
shared access might be the case in scenarios where volumes are intentionally shared (see 3.1.3).

This kind of attacks could also be used in spear phishing attacks when an attacker sends a victim a self-
made malicious VeraCrypt volume containing the attack code, and the password or keyfiles necessary to
decrypt it. If the attacker can trick her victim into using the volume, the attack could work out.

In general an attacker who has access to the encrypted volume but not decryption credentials could also
perform this attack. It depends on the kind of weaknesses available to the attacker whether it can be
performed without being able to decrypt the volume. This can be the case, e.g., if it is possible to jump to
malicious code embedded in the ciphertext area of a container file.

Summary

• Description: An attacker tricks a VeraCrypt user into using a manipulated VeraCrypt volume and
exploits a weakness in VeraCrypt enabling the attacker to control or alter the victim’s IT system.

• Affected security goal: IT system integrity

• Most relevant scenario: Sharing of encrypted data (see 3.1.3)

3.3.6 Blocking Access to Data

By damaging the volume header, an attacker might try to block access to a VeraCrypt volume for its
legitimate users. While there are other ways like physically damaging a device, or overwriting the whole
volume space with random data, such an attack is overly effective since it damages the complete volume by

3 Security Model

Federal Office for Information Security 37

a quick and easy to perform action. If no volume header backup exists, it is impossible for the victims to
restore even a portion of the encrypted data.

Such attacks can be useful for people who have legitimate access to an encrypted volume but are asked to
handover the encrypted volume against their own intentions, for instance, disgruntled employees who are
about to quit. Another way for them to block access to legitimate others is to change the encryption
password and to not inform responsible others about it, perhaps in conflict with a policy of their
institution. If the institution does not backup volume keys, without cooperation of the attacker, access to
the volume cannot be restored.

Summary

• Description: An attacker blocks access to VeraCrypt-protected data of legitimate users by damaging a
VeraCrypt volume header or changing the encryption password in an unauthorized manner.

• Affected security goal: Data availability

• Most relevant scenario: Personal computers (see 3.1.1)

• Note: For decommissioning of storage devices, the described attack technique of erasing the volume
header can be applied by authorized personal on purpose.

3.3.7 Side-Channel Attacks

Side-channel attacks can be performed against a system if an attacker is able to record physical or
computational parameters while the system is operating on secret data, e.g., during key derivation or while
encrypting or decrypting VeraCrypt volumes. If VeraCrypt’s implementation is prone to side-channel
attacks, by statistical analysis of these recordings the attacker can gather information about the keys used.

Examples for these parameters are power consumption and execution time. The attacker either needs to
have physical access to the system or needs to be able to execute code—not necessarily privileged code—on
the target system. For the latter, running a program in the web browser could be sufficient from a
theoretical point of view. Also a virtual machine controlled by the attacker and running on a system that
uses VeraCrypt (in the host system itself or in another virtual machine on the same physical host) can be an
entry point for side-channel attacks. Nonetheless, these attacks require a high level of technical skills on
part of the attacker, and potentially complex technical equipment.

Also recent attacks that are enabled by the CPU microarchitecture like Meltdown and Spectre27 can be
mounted against VeraCrypt. These attacks exploit features of a microarchitecture together with side
channels like timing in order to extract data and potentially secret information by running malicious code
on the target platform. These are generic attacks that do not exploit weaknesses in VeraCrypt itself but that
can be used to attack VeraCrypt just as any other software running on a vulnerable system.

Summary

• Description: Adversary records parameters of an IT system running VeraCrypt to predict or reveal the
VeraCrypt keys processed by the system.

• Affected security goal: Data confidentiality

• Most relevant scenarios:

− Personal computers (see 3.1.1)

− Server systems and virtual machines (see 3.1.4)

27 https://meltdownattack.com/

https://meltdownattack.com/

3 Security Model

38 Federal Office for Information Security

3.3.8 Online Attacks

An attacker may also get access to encrypted data or data encryption keys by planting malware or backdoors
into systems used to decrypt VeraCrypt volumes. Protection against these kinds of attacks is outside the
protection scope of VeraCrypt. They are mentioned here for the sake of completeness.

Summary

• Description: Adversary infects an IT system running VeraCrypt with malware or gets otherwise local
access to the system and can thereby read out data decrypted on the system or encryption keys.

• Affected security goal: Data confidentiality

• Most relevant scenarios:

− Personal computers (see 3.1.1)

− Server systems and virtual machines (see 3.1.4)

4 Security Analysis of Cryptographic Mechanisms

Federal Office for Information Security 39

4 Security Analysis of Cryptographic Mechanisms
Several of the attack scenarios from Section 3.3 (3.3.1, 3.3.3, and 3.3.7) including the most relevant scenario
“System Loss or Theft” are related to the use of cryptography. This section analyzes the cryptographic
mechanisms used by VeraCrypt based on the available documentation and to some extend the source
code28. The cryptographic mechanisms, e.g., encryption, hash-functions, random-number generators,
nonces, salts, initialization vectors, and key derivation functions are investigated and assessed based on
current recommendations.

4.1 Encryption Schemes

VeraCrypt is using symmetric block ciphers for bulk encryption of data using a mode of operation for
operating on data streams. Optionally, several ciphers can be cascaded.

4.1.1 Block Ciphers

VeraCrypt offers five symmetric block ciphers, three of the finalists of the Advanced Encryption Standard
contest by NIST, namely AES, Serpent, and Twofish, as well as Camellia and Kuznyechik. The block ciphers
with their key and block sizes are listed in Table 4. AES is standardized, e.g., by NIST (1) and ISO (25) and
recommended by BSI in TR-02102-1 (26). Camellia is standardized, e.g., by ISO (25) and the IETF (11).
Kuznyechik is standardized, e.g., by GOST (27) and the IETF (12). There has been extensive cryptanalysis on
these ciphers and currently they are all considered secure. There is some criticism on Kuznyechik due to the
use of a secret algorithm for constructing S-boxes (28) (29); however, no resulting attack is known.

All five block ciphers have a block size of 128 bit and are used by VeraCrypt with a key length of 256 bit. This
key size is well within the generally recommended key sizes for symmetric ciphers of 128 bit, 192 bit, and
256 bit (see e.g., BSI (26) and NIST (30)).

VeraCrypt tests the functionality of the ciphers with a simple test-vector test. On the Windows platform the
tests are part of the src/Common/Tests.c file and called during program startup and during
performance tests. On the Linux platform, they are part of the src/Volume/EncryptionTest.cpp and
called during volume creation and performance tests.

Table 4: Encryption and hash algorithms with key, block, and output sizes.

Block Cipher Key Size (bit) Block Size (bit) Hash Algorithm Output Size (bit)
AES 256 128 RIPEMD-160 160
Camellia 256 128 SHA-256 256
Kuznyechik 256 128 SHA-512 512
Serpent 256 128 Whirlpool 512
Twofish 256 128 Streebog 512

4.1.2 Mode of Operation

VeraCrypt is using the XTS mode of operation. This mode is standardized as IEEE Std 1619-2018 (31) and is
specifically recommended for the encryption of storage devices, e.g., by NIST (4). It is also mentioned by BSI
in (26), Sect. 1.5. Each block (also called cluster) of the storage device is encrypted individually. XTS uses two
independent keys, one for encrypting the block initialization vector (IV), and one for data encryption. The
IV is an integer consecutively assigned to each device block. In case the block size of the storage device is not
an integer multiple of the block size of the cipher, ciphertext stealing is applied in the XTS standard for
padding the last cipher input block. VeraCrypt offers the user to choose the device block size when the

28 The instances where source code was examined are explicitly mentioned.

4 Security Analysis of Cryptographic Mechanisms

40 Federal Office for Information Security

device is set up. Typical block sizes range from 512 B to 16 kB on FAT file systems, 4 kB to 64 kB on NTFS for
Windows, and 1 kB to 64 kB on the extended file systems (ext) for Linux. The default for many modern file
systems is 4 kB.

VeraCrypt does not make use of ciphertext stealing; the device block size is always a multiple of the cipher
block size. Both the use of keys and the choice of the IV in VeraCrypt is compliant with the XTS standard.

VeraCrypt tests the functionality of the XTS mode implementation with test vectors for an instance using
the AES cipher. These self-tests are part of the tests for the ciphers as mentioned above.

4.1.3 Cascading Ciphers

VeraCrypt offers several combinations for cascading ciphers (see Section 2.5.1). The cascading is
implemented by simply encrypting the same data under different keys and ciphers using XTS mode several
times such that the output of one encryption is the input of the next. Cascading ciphers may have an impact
on some security properties of the individual ciphers (see (32) for details and (33) for an overview); however,
these issues mostly do not apply in the context of VeraCrypt (no authenticated encryption, XTS as mode of
operation) and the resulting security is not lower than that of using a single encryption.

4.2 Cryptographic Hash Functions

VeraCrypt is using cryptographic hash functions within the random number generator and for key
derivation. VeraCrypt supports the five algorithms RIPEMD-160, SHA-256, SHA-512, Streebog, and
Whirlpool. The hash functions with their output size are listed in Table 4. RIPEMD-160 has the smallest
output length with 160 bit. SHA-256 has an output length of 256 bit and SHA-512 of 512 bit. VeraCrypt is
using the 512-bit versions of Streebog and Whirlpool.

RIPEMD-160

RIPEMD-160 was published in 1996 (8) as strengthened version of its predecessor RIPEMD from 1992.
RIPEMD-160 does not fulfill current general recommendations for cryptographic hash functions. For
example, BSI is recommending to use hash functions with an output length of at least 240 bit to achieve at
least 120-bit security (26). Furthermore, RIPEMD-160 is on the “Monitored Ciphers List”29 of the Japanese
Cryptography Research and Evaluation Committees (CRYPTREC), meaning that it is considered unsafe and
only permitted for maintaining compatibility with legacy systems. We recommend to remove RIPEMD-160
from the set of supported hash functions.

SHA-256 and SHA-512

SHA-256 and SHA-512 of the SHA-2 family have been standardized, e.g., by NIST as FIPS PUB 180-4 (9), and
are recommended, e.g., by the BSI (26). Both functions provide sufficient security and output length as
recommended by the BSI. SHA-2 has received extensive analysis and scrutiny. Some partial attacks (using a
lower number of rounds) have been reported; currently, no feasible attack on SHA-2 is known.

Streebog

Streebog is standardized as GOST R 34.11-2012 (34). The output length of 512 bit chosen by VeraCrypt well
exceeds the general recommendations. However, similar to the block cipher Kuznyechik, there is criticism
that the involved S-boxes were generated by a secret algorithm (28) (29).

Whirlpool

Whirlpool is standardized as ISO/IEC 10118-3 (35). The output length of 512 bit well exceeds the general
recommendations. It is based on the AES block cipher. It is recommended by the NESSIE project (New
European Schemes for Signatures, Integrity and Encryption) (36).

29 https://www.cryptrec.go.jp/en/method.html

https://www.cryptrec.go.jp/en/method.html

4 Security Analysis of Cryptographic Mechanisms

Federal Office for Information Security 41

4.3 Key Derivation Function

The documentation of VeraCrypt recommends to use strong passwords that are not composed from words
that can be found in a dictionary. Passwords should not contain any names, dates of birth, or other
information that can be obtained by social engineering. The documentation and the user interface to set up
a new volume show recommendations to use at least 20 characters in a random combination of upper and
lower case letters, numbers, and special characters as password. VeraCrypt does not give or enforce a specific
set of characters to be used for a password. If a password shorter than 20 characters is used, a warning is
issued to the user, which can be ignored. There is a variation to this when a Personal Iterations
Multiplier (PIM) is used; see Section 4.3.1 for details.

VeraCrypt uses the key derivation function PBKDF2 in order to derive a symmetric key for encrypting parts
of the VeraCrypt volume header. PBKDF2 is specified in PKCS #5 v2.0 and RFC 2898, and recommended by
NIST Special Publication 800-132 (37). PBKDF2 is based on iterative chain-hashing where the output of one
hash function iteration is the input to the next iteration. The input to the first iteration is the user password
with an additional salt. The security of PBKDF2 is based on increasing the computational effort required to
derive a single key thereby making brute-force attacks inefficient. The computation effort can be controlled
by the number of iterations of PBKDF2 which can be chosen as security parameter.

VeraCrypt is using a salt derived from its RNG (see Section 4.4). It uses the hash functions described above in
an HMAC construction. For most hash functions, by default VeraCrypt is using 500,000 iterations with the
exception of the weak RIPEMD-160 for which it uses 655,331 iterations. Alternatively, the user can specify a
PIM value to set up a desired number of iterations (see Section 4.3.1). Furthermore, keyfiles can be used in
addition to the password (see Section 4.3.2). VeraCrypt checks the functionality of the HMAC constructions
for all hash-functions with test vectors as part of the block cipher self-tests mentioned in Section 4.1.1. NIST
Special Publication 800-132 (37) recommends:

• to use a minimum iteration count of 1000 and for “especially critical keys, or for very powerful systems
or systems where user-perceived performance is not critical, an iteration count of 10,000,000 may be
appropriate” (37 p. 6) (the default iteration count of VeraCrypt is on the mid-low end of this range),

• to use a hash function in the HMAC construction for PBKDF2 (which is followed in VeraCrypt),

• to use a salt of at least 128 bit derived from a true random number generator (the salt length of 512 bit in
VeraCrypt more than suffices for this requirement), and

• to use both a hash function and a true random number generator that have been approved by NIST
(which is given for some of the hash functions in VeraCrypt; see Section 4.4 for a discussion of the
VeraCrypt RNG).

PBKDF2 is listed as “Agreed Key Derivation Function” by the SOG-IS Crypto Working Group (38), Sect. 3.7. If
an HMAC construction is used in PBKDF2 (as applied by VeraCrypt), SOG-IS explicitly points out that if the
HMAC key length (i.e., the password) exceeds the hash-function block size, the effective entropy of the
resulting output key may be reduced compared to the entropy of the password input.

The security of PBKDF2 is based solely on computational cost, which means that it can be attacked by a
powerful attacker with massively parallel special purpose hardware. There are key derivation functions that
are designed such that in addition to computing power, they also require a large amount of memory. This
makes an attack also with dedicated hardware more expensive. Examples are bcrypt (39) and scrypt
(40) (published by IETF as RFC 7914) as well as Argon2 (41), the winner of the Password Hashing
Competition30. We recommend to transition from PBKDF2 to a state-of-the-art key derivation function like
Argon2 as recommended by BSI in TR-02102-1 (21).

30 https://password-hashing.net/

https://password-hashing.net/

4 Security Analysis of Cryptographic Mechanisms

42 Federal Office for Information Security

4.3.1 Personal Iterations Multiplier

The PIM functionality was introduced in VeraCrypt version 1.12. In the previous versions, the security relied
solely on the password strength since the number of iterations was fixed. PIM provides a two-dimensional
security space that provides more flexibility to get a desired security level and to control the performance of
the mount (and boot) operation. It is not mandatory for the user to specify the number of iterations. If no
PIM value is specified, VeraCrypt will use the default value as discussed above.

If the user wants to choose a value, there are two ways to specify the number of iterations: The user can
specify a PIM value in the command line or in the password dialog. When the PIM value is chosen, the
calculation of the number of iterations depends on what kind of encryption is used by system. For the
system encryption, which does not offer SHA-512 or Whirlpool, the number of iterations is 2048 times the
PIM value. For volume encryption it is 1000 times the PIM value plus 15,000.

The PIM value is an additional secret value that must be entered each time together with the password; it is
not stored along with the volume header. Hence, an incorrect PIM value will let the mount/boot operation
fail since the correct decryption key for the volume header cannot be computed.

Choosing a small or a high PIM value affects security. High PIM values give better security but at the same
time require higher number of iterations which results in a slower overall mounting (or booting) time. Small
PIM values make mounting (or booting) faster but do not give as much security, which is a particular risk if a
weak password was chosen. If the password is too short (less than 20 characters), VeraCrypt forces the PIM
value to be greater than 98 for system encryption and greater than 485 otherwise. This setting is enforced by
the volume creation and password change dialogs. More specifically, the dialogs first check whether the
password length is less than 20 characters, and then issue an error if the PIM is too small. If the password
length is sufficient, but the PIM too small, only a warning is issued. Using a PIM value of zero disables the
PIM functionality and returns to the default values as described before.

4.3.2 Keyfiles

VeraCrypt offers the option to use one or more “keyfiles” in combination with a password. There are no
restriction on the type of file that can be used, however only the first 1 MB of data within the file is used.
The documentation of VeraCrypt recommends the use of files with compressed contents. Alternatively,
VeraCrypt also includes a generator for keyfiles which utilizes the random number generator (RNG) to
generate a file from random content (see Section 4.4). The use of a keyfile is optional; it can be used to
supplement the password to increase protection against brute force attacks. Furthermore, the program
allows for the storage of keyfiles on security tokens adhering to the PKCS #11 (2.0 or later) standard (42),
such as smart cards.

4 Security Analysis of Cryptographic Mechanisms

Federal Office for Information Security 43

The keyfiles are processed sequentially with a compression function as shown in Algorithm 1. A “keyfile
pool” is defined, which is an array of bytes with 64 elements (the maximum length of a password). This pool
is initialized with the password, padded by zero bytes. Then for each keyfile, the KeyfileApply function is
called. This function calculates the CRC32 digest of the file byte by byte. After each byte, the intermediate
value of the CRC32 digest is added byte by byte to the pool with integer addition modulo 256. This is done
akin to a ring-buffer, i.e., a cursor pointing to the next byte of the pool is managed, which wraps to the
beginning of the pool when the end is reached. The whole process is commutative when several keyfiles are
used; the order of the keyfiles does not influence the result. After all keyfiles have been processed, the
resulting 64 byte pool is treated as the encryption password. This process is described in the
documentation31, and matches the behavior of the source code for both the Windows and Unix platforms.

Algorithm 1: The KeyfileApply algorithm.

4.4 Random Number Generation

The documentation32 of VeraCrypt specifies the functionality of the random number generator (RNG). The
authors also specify two sources (16) (43) as the origin for the design. The VeraCrypt source code contains
two implemented variants of the RNG: One is exclusively used on the Windows platform, while the other is
used for Unix-based platforms. The implementation sources for the Windows platform are contained in the
src/Common/Random.c files, while the Unix sources are contained in
src/Core/RandomNumberGenerator.cpp (as well as the respective C header files). In the following,
we analyze the source code of these two variants separately and match them to the documentation.

4.4.1 Documentation

At the time of writing, the documentation contained a textual description of the RNG. The RNG is described
as the source for the master encryption key, secondary key for the XTS mode, salt, and keyfiles. The
construction is specified as a pool of 320 bytes, which is filled with data from the following sources:

• User inputs, i.e., mouse movements and keyboard strokes,

• values from the RNG of the system, i.e., MS CryptoAPI on the Windows platform and the /dev/random
and /dev/urandom files on Unix platforms,

• network interface statistics on the Windows platform, and

• “various Win32 handles” (i.e., API call results), time variables and counters.

31 https://www.veracrypt.fr/en/Keyfiles.html
32 https://www.veracrypt.fr/en/Random%20Number%20Generator.html

https://www.veracrypt.fr/en/Keyfiles.html
https://www.veracrypt.fr/en/Random%20Number%20Generator.html

4 Security Analysis of Cryptographic Mechanisms

44 Federal Office for Information Security

Each source is divided into individual bytes and added to the pool with integer addition modulo 256 at the
position of the current “pool cursor”. This cursor is advanced for each added byte and wraps to the
beginning of the pool when the end is reached.

For every 16 bytes added to the pool, a “mixing” function is to be applied to the contents of the pool. This
mixing function is specified as follows:

1 Let 𝑅𝑅 be the randomness pool with 𝑧𝑧 as the size in bytes of 𝑅𝑅.

2 Let 𝐻𝐻 be the hash function selected by the user, with 𝑙𝑙 as the size of the output of the hash function 𝐻𝐻 in
bytes.

3 Let 𝑞𝑞 = 𝑧𝑧
𝑙𝑙
− 1.

4 Divide 𝑅𝑅 into 𝑙𝑙 -byte blocks (𝐵𝐵0, … , 𝐵𝐵𝑞𝑞).For 0 ≤ 𝑖𝑖 ≤ 𝑞𝑞 (i.e., for each block 𝐵𝐵) the following steps are
performed:

𝑀𝑀 = (𝐻𝐻(𝐵𝐵0�|𝐵𝐵1|�… ||𝐵𝐵𝑞𝑞) (i.e., the randomness pool is hashed using the hash function 𝐻𝐻, which produces
a digest 𝑀𝑀) and

𝐵𝐵𝑖𝑖 = 𝐵𝐵𝑖𝑖 ⊕𝑀𝑀.

5 𝑅𝑅 = 𝐵𝐵0�|𝐵𝐵1|�. . . ||𝐵𝐵𝑞𝑞.

The output function of the RNG never outputs values from the pool directly, but prepares the output as
follows:

1 Data obtained from the specified sources is added to the pool as described above.

2 The requested number of bytes is copied from the pool to the output buffer, starting from the position of
the pool cursor. The cursor wraps to the beginning of the pool accordingly, when the end of the pool is
reached.

3 Each bit in the pool is inverted.

4 Data obtained from the specified sources is added to the pool as described above.

5 The mixing function is applied to the pool.

6 The mixed pool is added to the output buffer with the “exclusive or” function, starting from the position
of the pool cursor. The cursor wraps to the beginning of the pool accordingly, when the end of the pool is
reached.

The output function is specified to reject requests when the number of requested bytes is larger than the size
of the pool.

4.4.2 Windows Platform

As described in Section 2.5.2 and Section 4.4.1, the functionality of the RNG is based upon a pool in which
entropy is gathered. The pool itself is an array of 320 B to which entropy is added. The pool is then diffused
by a “mixing” function RandMix, which is triggered every time 16 B of entropy are gathered, as well as
during the output function.

The entropy sources are grouped into three categories: user inputs, fast sources, and slow sources. These three
groups are gathered in varying intervals. The RNG is initialized and set into an active state whenever the
user performs an action which requires the use of the RNG, for example, during the creation of a volume or
while changing the password. All entropy sources are interpreted as a string of bytes, which are added in a
ring-buffer-like fashion on top of the pool. The state of the RNG retains an index to the “top” byte in the
pool, to which the next byte of entropy is to be added and increments it whenever a byte is mixed. The
index rolls over to the beginning of the pool when the end is reached. The operation used when adding new
entropy byte-wise to the pool is the integer addition operation, which is also explicitly specified in the

4 Security Analysis of Cryptographic Mechanisms

Federal Office for Information Security 45

documentation. The current “top” byte of the pool and the new entropy byte are interpreted as 8-bit
integers, added modulo 256, and the result is stored as a byte in the pool at the current index replacing the
“top” byte. The entropy sources and the addition to the pool match the description of the documentation
(apart from an unmentioned additional “slow” source), albeit that the documentation does not group the
sources.

User inputs

Mouse and keyboard input events are gathered constantly while the RNG is in an active state. For both
event classes, the CRC-32 function is used to compress the gathered data. In the case of the mouse events, a
CRC-32 checksum of the event data structure provided by the Windows API is computed. If the checksum
of the mouse input event matches the checksum of either of the last two events, it is discarded. Otherwise,
the checksum of the current timestamp, as well as the difference between the last and current timestamp is
added to the checksum of the mouse event (unsigned 32-bit integer addition), and the resulting bytes are
added to the RNG pool as described above. Furthermore, the state of the RNG contains a counter of the
number of mouse input events, which is used as an estimator for the amount of available entropy. Keyboard
input events are handled in a similar fashion. In both cases, four bytes are added to the pool for each input
event. These four bytes are compressed by the CRC-32 function, but are in both cases based on the input
data (i.e., key stroke or mouse pointer position), as well as timing information about the event.

Fast entropy sources

These sources are polled periodically by a timed function every 500 ms while the RNG is in an active state.
This FastPoll function queries various Windows APIs for gathering system information. However, in
most cases this function does not add the actual gathered information into the pool, but only the “handles”
(i.e., data pointers to the information returned by the API calls). Any properties of these handles, such as the
value range and distribution, cannot be judged properly due to the closed source of the operating system.
The FastPoll function adds handles of the following API objects:

• active window,

• window capturing the mouse,

• window owning the clipboard,

• first clipboard viewer,

• current process,

• current thread,

• desktop window,

• window with keyboard focus,

• window which has the clipboard open,

• handle for the process heap, and

• current window station for the process.

Apart from these handles, the FastPoll function adds the actual information of queries for:

• process ID,

• thread ID,

• system uptime in milliseconds,

• current position of the input caret,

• current position of the mouse cursor,

• memory status of the system, e.g., the amount of available and used memory,

4 Security Analysis of Cryptographic Mechanisms

46 Federal Office for Information Security

• creation and exit timestamp of the current thread and process33,

• time spent in user and kernel mode for the current process and thread,

• information about the working set of the process, i.e., information about the memory pages of the
process, and

• value of the performance counter, i.e., the value of a fine grained timer.

The process and thread IDs do not change between calls, however, the FastPoll function is called from
different threads. Any timers or timestamps are monotonic counters and likely include some variation due
to jitter introduced by the underlying clocks and process scheduling of the operating system.

Finally, the FastPoll function also queries the system RNG via the CryptoGenRandom function. The
backing implementation of this system function varies depending on the Windows version: Starting with
Windows XP until and including Windows Vista it is based on a PRNG matching the FIPS 186-2 (44)
standard; starting with Windows Vista SP1, all further version of Windows use an AES counter-mode based
PRNG based on the NIST SP 800-90 (45). The sources of entropy for the seed of the system RNG are not
known but specified to be based on user input timings and other jitter from hardware components34. The
FastPoll function queries 320 B (i.e., the size of the pool) from the system RNG and adds it to the pool.
After all sources are queried, the FastPoll function additionally triggers the RandMix function to diffuse
the pool.

Slow entropy sources

These sources are only polled on demand when output is requested from the RNG. The SlowPoll function
queries various network statistics as well as I/O statistics about the system hard drives. The I/O statistics are
not mentioned as a source of entropy in the documentation. When the function fails to poll these statistics,
no information is added to the pool and no error feedback is given. Finally, the SlowPoll function also
queries the system RNG in the same manner as the FastPoll function. However, in this case an error is
captured and handled. If the system RNG is successfully polled, the pool is diffused with the RandMix
function.

Pool mixing and RNG output functions

The pool mixing function PoolMix is shown in Algorithm 2. It utilizes the hash function chosen by the
user. The output size 𝑚𝑚 of the hash function must divide the pool size 𝑛𝑛. The pool is mixed in 𝑛𝑛

𝑚𝑚
 rounds,

where each of the 𝑚𝑚 sized blocks of the pool is manipulated. In each round, the entire pool is hashed and the
resulting digest is added to the current block of the hash. In this case, bitwise addition is used, i.e., bitwise
“exclusive or” (XOR). The implementation of this function matches the specification described in the
documentation.

The output function of the RNG is shown in Algorithm 3. It first triggers an optional polling of the slow
sources (this option is always used when the RNG is queried for the first time), after which the fast sources
are polled. Note, that each polling also triggers the PoolMix function. Afterwards, contents of the pool are
copied to the output buffer using a rolling index akin to a ring-buffer. To avoid leaking the contents of the
pool, the entire contents of the pool are then bitwise inverted and the fast sources are polled (again also
triggering the PoolMix function). Afterwards, the modified pool contents are added on top of the output
buffer using the bitwise XOR operation. The output function largely matches the specification as described

33 According to the Windows API, the exit timestamp is undefined for running processes and threads.
34 See the remarks of the API documentation: https://docs.microsoft.com/en-

us/windows/win32/api/wincrypt/nf-wincrypt-cryptgenrandom

https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-cryptgenrandom
https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-cryptgenrandom

4 Security Analysis of Cryptographic Mechanisms

Federal Office for Information Security 47

in Section 4.4.1, except that larger requests are not automatically rejected, but addressed by automatically
repeating the output function.

Algorithm 2: The RandMix function for diffusing the entropy pool of the VeraCrypt RNG (Windows version).

Algorithm 3: The output function of the VeraCrypt RNG (Windows version).

4.4.3 Unix Platform

The construction of the RNG for the Unix platform is very similar to the construction for the Windows
platform described in Section 4.4.2. An entropy pool of the same size is used to which data is added,
subsequently diffused with a “mixing” function, and finally processed and returned to the caller in a very
similar manner by an output function. However, there are differences in the entropy sources as well as
slight differences in the mixing function.

Due to the substantial difference and availability of the system APIs, the Unix based RNG of VeraCrypt does
not poll any sources for random entropy beyond the system RNGs. Hence, there is no distinction between

4 Security Analysis of Cryptographic Mechanisms

48 Federal Office for Information Security

“slow” and “fast” entropy sources. The polling function for the system RNG opens the /dev/urandom
device file and reads bytes in the amount of the size of the pool. The random bytes are then added in the
same manner as in the Windows version, i.e., with the byte-wise addition function in a ring-buffer like
manner, triggering the mixing function after every 16 B. After polling the urandom file, the RNG optionally
also polls the /dev/random file for the same amount of data. Depending on the underlying operating
system, this file offers the same functionality as the urandom file. However, in case of Linux this file is
backed by a different RNG, which only outputs a very limited amount of bytes and blocks reads when not
enough entropy is available. The VeraCrypt RNG polls this file in a “non-blocking” manner, so if the system
does not offer any entropy the read fails silently35. In contrast to the Windows version, other sources of
entropy are not polled by the Unix RNG code. However, the RNG functions offer an API to add data to the
pool, which is used in other places of the code base. For example, mouse movements are captured and fed to
the RNG pool in a manner very similar to the Windows RNG by the code of the graphical interface for the
volume creation. Similar to the Windows variant, the RNG is initialized and in an active state, whenever the
user performs an action which requires the RNG. For example, the RNG is active and mouse movements are
captured while the volume creation dialog is displayed.

The slight differences in the mixing function are shown in Algorithm 4. Firstly, the initialization function of
the hash function is not called. The finalization function of the hash implementations usually just pads the
input and produces the final digest. Thus the omission of the initialization function (which is only called
once during startup), essentially means that the mixing function does not repeatedly hash the buffer.
Instead this will lead to a continuous hashing of the modified buffer. The state of the hash function is then
part of the state of the RNG code. This is likely to be harmless in this context, but nonetheless an oversight.
The second minor difference in the mixing function is the use of integer addition instead of bitwise XOR
addition.

Algorithm 4: The RandMix function for diffusing the entropy pool of the VeraCrypt RNG (Unix version). The
differences to the Windows version are highlighted.

35 When reading from /dev/random, VeraCrypt ignores the EAGAIN error code that is returned when no

entropy is available.

4 Security Analysis of Cryptographic Mechanisms

Federal Office for Information Security 49

The output function largely matches the Windows version. Instead of calling the function, the system RNG
is called. The option causes the /dev/random file to be polled in the beginning, in addition to the
/dev/urandom file. A notable difference is that the output buffer is not overwritten; instead the pool
values are added to the pool with the integer addition function. An overview is given in Algorithm 5.

Algorithm 5: The output function of the VeraCrypt RNG (Unix version).The differences to the Windows version
are highlighted.

4.4.4 Considerations for Entropy

In general, it is reasonable not to rely solely on the RNG provided by the operating system for security-
sensitive requirements like the generation of secret keys. Both Windows and Unix variants of VeraCrypt
query the RNG of the operation system for entropy. In the case of Linux, the system RNG has seen
considerable scrutiny over the years (e.g., in (46)), and can be relied upon delivering random bytes for
cryptographic applications. However, failing to read from /dev/random should not silently be ignored.
Whether the queries to the various system APIs (i.e., the “slow” sources) by the Windows version of the RNG
add any entropy to the pool cannot be evaluated due to the closed source of the operating system. It should
be considered likely that the values are allocated by a deterministic algorithm. It is not specified in the
Windows API, whether or not they contain any jitter, for example, introduced by random race conditions
due to scheduling.

The only other source of entropy in common on both platforms are mouse pointer movements. Comments
in the source code for both platforms express the authors estimate that each mouse event handled by the
software is considered to be “worth” 1 bit of entropy36, which is a debatable stance. The information content
of each mouse movement can be expressed in terms of direction and speed, which is unlikely to change

36 The source code comments cite the following as a reference: https://security.stackexchange.com/a/32848

https://security.stackexchange.com/a/32848

4 Security Analysis of Cryptographic Mechanisms

50 Federal Office for Information Security

drastically in a random manner during a single stroke. However, on both platforms a “progress bar” is
shown in the user interface for key generation, which is in a full state when 2,560 mouse events have been
captured. The code continues capturing mouse events even after the progress bar is filled.

4.4.5 Changes in VeraCrypt 1.24

In version 1.24 VeraCrypt added a further source of entropy by including code from the project CPU Jitter
Random Number Generator37 in both the Windows and Unix variants of the software. This “jitterentropy”
source gathers entropy by measuring the execution time of the repeated invocation of a linear feedback
register as well as the execution time of a set of memory-access operations. The rationale is that the high
complexity of modern CPU architectures makes it hard to predict an exact execution time in the context of
a multitasking operating system. The execution time of memory operations heavily depends on, e.g., the
many caching layers of modern CPUs. Since software running in a multitasking environment shares this
cache with many other tasks, the processing time of memory operations strongly varies with the memory
usage of other tasks and hence is hard to predict. The execution time of non-memory-related code is
similarly affected in a multitasking environment, e.g., due to the complexity of modern CPU pipelines.

The VeraCrypt authors added version 2.2 of the “jitterentropy” implementation to the source code, with
very slight modifications that do not touch the functionality of the source. These modifications include
changes to achieve compatibility with C++ source code, additional compilation options to ensure that the
implementation is not compiled with enabled compiler optimizations (as required according to the
“jitterentropy” documentation), as well as the addition of some platform-specific functionality for time
measurement (as intended by the original implementation). One notable change, however, is the
deactivation of the “FIPS mode” of the software, which disables a simple continuous self-test of the
implementation38.

The quality of “jitterentropy” as an entropy source is contested, see for example (47). The output produced
by this process depends on the operating environment, i.e., the operating system, other running processes,
and the execution hardware at hand. As such, the output is deterministic, albeit extremely hard to predict
due to the immense complexity. In a controlled environment, e.g., during operating system boot time or in a
real-time application, this entropy source should be considered unreliable. As VeraCrypt is not usually
executed in such an environment, the addition of this entropy source to the RNG should not be
problematic. The added benefit is nonetheless debatable, as this entropy source measures execution-time
noise in a very similar manner to common operating system RNGs, e.g., the Linux RNG (46). Furthermore,
the VeraCrypt authors did not document the reasons as to why they chose to deactivate the self-test
functionality of the “jitterentropy” implementation.

4.5 Cryptographic Primitives

Being the foundation of information security, implementations of the cryptographic primitives requires
particular scrutiny. The original public sources of the cryptographic primitives and changes by VeraCrypt to
these sources are identified in Section 4.5.1. In Section 4.5.2, the implementations in VeraCrypt are further
inspected for mistakes, oddities, and general issues. Section 4.5.3 describes known-answer tests to assess the
correctness of the implementations in comparison to a third-party reference implementation. Finally, in
Section 4.5.4, standard randomness tests are applied to output of the VeraCrypt random number generator.

37 https://www.chronox.de/jent.html
38 We reported this to the VeraCrypt developers, who already included a fix in their code repository:

https://github.com/veracrypt/VeraCrypt/commit/425e4e7d365795b820fa145403b2be372894c48b#diff-
a25aec91ade1d42e9b0aa1db03784011

https://www.chronox.de/jent.html
https://github.com/veracrypt/VeraCrypt/commit/425e4e7d365795b820fa145403b2be372894c48b#diff-a25aec91ade1d42e9b0aa1db03784011
https://github.com/veracrypt/VeraCrypt/commit/425e4e7d365795b820fa145403b2be372894c48b#diff-a25aec91ade1d42e9b0aa1db03784011

4 Security Analysis of Cryptographic Mechanisms

Federal Office for Information Security 51

4.5.1 Comparison with Public Sources

The cryptographic primitives in VeraCrypt have not been implemented by the TrueCrypt or VeraCrypt
contributors themselves but originate from other public sources. In this section, the original public sources
of the cryptographic primitives in the VeraCrypt repository are identified if possible and the sources in
VeraCrypt are compared to these original sources.

AES

VeraCrypt includes several AES implementations, which cover 32- and 64-bit x86 CPUs with vector
instructions, a pure C implementation, as well as a variant utilizing the AESNI extensions of Intel CPUs. All
except the AESNI variant of the AES ciphers stem from an outdated version of the AES implementations by
Brian Gladman, an updated version of which can be found on GitHub39. The source files remained largely
untouched since the original import of the TrueCrypt sources. We were unable to find an original version of
the sources with the same date of 2007. The equivalent files to the updated upstream source are, however,
largely unchanged. The only changes concern the name of some symbols and types, as well as the addition
of some compiler information that enables Linux stack protection mechanisms. None of these changes
introduce a change in functionality. The variant utilizing the AESNI instructions comes from TrueCrypt and
was not modified since then apart from non-functional changes similar to those already mentioned.

Serpent

The sources include two variants of the Serpent cipher. The original variant was already included in
TrueCrypt and was taken from the Crypto++ library40. The implementation included in VeraCrypt is mostly
equivalent to an early revision of the original, except that the source code was rewritten to the C
programming language. A version titled “fast”, was later introduced to VeraCrypt, originating from the
Botan library41. The variant is heavily adapted to VeraCrypt, especially with a change to the C programming
language. An SIMD variant was further taken and adapted from the Botan library.

Twofish

We identified three different libraries as the sources for the Twofish implementations included in
VeraCrypt. The first is the cppcrypto library42, not to be confused with the Crypto++ library mentioned
above. The cppcrypto sources were adapted to utilize some approaches taken by the implementation of the
Botan library. Finally, separate assembly implementations for 32- and 64-bit processors were integrated,
taken from a third source43.

Camellia

VeraCrypt includes two implementations of the Camellia cipher. The original source of the first variant
stems from the authors of Camellia, the Nippon Telegraph and Telephone Corporation. An additional
optimized assembly version was adapted from one of the Twofish cipher sources44. VeraCrypt then
introduced changes that concern checks for present CPU features. These checks are used to select an
implementation suitable for the current CPU, for example between a variant capable of processing 16 blocks
at once, or a variant utilizing the AESNI processor extensions. A second smaller variant of Camellia is only
used by the VeraCrypt bootloader. This implementation was taken from the MbedTLS library45, and was
slightly adapted to work outside of the framework of the original library.

39 https://github.com/BrianGladman/aes, commit d05d6f02c15ece6e.
40 https://github.com/weidai11/cryptopp
41 https://github.com/randombit/botan
42 http://cppcrypto.sourceforge.net/
43 https://github.com/jkivilin/supercop-blockciphers/tree/beyond_master/crypto_stream/twofish128ctr
44 https://github.com/jkivilin/supercop-blockciphers/tree/beyond_master/crypto_stream/camellia128ctr
45 https://github.com/ARMmbed/mbed-crypto

https://github.com/BrianGladman/aes
https://github.com/weidai11/cryptopp
https://github.com/randombit/botan
http://cppcrypto.sourceforge.net/
https://github.com/jkivilin/supercop-blockciphers/tree/beyond_master/crypto_stream/twofish128ctr
https://github.com/jkivilin/supercop-blockciphers/tree/beyond_master/crypto_stream/camellia128ctr
https://github.com/ARMmbed/mbed-crypto

4 Security Analysis of Cryptographic Mechanisms

52 Federal Office for Information Security

Magma (GOST)

We were unable to identify an original source of the Magma cipher. A comment in the source mentions Alex
Kolotnikov as an author for the implementation, while the C header file mentions the TrueCrypt
Developers Association, although the file was added after VeraCrypt was forked.

Kuznyechik

Two implementations of the Kuznyechik cipher are included in VeraCrypt. The first comes from the
cppcrypto library and remains largely unchanged. The only changes introduced by VeraCrypt are again an
adaption to the C programming language and some checks for CPU features. Depending on the CPU
features present during runtime, an optimized implementation taken from the lg15 library46 is used, which
contains optimizations for SIMD instructions.

SHA-2

The implementations for the SHA-2 family hash functions come from multiple sources. The first source is
again the cppcrypto library, and is similarly adapted as the Kuznyechik and Twofish ciphers to check for
present CPU features and chose an appropriate implementation of the hash permutation function.
Depending on the present features, optimized variants utilizing various instruction sets are called. Variants
utilizing various SIMD instruction sets come from Intel and are apparently sourced from the Linux kernel47.
The sources are, however, adapted to use a different assembler syntax, but seem to be functionally
equivalent. A further non-SIMD variant of the hash permutation function is sourced from “Project
Nayuki”48.

RIPEMD-160

The cppcrypto library is the original source of the RIPEMD-160 hash function implementation. The sources
are adapted to the C programming language, and a data streaming interface is added to the code.

Whirlpool

The implementation of the Whirlpool hash function is a similar mixture of implementations as of the
Serpent cipher. The original was taken from the Crypto++ library, which in turn was adapted from an
implementation of the original Whirlpool authors. However, with commit 00eb49 VeraCrypt integrated an
implementation originating from the Botan library.

Streebog

We were unable to identify an original source of the Streebog hash function. A comment in the source code
points to Alexey Degtyarev as the author, but no original source is linked. A public source code repository by
presumably the same author exists49 that includes an implementation of the hash function. This repository,
however, does not include the implementation used by VeraCrypt. The Linux kernel, starting with version
5.0, includes an implementation of Streebog that is very similar to that used by VeraCrypt and also lists the
same author.

4.5.2 Manual Source Code Examination

During the comparison of the sources with their public origins (if available), we also examined the source
code manually for potential problems. Most of the implementations employ extensive code unrolling
techniques, making a full line by line audit of the implementations for correctness infeasible. Thus, we

46 https://github.com/aprelev/lg15
47 We identified the following as a possible source:

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/x86/crypto/sha256-avx-
asm.S

48 https://www.nayuki.io/page/fast-sha2-hashes-in-x86-assembly
49 https://github.com/adegtyarev/streebog

https://github.com/aprelev/lg15
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/x86/crypto/sha256-avx-asm.S
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/x86/crypto/sha256-avx-asm.S
https://www.nayuki.io/page/fast-sha2-hashes-in-x86-assembly
https://github.com/adegtyarev/streebog

4 Security Analysis of Cryptographic Mechanisms

Federal Office for Information Security 53

mostly rely on the tests described in Section 4.5.3 to ascertain the correctness of the ciphers and hash
functions. The manual examination, however, yielded several general findings.

The general quality of the code is problematic. This stems mostly from the fact that many cipher and hash-
function implementations are a mix of several adapted open source libraries. The most serious consequence
of this approach is that there is no uniform programming interface to any of the cryptographic primitives.
This does not just extend to irregular naming of functions, but also to the order of parameters. For example,
some schemes take the expanded key as the first argument and then the in- and output buffers, some take it
as the last argument. This may, in the future, lead to possibly undetected programming errors, especially if
changes to the code are not carefully tested with all cipher configurations. Furthermore, mixing several
implementations may lead to programming errors, for example, due to oversights concerning the differing
assumptions of the internal data types, as evident by an alignment error described in Section 4.5.3. In the
described error, an assembly implementation assumes that the address of a buffer is aligned by 16 bytes,
which is not documented in the API. The VeraCrypt authors alleviate the problem of the mixed APIs by
providing an abstraction layer, present in the Common/Crypto.c (Windows) or
Volume/EncryptionAlgorithm.cpp (UNIX) files, which is used by most of the rest of the code.
Nonetheless, in the example of the mentioned alignment error, the VeraCrypt code does not ensure the
alignment. We assume that this error is not getting triggered only because of coincidental alignment. We
believe that more hidden and so far untriggered programming errors exist due to the large number of
different and merged implementations.

Most of the ciphers and hash functions utilize implementations that are highly optimized for execution
speed. These kinds of implementations are usually not protected against side channel attacks. In the context
of the security model described in Section 3.3.7, most side channels such as power and electromagnetic
emanation are not problematic, as attacks using these channels usually require very sensitive
measurements, not available to the attacker in most scenarios. However, timing variance is a highly
problematic side channel for the relevant applications. The speed of a read or write access to an encrypted
volume is directly affected by the timing variance of the underlying cipher. These timings are usually easily
measurable by an attacker, especially in the context of a server or cloud application, albeit with a lot of
noise. Such a timing variance is usually caused by key- or data-dependent branches, or differing access
times to lookup tables used by ciphers, caused by the sophisticated caching mechanisms of modern
processors. Most of the cipher implementations utilize large lookup tables and must therefore be assumed
to be susceptible to timing attacks in some application scenarios. The Serpent cipher implementation is the
only exception to this, as its small substitution boxes are usually implemented directly.

For the most prominent example of the affected ciphers, AES, a timing attack is well known and the
implementation should be directly affected by this issue. We were able to reproduce the timing attack
published in (48). The attack considers a scenario in which an attacker is able to measure the timing of the
encryption of a known plaintext block. The timing attack is a profiling attack and requires a training phase
using known secret key before attacking the target key. In a table-based implementation the access pattern
to a table 𝑇𝑇𝑖𝑖 corresponds to 𝑇𝑇𝑖𝑖[𝑝𝑝⊕ 𝑘𝑘], where 𝑝𝑝 is a plaintext byte and 𝑘𝑘 is a key byte, for the first accesses.
The hypothesis of the attack is that for a table-based implementation the access time to a table is similar for
the same index.

Due to the caching mechanism of the CPU the access times can vary. The attack exploits statistical
properties, i.e., the maximum or the minimum, of the access timing. By choosing the zero key for the
training phase the attacker gets times for 𝑇𝑇𝑖𝑖[𝑝𝑝⊕ 0] = 𝑇𝑇𝑖𝑖[𝑝𝑝]. In the attack phase, she gathers timings for the
original pattern 𝑇𝑇𝑖𝑖[𝑝𝑝⊕ 𝑘𝑘] and accumulates the timings for the known plaintext byte 𝑝𝑝. After gathering the
mean value from a several million measurements per byte value, the timings of both phases are correlated
by accumulating the measured times per plaintext byte value for a specific key byte value: 𝑡𝑡𝑡𝑡�𝑝𝑝𝑗𝑗� ⋅ 𝑡𝑡𝑎𝑎[𝑝𝑝𝑗𝑗 ⊕ 𝑘𝑘]
(𝑡𝑡𝑡𝑡 stands for the training phase and 𝑡𝑡𝑎𝑎 for the attack phase; for details see (48). Afterwards, the maximum
value for a byte value represents the most likely value for a key byte. The result is that the attack usually
does not recover the exact value of a key byte, however, a successful analysis results in a clustering with just

4 Security Analysis of Cryptographic Mechanisms

54 Federal Office for Information Security

a few key byte candidates (cf. Figure 8, Figure 9, and Figure 10) such that a guided brute-force attack can be
applied to recover the full key.

We analyzed the AES-128 variants of the implementations provided by VeraCrypt running on x86_64
machines. We extracted the required source files from VeraCrypt:

1. src/Crypto/Aescrypt.c (pure C),

2. src/Crypto/Aes_x64.asm (64-bit assembler),

3. src/Crypto/AesSmall.c (pure C), and

4. src/Crypto/Aes_hw_cpu.asm (64-bit assembler using Intel AESNI).

We integrated them into the test setup and acquired measurements on an Intel(R) Xeon(R) Gold 6254
machine while running the attack setup on fixed CPU cores to reduce the noise in the measurements. We
gathered 5 ⋅ 106 timings per byte value to raise the probability of a successful recovery. The
implementations 1 and 2 lead to a clear clustering of groups of 8 key byte candidates (cf. Figure 8 and Figure
9). Variant 3 shows a rough clustering and yields a much larger number of key candidates (cf. Figure 10) and
is not as susceptible as the other variants. This implementation uses a 32-bit integer pattern to access larger
tables. Nevertheless, all three variants are vulnerable to timing attacks.

The exception to this is the implementation 4 utilizing the AESNI CPU extensions, which should, depending
on the processor, execute with a timing independent of the key or plaintext. As expected, the analysis result
in Figure 11 shows a random distribution of timings and is not exploitable with the applied attack approach.

In practice, VeraCrypt utilizes the XTS mode of operation the encryption of volumes. As described in
Section 2.5.1, XTS cascades two encryption instances using separate secret keys (one to recover the IV, one to
recover the data). Consequently, the application of a timing attack has to consider two stages to recover two
keys which considerably raises the effort for a successful key recovery. Furthermore, the attacker does not
know the output of the first stage which is required to verify a successful key recovery when having a rough
timing classification. Nevertheless, using the software AES implementations of VeraCrypt is not
recommended when precise timing measurements are feasible due to the general vulnerability presented
before. As such, we discourage the use of any affected cipher in a scenario where timing attacks are relevant
to the attack model, for example, in the context of server applications. In those scenarios, only the Serpent
cipher should be used, or the AES cipher if the system in question supports the AESNI extension.

Concerning the cryptographic hash algorithms, the Whirlpool implementation is based on the AES block
cipher. Consequently, similar tables are used to implement the function in VeraCrypt. This should, in
principle, lead to a leak of cache timing information about the original data, which can be a password or a
seed for a random number generator. The Streebog implementation includes large lookup tables. The attack
scenario on a hash function in the context of VeraCrypt is, however, much more limited, as the hash
functions are only in use during key derivation when opening a volume, or otherwise when the RNG is
active. It is unlikely that an attacker would be able to observe the millions of necessary key derivations to
gather enough timing information, in any reasonable usage scenario.

4 Security Analysis of Cryptographic Mechanisms

Federal Office for Information Security 55

Figure 8: Exemplary timing clustering on Intel(R) Xeon(R) Gold 6254 at key byte position 0 for the pure C AES-128
implementation found in src/Crypto/Aescrypt.c.

Figure 9: Exemplary timing clustering on Intel(R) Xeon(R) Gold 6254 at key byte position 0 for the 64-bit
assembler AES-128 implementation found in src/Crypto/Aes_x64.asm.

Figure 10: Exemplary timing clustering on Intel(R) Xeon(R) Gold 6254 at key byte position 0 for the pure C AES-
128 implementation found in src/Crypto/AesSmall.c.

4 Security Analysis of Cryptographic Mechanisms

56 Federal Office for Information Security

Figure 11: Exemplary timing clustering on Intel(R) Xeon(R) Gold 6254 at key byte position 0 for the Intel AESNI-
based AES-128 implementation found in src/Crypto/Aes_hw_cpu.asm.

Apart from the encryption timing issues, we found a peculiar construction present in the Magma cipher
implementation. The Magma cipher (now deprecated in VeraCrypt) is the only cipher with a 64-bit block
size, as opposed to the 128-bit blocks of all other ciphers. The implementation of the Magma cipher,
however, was extended to support 128-bit sized blocks. This extension uses cipher block chaining to create a
128-bit block cipher. Let 𝐸𝐸𝐸𝐸𝐶𝐶𝑘𝑘: {0,1}64 ↦ {0,1}64 be the Magma block cipher encryption function. The
Magma implementation essentially defines an extended block cipher 𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘∗ as follows: Let 𝑥𝑥 ← 𝑥𝑥1||𝑥𝑥2 with
𝑥𝑥𝑖𝑖 ∈ {0,1}64 be the 128-bit input block. Then 𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘∗ is defined as:

𝑙𝑙𝑙𝑙𝑙𝑙 ← 𝐸𝐸𝐸𝐸𝐶𝐶𝑘𝑘(𝑥𝑥1)

ℎ𝑖𝑖𝑖𝑖ℎ ← 𝐸𝐸𝐸𝐸𝐶𝐶𝑘𝑘(𝑙𝑙𝑙𝑙𝑙𝑙⊕ 𝑥𝑥2)

𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘∗ ← 𝑙𝑙𝑙𝑙𝑙𝑙||ℎ𝑖𝑖𝑖𝑖ℎ

The origin or motivation of this construction is not documented in the source code or commits in the
source-code repository. It stands to reason that the authors attempted to match the block size of the Magma
cipher to the block size of the other ciphers to avoid extensive changes to the implementation of the XTS
encryption mode, which is not able to handle block sizes other than 128 bit.

4.5.3 Known-Answer Tests

To ascertain the correctness of the ciphers and hash functions, we implemented an automated known-
answer test (KAT). The test platform consists of a GNU Make script that performs the following steps: It
unpacks the source package of VeraCrypt and for each cipher, compiles and runs a program that generates
the test vectors for the KAT, and finally compiles and runs a small isolated test program that uses the
generated vectors to check the cipher. The generator randomly produces 100 KATs, each of which are
iterated up to 100 times, i.e., each KAT consists of a plain- and ciphertext pair, with the ciphertext being the
result of an repeated application of the block cipher.

For all but the Kuznyechik cipher, we are using the libgcrypt library50 for the KAT-vector generator
programs. This library is available on most UNIX platforms. The Kuznyechik cipher is not supported by the
libgcrypt library; instead, we used a reference implementation by Markku-Juhani O. Saarinen51 as it does not
share a history with the VeraCrypt implementation. The test programs use the cipher and hash-function
sources of VeraCrypt. As VeraCrypt includes most ciphers in multiple variants, e.g., in variants optimized to
certain CPU features, we perform these test on all variants used by VeraCrypt. First and foremost, we
compiled and ran the code for both 32- and 64-bit processors. Furthermore, the test forces, to the extent
possible without modifying the code, the execution of all variants, e.g., variants with and without SIMD

50 https://www.gnupg.org/software/libgcrypt/index.html
51 https://github.com/mjosaarinen/kuznechik

https://www.gnupg.org/software/libgcrypt/index.html
https://github.com/mjosaarinen/kuznechik

4 Security Analysis of Cryptographic Mechanisms

Federal Office for Information Security 57

instructions. If a cipher supports the encryption and decryption of multiple blocks in parallel, the KAT is
multiplied and performed in parallel.

The compilation of the ciphers and hash functions and their tests are performed with all warnings and
diagnostic messages of the compiler activated to check for potential programming errors. No cipher or hash
function implementations raises any relevant warning. The AES C implementation produces a warning
concerning the “fall-through” of a switch-case statement that is usually a sign of a programming error,
which in this case is, however, an intentional and correct use. Apart from this, the Streebog hash-function
implementation defines a number of constant arrays, which are never used.

We also added the possibility to use the “sanitization” frameworks available in modern compilers. These
frameworks, of which we use the address- and undefined behavior sanitizer, will automatically instrument
the compiled code with runtime checks. The instrumented code will detect various errors during the
execution of the test. Specifically relevant for these tests are the detection of stack- or buffer overflows, as
well as the use of C language constructs with undefined behavior. Only one cipher exhibits an
implementation problem: The 32-bit implementation of the Streebog hash function crashes due to an
unaligned memory access. The STREEBOG_add function, which feeds the input into the state, assumes that
the address of the input buffer has an alignment of 16 bytes. If this is not the case, the implementation will
crash as the compiled code will use load instructions which require an aligned address. This requirement is
not documented, and the rest of the VeraCrypt code using this hash function does not ensure that the input
is aligned. It is possible, that triggering this bug is compiler dependent, and that some compilers may
automatically issue a variant of a load instruction that allows unaligned addresses52.

The Magma (GOST) cipher uses a substitution box, for which multiple variants have been defined over time
since the first standardization in GOST 28147-89. For the Magma variant included in VeraCrypt, we
identified the S-box to be the variant defined in the most recent version, i.e., the GOST R 34.12-2015
specification document (27). We were able to use the libgcrypt library to implement a test vector generator
for both the standard version with 64-bit block size as well as for the construction used in VeraCrypt to
handle 128-bit blocks. However, we had to specify the OID of the substitution box to be used. The OID is
defined in RFC 7836 (49) as “1.2.643.7.1.2.5.1.1”, or “id-tc26-gost-28147-param-Z”.

4.5.4 Randomness-Tests

To assess the quality of the construction of the VeraCrypt random number generators, we used the
statistical test suite described in SP 800-22 Rev. 1a (50). The statistical tests are designed to reject the null
hypothesis that a sequence of bits is sourced from a perfect random number generator. In general, these
tests are only suitable to detect significant implementation problems in the random number generator
construction. All of the tests determine a different statistic about a sequence of bits and examine whether
the determined statistic deviates from the value expected of a random sequence. Note that a rejection is an
indication that a sequence is not random, as even a random sequence can be expected to fail statistical tests,
especially since the tests work on finite sequences of bits. To counteract this, all tests are performed multiple
times to assess whether a tests fails an expected number of times. All in all, 15 tests are performed, some of
which in different variants. The test procedures are specified in (50) and not re-iterated here. For the actual
implementation of the test, we used the software supplied in tandem with (50), however, to fix
programming errors we applied a few patches that are shown in the Appendix, Section 9.4.

The tests take as input a stream from an RNG, which we generated and stored in individual files for
examination. To generate these files from the RNG in VeraCrypt, we used the dialogs for generating keyfiles
in the Windows and Linux versions of VeraCrypt. We confirmed that the keyfile generation uses the same
RNG as is used during volume creation. The dialogs also gather mouse movements as source for entropy.
We only started generation when the dialog indicated the collection of enough mouse movements. As the

52 We reported this to the VeraCrypt developers, who already included a fix in their code repository:

https://github.com/veracrypt/VeraCrypt/commit/7d1724e93b17c5095bb01c9f053600b3a85c3cdc

https://github.com/veracrypt/VeraCrypt/commit/7d1724e93b17c5095bb01c9f053600b3a85c3cdc

4 Security Analysis of Cryptographic Mechanisms

58 Federal Office for Information Security

tests have to be repeated many times, we used the keyfile generation dialogs to simply generate the required
number of keyfiles, each of which has the required length for the individual tests. As reference we also
generated the same amount of random data from the Linux RNG /dev/urandom, the quality of which was
assessed in (46).

To pick the parameters of the tests, we consulted the test specification and set them as follows: Each
examined sequence has a length of 220 bit, the block sizes for the block frequency and linear complexity
tests are 512 bit, the length of the templates for the template tests are 9 bit, the block size for the
approximate entropy tests is 13 bit and that of the serial test 17 bit. All tests are performed on 2000
sequences, i.e., 2000 keyfiles were generated and examined.

The results of the assessment are shown in Figure 12, Figure 13, and Figure 14 for the VeraCrypt Linux,
Windows and Linux /dev/urandom RNGs respectively. The graphs show the 𝑝𝑝-value distribution of the
various repeated tests. All of the 𝑝𝑝 -values exhibit a near uniform distribution, which indicates an RNG of
sufficient quality for cryptographic applications. The only outlier is the “Approximate Entropy” test, which
shows a distribution biased towards a failure. The statistical testing software rates this single test as a failure.
However, including the Linux RNG all tested variants fail this test, which indicates that this is likely the
result of the choice of test parameters, rather than a failed RNG.

Figure 12: Statistical assessment results of the VeraCrypt Linux RNG.

Figure 13: Statistical assessment results of the VeraCrypt Windows RNG.

4 Security Analysis of Cryptographic Mechanisms

Federal Office for Information Security 59

Figure 14: Statistical assessment results of the Linux /dev/urandom RNG.

4.6 Management of Secret Data

Throughout all functional blocks of the VeraCrypt source code, buffers holding secret data such as volume
headers, passwords, or encryption keys, are routinely cleared after use. As mentioned in 2.6, TrueCrypt also
makes use of this procedure to impede an attacker with access to memory dumps searching for secret data.

TrueCrypt, however, only uses the function memset for this purpose, i.e., to overwrite the memory with
zeros. As the memory is regularly deallocated just after it was zeroed by calling memset, an optimizing
compiler will usually remove this seemingly redundant function with the result that the secret data still
remains in memory.

To avoid this behavior, the VeraCrypt authors replaced these uses of memset with a call to a short macro
function burn to zero out a memory portion. In difference to the approach in TrueCrypt, burn uses a
typecast of the memory buffer pointer to a volatile character pointer before the memory is zeroed. This
pointer is used to iterate over each buffer character and to zero it. The assumption is that an operation
including a pointer instance of a volatile pointer type must not be removed by optimization routines of the
compiler.

In addition, for the Windows version the operating system function RtlSecureZeroMemory is used to
clear the memory. In the Linux source code, burn is further encapsulated by a class SecureBuffer for the
use in object-oriented code.

By checking a sample of source code files we confirmed that the macro is used throughout the code, among
other places during volume formatting, password handling, key handling, handling of sensitive data derived
from keys such as round keys, or by the random number generator, to clear variables or memory buffers
containing secret data.

4.7 Memory Encryption

The latest VeraCrypt version 1.24 at the time of writing claims to implement a memory encryption
mechanism, although VeraCrypt’s security model explicitly states that memory is not encrypted. We
inspected the quality of the memory encryption with a code review. In line with the security model, this
newly introduced memory encryption is another layer of complicating potential attempts to extract key
material. However, it cannot serve as a final solution but is merely an obfuscation measure, because the
review showed that the key material for encrypting volume keys is also stored in memory. An attacker with

4 Security Analysis of Cryptographic Mechanisms

60 Federal Office for Information Security

access to the main memory can therefore extract all necessary data to decrypt encrypted volume keys.
Scenarios in which this protection provides an actual benefit for security are rare if any exist.

In detail, the mechanism uses a large (1 MB or two memory pages), unprotected Key Derivation Area of
pseudo random data to generate memory encryption keys. A ChaCha20-based pseudo-random number
generator (i.e., using the ChaCha stream cipher53 with 20 rounds) seeded with the VeraCrypt RNG is used for
generating this Key Derivation Area.

For the actual memory encryption, the Key Derivation Area is hashed with the encryption ID of the
memory area in question as seed to compute a memory encryption key using the non-cryptographically
secure, non-standardized hash-function “Fast Positive Hash”, short t1ha254. The requested memory area is
then encrypted under this key using ChaCha12 (i.e., the ChaCha stream cipher with 12 rounds) with a 128-
bit key (doubled by concatenation to obtain the required 256-bit key). Furthermore, 64-bit masks are used to
mask both the seed for the t1ha2 hash-operation and the ChaCha12 initialization vector.

This design of the memory encryption does not offer additional protection in case an attacker has access to
the entire memory of the target system (e.g., with root privileges). Rather, the goal seems to be to offer some
additional protection against cold-boot attacks, where an attacker may only gain access to partially
corrupted memory; if the key derivation area is partially corrupted, it becomes harder for the attacker to
reconstruct the key – the larger the key derivation area, the more likely a memory corruption. However, the
scope of this protection measure is limited given the low error rates of modern cold-boot attacks (23). For
performance reasons, the implementation is not using a cryptographically secure hash function and only a
reduced number of ChaCha rounds for the encryption itself (12 as opposed to 20 as recommended in RFC
7539), which further reduces the strength of this countermeasure.

4.8 Recommendations

We recommend to remove the support for RIPEMD-160 as hash function and to transition to a modern key
derivation function like Argon2. For the RNG, we recommend to harmonize the difference of the RNG
construction between the two platforms and to initialize the hash-function state in the Unix RandMix
function. The return value when reading from /dev/random in Unix should be checked and errors should
be handled properly. Entropy from Windows system API calls could be increased by not only including
handles to but also the content of the obtained data structures. A further option would be to replace the
RNG mechanism by a construction that was subject to more scrutiny, such as the RNG of the Linux Kernel
(46), the “Hash_DRGB” construction described in NIST Special Publication 800-90A Rev. 1 (45), or the
“Fortuna” RNG construction (51).

Cryptographic functions must be implemented by experts and the implementations must be up to date,
secure, and bug-free. Therefore, VeraCrypt should remove the implementations of cryptographic functions
from its code base and instead use an open, vetted, and trustworthy cryptographic library. Using a single
library will significantly reduce the effort required for the maintenance of the software and help to avoid
programming errors. For each program release, this cryptographic library must be updated to the most
recent version. Examples for cryptographic libraries are libgcypt55, the Botan library56, and OpenSSL57; all of
these platforms are available for, e.g., Windows and Linux.

In scenarios where side-channel security is an issue (see Section 3.3.7), special precautions need to be taken.
Many cryptographic libraries have versions of cryptographic primitives that are protected against, e.g.,
timing attacks; however, these versions are usually not used by default and may need to be specifically

53 https://tools.ietf.org/html/rfc7539
54 https://github.com/erthink/t1ha
55 https://gnupg.org/software/libgcrypt/index.html
56 https://botan.randombit.net/
57 https://www.openssl.org/

https://tools.ietf.org/html/rfc7539
https://github.com/erthink/t1ha
https://gnupg.org/software/libgcrypt/index.html
https://botan.randombit.net/
https://www.openssl.org/

4 Security Analysis of Cryptographic Mechanisms

Federal Office for Information Security 61

activated. For example, the Botan library provides information about the side channel security of the
different implementations that are provided58.

58 https://botan.randombit.net/handbook/side_channels.html

https://botan.randombit.net/handbook/side_channels.html

5 Application Security Review

62 Federal Office for Information Security

5 Application Security Review
In this section, we report results from our assessment of the general application security of VeraCrypt. As
pointed out in our security model (see Chapter 3), the use of VeraCrypt might also affect the overall security
of a system running VeraCrypt in case the application has further security vulnerabilities or weaknesses not
directly related to its cryptographic mechanisms (cp. 3.2.2, 3.3.4 and 3.3.5).

We focused on such issues with the analyses detailed in the following. We started with various automated
code analysis techniques as described in 5.1 and 5.2, continued with specific tests for the Windows driver
kernel (see 5.3) and container files (see 5.4), and finally evaluated the security of integrated third-party
libraries as described in 5.5.

5.1 Static Code Analysis

We performed static code analyses with the tools CppCheck, TScanCode, Clang Static Analyzer, Clang-Tidy,
VisualCodeGrepper, and cpplint. The results of these tools are described in the following sections.

5.1.1 CppCheck

CppCheck59 is a tool for static analysis of C/C++ code. Its focus lies on detecting undefined behavior like dead
pointers or integer overflows and security analysis. It can also be used to check code quality. The analysis of
VeraCrypt was performed using version 1.82 of CppCheck.

5.1.1.1 Usage

The tool CppCheck was called as shown in Listing 2. The first flags, –std=c++11 and –language=c++, tell
the tool which language and language standard is used. In this case, it is C++ in version 11. The flag –
enable-all enables all checks available. Some include files were not automatically found by the tool, they
had to be specified using the -I flag. The flag -f enables CppCheck to consider every preprocessor macro.

$ cppcheck --std=c++11 --language=c++ -I src/ -I src/Common/ --enable=all -f
src/ > cppcheckoutput.txt 2> cppcheckfindings.txt

Listing 2: The CppCheck command with the parameters used for the analysis.

5.1.1.2 Results

CppCheck assigns a category to each issue found. The different categories are:

• Style,

• Information,

• Warning,

• Error, and

• Performance.

The categories Information and Performance were not considered in this report, as issues assigned to these
categories do not indicate security-related problems in the analyzed source code.

Figure 15 shows the number of results in the different categories. In total, 617 issues were found.

59 https://packages.ubuntu.com/bionic/cppcheck

https://packages.ubuntu.com/bionic/cppcheck

5 Application Security Review

Federal Office for Information Security 63

Style

The largest category with 583 found issues is the category Style. Findings in this category are related to code
quality and not security issues. They are discussed in Section 6.

Warnings

The second largest category of findings is Warning with 21 issues. The issues were manually checked as to
whether they are a security problem. In one case CppCheck warns, that there is a copy constructor in a
struct, but no assignment operator (/src/Common/Dlgcode.h:548). In another case, there is an
implementation of the assignment operator but no copy constructor (/src/Common/Dlgcode.h:548).
This can lead to erroneous code, but in general not to security issues.

Another four issues are reported in src/Platform/File.h:57 in which four member variables of a
class are not initialized in the constructor. This may lead to problems using this class rather than a security
issue.

In 14 cases, CppCheck marks the usage of the wrong format placeholders in the file
src/Common/zlib/trees.c of the zlib library. This usually does not directly impact security.

The last warning occurred in src/Crypto/SerpentFast.c:248. The scanner cautions against a
redundant assignment of a variable to itself. This case is a false positive, caused by CppCheck not correctly
parsing the preprocessor directive used in this statement.

Performance

This category deals with code constructs that have an impact on performance. For example, CppCheck
suggests to pass some parameters by reference or to initialize variables not in the constructor body but
rather in the initialization list in order to reduce execution time. As this does not impact security this
category is omitted.

Errors

CppCheck reported six errors in VeraCrypt. The first two were reported in src/Common/Inflate.c in
lines 1030 and 1036. The error message states that the variable e is uninitialized. A manual analysis found
that the variable is indeed not initialized. Nevertheless, the variable is passed by reference to another
function, in which the variable is written before read. Although this is not best practice, it is not a security
issue.

Another error is reported in libzip, in files src/Common/libzip/zip_source_win32a.c:102 and
src/Common/libzip/zip_source_win32w.c:114. Both are structurally very similar and the code
snippets in which the error occurs are the same. In both cases, CppCheck reports a memory leak of a variable
temp. A manual analysis concluded that this is a false positive, as the marked line is a statement inside an if
block, which checks if the malloc call assigning a memory address to the variable temp succeeded. Thus, if
the call to malloc fails, no memory is allocated and the variable does not have to be freed. In the same
manner, another identified memory leak at position src/Common/zlib/gzlib.c:294 is also a false
positive.

5 Application Security Review

64 Federal Office for Information Security

The last reported error reads Syntax Error: AST broken, ternary operator lacks ’:’. In
this case, CppCheck is unable to parse the code line, as a ternary operator is used correctly.

Figure 15: Number of issues found by the CppCheck analysis per category.

5.1.2 TScanCode

TScanCode60 is a static analysis tool for C/C++, C# and Lua code. It is maintained by the Chinese company
Tencent as open-source software. It focuses on a fast and accurate analysis, ease of use and extensibility.
Version 2.14.2397 was used for the analysis of VeraCrypt.

5.1.2.1 Usage

The command in Listing 3 was used to run TScanCode on the VeraCrypt source code. The –enable-all
flag enables all available analyses and the flag -I enables TScanCode to find header files. The stdout and
stderr output were piped to different files.

$./tscancode --enable=all -I ~/veracryptscanner/VeraCrypt/src/ -I
~/veracryptscanner/VeraCrypt/src/Common/ ~/veracryptscanner/VeraCrypt/src >
~/veracryptscanner/tscanstdout.txt 2> ~/veracryptscanner/tscanstderr.txt

Listing 3: The TScanCode command with parameters as used for the analysis.

60 https://github.com/Tencent/TscanCode

https://github.com/Tencent/TscanCode

5 Application Security Review

Federal Office for Information Security 65

5.1.2.2 Results

TScanCode groups findings in different categories based on severity. Figure 16 shows an overview of these
categories and the number of findings. Issues not directly related to security are tagged with the category
Information, e.g., for cases in which code constructs can be simplified. This category is not considered in this
report as it did not include security issues. The Warning category is used for common programming issues
that might lead to problems while developing code, e.g., member variables of a class that are not initialized
in the constructor. The categories Serious and Critical include code constructs that might lead to undefined
behavior or crashes and thus might cause security issues.

Figure 16: Number of findings by the TScanCode analysis per category.

Warning

This category includes 18 warnings. In 15 cases, TScanCode reports that a member variable of a class is not
initialized in the constructor. This usually does not directly indicate a vulnerability but can lead to
undefined behavior.

Another warning was issued for src/Main/GraphicUserInterface.cpp:1989 indicating that an
address of a stack variable is returned. The returned variable is of type shared_ptr and thus not subject to
premature deletion. We found that this is not a security issue.

In another case located in src/Core/CoreBase.cpp:172, TScanCode reports a potential integer-overflow
expression in which two unsigned 32-bit integers are multiplied and then stored in an unsigned 64-bit
integer. We concluded after a manual inspection that this is not a security issue. One of the two unsigned
32-bit integers (sectorSize) is checked to be between 0 and 4096 thereby preventing an overflow.

The last case to discuss is a memory leak in libzip in
src/Common/libzip/zip_source_filep.c:332. The variable temp is indeed allocated on the heap,
and if the condition in line 330 evaluates to true, then the variable temp is not freed anymore, resulting in a
memory leak. However, this does not directly lead to a security vulnerability.61

Serious

The Serious category is the largest with 44 issues.

24 of those issues indicate an uninitalized variable. While not a good coding practice, an uninitalized
variable does not directly lead to a security vulnerability.

61 According to the VeraCrypt development team, after merging libzip version 1.6.1 to VeraCrypt’s source

code, this issue was resolved starting with VeraCrypt version 1.24-Update5.

5 Application Security Review

66 Federal Office for Information Security

Another four cases are reported because a null check on a variable was made and handled, but after the
check the variable is de-referenced. Three of those reported cases are located in libzip and are not a false
positive. In one case in src/Driver/DumpFilter.c:201, it is a false positive as the null check is
effective because the routine returns. Another eight issues report a de-reference of a variable before a
presumed null-checking condition. This falls in the same subcategory as the previous four cases.
Nevertheless, while de-referencing a null pointer will crash the program, it does not directly lead to a
security issue.

It is reported twice that there is no space left for the terminating null character in the FAT filesystem
formatter code, when assigning a string to the volume name. In this case the hardcoded string “NO NAME”
with trailing spaces is assigned as volume name. After examining the code, it appears that the terminating
null character is not needed in this case and that no security issue is present.

In two cases, a division by zero is reported in the zlib library. A manual analysis cannot confirm the finding.
A division by zero might lead to a crash but not to a security vulnerability.

The last four issues are buffer accesses out of bounds in the Driver subfolder. Each issue is reported at
memcmp function calls comparing two buffers. In these cases a unicode string is compared to a hardcoded
string. A manual analysis concluded that this is no security issue.

Critical

Only two issues are reported in this category. Both of them state that a null pointer is de-referenced. The
first case reported in src/Core/CoreBase.cpp:40 is a false positive as the de-referenced variable gets
reset in the previous line. The second case is located in src/Common/zlib/deflate.c:928 in the zlib
library. The control flow suggests that a null pointer de-reference is possible. An impact on security is
unlikely.

5.1.3 Clang Static Analyzer

The Clang Static Analyzer62 is an analysis tool for C, C++ and Objective-C. It is part of the Clang compiler
project, which can be used to compile VeraCrypt. The tool needs the source code of the target program.
While compiling a project, it can detect a variety of program errors.

5.1.3.1 Usage

Listing 4 shows the used command to start the scanner. Various checking procedures are activated with the
option -enable-all. The used version is Clang version 6.0.0-1ubuntu2.

$ scan-build -enable-checker core -enable-checker alpha.core -enable-checker
security -enable-checker alpha.security make

Listing 4: The Clang Static Analyzer command with parameters as used for the analysis.

5.1.3.2 Results

The scanner outputs 64 potential defects. Table 5 shows an overview of the results of the Clang Static
Analyzer. The table shows the type and number of findings and whether the findings are present in the
VeraCrypt source itself or in a third-party library. Some bugs are only found in third-party libraries of
VeraCrypt, namely the wxwidgets library. Issues in third-party libraries are not considered as the focus lies
on the VeraCrypt code. Hence, the last three entries in Table 5 are not further discussed.

62 https://clang-analyzer.llvm.org/scan-build.html

https://clang-analyzer.llvm.org/scan-build.html

5 Application Security Review

Federal Office for Information Security 67

Table 5: The Clang Static Analyzer results with quantity and location (core code or third party).

Bug Type Quantity In Third-Party Library
Dead assignments 1 No

Dead initialization 2 No

Branch condition evaluates to
garbage value

1 No

Cast from non-struct type to struct
type

37 Partly

Dangerous pointer arithmetic 2 No

Out-of-bound array access 3 No

Result of operation is garbage or
undefined

1 No

Uninitialized argument value 1 No

Use fixed address 1 No

Memory leak 2 No

Use-after-free 1 No

Potential insecure memory buffer
bounds restriction in strcat

5 Yes

Potential insecure memory buffer
bounds restriction in strcpy

5 Yes

malloc size overflow 2 Yes

Dead assignments

A dead assignment is reported in src/Crypto/Whirlpool.c:936. The variable num is written, but this
value is never read again. This does not indicate a security vulnerability.

Dead initialization

In two locations in file src/Volume/EncryptionModeXTS.cpp, in lines 45 and 219, dead initalizations
of variables are reported. Manual analysis concluded that this is the case, but not security relevant.

Branch condition evaluates to a garbage value

In src/Main/UserPreferences.cpp:98 a branch condition contains a variable, which might evaluate
to a garbage value (undetermined value). The code decides if a volume should be mounted read-only or not,
indicating a security relevance. But, the code which might lead to an evaluation to a garbage value uses
information entered by the user when using the VeraCrypt GUI. A user has to willfully manipulate the GUI
elements to reach a state in which the branch condition evaluates to a garbage value. No realistic attack
scenario can be postulated, in which an attacker could derive an actual benefit from such actions (cp. 3.3).

Cast from non-struct type to struct type

In 37 cases, a non-struct type is cast to a struct type. The analysis states that this might lead to memory
access errors or data corruption. While true in general and not necessarily a good coding style, a manual
review on a sample basis of the cases concluded, that the findings are not security relevant.

5 Application Security Review

68 Federal Office for Information Security

Dangerous Pointer Arithmetic

In two cases, in src/Crypto/Streebog.c:4312 and src/ Crypto/kuznyechik_simd.c:4312,
dangerous pointer arithmetic is reported. The findings are technically correct but the reported positions are
special cases. They seem to be implementations of certain CPU instructions, in case the CPU does not have
this instruction. These functions are called intrinsics. As these code constructs perform low level
manipulations of data, pointer arithmetic is needed. A manual analysis found that these findings do not
appear to be a security issue.

Out-of-bound array access

These issues are reported in src/Crypto/Rmd160.c and /src/Common/GfMul.c. The code locations
are part of hashing or encryption code. The issues in file /src/Common/GfMul.c are not relevant, as the
code in question is not called in the project. In src/Crypto/Rmd160.c, the issue is reported in code
calculating a round of the hash function. A detailed assessment of the reported issues requires considerable
effort and resources, and we decided to not follow up on it.

Result of operation is garbage or undefined

The reported issue in src/Crypto/cpu.c:336 claims that the result of an operation is undefined. This
code tests which x86-CPU features are available on the used processor and thus contains a considerable
amount of assembler code. Clang Static Analyzer does not seem to be able to parse this code section and,
hence, produces this false positive.

Uninitialized argument value

This issue is also reported in src/Crypto/cpu.c and is, again, a result of the inability of the Clang Static
Analyzer to correctly interpret the assembler code. This is most likely a false positive.

Use fixed address

The reported issue is located in src/Driver/Fuse/FuseService.cpp:61. The analysis tool notes that
a fixed address is used and that this code might not be portable. But the code is used in the part of VeraCrypt
that manages the userspace file system. The fixed address is a flag set to the Unix-style signal handler. A
manual analysis concluded that this is a false positive.

Memory Leak

Two memory leaks are reported. The first location is src/Main/Forms/WaitDialog.cpp:26. A new
command event of the wxwidgets library, which is used for the GUI, is initiated and passed to a wx library
function. This is most likely a false positive and the library cleans up the object. In either case, this is not
security relevant.

The second location is src/Core/Unix/Linux/CoreLinux.cpp:131. The code is in a custom
implementation of a smart pointer in VeraCrypt. Smart pointers are used as a wrapper around basic pointers
and automatically free the memory they are pointing to when going out of scope. This simplifies memory
management and there exist implementations of this concept in more recent C++ standard libraries. A
manual analysis concluded that this is not a security issue.

Use-after-free

In src/Main/TextUserInterface.cpp:78 a use-after-free memory error is reported. This issue is
also related to the custom implementation of a smart pointer from the previous paragraph. The memory the
smart pointer is pointing to is freed, and then the smart pointer is used again. This is a potential use-after-
free vulnerability. But as this is part of the textual user interface, it might be hard for an attacker to
construct an attack in this scenario. Consequently, our security model does not include such an attack, see
3.3.

5 Application Security Review

Federal Office for Information Security 69

5.1.4 Clang-Tidy

Clang-Tidy63 (version 6.0.0) is a C++ linter based on Clang. It is an extensible framework for detecting and
fixing errors in C++ programs. A static analysis is performed in order to detect issues like style violations,
bugs or interface misuse. While providing an interface for implementing own checks, it brings a set of
predefined checks.

5.1.4.1 Usage

For using Clang-Tidy, a compile command database is needed. The database is a JSON file with all
commands used for compiling a project. A database for the VeraCrypt project can be created with the bear
tool, see Listing 5.

cd Veracrypt/src
make clean
bear make

Listing 5: Creating a JSON file for Clang-Tidy using the bear command.

In Listing 6, the command for analyzing the file Main.cpp is shown. First, the file is specified, followed by
the checks to be executed. After the double dash, parameters required for the actual compile process are
passed to Clang-Tidy.

clang-tidy Unix/Main.cpp -checks='-*,clang-analyzer-security.*,clang-analyzer-
unix*' -- -I/tmp/bla/VeraCrypt/src/Main -I/usr/lib/x86_64-linux-
gnu/wx/include/gtk2-unicode-3.0 -I/usr/include/wx-3.0 -I/tmp/bla/VeraCrypt/src -
I/tmp/bla/VeraCrypt/src/Crypto -I/tmp/bla/VeraCrypt/src/PKCS11 -DWXUSINGDLL -
D__WXGTK__ -D_FILE_OFFSET_BITS=64 -D_LARGEFILE_SOURCE -D_LARGE_FILES

Listing 6: Command with parameters to run Clang-Tidy on Main.cpp.

To analyze the complete source code, the program run-clang-tidy can be used in combination with the
compile command database as shown in Listing 7.

run-clang-tidy-6.0.py -checks='-*,clang-analyzer-security.*,clang-analyzer-
unix*' > clang-tidy.txt

Listing 7: Command with parameters to run Clang-Tidy on the whole VeraCrypt project.

5.1.4.2 Results

Clang-Tidy brings a set of predefined checks. In this evaluation, we configured the analyzer to focus on
security issues. Except of some syntax errors with assembler files, Clang-Tidy did not find any issues.

Clang-Tidy tidy provides a functionality to automatically fix detected issues. Perhaps, developers used that
feature in the past so that detectable issues are no longer present in the current version of VeraCrypt.

5.1.5 VisualCodeGrepper

VisualCodeGrepper64 (version 2.1.0) is a program that locates problematic and insecure code locations in
order to speed up the code review process. It also scans comments for suspicious phrases that indicate

63 https://clang.llvm.org/extra/clang-tidy/
64 https://sourceforge.net/projects/visualcodegrepp/

https://clang.llvm.org/extra/clang-tidy/
https://sourceforge.net/projects/visualcodegrepp/

5 Application Security Review

70 Federal Office for Information Security

broken code. The documentation of VisualCodeGrepper claims to detect buffer overflows, signed/unsigned
comparisons in C and violations of OWASP65 recommendations.

5.1.5.1 Usage

VisualCodeGrepper is a Windows program with a GUI, see Figure 17. Source code files or directories can be
selected for analysis.

Figure 17: GUI dialog of VisualCodeGrepper with target source code files from VeraCrypt.

5.1.5.2 Results

Overall, 1381 findings were detected, mostly the usage of banned functions and goto statements. Each
finding is assigned to one of the following categories: STANDARD (306), MEDIUM (1064), HIGH (9),
SUSPICIOUS COMMENT (89).

HIGH

The nine findings rated HIGH are calls of the method LoadLibrary. In a source code review, we could not
determine a security issue at these locations in the source code.

MEDIUM

The most interesting finding from VisualCodeGrepper was a potentially hard-coded password in the file
/src/Core/Unix/CoreService.cpp. The found password is a dummy value: It serves as a mandatory
but later omitted input to execute an elevation of privileges. Therefore, this finding is rated as false positive.
All other findings are caused by potentially unsafe method calls, the number of which was infeasible to
examine manually. We manually checked a sample set of those findings and could not find any true
positives.

65 Open Web Application Security Project, see https://owasp.org/

https://owasp.org/

5 Application Security Review

Federal Office for Information Security 71

STANDARD

Many usages of potentially insecure method calls are detected and rated as STANDARD finding. The most
interesting finding is a potential TOCTOU66 vulnerability in the file /src/Common/Keyfiles.c. In a
manual analysis, we figured out that this is a false positive.

SUSPICIOUS COMMENT

Suspicious comments are comments indicating locations in code that might be unfinished. As a result of a
manual analysis, we rejected these findings as irrelevant for the purpose of our analysis.

5.1.6 cpplint

The tool cpplint67 (version 1.4.4) is an open source program developed by Google. It performs static analysis
to check whether code conforms Google’s coding style guidelines. With a set of rules and heuristics, it tries
to identify non-compliant code.

5.1.6.1 Usage

The tool cpplint was executed as shown in Listing 8. All c, cpp and h files have been passed to the cpplint
command. The filtering of relevant input files was done with a nested find command. Results were
redirected into a text file.

cpplint $(find . -type f -name "*.cpp" -o -name "*.h" -o -name "*.c") 2>
cpplint_results.txt

Listing 8: Command and parameters used for the cpplint analysis.

5.1.6.2 Results

Overall, cpplint returned 173,102 findings (see Figure 18). Each finding belongs to one of the following
categories: build, legal, readability, runtime, whitespace. As far as we could judge the findings, they have
limited security relevance. With this vast amount of findings, manual checking the impact was not feasible.
We manually verified a sample set of all issues and could not find any security issues.

Figure 18: Number of results reported by cpplint by category.

66 Time-of-Check-to-Time-of-Use, a specific type of a race condition.
67 https://github.com/cpplint/cpplint

https://github.com/cpplint/cpplint

5 Application Security Review

72 Federal Office for Information Security

The different categories are described in the following paragraphs.

Whitespace

This is the category with most findings of 170,357. Findings in this category have no security impact.
Exemplary findings: Tabulator instead of spaces, lines longer than 80 characters, missing spaces, or too
many spaces before parentheses.

Readability

The tool cpplint found 1714 issues in this category. Findings in this category mention code constructs that
are hard to read and therefore difficult to understand. This might introduce unnecessary bugs into software,
which can be avoided by following best practices.

Runtime

The tool cpplint found 550 issues in this category. The issues mentioned in this category can cause problems
when compiling software or during runtime.

Build

The tool cpplint found 448 issues in this category. It mainly tackles the style of including header files.

Legal

The tool cpplint found 33 issues in this category. The only aspect are missing copyright messages.

5.2 Dynamic Code Analysis

The previously described analysis tools perform static analysis on source code. This requires only source
code without the compiled binary. The program is not executed and runtime behavior is not analyzed.

To cover dynamic analysis as well, we used Dr. Memory (Windows) and Valgrind (Linux). These tools check
memory behavior of a running executable. The Linux version of VeraCrypt consists of one binary which was
the subject of this analysis. The Windows version consists of multiple binaries (VeraCrypt Format.exe,
VeraCrypt Setup.exe, VeraCryptExpander.exe, the driver veracrypt.sys and the GUI
VeraCrypt.exe). For the dynamic Windows analysis, the GUI application was used.

We started VeraCrypt with both analysis tools and performed common use cases manually. This way, we
triggered the major program control flows. As best effort approach this procedure has limits insofar as it is
incapable to gain a complete code coverage nor path coverage.

5.2.1 Dr. Memory

Dr. Memory68 (version 2.2.0) is a dynamic analysis tool. It is built on top of DynamoRIO69. With binary
instrumentation, the memory of the program under test is monitored in order to find memory-related
programming errors. For this evaluation, we downloaded the latest VeraCrypt binary from VeraCrypt’s
website.

5.2.1.1 Usage

Using Dr. Memory does not require much configuration effort. The program under test is passed to Dr.
Memory, see Listing 9. Dr. Memory executes the targeted binary in its analysis environment. After starting
VeraCrypt within Dr. Memory, it can be used as regularly, but program execution and, in particular, reaction
to user input is considerably slowed down.

68 https://drmemory.org/
69 https://dynamorio.org/

https://drmemory.org/
https://dynamorio.org/

5 Application Security Review

Federal Office for Information Security 73

C:\Users\user>"C:\Program Files (x86)\Dr. Memory\bin64\drmemory.exe" "C:\Program
Files\VeraCrypt\VeraCrypt.exe"

Listing 9: Command and parameters for the Dr. Memory analysis.

5.2.1.2 Results

Listing 10 shows an overview of the results of our Dr.Memory analysis run.

ERRORS FOUND:
9 unique, 1005 total unaddressable access(es)
29 unique, 557 total uninitialized access(es)
0 unique, 0 total invalid heap argument(s)
6 unique, 6 total GDI usage error(s)
0 unique, 0 total handle leak(s)
0 unique, 0 total warning(s)
1 unique, 1 total, 98 byte(s) of leak(s)
0 unique, 0 total, 0 byte(s) of possible leak(s)

ERRORS IGNORED:
1136 potential error(s) (suspected false positives)
(details: C:\Users\user\AppData\Roaming\Dr. Memory\DrMemory-
VeraCrypt.exe.5600.000\potential_errors.txt)
63 potential leak(s) (suspected false positives)
(details: C:\Users\user\AppData\Roaming\Dr. Memory\DrMemory-
VeraCrypt.exe.5600.000\potential_errors.txt)
1605 unique, 3681 total, 2320148 byte(s) of still-reachable allocation(s)

Listing 10: Output of a Dr. Memory analysis run.

Each finding has a description, an example is shown in Listing 11. A brief description of the error is given
with a stack trace, which leads to the error. As the analysis is performed on the binary, it is hard to correlate
the output of Dr. Memory to actual source code snippets. Nor is it possible to make statements whether the
findings have any impact on the security of VeraCrypt or not.

Error #20: UNINITIALIZED READ: reading 0x0000000000146080-0x0000000000146084 4
byte(s) within 0x0000000000145cc0-0x000000000014628c
0 system call NtUserMessageCall COPYDATASTRUCT.lpData
1 USER32.dll!SendMessageTimeoutW
+0x125 (0x00007ffbf6d6cff6 <USER32.dll+0x1cff6>)
2 SHELL32.dll!Shell_NotifyIconW
+0x4ce (0x00007ffbf73c169f <SHELL32.dll+0xd169f>)
3 zip_unchange_archive
+0x1b8db (0x000000014002823c <VeraCrypt.exe+0x2823c>)
4 zip_unchange_archive
+0x32858 (0x000000014003f1b9 <VeraCrypt.exe+0x3f1b9>)
[...]
#15 USER32.dll!DialogBoxParamW
+0x84 (0x00007ffbf6d78fe5 <USER32.dll+0x28fe5>)
#16 zip_unchange_archive
+0x364e2 (0x0000000140042e43 <VeraCrypt.exe+0x42e43>)
#17 zip_unchange_archive
+0xab74f (0x00000001400b80b0 <VeraCrypt.exe+0xb80b0>)
#18 KERNEL32.dll!BaseThreadInitThunk

5 Application Security Review

74 Federal Office for Information Security

+0x21 (0x00007ffbf6b21212 <KERNEL32.dll+0x11212>)
Note: @0:00:07.559 in thread 5576

Listing 11: A (shortened) Dr. Memory result in detail.

5.2.2 Valgrind

Valgrind is a dynamic instrumentation tool for performing memory analysis on binaries. It is capable of
detecting issues in memory management and threading. Valgrind can also be used to build tools to perform
custom analysis.

The source code was obtained from VeraCrypt’s GitHub repository in version 1.2.3.

5.2.2.1 Usage

Valgrind70 (version 3.13.0) does not require much configuration effort as seen in Listing 12. The program
under test is passed to Valgrind. Valgrind executes the passed binary in its analysis environment. After
starting VeraCrypt within Valgrind, it can be used regularly but slowed down similar to the use of Dr.
Memory (cp. 5.2.1).

For the analysis, we compiled VeraCrypt with debug symbols. Debug symbols enable Valgrind to create a
stack trace with specific method names for each finding. This helps to interpret the results.

As we expected to get a lot of false positives, we tried to reduce false positives as early as possible in the
analysis process. We used a suppression file71 to minimize the output of presumably irrelevant findings. For
suppression, we targeted GUI libraries.

$valgrind /home/user/VeraCrypt/src/Main/veracrypt

Listing 12: Command and parameters for the Valgrind analysis.

5.2.2.2 Results

Valgrind produced a huge amount of findings, an example can be seen in Listing 13. Each finding has a brief
description of the issue and the stack trace, which lead to the detected issue. Most findings include
implementations of the libwx library, which implements GUI related functionality. By investigating the
result log of Valgrind, it is especially difficult to conclude whether the reported issues actually have an
impact on the security of VeraCrypt or not.

We split the complete result file to single files for each finding. This enabled us to search the findings more
efficiently. Valgrind detected 260 issues, nearly all of them are uses of uninitialized values. 152 of those
issues are caused by the method aes_decrypt_key256 which is frequently used when creating a new,
encrypted container file. In a source code review, we classified those issues as not security relevant.

==26460== HEAP SUMMARY:
 ==26460== in use at exit: 304,094 bytes in 2,745 blocks
 ==26460== total heap usage: 4,907 allocs, 2,162 frees, 1,301,852 bytes
allocated
 ==26460==
 ==26460== LEAK SUMMARY:
 ==26460== definitely lost: 0 bytes in 0 blocks
 ==26460== indirectly lost: 0 bytes in 0 blocks
 ==26460== possibly lost: 1,736 bytes in 19 blocks

70 http://valgrind.org/
71 http://valgrind.org/docs/manual/manual-core.html\#manual-core.suppress

http://valgrind.org/
http://valgrind.org/docs/manual/manual-core.html/#manual-core.suppress

5 Application Security Review

Federal Office for Information Security 75

 ==26460== still reachable: 302,358 bytes in 2,726 blocks
 ==26460== of which reachable via heuristic:
 ==26460== newarray : 1,536 bytes in 16
blocks
 ==26460== suppressed: 0 bytes in 0 blocks
 ==26460== Rerun with --leak-check=full to see details of leaked memory
 ==26460==
 ==26460== For counts of detected and suppressed errors, rerun with: -v
 ==26460== Use --track-origins=yes to see where uninitialised values come
from
 ==26460== ERROR SUMMARY: 38 errors from 4 contexts (suppressed: 0 from 0)
 ==26359==
 ==26359== HEAP SUMMARY:
 ==26359== in use at exit: 2,756,118 bytes in 35,886 blocks
 ==26359== total heap usage: 2,143,431 allocs, 2,107,545 frees, 163,664,408
bytes allocated
 ==26359==
 ==26359== LEAK SUMMARY:
 ==26359== definitely lost: 23,820 bytes in 156 blocks
 ==26359== indirectly lost: 89,676 bytes in 3,693 blocks
 ==26359== possibly lost: 4,660 bytes in 53 blocks
 ==26359== still reachable: 2,438,946 bytes in 30,435 blocks
 ==26359== of which reachable via heuristic:
 ==26359== length64 : 12,056 bytes in 173
blocks
 ==26359== newarray : 2,240 bytes in 60
blocks
 ==26359== suppressed: 0 bytes in 0 blocks
 ==26359== Rerun with --leak-check=full to see details of leaked memory
 ==26359==
 ==26359== For counts of detected and suppressed errors, rerun with: -v
 ==26359== Use --track-origins=yes to see where uninitialised values come
from
 ==26359== ERROR SUMMARY: 349367 errors from 260 contexts (suppressed: 566252
from 209)

Listing 13: Output from Valgrind giving a result overview.

5.3 Inspection of the Windows Kernel Driver

In Windows, VeraCrypt needs a device driver to mount devices and perform the device encryption and
decryption. This kernel component is installed by the VeraCrypt setup. The VeraCrypt user space program
interfaces to the driver to trigger actions to mount and unmount volumes (cp. 3.3.4).

5.3.1 Code Inspection

To start the communication with the driver, the VeraCrypt user space component uses the function
DriverAttach in src/Common/Dlgcode.c:4461. This function opens a handle to the driver.

With the Windows function DeviceIoControl and the handle to the driver, a user-space program can
communicate with the driver and issue various commands. This communication is done via IOCTL
(Input/Output Control), a form of system call for device-specific input and output operations. The

5 Application Security Review

76 Federal Office for Information Security

DeviceIoControl function expects a buffer to exchange data between user space and kernel space, as
well as an identifier pointing to the desired function of the driver. The corresponding functionality in the
driver is selected using the identifier as parameter in a switch-case statement.

Windows-specific IO functionality is implemented in the method ProcessVolumeDeviceControlIrp
found at src/Driver/Ntdriver.c:631, e.g., getting a device name or getting partition information.
VeraCrypt-specific driver functionality is implemented in the method
ProcessMainDeviceControlIrp in src/Driver/Ntdriver.c:1674.

Overall, there are 41 VeraCrypt-specific commands at the driver interface. Due to the specifications of the
Windows Device Driver API, each command is required to inform the calling function about the execution
results by setting the content of a system buffer with the data to return. Also, the driver returns for each
command call an integer value indicating success or failure, as well as other status information depending
on the command (status field).

The system buffer filled by the kernel functions with return data serves a further purpose: It is also used by
the caller function to input data into the driver. This input mechanism is security-relevant because it
bridges the user space and the higher privileged kernel space and can be an entry point for attackers (cp.
3.3.4). The VeraCrypt program in the user space does not necessarily run with administrative rights in
Windows. An adversary with restrictive user rights may try to escalate her privileges by exploiting a security
weakness in the VeraCrypt device driver.

In the following, three groups of commands with differing complexity of the input data types are discerned:

• Commands with C-style structs as complex input datatypes,

• Commands returning a primitive datatype in a system buffer provided by the user-space program, and

• Commands returning only a status value while not receiving any input data from the user-space
program.

Of specific interest are the 22 commands that receive a complex datatype in form of a C-style struct by
reference. To return data, the function modifies fields of this struct. The names of these commands and
their respective data type for input and output operations are listed in Table 6.

Several of these commands handle the mounting and dismounting of volumes and allow reading properties
or states of mounted volumes. Other commands enable the creation of encrypted boot devices and the
creation of hidden volumes.

Two commands in Table 6 have the prefix VC_IOCTL, indicating that these commands were added by
VeraCrypt.

Table 6: List of driver commands with complex parameter types.

Command Name IO Datatype

TC_IOCTL_BOOT_ENCRYPTION_SETUP BootEncryptionSetupRequest

TC_IOCTL_GET_BOOT_ENCRYPTION_STATUS BootEncryptionStatus

VC_IOCTL_GET_BOOT_LOADER_FINGERPRINT bootLoaderFingerprint

TC_IOCTL_GET_DECOY_SYSTEM_WIPE_STATUS DecoySystemWipeStatus

VC_IOCTL_GET_DRIVE_GEOMETRY_EX DISK_GEOMETRY_EX_STRUCT

TC_IOCTL_GET_DRIVE_GEOMETRY DISK_GEOMETRY_STRUCT

TC_IOCTL_GET_DRIVE_PARTITION_INFO DISK_PARTITION_INFO_STRUCT

TC_IOCTL_GET_BOOT_ENCRYPTION_ALGORITHM_NAME GetBootEncryptionAlgorithmNameRequest

TC_IOCTL_GET_SYSTEM_DRIVE_CONFIG GetSystemDriveConfigurationRequest

5 Application Security Review

Federal Office for Information Security 77

Command Name IO Datatype

TC_IOCTL_GET_SYSTEM_DRIVE_DUMP_CONFIG GetSystemDriveDumpConfigRequest

TC_IOCTL_GET_WARNING_FLAGS GetWarningFlagsRequest

TC_IOCTL_GET_MOUNTED_VOLUMES MOUNT_LIST_STRUCT

TC_IOCTL_MOUNT_VOLUME MOUNT_STRUCT

TC_IOCTL_OPEN_TEST OPEN_TEST_STRUCT

TC_IOCTL_PROBE_REAL_DRIVE_SIZE ProbeRealDriveSizeRequest

TC_IOCTL_REOPEN_BOOT_VOLUME_HEADER ReopenBootVolumeHeaderRequest

TC_IOCTL_GET_RESOLVED_SYMLINK RESOLVE_SYMLINK_STRUCT

TC_IOCTL_DISMOUNT_VOLUME UNMOUNT_STRUCT

TC_IOCTL_DISMOUNT_ALL_VOLUMES UNMOUNT_STRUCT

TC_IOCTL_GET_VOLUME_PROPERTIES VOLUME_PROPERTIES_STRUCT

TC_IOCTL_GET_BOOT_DRIVE_VOLUME_PROPERTIES VOLUME_PROPERTIES_STRUCT

TC_IOCTL_START_DECOY_SYSTEM_WIPE WipeDecoySystemRequest

The next group of commands uses a primitive type for communicating with the user space. To this end, they
receive as input a system buffer of the size of the primitive type. Table 7 shows the eight commands with
their respective type in this category.

Table 7: List of driver commands returning a primitive type in the given system buffer.

Command Name IO Datatype
TC_IOCTL_GET_DEVICE_REFCOUNT Int

TC_IOCTL_IS_DRIVER_UNLOAD_DISABLED Int

TC_IOCTL_IS_ANY_VOLUME_MOUNTED Int

TC_IOCTL_LEGACY_GET_MOUNTED_VOLUMES uint32

TC_IOCTL_GET_BOOT_LOADER_VERSION uint16

TC_IOCTL_IS_HIDDEN_SYSTEM_RUNNING Bool

TC_IOCTL_GET_DRIVER_VERSION Long

TC_IOCTL_LEGACY_GET_DRIVER_VERSION Long

The last category with 11 entries shown in Table 8 does not exchange information with the user space
program by means of a system buffer. The commands trigger actions like wiping caches, or return status
information of different features of the device driver.

Table 8: List of driver commands only returning a status but no return value.

Command Name
TC_IOCTL_SET_PORTABLE_MODE_STATUS

TC_IOCTL_WIPE_PASSWORD_CACHE

TC_IOCTL_GET_PASSWORD_CACHE_STATUS

TC_IOCTL_GET_PORTABLE_MODE_STATUS

5 Application Security Review

78 Federal Office for Information Security

Command Name
TC_IOCTL_ABORT_BOOT_ENCRYPTION_SETUP

TC_IOCTL_GET_BOOT_ENCRYPTION_SETUP_RESULT

TC_IOCTL_ABORT_DECOY_SYSTEM_WIPE

TC_IOCTL_GET_DECOY_SYSTEM_WIPE_RESULT

TC_IOCTL_WRITE_BOOT_DRIVE_SECTOR

TC_IOCTL_SET_SYSTEM_FAVORITE_VOLUME_DIRTY

TC_IOCTL_REREAD_DRIVER_CONFIG

The code of each command was reviewed for weaknesses in the input processing. The focus was in
particular on the commands using complex input types. Here, operations were checked as to whether they
test the size of a potentially used input system buffer. For the two other classes of commands, it was checked
whether and how an input system buffer was actually used.

This analysis did not reveal any security issues: The Windows driver code includes a high number of buffer
size checks as well as checks if an operation was successful or not.

As a second test procedure, a dynamic analysis using fuzzing techniques was performed as described in the
following.

5.3.2 Dynamic Analysis

To further assess the security of the device driver, a dynamic analysis was done. The idea was to trigger an
error in the application to induce unexpected behavior, for example crashing the driver.

In a first step, each of the 41 VeraCrypt-specific IOCTL commands was executed with random data in the
system buffer used to input data in the driver function. For this purpose, we modified the VeraCrypt user
space application for Windows to execute the commands with random data. Multiple invocations with
random bytes did not lead to unexpected results. The VeraCrypt device driver checks the input buffer for
expected size and stops command execution gracefully.

As described in Section 5.3.1, some commands expect complex datatypes and others primitive data types in
the shared system buffer. The driver checks the correct size of the buffer for each command. If the size is not
correct, the driver does not accept the command.

In a second step, a selection of commands from Table 6 expecting complex structs as input was chosen for
more sophisticated tests than just entering random data: Test cases were created to pass the size checks of
the VeraCrypt device driver and to affect code executed later in the input processing pipeline.

The commands TC_IOCTL_OPEN_TEST, TC_IOCTL_GET_RESOLVED_SYMLINK and
TC_IOCTL_GET_DRIVE_PARTITION_INFO underwent this additional vetting because they feature the
most code of all command procedures. These commands expect structs with various flags and path strings.
The fields of the struct were filled with random data to potentially trigger an error.

The VeraCrypt device driver did not run into an unexpected error state during these tests; all erroneous
payloads were handled gracefully. The VeraCrypt device driver uses several checks to identify and deny
input system buffers of unexpected size. Because of the multiple error handling and success checks for
many of the in-driver operations, all our attempts to trigger driver failures by randomly inserting data
failed.

5 Application Security Review

Federal Office for Information Security 79

5.4 Security of Header Parser for Container Files

VeraCrypt can create volumes within container files that can be stored at untrusted locations or sent over
public communication channels while providing confidentiality through the data encryption. In an
environment where containers are shared on a regular basis over untrusted channels, it cannot be
prevented that a container file is altered by an attacker to cause malfunctions of VeraCrypt and, e.g., execute
malicious code on the machine of a legitimate user of the container, as described in the security model in
3.3.5. VeraCrypt must ensure that invalid containers are detected correctly and are rejected without
reaching unexpected error states.

A preferable entry point for an attacker is the header parser of VeraCrypt that processes the header data of a
container file to retrieve the parameters necessary to mount the file. The robustness of this header parser is
evaluated with fuzzing.

Fuzzing is a dynamic software testing technique. A permutation algorithm generates invalid inputs for a
program based on valid input samples, the corpus. These inputs are fed into the program under test while
monitoring the program’s output values in response to the invalid input files. In case the program crashes,
the cause of this crash can be further evaluated in order to find security bugs. Once set up, fuzzing can be
performed without any supervision, thereby making it an efficient software testing technique.

5.4.1 Fuzzer

For this analysis, the fuzzer american fuzzy lop plus plus (afl++)72 has been used which is an extension to the
popular american fuzzy lop (afl)73. afl is the basis for a variety of research in the field of source code and
binary fuzzing. Each research group that uses and extends afl for their purpose creates a new source code
fork of afl adding new features or modifying existing ones.

afl++ is an actively supported fork of afl merging a considerable set of such new features and research results
together. As a further advantage for this project, afl++ compiles under current operating system versions.
Hence, we were able to perform the evaluation on a server with an up-to-date Ubuntu 18.04 LTS version by
compiling the current version 2.60c of afl++ from its source, as shown in Listing 14.

git clone https://github.com/vanhauser-thc/AFLplusplus.git
git checkout 2.60c
make clean && make distrib
sudo make install

Listing 14: Commands for obtaining and compiling afl++ as used for the analysis.

5.4.2 Code Coverage

As for any dynamic testing technique, achieving a large code coverage is a challenge when fuzzing a
program. When feeding random inputs to VeraCrypt, the program itself does not indicate which parts of the
program logic has been executed nor how often. afl++ solves this issue by instrumenting the program binary
during compile time. This enables afl++ to measure the code coverage and reason about the quality of
generated input samples. With this knowledge, the generation of input samples can be guided to increase
the code coverage.

afl++ provides compilers (afl-gcc, afl-g++) for compiling the application to apply the
instrumentation. Because VeraCrypt is open source, these compilers can be used to create an instrumented

72 https://github.com/vanhauser-thc/AFLplusplus
73 http://lcamtuf.coredump.cx/afl/

https://github.com/vanhauser-thc/AFLplusplus
http://lcamtuf.coredump.cx/afl/

5 Application Security Review

80 Federal Office for Information Security

binary from the available source code. The actual fuzzer (afl-fuzz) recognizes this instrumented binary
and can use it for increasing the effectiveness of the fuzzing process.

Before compiling VeraCrypt with the afl++ compilers, it was necessary to select the appropriate compilers
with a suitable parametrization. Listing 15 shows the commands used. To execute the fuzzing on a high-
performance machine, a binary of VeraCrypt was needed that can run in a text mode on a headless server.
For this purpose, compilation was done with the NOGUI parameter. This parameter requires a statically
linked wxwidget74 library.

As VeraCrypt has a bug when compiling with NOGUI parameter in version 1.23, the current version at test
time VeraCrypt_1.24-Update3 was used for the fuzzing test.

export CC=afl-gcc
export CXX=afl-g++
make NOGUI=1 WXSTATIC=1 WX_ROOT=~/wxWidgets-3.0.4 wxbuild
make NOGUI=1 WXSTATIC=1

Listing 15: Commands with parameters for building and instrumenting VeraCrypt using the afl++ compilers.

5.4.3 Corpus

The corpus is a set of valid input files for the program under test. It is the starting point to generate invalid
input files by slightly changing these valid base files. Fuzzing is a dynamic program testing technique that
can only test those parts of the program under test that are reached in the control flow while processing the
given input files. To increase this code coverage, a corpus with diverse files has been chosen for this test. The
corpus for this evaluation is listed in the Appendix, see Section 9.2.2.

5.4.4 Modification to VeraCrypt

VeraCrypt’s Linux version has been used for the fuzzing test as afl++ and most other afl variants only run
under Linux. The fuzzing process targets mainly the parsing logic for given input files of the program under
test. All VeraCrypt versions for the various operating systems share the same input parsing logic, also
allowing to use the same container files on different operating systems with VeraCrypt.

A fuzzer can generate and test multiple hundred input samples per second depending on the execution
speed of the tested program. To reduce the time for one run, VeraCrypt was modified to not actually mount
a given input file. This modification did not reduce the scope of the test in a relevant way, because the tests
aimed on detecting errors in the parsing and processing logic of the volume header. The mounting
procedures use primitives of the operating system and rely on the robustness of the operating system to
check for erroneous inputs. These checks by the operating system are, however, not a subject of this
analysis.

5.4.5 Fuzzing the Decryption Routine

For the first approach, the corpus presented in Section 9.2.2 was used as it is without any further
modifications. The header format is explained in the VeraCrypt documentation75. The documentation
shows that the complete container is encrypted and that there are no plaintext header parts besides an
unencrypted salt that is publicly known random data. When the fuzzer derives input samples from the
corpus, a single modification changes at least a complete cipher block or even more, depending on the
modification of the fuzzer. When VeraCrypt decrypts such input samples, the structure of the original
header is lost.

74 https://www.wxwidgets.org/
75 https://www.veracrypt.fr/en/VeraCrypt%20Volume%20Format%20Specification.html

https://www.wxwidgets.org/
https://www.veracrypt.fr/en/VeraCrypt%20Volume%20Format%20Specification.html

5 Application Security Review

Federal Office for Information Security 81

An attacker with access to an encrypted volume file can modify a container file in arbitrary ways without
knowing its decryption password. Exploitable bugs in the decryption routine and the subsequent parser
logic are critical. To test its robustness, this fuzzing evaluation has been performed.

In a week of fuzzing with afl++ on a dedicated high-performance test machine (see 9.2.1), no crash of
VeraCrypt could be triggered.

5.4.6 Remove Encryption/Decryption Layer and CRC Checks

The second fuzzing approach was more sophisticated: By removing the decryption layer from the input
processing pipeline, the fuzzing test could more directly aim on the header parsing logic. This was achieved
by changing the source code of VeraCrypt to disable the encryption and decryption functions. The resulting
binary was used to create a container file with an unencrypted plaintext header. Permutations derived from
this file are more meaningful, i.e., changing single fields in the header does not lead to the change of a
complete cipher block.

However, each VeraCrypt header contains two CRC-32 checksums for detecting erroneous container files.
Random changes to the header applied by a fuzzer invalidate the CRC-32 checksums with high probability.
When VeraCrypt detects wrong checksums, the processing is stopped and the fuzzed header fields are not
processed further. These checks prevent the fuzzer from reaching more paths of the control flow.

There are multiple options to circumvent the CRC-32 checksum check: The fuzzer could calculate the
correct checksums for each generated input sample. This is the most realistic approach as the generated
input samples will be processed like a valid input container file. Modifying the fuzzer in order to generate
valid checksums is, however, a time-consuming endeavor and was therefore not implemented.

Instead, for this evaluation, the global CRC-32 calculation method of VeraCrypt was modified to always
return a constant value. When generating a volume file, this constant is inserted into the respective header
fields regardless of the header’s content. The same applies during the processing of a volume file and every
CRC-32 correctness check will evaluate to true as always the same values are compared.

Because the encryption and decryption functions were disabled for this test, the PBKDF-2 key derivation
functions also served no further purpose and were removed to lower the execution time for each run.
Unfortunately, the execution is still rather slow (around 12 executions per second on a regular desktop
computer). To increase the throughput, a server with high-performance hardware was used (see Section
9.2.1).

In three weeks of fuzzing, no crash could be triggered.

5.4.7 Separating the Header Parsing Routine

Even with a high-performance fuzzing server, the execution speed remained rather slow. To detect the
performance bottleneck, the execution was profiled with Valgrind; the used commands are shown in Listing
16. The profiling results showed that the wxEntry76 method consumes most of the execution time when
starting VeraCrypt, even if it initializes a text user interface. To spare the initialization time, the header
parsing logic was separated completely from the rest of the application. This increased the execution speed
to around 450 executions per second on a regular desktop computer.

In total, 22 different control-flow paths were discovered within the first 24h of fuzzing. After further three
weeks of fuzzing without any new paths nor crashes of VeraCrypt, we stopped the fuzzing test, because
chances to reach new control flow paths seemed very low.

76 https://docs.wxwidgets.org/trunk/group__group__funcmacro__appinitterm.html

https://docs.wxwidgets.org/trunk/group__group__funcmacro__appinitterm.html

5 Application Security Review

82 Federal Office for Information Security

valgrind --tool=callgrind ./veracrypt -t -k "" -p
ahy1eiV2eim3mohKNiefoC4kNiefoC4k --pim=0 --protect-hidden=no test.hc /tmp/volume

Listing 16: Commands and parameters for profiling VeraCrypt using Valgrind.

5.4.8 Summary

With all the fuzzing efforts, no input file could be created that caused a software failure within VeraCrypt.

5.5 Security of Third-Party Libraries

The VeraCrypt developers incorporate two third-party libraries in their code:

• Libzip77 in its latest version 1.5.2 released on March 12, 2019, and

• Zlib78 in version 1.2.11, which is also the latest version but was not updated for several years since January
15, 2017.

There exists no known vulnerabilities for these versions. These zip-archive-related libraries are apparently
only used by the setup routines to extract setup files for the installer.

Other third-party libraries are not used in the project, but some implementations of cryptographic
operations were taken from project-external sources (cp. 4.5.1). The VeraCrypt developers thank multiple
individuals on their website79 who provided them with code, mostly cryptography-related.

77 https://libzip.org/
78 http://www.zlib.net/
79 https://www.veracrypt.fr/en/Acknowledgements.html

https://libzip.org/
http://www.zlib.net/
https://www.veracrypt.fr/en/Acknowledgements.html

6 Code Quality and Documentation

Federal Office for Information Security 83

6 Code Quality and Documentation

6.1 Evaluation of VeraCrypt’s Code Quality

In this section, we present results of an evaluation of VeraCrypt’s code quality. The internal structuring and
design of the source code is an indirect indicator of the software quality; it allows to reach conclusions, e.g.,
about the software’s maintainability. Good code quality can also prevent that adding or modifying
functionality introduces error and that fixing errors does not lead to further new errors.

6.1.1 Programming Guidelines and Best Practices

On VeraCrypt’s GitHub page, there is no information about used programming guidelines available for
third-party developers. This observation is probably caused by the fact that VeraCrypt is developed mainly
by one developer alone, as documented in Section 2.2: when developing alone, a detailed documentation of
programming guidelines is not important in order to build a uniformly styled code basis. The
documentation also states that third-party developers are advised to contact the project’s maintainer before
developing a feature. This also supports the impression that collaborative development on VeraCrypt is an
exception rather than the rule.

Function naming

Function names in the source code are mainly camel case, but in few cases they also contain underscores.
This is a further indicator for missing programming guidelines. This observation can also be owed by the
fact that VeraCrypt mainly consists of TrueCrypt’s legacy code, which has not been refactored by the
VeraCrypt developers.

Violation of generally accepted rules: GOTO statements

Existing research (52) and pioneers of computer science like Edsger W. Dijkstra have argued for decades
against the use of goto statements. Exceptions might be cleanup code at the end of a function, which is still
common practice in C code (52).

As in the TrueCrypt source code, the VeraCrypt source code makes heavy use of goto statements to jump
to the end of a function to clean up memory in case of an error. There are 626 occurrences of a goto
statement in VeraCrypt 1.23. A similar analysis done for the previous TrueCrypt study counted 388 goto
statements (53).

Considering the diffs in all git commits in the repository between the first commit adding the TrueCrypt
code and the commit tagged with version 1.23, 448 goto statements were removed, but 614 goto
statements were also added. This increase in goto statements shows that this practice continued for the
development of VeraCrypt.

Violation of generally accepted rules: multiple returns

Multiple return statements in a function are not considered good style except when improving
readability (54). VeraCrypt’s source code contains return statements to improve readability by exiting a
function when certain preconditions are not met.

In other instances, functions return in the middle of their body, deep within control structures. An example
is the function DispatchControl in file src/Driver/Ntdriver.c:328. The function consists of 151
lines of code and features 14 return statements scattered across the function’s body.

The issue of using multiple returns was already present in the TrueCrypt source. Nevertheless, this practice
apparently continues in VeraCrypt. For example, the function at src/Setup/Setup.c:2572 introduced
by the VeraCrypt project features multiple returns. Such code constructs hinder readability and code
maintenance.

6 Code Quality and Documentation

84 Federal Office for Information Security

Violation of generally accepted rules: application logic in header files

In some cases, for instance ./Main/Forms/WaitDialog.h, the declared functions are implemented in a
header file. The C++ Core Guidelines advise against this practice80 as it can lead to programming and
compile errors, misunderstandings among developers, as well as longer compile times. Also new code
developed in the VeraCrypt project shows this inappropriate coding style. For instance, in file
src/Volume/Volume.h, two functions related to TrueCrypt support functionality are implemented in
the header (lines 43 and 56).

Code Comments

The code is annotated with very few comments. For instance, only few functions contain a comment
explaining their purpose and usage. This style is continued with VeraCrypt. When analyzing code diffs
between VeraCrypt version 1.22 and 1.23, it is evident that no extensive efforts were undertaken to improve
this situation. This lack of code comments, however, makes the code difficult to read and maintain.

6.1.2 Source Code Complexity

Code complexity should be as low as feasible to keep the project maintainable. Simple metrics for code
complexity are function lengths (lines of code), the number of parameters a function takes and the control
flow complexity. The Cyclomatic Complexity is a metric for control flow complexity. In (55), a Cyclomatic
Complexity greater than 30 is stated as an indicator for error-prone code. Functions with values greater than
15 shall be refactored.

We measured the Cyclomatic Complexity from VeraCrypt with the tool Lizard81. It measures the Cyclomatic
Complexity of functions from different programming languages and also from C/C++ projects. A warning
for a function is issued when Cyclomatic Complexity is greater than 15, the function has more than 1000
lines of code or the function takes more than 100 parameters. For the VeraCrypt’s source code, Lizard gives a
warning for 286 functions, which is an increase by more than 100 warnings compared to TrueCrypt in
version 7.1a (53).

6.1.3 Code Duplicates

Code duplicates are identical sequences of code found in multiple locations in the program. These
duplicates should be refactored to one function to prevent multiple versions of the same functionality in
the same code base and to improve maintainability.

We used the analysis tool Duplo82 to measure the number of code duplicates. The tool analyzed 118,345 lines
of code and found 19,558 duplicate lines of code. These duplicate lines of code were found in 3419 duplicate
blocks, indicating a high quantity of code duplicates.

6.1.4 Build Process

To modify software features, the software’s source code needs to be changed or extended and re-built.
Building a project like VeraCrypt can be difficult due to dependencies to other projects or library versions.
The build process requirements and their documentation indicate whether the build process itself is
maintained and kept up to date. Hence, in the following, the build process for Linux and Windows is
evaluated.

80 https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md\#sf2-a-h-file-may-

not-contain-object-definitions-or-non-inline-function-definitions
81 https://github.com/terryyin/lizard (version 1.16.6)
82 https://github.com/dlidstrom/Duplo (version 0.3.0)

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md/#sf2-a-h-file-may-not-contain-object-definitions-or-non-inline-function-definitions
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md/#sf2-a-h-file-may-not-contain-object-definitions-or-non-inline-function-definitions
https://github.com/terryyin/lizard
https://github.com/dlidstrom/Duplo

6 Code Quality and Documentation

Federal Office for Information Security 85

Linux

Building VeraCrypt on Linux (Ubuntu 18.04) requires to resolve some dependencies83. The dependencies can
be installed with Ubuntu’s packet manager84. Afterwards, VeraCrypt can be built and installed by running
the make command. The overall building process is straight forward and does not require a deep
understanding of the underlying source code.

Windows

Building VeraCrypt on Windows (Windows 10) requires to resolve multiple dependencies by manually
downloading and installing further development software and software libraries85.

However, direct links to the sources of the software are not provided. Required software versions are
outdated. For example, only by subscribing to a Microsoft account and joining certain developer programs it
is possible to acquire Visual Studio 2010. Current software versions are not compatible in every case.

The VeraCrypt GitHub page states that the required Microsoft Visual C++ 1.52 compiler from 1995 should be
available on MSDN Subscriber Downloads, but this portal has since presumably been replaced by the
Microsoft Developer Portal in which we could not find the compiler in the specified version. Getting every
component required for a working build environment to run on a modern Windows installation was an
elaborate task. As we encountered many errors during this process, we were forced to de-install every
installed Visual Studio, SDK, and Microsoft Development component from our test machine and to start
again from scratch.

Furthermore, since no direct download links for required components are provided by VeraCrypt’s
maintainers, developers may tend to get the required software from unofficial sources because a quick
internet search does not lead to official sources. This imposes a further risk to access web pages distributing
malware when searching for a quick download of outdated software.

Overall, the build process for Windows does not seem to be well maintained. It is difficult to re-produce
from the documentation, and considerable preparation efforts need to be taken into account.

6.1.5 Test Cases Review

The basic features are tested in a single batch file test/bench.bat. However, it seems more like a
performance benchmark than functional tests. To assure the functioning of an extensive software like
VeraCrypt, a broad set of test cases is required, but an actual test management process is not established in
the VeraCrypt project.

6.1.6 Automated Analysis

As described in 5.1.1, we used the tool CppCheck to automatically analyze the source code for security issues.
The tool also checks the style of the analyzed source code. The findings from these checks are presented in
Table 9 that also shows how often a finding occurred.

Table 9: Findings and their number of occurrence from the CppCheck code quality check.

Finding Number of Occurrences
Never used functions 379

Not explicit constructor 95

Scope can be reduced 89

83 https://github.com/veracrypt/VeraCrypt#requirements-for-building-veracrypt-for-linux-and-mac-os-x
84 https://wiki.ubuntuusers.de/APT/
85 https://github.com/veracrypt/VeraCrypt#requirements-for-building-veracrypt-for-windows

https://github.com/veracrypt/VeraCrypt#requirements-for-building-veracrypt-for-linux-and-mac-os-x
https://wiki.ubuntuusers.de/APT/
https://github.com/veracrypt/VeraCrypt#requirements-for-building-veracrypt-for-windows

6 Code Quality and Documentation

86 Federal Office for Information Security

Finding Number of Occurrences
C-style pointer casting 3

Clarify calculation 6

Miscellaneous 6

Never used functions

In 379 cases, a function was defined but never used anywhere. 117 of those functions are found in the
library zlib, 60 functions are found in the library libzip. The code of these libraries is located in VeraCrypt’s
source code directory. Those libraries are only required for the setup component of VeraCrypt, see 5.5. This
explains the high number of unused functions in these libraries. 202 functions are defined in VeraCrypt and
never used and are not part of a third-party library.

Unused functions indicate dead or deprecated code, which also has to be maintained and can introduce
errors. Developers might be tempted to use these functions despite updated alternatives are available in the
code base. Hence, it is advised to remove unused functions.

Not explicit constructor argument

When a constructor in C++ receives only a single argument, the compiler can make implicit conversions.
This is illustrated in the example in Listing 17.

1 class Example {
2 public:
3 Example(int test) : m_test(test) {}
4 private:
5 int m_test;
6 };
7
8 void AnotherFunction (Example ex) {
9 [...]
10 }
11
12 int main() {
13 AnotherFunction(100);
14 }

Listing 17: Example for implicit type conversion in C++.

The class Example has a constructor receiving one argument. The function AnotherFunction takes an
object of the class Example as an argument. In the main function, AnotherFunction is called but not
directly with an Example object as argument but with an integer. The compiler does an implicit conversion
and uses the integer argument in line 13 to create an object of type Example calling its constructor in line 3.
To prevent the compiler to behave this way, the constructor can be made explicit. This forces the compiler to
throw an error when compiling Listing 17.

CppCheck reports 95 not explicit constructors. This construct may allow unintended conversions and can
induce programming errors. The C++ Core Guidelines discourage the use of non-explicit constructors86.

Scope can be reduced

In 89 cases, the scope of variables can be reduced. In these cases, a variable is defined and used, but after a
specific point in the current scope the variable is not used anymore. The variable is then accessible later in

86 https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md\#Rc-explicit

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md/#Rc-explicit

6 Code Quality and Documentation

Federal Office for Information Security 87

the program although this is not required for the code to function. Reducing the variable’s scope can
increase readability and prevent errors.

C-style pointer casting

In C++, multiple functions exist to safely cast between types. The C-style pointer casting using parenthesis
should not be used in C++ as this practice can introduce several errors. The C++ Core Guidelines also advise
against using C-style casts87. Three instances of this problem were found in VeraCrypt.

Clarify calculation

In six cases, a more complex calculation using different operators is reported by CppCheck because the
intended precedence of the operators is not indicated using parentheses. This may introduce programming
errors as developers might expect a different execution order for these calculations. Indicating precedence
also improves readability.

Miscellaneous

Six miscellaneous cases are reported. These include scattered findings like an unused variable, not assigned
variables or redundant conditions. As the number of findings in these categories are low, we do not further
describe each case. Nevertheless, these issues should be fixed in order to prevent errors.

6.2 Evaluation of Documentation

The documentation available on the VeraCrypt website contains information for both developers and end
users (56). It is largely a copy of the documentation of TrueCrypt (cp. (53) on p. 40), but changes and
additions were made:

• TrueCrypt screenshots were swapped for screenshots of VeraCrypt.

• Support of further operating systems was documented.

• “VeraCrypt Rescue Disk on USB Stick” was described.

• New options for settings such as “Performance and Driver Options” and “Temporary Cache password”
were added.

• “TrueCrypt Support”, “Converting TrueCrypt Volumes & Partitions” and “Default Mount Parameters”
were added as new sections.

• Language pack documentation was revised as functions are now simplified.

• Description of the Kuznyechik encryption algorithm was added as well as a refined description of
cascaded encryption.

• Description of SHA-256 and Streebog algorithms were added.

• “Format.exe” as command line option was more extensively described.

• Description of “Wear Leveling” was added.

• The sections “Troubleshooting”, “Incompatibilities”, “Known Issues and Limitations” and “Frequently
Asked Questions” were updated to match the current status of the software.

• Changes in the header key derivation algorithm were documented in the section “Header Key
Derivation, Salt, and Iteration Count”; the newly added “PIM” functionality was documented.

• Section “Compliance with Standards and Specifications” now documents compatibility with FIPS 140-2.

All changes and additions were fitted into the structure of the former TrueCrypt documentation. The
documentation, while on the one hand rather comprehensive, still has shortcomings already discussed for

87 https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md\#es48-avoid-casts

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md/#es48-avoid-casts

6 Code Quality and Documentation

88 Federal Office for Information Security

TrueCrypt (53). For instance, it comprises only limited information for end users. The documentation
describes the general workflow for using VeraCrypt in multiple scenarios such as container or system
encryption. But it lacks detailed recommendations such as a simplified user guideline outlining which
encryption and hash algorithms are appropriate in certain scenarios. Also, incorrect descriptions of the
content of the volume header and keypool mixing algorithm are still included in the documentation (cp.
(53) on p. 41).

Overall it appears that the documentation was amended for describing the changes or improvements made
in VeraCrypt. However, it does not seem that it has been revised as a whole.

A particular weakness of the documentation is the description of program settings. Occasionally settings are
described in the documentation but do not exist at the user interface and vice versa. Examples with security
relevance are:

• The “Cache Password in Driver Memory” setting is described in the documentation but does not appear
at the user interface of the Linux version. There is a similar looking setting “Cache passwords and keyfiles
in memory” in the user interface for mounting single volumes, but it is not clear whether its
functionality matches the one described in the documentation. There exists a further general setting
“Cache passwords in memory” available in the Linux version for which it is also unclear how its
functionality relates to the other two mentioned options.

• The following application settings are provided by the user interface, but not described in the
documentation:

− “Do not use kernel cryptographic services”,

− “Preserve modification timestamp of file containers”, and

− “Close token session (log out) after a volume is successfully mounted”.

• The following application settings are described in the documentation, but only provided by the user
interface of the Windows version:

− “Temporary Cache password during ‘Mount Favorite Volumes’ ”,

− “Auto-dismount volume after no data has been read/written to it for”, and

− “Force auto-dismount even if volume contains open files or directories”.

• Differing from the general structure of the documentation, the setting “Do not accelerate AES
encryption/decryption by using the AES instructions of the processor” is documented in a section
dedicated to describe hardware-accelerated AES encryption.

For developers and security experts the documentation still contains many details about the software’s
functionalities, its security model and respective security considerations. In addition, the VeraCrypt project
provides a publicly available development management system including:

• a version control system to track and document all changes made in the source code,

• a trouble ticket system allowing to contact VeraCrypt developers as well as getting informed of and
involved into conversations of others with the VeraCrypt developers, and

• pull and merge functions of the version control system allowing other developers to contribute to the
project.

This is a considerable improvement for developers over the TrueCrypt project, where contacting the
TrueCrypt developers via e-mail was the only way to interact with and contribute to the project.

6 Code Quality and Documentation

Federal Office for Information Security 89

6.3 Summary

Overall, the VeraCrypt project continues the coding and documentation practices of the TrueCrypt project.
The code still shows major quality problems already outlined in the previous TrueCrypt study (53).
Moreover, newly added code introduces new instances of these problems, while it does not seem that a
considerable effort was undertaken to solve the issues of TrueCrypt’s legacy code. For instance, a refactoring
of the source code was not performed.

As with the code, the documentation of VeraCrypt builds primarily on the documentation of TrueCrypt
which is quite comprehensive, especially those sections intended for security experts and developers. The
documentation was changed accordingly when changes in VeraCrypt were applied and new functions were
introduced; it appears that the documentation is largely up to date.

A major improvement towards the TrueCrypt development project are the publicly available development
management tools, especially the project’s GitHub site. These tools allow a better tracking of code changes
and manifold ways of interacting with the developers. By contrast, the development of TrueCrypt was
opaque for people outside the project with very limited means to interact with the developers and the
project.

7 Previous Work on the Security of VeraCrypt

90 Federal Office for Information Security

7 Previous Work on the Security of VeraCrypt
This section summarizes our research on previous security evaluations of VeraCrypt. With a focus on
collecting know weaknesses and vulnerabilities of VeraCrypt, we investigated academic publications (see
7.1), publications from the government, non-government and industry sector (see 7.2), as well as data from
the development platforms of VeraCrypt (see 7.3). We collected security findings for both VeraCrypt as well
as TrueCrypt, and analyzed their status with respect to version 1.23 of VeraCrypt. Furthermore, we created a
brief collection of analysis methods applied for these previous security evaluations, see Appendix, Section
9.3.

7.1 Academic Publications

In academia, TrueCrypt or VeraCrypt are used as examples of hard disk encryption tools to investigate or
discuss more general research questions in cryptography. However, only few peer-reviewed research
publications exist actually discussing the security of TrueCrypt or VeraCrypt, and those focus mostly on
features specific to both encryption tools, but not overall software security. In the following, two papers are
presented reporting research on the security of the PBKDF2 key derivation algorithm and hidden volumes.

7.1.1 PBKDF2 Key Derivation

A recent study of Visconti et al. discusses the security of the PBKDF2 key stretching function. The study
focuses on LUKS (Linux Unified Key Setup) (57). However, the results extend to TrueCrypt and VeraCrypt
since both use PBKDF2. Moreover, the authors compared the costs to attack a VeraCrypt password to the
costs of attacking a Cryptsetup password.

Attacks were executed with GPUs (Graphics Processing Units), thereby reducing the attack cost and overall
accelerating the attack. This method of brute-forcing passwords is enabled by the design of PBKDF2: It is
not a memory-intensive key derivation function, thereby allowing an efficient, massively parallel brute-
force search on GPUs despite the memory restrictions of this computing architecture.

The authors found that costs of attacks against VeraCrypt and Cryptsetup 1.7.0 are comparable. This result is
insofar significant as Cryptsetup adapts the number of PBKDF2 to the computing power of current desktop
computer hardware while VeraCrypt uses a fixed iteration count between 327,661 and 655,331. The authors
implicate that the fixed interaction count of VeraCrypt provides a security margin comparable to current
state of the art of key management systems using PBKDF2 with a dynamic set up of iteration counts.

7.1.2 Hidden Volumes

A study of Kedziora et al. discusses the plausible deniability of hidden operating systems (58). The authors
claim having been able to identify areas of lower entropy in an encrypted volume hosting a hidden
encrypted volume with an operating system. However, while the authors present their observations made
with a single test system, they do not further investigate the cause of low entropy regions. In addition, the
observation is not verified with appropriate tests. The authors also discuss a further scenario of an attacker
obtaining multiple copies of a drive containing encrypted data, all created at a different point in time. The
authors demonstrate that by statistical analysis of changed data blocks on the drive, the existence of a
hidden volume as well as its size can be estimated.

7 Previous Work on the Security of VeraCrypt

Federal Office for Information Security 91

7.2 Security Analysis Reports

7.2.1 Open Crypto Audit Project: TrueCrypt - Security Assessment

In 2014, iSEC Partners performed a security assessment of TrueCrypt on behalf of the Open Crypto Audit
Project (59). The Open Crypto Audit Project is a loosely connected community of security researchers. With
a source code audit, hands on testing and fuzzing, eleven vulnerabilities were discovered. In (15), these
vulnerabilities have been re-checked. In case a fix to a reported issue existed, it was cross-checked whether it
was suitable to remediate the found security weakness. Most of the reported security issues have been fixed,
which is explained in more detail in Section 7.2.3.

7.2.2 Open Crypto Audit Project: TrueCrypt - Cryptographic Review

In 2015, the NCC Group performed a cryptographic review of TrueCrypt, also on behalf of the Open Crypto
Audit Project (60). For the purpose of this review, security experts performed a source code audit and
dynamic analysis. The volume header format was checked for design and implementation flaws. Also,
assumptions about API behavior were verified.

Four vulnerabilities were identified. Each found vulnerability was re-evaluated in (15). One out of four
vulnerabilities got fixed. For more details see section 7.2.3.

7.2.3 VeraCrypt 1.18 Security Assessment

The security consultancy company Quarkslab performed a security assessment on VeraCrypt 1.18 (15). As
reported by Quarkslab, the investigation took a total of 32 work-days and focused mainly on re-evaluating
fixes of previously detected security issues of TrueCrypt and on investigating VeraCrypt features in regard
to security.

Status of reported TrueCrypt vulnerabilities in VeraCrypt

Quarkslab’s report states that multiple vulnerabilities found in TrueCrypt have been fixed in VeraCrypt.
Quarkslab also verified that the fixes were applied correctly. However, Quarkslab also found that for a
couple of vulnerabilities attempts to apply a fix would have caused incompatibilities to TrueCrypt or would
require substantial changes to VeraCrypt’s source code or architecture. This problem applies to the
following reported security issues (excerpt from (15)):

• TC_IOCTL_OPEN_TEST multiple issues (need to change the application behavior),

• EncryptDataUnits() lacks error handling (need to design a new logic to retrieve errors),

• AES implementation susceptible to cache-timing attacks (need to fully rewrite the AES
implementations),

• Keyfile mixing is not cryptographically sound, and

• Unauthenticated ciphertext in volume headers.

We checked whether at the time of writing this report these vulnerabilities had been addressed. We found
no indications, neither in the release notes nor the source code history that this was the case.

New security issues reported by Quarkslab

The report describes three new issues (excerpt from (15)):

• The availability of GOST 28147-89, a symmetric block cipher with a 64-bit block size, is an issue. This
algorithm must not be used in this context.

• Compression libraries are outdated or poorly written. They must be updated or replaced.

7 Previous Work on the Security of VeraCrypt

92 Federal Office for Information Security

• If the system is encrypted, the boot password (in UEFI mode) or its length (in legacy mode) could be
retrieved by an attacker.

The Quarkslab security experts also criticized the immaturity of the UEFI loader, however, did not identify
this as a concrete security issue.

According to the VeraCrypt developers, all newly discovered issues have been fixed in Version 1.19 of the
software, released on 17 October 2016, which was the same date when Quarkslab released their audit report.

7.2.4 Google Project Zero

Google maintains a team of security analysts named Project Zero88. Project Zero resulted from part-time
research activities of Google staff, which eventually received a fixed structure in the company in 2014.

The Project Zero team investigated TrueCrypt and VeraCrypt, and found two vulnerabilities, which allow
local privilege elevation. The vulnerabilities were submitted to the National Vulnerability Database and
received a reference accordingly:

CVE-2015-7359: Truecrypt 7 Derived Code/Windows: Incorrect Impersonation Token Handling EoP

A user could impersonate another user and therefore inspect and manipulate a mounted container of
another user on the same system89. The vulnerability has been fixed in VeraCrypt 1.15.

CVE-2015-7358: Truecrypt 7 Derived Code/Windows: Drive Letter Symbolic Link Creation EoP

By abusing functions intended to create symbolic links for drive letters, it was possible to remap the main
system drive and thereby getting access to it90. In this way, unprivileged users could spawn processes with
system account privileges. The vulnerability has been fixed in VeraCrypt 1.15.

7.2.5 Other CVEs

CVE-2016-1281: TrueCrypt and VeraCrypt Windows installers allow arbitrary code execution with
elevation of privilege

The TrueCrypt/VeraCrypt installer loads and executes the Dynamic Link Libraries (DLL) USP10.dll,
RichEd20.dll, NTMarta.dll and SRClient.dll. If one of those DLLs is located inside the same
directory as the installer, this DLL is loaded from this directory. In case the TrueCrypt/VeraCrypt installer is
downloaded with a browser, it may be stored in the user’s Downloads directory. Per social engineering or
drive-by download, an attacker can place a malicious DLL inside the same directory, which is then executed
once the installer is executed. The installer runs with administrator privileges and therefore the DLLs as
well91.

The vulnerability has been fixed in VeraCrypt 1.17-BETA with commit 5872be2892 and 7a15ff2093.

CVE-2019-1010208: Minor information disclosure of kernel stack due to buffer overflow

A buffer overflow in the VeraCrypt NT Driver leads to a minor information disclosure of the kernel stack.
The vulnerability has been fixed in VeraCrypt 1.23-Hotfix-1 with commit f30f933994.

88 Background information on Project Zero is available here.

https://googleprojectzero.blogspot.com/2014/07/announcing-project-zero.html
89 https://bugs.chromium.org/p/project-zero/issues/detail?id=537
90 https://bugs.chromium.org/p/project-zero/issues/detail?id=538
91 https://seclists.org/fulldisclosure/2016/Jan/22
92 commit 5872be28a243acb3b5aafdf13248e07d30471893
93 commit 7a15ff2083d75cdfe343de154715442dce635492
94 commit f30f9339c9a0b9bbcc6f5ad38804af39db1f479e

https://googleprojectzero.blogspot.com/2014/07/announcing-project-zero.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=537
https://bugs.chromium.org/p/project-zero/issues/detail?id=538
https://seclists.org/fulldisclosure/2016/Jan/22

7 Previous Work on the Security of VeraCrypt

Federal Office for Information Security 93

7.2.6 BSI Security Analysis of TrueCrypt

In 2015, BSI and a research team at Fraunhofer SIT performed a security review of TrueCrypt (53). The
researchers reviewed the results from both OCAP security reviews (cp. 7.2.1 and 7.2.2), evaluated the
cryptographic algorithms against reference implementations, executed automatic code analyses of the
source code, and reviewed the architecture, threat model, as well as the code quality of TrueCrypt. In
addition to already known weaknesses from other security audits, the researchers found a weakness in how
random numbers are generated by TrueCrypt under Linux. Because entropy pools were instrumentalized
wrongly, under particular circumstances, for instance in auto-deployment scenarios, TrueCrypt might
create weak keys with insufficient entropy.

7.2.7 Summary of all Reported Security Issues

Overall, from the previously described security audits 38 security vulnerabilities and weaknesses were
reported. An overview is given in Table 10.

The table uses short references to refer to the sources where the findings were reported. “OCAP1” and
“OCAP2” refer to the two OCAP security audits (59) (60), “Quarkslab” refers to Quarkslab’s security
assessment of VeraCrypt 1.18 (15), “Project Zero” refers to findings reported by Google Project Zero, and
“BSI” refers to BSI’s security analysis of TrueCrypt.

We researched the status of the findings by reviewing the development history of VeraCrypt at GitHub and
SourceForge, but also taking into consideration the re-evaluation Quarkslab performed. In Table 10, the
status “Patched” marks findings addressed properly with a security patch, while the status “Not patched”
indicates that no such security fix has been applied yet. In one case, the cryptographic function considered
insecure had been partially removed.

Table 10 Overview of previous findings with reference to the report and patch-status.

Report-Ref. Description Status
OCAP1 Weak Volume Header key derivation algorithm Patched

OCAP1 Sensitive information might be paged out from kernel
stacks

Not patched

OCAP1 Multiple issues in the bootloader decompressor Patched

OCAP1 Windows kernel driver uses memset() to clear sensitive data Patched

OCAP1 TC_IOCTL_GET_SYSTEM_DRIVE_DUMP _CONFIG kernel
pointer disclosure

Patched

OCAP1 IOCTL_DISK_VERIFY integer overflow Not patched

OCAP1 TC_IOCTL_OPEN_TEST multiple issues Patched

OCAP1 MainThreadProc() integer overflow Patched

OCAP1 MountVolume() device check bypass Patched

OCAP1 GetWipePassCount()/WipeBuffer() can cause BSOD Patched

OCAP1 EncryptDataUnits() lacks error handling Not patched

OCAP2 CryptAcquireContextmay silently fail in unusual scenarios Patched

OCAP2 AES implementation susceptible to cache-timing attacks Not patched

7 Previous Work on the Security of VeraCrypt

94 Federal Office for Information Security

Report-Ref. Description Status
OCAP2 Keyfile mixing is not cryptographically sound Not patched

OCAP2 Unauthenticated ciphertext in volume headers Not patched

Quarkslab The length of the password can be computed when
encryption is activated

Patched

Quarkslab Out-of-date inflate and deflate Patched

Quarkslab XZip and XUnzip need to be completely re-written Patched

Quarkslab Integer overflow when computing the number of iterations
for PBKDF2 when PIM is used

Patched

Quarkslab PIN code on command line Not patched

Quarkslab GOST 28147-89 Must Be Removed from VeraCrypt Cipher deprecated

Quarkslab Lack of test vectors for newly added algorithms Patched

Quarkslab Input and output parameters are swapped in GOST Magma Patched

Quarkslab The PBKDF2 implementation does not fully comply with
the standard

Not patched

Quarkslab Bad coding practice in the HMAC-SHA512 Computation Patched

Quarkslab Unused parameters in key derivation sub-functions Patched

Quarkslab Random Byte Generators in DCS Should Be Improved Not relevant / not checked
further

Quarkslab Keystrokes are not erased after authentication Patched

Quarkslab Sensitive data is not correctly erased Patched

Quarkslab Memory corruption can occur when the recovery disk is
read

Patched

Quarkslab A null pointer can be de-referenced when encrypted blocks
are written

Patched

Quarkslab Dead code in DcsInt Patched

Quarkslab The function reading the configuration may read
inconsistent data

Patched

Quarkslab Bad pointer check in EfiGetHandles Patched

Quarkslab Potential de-reference of a null pointer in the graphic
library

Patched

Project Zero CVE-2015-7359: Truecrypt 7 Derived Code/Windows:
Incorrect Impersonation Token Handling EoP

Patched

Project Zero CVE-2015-7358: Truecrypt 7 Derived Code/Windows: Drive
Letter Symbolic Link Creation EoP

Patched

Other CVE-2016-1281: TrueCrypt and VeraCrypt Windows
installers allow arbitrary code execution with elevation of
privilege

Patched

Other CVE-2019-1010208: Minor information disclosure of kernel
stack due to buffer overflow

Patched

BSI Random Number Generator in Linux Not patched

7 Previous Work on the Security of VeraCrypt

Federal Office for Information Security 95

7.3 Development Documentation

Modern platforms for hosting software repositories have additional community features allowing
developers and users to interact and communicate on development issues. We searched the publicly
accessible part of VeraCrypt’s community features in order to find reports and communication between
users and developers related to the security of the software. We analyzed what the reported security issues
actually are and how VeraCrypt developers handled them. As it is an unpopular proceeding to publish
security issues on public channels, chances to find current or previous vulnerabilities in development
forums are, however, rather limited.

In detail, we researched two online communities identified as used to discuss VeraCrypt-related
development issues:

• SourceForge Forums95 and

• GitHub Issues96.

7.3.1 Reports in the SourceForge Forums

The SourceForge Forums are mainly used for discussing software features and functional issues of
VeraCrypt. We found no security-related issues in these forums.

7.3.2 Reports in the GitHub Issue Tracker

While the SourceForge Forums are the main platform for communication between developers and users,
VeraCrypt’s source is hosted on GitHub. GitHub also provides an issue-reporting function that can be used
to reach out to the developers in order to report errors and problems with the software. We analyzed and
filtered all reported issues for security-related topics. The following issues were identified as pointing to
potential security weaknesses in VeraCrypt.

“Volume creation security issue?”

The user emkey08 mentioned that large blocks of a created volume are zeroed out instead of randomly
initialized when using the command line tool of VeraCrypt97. The main developer idrassi explained to the
reporting user the cause underlying this behavior: Quick formatting is applied when using the command
line tool. To address the report, he implemented a switch to disable quick formatting to avoid this kind of
information leakage.

“[SECURITY!] ‘Random Pool Enrichment’ window doesn’t fill anymore when I move my mouse”

The user secerrorreporter complained about the random pool enrichment behavior. There is no answer to
the issue98. We were unable to reproduce this issue and hence decided not to follow up on this report.

“macOS: information leak”

The user dmitryd informed the developers that a file contains the location of the last opened directory. He
considers this as an information leak since the directory may contain container files and potential
investigators may use this information against their suspects99. There is no answer to this issue from the
developers.

95 https://sourceforge.net/p/veracrypt/discussion/
96 https://github.com/veracrypt/VeraCrypt/issues
97 https://github.com/veracrypt/VeraCrypt/issues/365
98 https://github.com/veracrypt/VeraCrypt/issues/342
99 https://github.com/veracrypt/VeraCrypt/issues/290

https://sourceforge.net/p/veracrypt/discussion/
https://github.com/veracrypt/VeraCrypt/issues
https://github.com/veracrypt/VeraCrypt/issues/365
https://github.com/veracrypt/VeraCrypt/issues/342
https://github.com/veracrypt/VeraCrypt/issues/290

7 Previous Work on the Security of VeraCrypt

96 Federal Office for Information Security

“Linux: Build results in binary with executable stack”

The user lachs0r reported that the VeraCrypt binary declares the program execution stack as executable
thereby omitting state-of-the-art protection against attacks such as certain buffer overflow attacks100.
Within two weeks after the report was submitted, the VeraCrypt developers addressed the issue with a fix.

“Security issue: mouse entropy isn’t collected in the password changing dialog”

The user ghost complained about missing entropy collection when changing the encryption password101. As
the developers were unable to reproduce the report, the issue was not further addressed.

100 https://github.com/veracrypt/VeraCrypt/issues/146
101 https://github.com/veracrypt/VeraCrypt/issues/203

https://github.com/veracrypt/VeraCrypt/issues/146
https://github.com/veracrypt/VeraCrypt/issues/203

8 Bibliography

Federal Office for Information Security 97

8 Bibliography
1. Advanced Encryption Standard. 2001, FIPS PUB 197.

2. Anderson, Ross, Biham, Eli and Knudsen, Lars. Serpent: A Proposal for the Advanced Encryption
Standard. First Advanced Encryption Standard (AES) Conference. 1998.

3. Schneier, Bruce, et al. Twofish: A 128-Bit Block Cipher. First Advanced Encryption Standard (AES)
Conference. 1998.

4. Recommendation for Block Cipher Modes of Operation: the XTS-AES Mode for Confidentiality on
Storage Devices. Dworkin, Morris. 1 2010, NIST Special Publication 800-38E.

5. Cascade Ciphers: The Importance of Being First. Maurer, Ueli M. and Massey, James L. 1993, Journal
of Cryptology, Vol. 6, pp. 55–61.

6. Liskov, Moses, Rivest, Ronald L. and Wagner, David. Tweakable Block Ciphers. Journal of
Cryptology. 2011, Vol. 24, pp. 588–613.

7. Ehrsam, William Friedrich, et al. Message verification and transmission error detection by block
chaining. 4074066 US Patent, 2 1978.

8. RIPEMD-160: A strengthened version of RIPEMD. Dobbertin, Hans, Bosselaers, Antoon and Preneel,
Bart. [ed.] Dieter Gollmann. s.l. : Springer, 1996. Fast Software Encryption – FSE 1996. Vol. 1039, pp.
71–82.

9. Secure Hash Standard. 2015, FIPS PUB 180-4.

10. Barreto, Paulo S.L.M. and Rijmen, Vincent. The W HIRLPOOL Hashing Function. 2003.

11. A Description of the Camellia Encryption Algorithm. Matsui, Mitsuru, Nakajima, Junko and
Moriai, Shiho. 2004, RFC, Vol. 3713.

12. GOST R 34.12-2015: Block Cipher ``Kuznyechik''. Dolmatov, Vasily. 2016, RFC, Vol. 7801.

13. GOST R 34.11-2012: Hash Function. Dolmatov, Vasily and Degtyarev, Alexey. 2013, RFC, Vol. 6986.

14. GOST 28147-89: Encryption, Decryption, and Message Authentication Code (MAC) Algorithms.
Dolmatov, Vasily. 2010, RFC, Vol. 5830.

15. Bédrune, Jean-Baptiste, et al. VeraCrypt 1.18 Security Assessment. Quarkslab. 2016. Tech. rep.

16. Software Generation of Practically Strong Random Numbers. Gutmann, Peter. [ed.] Aviel D. Rubin.
Berkeley : USENIX Association, 1998. Proceedings of the 7th USENIX Security Symposium.

17. Intel. Intel Digital Random Number Generator (DRNG) - Software Implementation Guide. 2018.
Tech. Report.

18. PKCS #5: Password-Based Cryptography Specification, Version 2.0. Kaliski, Burt. 2000, RFC, Vol.
2898.

19. HMAC: Keyed-Hashing for Message Authentication. Krawczyk, Hugo, Bellare, Mihir and Canetti,
Ran. 1997, RFC, Vol. 2104.

20. PKCS #5: Password-Based Cryptography Specification, Version 2.1. Moriarty, Kathleen M., Kaliski,
Burt and Rusch, Andreas. 2017, RFC, Vol. 8018.

21. Federal Office for Information Security, Germany. BSI – Technical Guideline: "Cryptographic
Mechanisms: Recommendations and Key Lengths". 2020. BSI TR-02102-1.

22. Bhatkar, Sandeep and DuVarney, Daniel C and Sekar, Ron. Address Obfuscation: An Efficient
Approach to Combat a Broad Range of Memory Error Exploits. USENIX Security Symposium : s.n.,
2003. Vol. 12, 2.

8 Bibliography

98 Federal Office for Information Security

23. Lest We Remember: Cold Boot Attacks on Encryption Keys. Halderman, J. Alex, et al. [ed.] Paul C.
van Oorschot. San : USENIX Association, 2008. Proceedings of the 17th USENIX Security Symposium.

24. I/O Attacks in Intel PC-based Architectures and Countermeasures. Sang, Fernand Lone,
Nicomette, Vincent and Deswarte, Yves. s.l. : IEEE Computer Society, 2011. 2011 First SysSec
Workshop. pp. 19-26.

25. Information technology – Security techniques – Encryption algorithms – Part 3: Block ciphers.
2010, ISO/IEC 18033-3:2010.

26. Kryptographische Verfahren: Empfehlungen und Schlüssellängen. 2019, BSI TR-02102-1.

27. Information technology. Cryptographic data security. Block ciphers. 2015, National Standard of
the Russian Federation GOST R 34.12–2015.

28. Reverse-Engineering the S-Box of Streebog, Kuznyechik and STRIBOBr1. Biryukov, Alex, Perrin,
Léo and Udovenko, Aleksei. [ed.] Marc Fischlin and Jean-Sébastien Coron. s.l. : Springer, 2016.
Advances in Cryptology – EUROCRYPT 2016. Vol. 9665, pp. 372–402.

29. Exponential S-Boxes: a Link Between the S-Boxes of BelT and Kuznyechik/Streebog. Perrin, Léo
and Udovenko, Aleksei. 2 2017, IACR Transactions on Symmetric Cryptology, Vol. 2016, pp. 99-124.

30. Transitioning the Use of Cryptographic Algorithms and Key Lengths. Barker, Elaine and Roginsky,
Allen. 2019, NIST Special Publication 800-131A Revision 2.

31. IEEE Standard for Cryptographic Protection of Data on Block-Oriented Storage Devices. 1 2019,
IEEE Std 1619-2018 (Revision of IEEE Std 1619-2007).

32. Folklore, Practice and Theory of Robust Combiners. Herzberg, Amir. s.l. : IOS Press, 4 2009, J.
Comput. Secur., Vol. 17, pp. 159–189.

33. Green, Matthew. Multiple encryption. A Few Thoughts on Cryptographic Engineering. [Online]
2012. https://blog.cryptographyengineering.com/2012/02/02/multiple-encryption/.

34. Information technology. Cryptographic data security. Hashing function. 2012, National Standard
of the Russian Federation GOST R 34.11–2012.

35. IT Security techniques – Hash-functions – Part 3: Dedicated hash-functions. 2018, ISO/IEC 10118-
3:2018.

36. 1999-12324, I. S. T. Final report of European project IST-1999-12324: New European Schemes for
Signatures, Integrity, and Encryption. Final report of European project IST-1999-12324: New
European Schemes for Signatures, Integrity, and Encryption. 2004.

37. Recommendation for Password-Based Key Derivation – Part 1: Storage Applications. Turan,
Meltem Sönmez, et al. 2010, NIST Special Publication 800-132.

38. Group, S. O. G.-I.S. Crypto Working. SOG-IS Crypto Evaluation Scheme – Agreed Cryptographic
Mechanisms. 2018. Tech. rep.

39. A Future-adaptive Password Scheme. Provos, Niels and Mazières, David. s.l. : USENIX Association,
1999. Proceedings of the 1999 USENIX Annual Technical Conference. pp. 81–91.

40. Stronger Key Derivation Via Sequential Memory-Hard Functions. Percival, Colin. 2009.

41. Biryukov, Alex, Dinu, Daniel and Khovratovich, Dmitry. Argon2: the memory-hard function for
password hashing and other applications. Argon2: the memory-hard function for password hashing
and other applications. 2017.

42. Laboratories, R. S. A. PKCS #11 v2.20: Cryptographic Token Interface Standard. 2004. Tech. rep.

43. Ellison, Carl. Cryptographic Random Numbers. Cryptographic Random Numbers. 1995.

8 Bibliography

Federal Office for Information Security 99

44. FIPS PUB 186-2: Digital Signature Standard (DSS), Federal Information Processing Standards
Publication 186-2. FIPS PUB 186-2: Digital Signature Standard (DSS), Federal Information Processing
Standards Publication 186-2. 2000.

45. Recommendation for Random Number Generation Using Deterministic Random Bit Generators.
Barker, Elaine and Kelsey, John. 6 2015, NIST Special Publication 800-90A Rev. 1.

46. Müller, Stephan. Documentation and Analysis of the Linux Random Number Generator. Federal
Office for Information Security. 2019. Tech. rep.

47. Edge, Jake. Random numbers from CPU execution time jitter. Linux Weekly News. 2015.

48. Bernstein, Daniel J. Cache-timing attacks on AES. Cache-timing attacks on AES. 2004.

49. Guidelines on the Cryptographic Algorithms to Accompany the Usage of Standards GOST R 34.10-
2012 and GOST R 34.11-2012. Smyshlyaev, Stanislav, et al. 2016, RFC, Vol. 7836.

50. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic
Applications. Bassham III, Lawrence E., et al. 4 2010, NIST Special Publication 800-22 Rev. 1a.

51. Dodis, Yevgeniy, et al. How to Eat Your Entropy and Have it Too – Optimal Recovery Strategies for
Compromised RNGs. How to Eat Your Entropy and Have it Too – Optimal Recovery Strategies for
Compromised RNGs. 2014.

52. An empirical study of goto in C code from GitHub repositories. Nagappan, Meiyappan, et al. New
York, NY, USA : s.n., 2015. Proceedings of the 10th Joint Meeting on Foundations of Software
Engineering. pp. 404–414.

53. Baluda, Mauro, et al. Security Analysis of TrueCrypt. 2015.

54. McConnell, Steve. Code complete, 2nd Edition. Redmond : Microsoft Press, 2004. ISBN:
9780735619678.

55. Software complexity and software maintenance: A survey of empirical research. Kemerer, Chris F.
12 01, 1995, Annals of Software Engineering, Vol. 1, pp. 1–22. ISSN: 1573-7489.

56. VeraCrypt - Documentation. VeraCrypt - Documentation. 2019.

57. Examining PBKDF2 security margin—Case study of LUKS. Visconti, Andrea, et al. 2019, Journal of
Information Security and Applications, Vol. 46, pp. 296-306. ISSN: 2214-2126.

58. Defeating Plausible Deniability of VeraCrypt Hidden Operating Systems. Kedziora, Michal, Chow,
Yang-Wai and Susilo, Willy. [ed.] Lynn Batten, et al. Singapore : Springer Singapore, 2017.
Applications and Techniques in Information Security. pp. 3–13. ISBN: 978-981-10-5421-1.

59. Junestam, Andreas and Guigo, Nicolas. Open Crypto Audit Project TrueCrypt Security Assessment.
iSEC Partners. 2014. Tech. rep.

60. Balducci, Alex, Devlin, Sean and Ritter, Tom. Open Crypto Audit Project TrueCrypt Cryptographic
Review. NCC Group. 2015. Tech. rep.

61. Recommendation for Random Number Generation Using Deterministic Random Bit Generators.
Barker, Elaine and Kelsey, John. 6 2006, NIST Special Publication 800-90.

62. A Bit-Slice Implementation of the Whirlpool Hash Function. Scheibelhofer, Karl. [ed.] Masayuki
Abe. Berlin : Springer Berlin Heidelberg, 2006. Topics in Cryptology – CT-RSA 2007. pp. 385–401.
ISBN: 978-3-540-69328-4.

9 Appendix

100 Federal Office for Information Security

9 Appendix

9.1 Detailed Results of Tagging the Source Code Commits

9.1.1 Overview

This section details the results from tagging the single source code commits to VeraCrypt as described in 2.4.
Only the tags relevant for this study are shown.

One recorded change means that a file had been altered with one single commit regardless of how many
lines of code had actually been changed. Only files in the src/ directory are considered.

Table 11 shows the ten most modified files. Overall, most commits affected files in the Mount, Common,
Format and Driver directory of the source code.

Table 11: Number of changes per file over all commits.

Changes File
188 src/Mount/Mount.c

185 src/Common/Dlgcode.c

101 src/Format/Tcformat.c

95 src/Common/Tcdefs.h

86 src/Driver/Ntdriver.c

78 src/Format/Format.rc

76 src/Common/Dlgcode.h

75 src/Common/BootEncryption.cpp

62 src/Setup/Setup.c

50 src/Driver/DriveFilter.c

9.1.2 Tag-Specific Statistics

9.1.2.1 Tag “Boot”

Table 12 shows all files with three and more modifications. Most commits affected files in the Boot and
Common directory of the source code.

Table 12: Number of changes per file over all commits tagged with “boot”.

Changes File
26 src/Boot/EFI/DcsInt.efi

26 src/Boot/EFI/DcsCfg.efi

22 src/Common/BootEncryption.cpp

20 src/Boot/EFI/DcsRe.efi

20 src/Boot/EFI/DcsInt32.efi

20 src/Boot/EFI/DcsCfg32.efi

16 src/Mount/Mount.c

9 Appendix

Federal Office for Information Security 101

Changes File
16 src/Boot/EFI/DcsRe32.efi

15 src/Common/BootEncryption.h

13 src/Common/Dlgcode.c

12 src/Boot/Windows/BootCommon.h

11 src/Driver/DriveFilter.c

10 src/Common/Volumes.c

10 src/Common/Language.xml

10 src/Common/Dlgcode.h

10 src/Boot/Windows/BootMain.cpp

9 src/Format/Tcformat.c

9 src/Common/Pkcs5.c

8 src/Mount/Mount.rc

8 src/Common/Crypto.c

8 src/Boot/EFI/DcsBoot.efi

7 src/Mount/Resource.h

7 src/Common/Crypto.h

7 src/Common/Common.rc

7 src/Boot/EFI/DcsBoot32.efi

6 src/Common/Resource.h

6 src/Boot/EFI/DcsBml.efi

6 src/Boot/EFI/DcsBml32.efi

5 src/Common/Apidrvr.h

5 src/Boot/Windows/Makefile

5 src/Boot/EFI/LegacySpeaker.efi

5 src/Boot/EFI/LegacySpeaker32.efi

5 src/Boot/EFI/DcsInfo.efi

5 src/Boot/EFI/DcsInfo32.efi

4 src/Setup/Setup.c

4 src/Mount/MainCom.idl

4 src/Mount/MainCom.cpp

4 src/Crypto/Rmd160.c

4 src/Boot/Windows/BootSector.asm

4 src/Boot/Windows/BootDefs.h

4 src/Boot/Windows/BootConsoleIo.cpp

9 Appendix

102 Federal Office for Information Security

Changes File
4 src/Boot/EFI/Readme.txt

3 src/Format/FormatCom.idl

3 src/Format/FormatCom.cpp

3 src/ExpandVolume/WinMain.cpp

3 src/Driver/Ntdriver.c

3 src/Crypto/Twofish.h

3 src/Crypto/Twofish.c

3 src/Common/Volumes.h

3 src/Common/Pkcs5.h

3 src/Common/BaseCom.h

3 src/Common/BaseCom.cpp

3 src/Boot/Windows/Decompressor.c

3 src/Boot/EFI/siglists/MicWinProPCA2011_2011-10-
19_SigList_Serialization.bin.p7

3 src/Boot/EFI/siglists/MicWinProPCA2011_2011-10-
19_SigList_Serialization.bin

3 src/Boot/EFI/siglists/MicWinProPCA2011_2011-10-19_SigList.bin

3 src/Boot/EFI/siglists/MicCorUEFCA2011_2011-06-
27_SigList_Serialization.bin.p7

3 src/Boot/EFI/siglists/MicCorUEFCA2011_2011-06-
27_SigList_Serialization.bin

3 src/Boot/EFI/siglists/MicCorUEFCA2011_2011-06-27_SigList.bin

3 src/Boot/EFI/siglists/DCS_sign_SigList_Serialization.bin.p7

3 src/Boot/EFI/siglists/DCS_sign_SigList_Serialization.bin

3 src/Boot/EFI/siglists/DCS_platform_SigList_Serialization.bin.p7

3 src/Boot/EFI/siglists/DCS_platform_SigList_Serialization.bin

3 src/Boot/EFI/siglists/DCS_key_exchange_SigList_Serialization.bin.p7

3 src/Boot/EFI/siglists/DCS_key_exchange_SigList_Serialization.bin

3 src/Boot/EFI/sb_set_siglists.ps1

3 src/Boot/EFI/certs/Readme.txt

9.1.2.2 Tag “Crypto”

Table 13 shows all files with three and more modifications. Most commits affected files in the Common and
Mount directory of the source code. This may be caused by that fact that cryptography is implemented (or
copied from other open source projects) once, and then used in different parts of VeraCrypt.

9 Appendix

Federal Office for Information Security 103

Table 13: Number of changes per file over all commits tagged with “crypto”. Only files with a minimum of 3
commits are listed.

Changes File
54 src/Mount/Mount.c

41 src/Format/Tcformat.c

40 src/Common/Dlgcode.c

27 src/Common/Language.xml

26 src/Common/BootEncryption.cpp

22 src/Common/Pkcs5.c

22 src/Common/Crypto.c

21 src/Common/Volumes.c

21 src/Common/Dlgcode.h

21 src/Common/Common.rc

18 src/Mount/Mount.rc

18 src/Driver/DriveFilter.c

16 src/Common/Crypto.h

16 src/Common/BootEncryption.h

14 src/Mount/Resource.h

14 src/Common/Resource.h

12 src/Volume/Cipher.cpp

12 src/Main/Forms/TrueCrypt.fbp

12 src/Main/Forms/Forms.cpp

12 src/ExpandVolume/WinMain.cpp

12 src/Common/Tests.c

12 src/Common/Password.c

11 src/Volume/Volume.make

11 src/Main/Forms/VolumePasswordPanel.cpp

11 src/Format/Format.rc

11 src/Crypto/cpu.c

10 src/Main/TextUserInterface.cpp

10 src/Main/GraphicUserInterface.cpp

10 src/Main/Forms/Forms.h

10 src/Crypto/Sources

10 src/Crypto/misc.h

10 src/Common/Random.c

9 src/Volume/Pkcs5Kdf.h

9 Appendix

104 Federal Office for Information Security

Changes File
9 src/Volume/EncryptionTest.cpp

9 src/Main/Forms/VolumePasswordPanel.h

9 src/Main/Forms/VolumeCreationWizard.cpp

9 src/Main/CommandLineInterface.cpp

9 src/Common/Pkcs5.h

8 src/Volume/Cipher.h

8 src/Mount/MainCom.cpp

8 src/Mount/Favorites.cpp

8 src/Main/UserInterface.cpp

8 src/Main/Forms/ChangePasswordDialog.cpp

8 src/Format/InPlace.c

8 src/Crypto/Whirlpool.c

8 src/Crypto/cpu.h

8 src/Common/Password.h

8 src/Boot/Windows/BootCommon.h

7 src/Volume/VolumeLayout.cpp

7 src/Volume/Hash.cpp

7 src/Volume/EncryptionAlgorithm.cpp

7 src/Main/Forms/MountOptionsDialog.cpp

7 src/Driver/Ntdriver.c

7 src/Crypto/Sha2.c

7 src/Crypto/Crypto.vcxproj.filters

7 src/Crypto/Crypto.vcxproj

7 src/Common/Tcdefs.h

7 src/Common/Format.c

7 src/Common/Apidrvr.h

7 src/Boot/Windows/BootMain.cpp

6 src/Volume/Volume.cpp

6 src/Volume/Pkcs5Kdf.cpp

6 src/Setup/Setup.c

6 src/Main/Forms/VolumePimWizardPage.cpp

6 src/Format/Resource.h

6 src/ExpandVolume/ExpandVolume.rc

6 src/ExpandVolume/ExpandVolume.c

9 Appendix

Federal Office for Information Security 105

Changes File
6 src/Driver/Ntvol.c

6 src/Crypto/Twofish.h

6 src/Crypto/Twofish.c

6 src/Common/Volumes.h

6 src/Common/Keyfiles.c

6 src/Boot/EFI/DcsInt.efi

6 src/Boot/EFI/DcsCfg.efi

5 src/Volume/EncryptionAlgorithm.h

5 src/Mount/Mount.h

5 src/Mount/MainCom.idl

5 src/Main/CommandLineInterface.h

5 src/ExpandVolume/DlgExpandVolume.cpp

5 src/Crypto/Streebog.c

5 src/Crypto/GostCipher.c

5 src/Crypto/Crypto.vcproj

5 src/Crypto/config.h

5 src/Common/SecurityToken.cpp

5 src/Common/BaseCom.cpp

5 src/Boot/Windows/BootDefs.h

5 src/Boot/EFI/DcsInt32.efi

5 src/Boot/EFI/DcsCfg32.efi

4 src/Volume/Volume.h

4 src/Volume/Hash.h

4 src/Setup/ComSetup.cpp

4 src/Main/Main.make

4 src/Main/Forms/VolumePasswordWizardPage.cpp

4 src/Main/Forms/MainFrame.cpp

4 src/Crypto/Serpent.c

4 src/Crypto/Rmd160.c

4 src/Crypto/Makefile.inc

4 src/Crypto/GostCipher.h

4 src/Crypto/Camellia.c

4 src/Crypto/Camellia_aesni_x64.S

4 src/Core/Unix/Linux/CoreLinux.cpp

9 Appendix

106 Federal Office for Information Security

Changes File
4 src/Common/SecurityToken.h

4 src/Common/Random.h

4 src/Common/Keyfiles.h

4 src/Common/EncryptionThreadPool.c

4 src/Common/Cache.c

4 src/Boot/Windows/Makefile

4 src/Boot/EFI/DcsRe.efi

4 src/Boot/EFI/DcsRe32.efi

3 src/Mount/MainCom.h

3 src/Mount/Favorites.h

3 src/Makefile

3 src/Main/Forms/VolumePimWizardPage.h

3 src/Main/Forms/VolumePasswordWizardPage.h

3 src/Main/Forms/KeyfileGeneratorDialog.h

3 src/Main/Forms/KeyfileGeneratorDialog.cpp

3 src/Main/Forms/EncryptionOptionsWizardPage.cpp

3 src/Format/Tcformat.h

3 src/Format/InPlace.h

3 src/Format/FormatCom.idl

3 src/Format/FormatCom.cpp

3 src/Driver/Driver.vcxproj.filters

3 src/Driver/Driver.vcxproj

3 src/Crypto/Twofish_x86.S

3 src/Crypto/Twofish_x64.S

3 src/Crypto/sha512-x64-nayuki.S

3 src/Crypto/Camellia_x64.S

3 src/Crypto/Aes_hw_cpu.asm

3 src/Common/Common.h

3 src/Common/Cmdline.c

3 src/Common/Cache.h

3 src/Common/BaseCom.h

3 src/Boot/Windows/BootSector.asm

9 Appendix

Federal Office for Information Security 107

9.1.2.3 Tag “Driver”

Table 14 shows all files with three and more modifications. Most commits affected files in the Boot and
Common directory of the source code.

Table 14: Number of changes per file over all commits tagged with “driver”. Only files with a minimum of 3
commits are listed.

Changes File
39 src/Driver/Ntdriver.c

27 src/Release/Setup Files/veracrypt-x64.sys

27 src/Release/Setup Files/veracrypt.sys

16 src/Driver/Ntvol.c

13 src/Mount/Mount.c

13 src/Common/Dlgcode.c

12 src/Driver/DriveFilter.c

10 src/Common/Apidrvr.h

6 src/Mount/Mount.rc

6 src/Driver/Ntdriver.h

5 src/Common/Tcdefs.h

5 src/Common/Language.xml

5 src/Common/Dlgcode.h

4 src/Setup/Setup.c

4 src/Mount/Resource.h

4 src/Format/InPlace.c

4 src/Common/Volumes.c

4 src/Common/Password.c

4 src/Common/BootEncryption.cpp

3 src/Format/Tcformat.c

3 src/ExpandVolume/ExpandVolume.c

3 src/Common/Common.rc

3 src/Common/BootEncryption.h

2 src/Setup/Setup.h

2 src/Setup/ComSetup.cpp

2 src/Release/Setup Files/veracrypt-x64.cat

2 src/Release/Setup Files/veracrypt.Inf

2 src/Release/Setup Files/veracrypt.cat

2 src/Mount/MainCom.idl

2 src/Driver/VolumeFilter.c

9 Appendix

108 Federal Office for Information Security

Changes File
2 src/Driver/EncryptedIoQueue.c

2 src/Driver/DumpFilter.c

2 src/Driver/BuildDriver.cmd

2 src/Common/Resource.h

2 src/Common/Common.h

2 src/Common/Cache.c

2 src/Boot/Windows/BootMain.cpp

9.1.2.4 Tag “Security”

Table 15 shows all files with three and more modifications. Most commits affected files in the Common,
Driver, Format and Mount directory of the source code.

Table 15: Number of changes per file over all commits tagged with “security”. Only files with a minimum of 3
commits are listed.

Changes File
27 src/Common/Dlgcode.c

26 src/Mount/Mount.c

17 src/Driver/Ntdriver.c

16 src/Format/Tcformat.c

13 src/Common/Dlgcode.h

11 src/Common/Language.xml

11 src/Common/BootEncryption.cpp

10 src/Mount/Mount.rc

10 src/Driver/DriveFilter.c

9 src/Setup/Setup.c

8 src/Mount/Resource.h

8 src/Common/Volumes.c

8 src/Common/Random.c

7 src/Common/Password.c

7 src/Common/Apidrvr.h

6 src/Mount/MainCom.cpp

6 src/Format/InPlace.c

6 src/ExpandVolume/WinMain.cpp

6 src/Common/BootEncryption.h

5 src/Common/Language.c

4 src/Setup/SelfExtract.c

9 Appendix

Federal Office for Information Security 109

Changes File
4 src/Driver/Ntvol.c

4 src/Driver/Ntdriver.h

4 src/Common/Tcdefs.h

4 src/Common/Registry.c

4 src/Common/Format.c

4 src/Common/Cmdline.c

4 src/Boot/Windows/BootSector.asm

4 src/Boot/Windows/BootMain.cpp

3 src/ExpandVolume/DlgExpandVolume.cpp

3 src/Driver/EncryptedIoQueue.c

3 src/Common/Keyfiles.c

3 src/Common/Exception.h

3 src/Common/Crypto.h

3 src/Common/Combo.c

3 src/Common/BaseCom.cpp

3 src/Boot/Windows/Decompressor.c

3 src/Boot/Windows/BootCommon.h

9.1.2.5 Tag “Static”

Table 16 shows all files with three and more modifications. Most commits affected files in the Boot and
Common directory of the source code.

Table 16: Number of changes per file over all commits tagged with “static”. Only files with a minimum of 3
commits are listed.

Changes File
39 src/Driver/Ntdriver.c

27 src/Release/Setup Files/veracrypt-x64.sys

27 src/Release/Setup Files/veracrypt.sys

16 src/Driver/Ntvol.c

13 src/Mount/Mount.c

13 src/Common/Dlgcode.c

12 src/Driver/DriveFilter.c

10 src/Common/Apidrvr.h

6 src/Mount/Mount.rc

6 src/Driver/Ntdriver.h

5 src/Common/Tcdefs.h

9 Appendix

110 Federal Office for Information Security

Changes File
5 src/Common/Language.xml

5 src/Common/Dlgcode.h

4 src/Setup/Setup.c

4 src/Mount/Resource.h

4 src/Format/InPlace.c

4 src/Common/Volumes.c

4 src/Common/Password.c

4 src/Common/BootEncryption.cpp

3 src/Format/Tcformat.c

3 src/ExpandVolume/ExpandVolume.c

3 src/Common/Common.rc

3 src/Common/BootEncryption.h

9.2 Technical Information on Fuzzing Tests of the Header Parser for
Container Files

9.2.1 Machine Used for Fuzzing

A server with the following stats has been used to perform the fuzzing evaluation:

• CPU Model: Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz

• CPU Cores: 144

• Memory: 3094916 Mb

9.2.2 Corpus

Hidden volume
A container file with an outer and a hidden volume. The outer volume has a size of 25mb, the hidden
volume has 15mb. Both are formatted with FAT32, SHA512 has been used as Hash. The UI has been used to
create this volume as it is not possible to create a hidden volume in the text interface in a convenient way.
Even in the UI, the process of creating a hidden volume crashes frequently with misleading error messages.
All properties are listed in the following:

• Encryption: AES

• Filesystem: FAT

• Outer size: 25MB

• Inner size: 15MB

• Hash: SHA-512

• Dynamic: False

• Hidden: True

Corpus 01

9 Appendix

Federal Office for Information Security 111

A container file with the following properties:

• Encryption: AES

• Filesystem: FAT

• Size: 1MB

• Hash: SHA-512

• Dynamic: False

• Hidden: False

Corpus 02

A container file with the following properties:

• Encryption: AES

• Filesystem: NTFS

• Size: 5MB

• Hash: SHA-512

• Dynamic: False

• Hidden: False

Corpus 03
A container file with the following properties:

• Encryption: AES

• Filesystem: None

• Size: 5MB

• Hash: SHA-512

• Dynamic: True

• Hidden: False

Corpus 04
A container file with the following properties:

• Encryption: Twofish

• Filesystem: NTFS

• Size: 1GB

• Hash: SHA-512

• Dynamic: False

Hidden: False

Corpus 05
A container file with the following properties:

• Encryption: Camellia

• Filesystem: FAT

• Size: 1MB

9 Appendix

112 Federal Office for Information Security

• Hash: SHA-512

• Dynamic: False

• Hidden: False

Corpus 06
A container file with the following properties:

• Encryption: Kuznyechik

• Filesystem: FAT

• Size: 1MB

• Hash: RIPEMD-160

• Dynamic: False

• Hidden: False

Corpus 07
A container file with the following properties:

• Encryption: Kuznyechik

• Filesystem: ExFAT

• Size: 1MB

• Hash: RIPEMD-160

• Dynamic: False

• Hidden: False

Corpus 08

A container file with the following properties:

• Encryption: Serpent

• Filesystem: ReFS

• Size: 1GB

• Hash: SHA-256

• Dynamic: False

• Hidden: False

Corpus 09
A container file with the following properties:

• Encryption: Serpent

• Filesystem: FAT

• Size: 1MB

• Hash: SHA-512

• Dynamic: False

• Hidden: False

9 Appendix

Federal Office for Information Security 113

9.3 Evaluation Methods in Related Work

This chapter lists the evaluation methods used for previous security assessments of TrueCrypt and
VeraCrypt (cp. 7.2). Note that for most of these previous assessments, the respective reports provide only
fragmentary information about the methods and procedures applied. Hence this list cannot and will not be
exhaustive.

Automatic code scanning

A method where software tools automatically scan the application source code for potential weaknesses and
vulnerabilities. The results need to be reviewed by a security expert to sort out false positives. This
procedure was applied by Fraunhofer SIT for the security assessment of TrueCrypt (53).

Comparison with reference implementations

This method can be applied to evaluate implementations of cryptographic functions. The related source
code part is extracted and fed with large amounts of input data. The resulting output stream is compared to
an output stream generated by another implementation of the same cryptographic function, usually a well-
known reference implementation. Both output streams must be equal. Fraunhofer SIT executed such tests
for the security assessment of TrueCrypt (53).

Measuring computational efforts

A method to test the security of cryptographic functions, especially key derivation or key stretching
functions, is to quantify the computational efforts required for a brute-force attack to succeed. Such
investigations require to identify combinations of algorithm and hardware for their execution that a
particularly efficient, for instance, brute-force algorithms running on Graphics Processing Units (GPU). The
research work of Visconti et al. makes uses of this method to discuss the security of PBKDF2 (57).

Manual source code review

Security analysts manually review the software code. Due to its cost, this method is usually not applied
exhaustively. Security analysts use to focus on key portions of the software code, for instance, code
implementing cryptographic algorithms. Manual review of cryptographic source code was the particular
focus of the OCAP cryptographic review (60).

Fuzzing

Fuzzing aims on feeding software interfaces with random data in order to provoke insecure software
behavior. The easiest approach is to input a stream of random data into an interface. However, approaches
that are more sophisticated involve selectively injecting random data into an input data structure that
otherwise conforms to the interface protocol. Fuzzing of software interfaces was applied during the OCAP
TrueCrypt security assessment (59).

Manual testing

During manual testing, a security expert creates manual test cases to test the behavior of the software for
potential security weaknesses and behavior. For instance, the OCAP TrueCrypt security assessment involved
manual testing of the bootloader and kernel driver (59).

Graybox testing

A hybrid method using insights gathered from source code reviews to create test cases for dynamic testing.
It appears that some form of graybox testing was used by iSEC for the OCAP TrueCrypt security
assessment (59). However, the work is only vaguely described as “source code assisted security assessment”.

9 Appendix

114 Federal Office for Information Security

9.4 Patch for the NIST STS Software

diff --git a/src/assess.c b/src/assess.c
index cf41d4f..d251a5a 100644
--- a/src/assess.c
+++ b/src/assess.c
@@ -108,8 +108,9 @@ main(int argc, char *argv[])
 fprintf(summary, "--
----------------------\n");
 postProcessResults(option);
 fclose(summary);
+ free(streamFile);

- return 1;
+ return 0;
 }

 void
@@ -118,7 +119,6 @@ partitionResultFile(int numOfFiles, int numOfSequences, int
option, int testName
 int i, k, m, j, start, end, num, numread;
 float c;
 FILE **fp = (FILE **)calloc(numOfFiles+1, sizeof(FILE *));
- int *results = (int *)calloc(numOfFiles, sizeof(int *));
 char *s[MAXFILESPERMITTEDFORPARTITION];
 char resultsDir[200];

@@ -180,6 +180,7 @@ partitionResultFile(int numOfFiles, int numOfSequences, int
option, int testName
 }
 }
 fclose(fp[numOfFiles]);
+ free(fp);
 for (i=0; i<MAXFILESPERMITTEDFORPARTITION; i++)
 free(s[i]);

@@ -284,7 +285,7 @@ computeMetrics(char *s, int test)
 {
 int j, pos, count, passCount, sampleSize, expCount,
proportion_threshold_min, proportion_threshold_max;
 int freqPerBin[10] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
- double *A, *T, chi2, proportion, uniformity, p_hat, tmp;
+ double *A, *T, chi2, uniformity, p_hat;
 float c;
 FILE *fp;

diff --git a/src/discreteFourierTransform.c b/src/discreteFourierTransform.c
index 61b52c2..73c31d6 100644
--- a/src/discreteFourierTransform.c
+++ b/src/discreteFourierTransform.c
@@ -18,7 +18,7 @@ DiscreteFourierTransform(int n)

9 Appendix

Federal Office for Information Security 115

 double p_value, upperBound, percentile, N_l, N_o, d, *m = NULL, *X =
NULL, *wsave = NULL;
 int i, count, ifac[15];

- if (((X = (double*) calloc(n,sizeof(double))) == NULL) ||
+ if (((X = (double*) calloc(n+1,sizeof(double))) == NULL) ||
 ((wsave = (double *)calloc(2*n,sizeof(double))) == NULL) ||
 ((m = (double*)calloc(n/2+1, sizeof(double))) == NULL)) {
 fprintf(stats[7],"\t\tUnable to allocate working arrays for
the DFT.\n");
diff --git a/src/randomExcursions.c b/src/randomExcursions.c
index 010b65d..1422897 100644
--- a/src/randomExcursions.c
+++ b/src/randomExcursions.c
@@ -105,7 +105,7 @@ RandomExcursions(int n)
 x = stateX[i];
 sum = 0.;
 for (k=0; k<6; k++)
- sum += pow(nu[k][i] - J*pi[(int)fabs(x)][k], 2) /
(J*pi[(int)fabs(x)][k]);
+ sum += pow(nu[k][i] - J*pi[(int)abs(x)][k], 2) /
(J*pi[(int)abs(x)][k]);
 p_value = cephes_igamc(2.5, sum/2.0);

 if (isNegative(p_value) || isGreaterThanOne(p_value))
diff --git a/src/randomExcursionsVariant.c b/src/randomExcursionsVariant.c
index 4a2b4de..048af75 100644
--- a/src/randomExcursionsVariant.c
+++ b/src/randomExcursionsVariant.c
@@ -53,7 +53,7 @@ RandomExcursionsVariant(int n)
 for (i=0; i<n; i++)
 if (S_k[i] == x)
 count++;
- p_value = erfc(fabs(count-J)/(sqrt(2.0*J*(4.0*fabs(x)-2))));
+ p_value = erfc(abs(count-J)/(sqrt(2.0*J*(4.0*abs(x)-2))));

 if (isNegative(p_value) || isGreaterThanOne(p_value))
 fprintf(stats[TEST_RND_EXCURSION_VAR], "\t\t(b) WARNING:
P_VALUE IS OUT OF RANGE.\n");
diff --git a/Makefile b/Makefile
new file mode 100644
index 0000000..faf18d6
--- /dev/null
+++ b/Makefile
@@ -0,0 +1,51 @@
+CC = clang-9
+CFLAGS = -Wall -Wextra -MMD -Wshadow-all
+LDFLAGS = -static
+ifeq ($(DEBUG),1)
+CFLAGS += -Og -g3 -fsanitize=address
+LDFLAGS += -fsanitize=address
+else

9 Appendix

116 Federal Office for Information Security

+CFLAGS += -O3
+endif
+
+ROOTDIR = .
+SRCDIR = $(ROOTDIR)/src
+OBJDIR = $(ROOTDIR)/obj
+
+OBJ := \
+ src/assess.o \
+ src/frequency.o \
+ src/blockFrequency.o \
+ src/cusum.o \
+ src/runs.o \
+ src/longestRunOfOnes.o \
+ src/serial.o \
+ src/rank.o \
+ src/discreteFourierTransform.o \
+ src/nonOverlappingTemplateMatchings.o \
+ src/overlappingTemplateMatchings.o \
+ src/universal.o \
+ src/approximateEntropy.o \
+ src/randomExcursions.o \
+ src/randomExcursionsVariant.o \
+ src/linearComplexity.o \
+ src/dfft.o \
+ src/cephes.o \
+ src/matrix.o \
+ src/utilities.o \
+ src/generators.o \
+ src/genutils.o \
+ src/assess.o
+
+assess: $(OBJ)
+ $(CC) $(LDFLAGS) -o $@ $^ -lm
+
+%.o: %.c
+ $(CC) $(CFLAGS) -c -o $@ $<
+
+clean:
+ rm -f assess $(OBJ) $(OBJ:.o=.d)
+
+rebuild: clean assess
+
+-include $(OBJ:.o=.d)
diff --git a/makefile b/makefile
deleted file mode 100644
index 7ff2cd5..0000000
--- a/makefile
+++ /dev/null
@@ -1,94 +0,0 @@
-CC = /usr/bin/gcc
-GCCFLAGS = -c -Wall

9 Appendix

Federal Office for Information Security 117

-ROOTDIR = .
-SRCDIR = $(ROOTDIR)/src
-OBJDIR = $(ROOTDIR)/obj
-VPATH = src:obj:include
-
-OBJ = $(OBJDIR)/assess.o $(OBJDIR)/frequency.o $(OBJDIR)/blockFrequency.o \
- $(OBJDIR)/cusum.o $(OBJDIR)/runs.o $(OBJDIR)/longestRunOfOnes.o \
- $(OBJDIR)/serial.o $(OBJDIR)/rank.o $(OBJDIR)/discreteFourierTransform.o
\
- $(OBJDIR)/nonOverlappingTemplateMatchings.o \
- $(OBJDIR)/overlappingTemplateMatchings.o $(OBJDIR)/universal.o \
- $(OBJDIR)/approximateEntropy.o $(OBJDIR)/randomExcursions.o \
- $(OBJDIR)/randomExcursionsVariant.o $(OBJDIR)/linearComplexity.o \
- $(OBJDIR)/dfft.o $(OBJDIR)/cephes.o $(OBJDIR)/matrix.o \
- $(OBJDIR)/utilities.o $(OBJDIR)/generators.o $(OBJDIR)/genutils.o
-
-assess: $(OBJ)
- $(CC) -o $@ $(OBJ) -lm
-
-$(OBJDIR)/assess.o: $(SRCDIR)/assess.c defs.h decls.h utilities.h
- $(CC) -o $@ -c $(SRCDIR)/assess.c
-
-$(OBJDIR)/frequency.o: $(SRCDIR)/frequency.c defs.h externs.h
- $(CC) -o $@ $(GCCFLAGS) $(SRCDIR)/frequency.c
-
-$(OBJDIR)/blockFrequency.o: $(SRCDIR)/blockFrequency.c defs.h externs.h
- $(CC) -o $@ $(GCCFLAGS) $(SRCDIR)/blockFrequency.c
-
-$(OBJDIR)/cusum.o: $(SRCDIR)/cusum.c defs.h externs.h
- $(CC) -o $@ $(GCCFLAGS) $(SRCDIR)/cusum.c
-
-$(OBJDIR)/runs.o: $(SRCDIR)/runs.c defs.h externs.h
- $(CC) -o $@ $(GCCFLAGS) $(SRCDIR)/runs.c
-
-$(OBJDIR)/longestRunOfOnes.o: $(SRCDIR)/longestRunOfOnes.c defs.h externs.h
- $(CC) -o $@ $(GCCFLAGS) $(SRCDIR)/longestRunOfOnes.c
-
-$(OBJDIR)/rank.o: $(SRCDIR)/rank.c defs.h externs.h matrix.h
- $(CC) -o $@ $(GCCFLAGS) $(SRCDIR)/rank.c
-
-$(OBJDIR)/discreteFourierTransform.o: $(SRCDIR)/discreteFourierTransform.c \
- defs.h externs.h utilities.h
- $(CC) -o $@ $(GCCFLAGS) $(SRCDIR)/discreteFourierTransform.c
-
-$(OBJDIR)/nonOverlappingTemplateMatchings.o: \
- $(SRCDIR)/nonOverlappingTemplateMatchings.c defs.h externs.h
utilities.h
- $(CC) -o $@ $(GCCFLAGS) $(SRCDIR)/nonOverlappingTemplateMatchings.c
-
-$(OBJDIR)/overlappingTemplateMatchings.o: \
- $(SRCDIR)/overlappingTemplateMatchings.c defs.h externs.h utilities.h
- $(CC) -o $@ $(GCCFLAGS) $(SRCDIR)/overlappingTemplateMatchings.c

9 Appendix

118 Federal Office for Information Security

-
-$(OBJDIR)/universal.o: $(SRCDIR)/universal.c defs.h externs.h utilities.h
- $(CC) -o $@ $(GCCFLAGS) $(SRCDIR)/universal.c
-
-$(OBJDIR)/approximateEntropy.o: $(SRCDIR)/approximateEntropy.c defs.h externs.h
utilities.h
- $(CC) -o $@ $(GCCFLAGS) $(SRCDIR)/approximateEntropy.c
-
-$(OBJDIR)/randomExcursions.o: $(SRCDIR)/randomExcursions.c defs.h externs.h
- $(CC) -o $@ $(GCCFLAGS) $(SRCDIR)/randomExcursions.c
-
-$(OBJDIR)/randomExcursionsVariant.o: $(SRCDIR)/randomExcursionsVariant.c defs.h
externs.h
- $(CC) -o $@ $(GCCFLAGS) $(SRCDIR)/randomExcursionsVariant.c
-
-$(OBJDIR)/serial.o: $(SRCDIR)/serial.c defs.h externs.h
- $(CC) -o $@ $(GCCFLAGS) $(SRCDIR)/serial.c
-
-$(OBJDIR)/linearComplexity.o: $(SRCDIR)/linearComplexity.c defs.h externs.h
- $(CC) -o $@ $(GCCFLAGS) $(SRCDIR)/linearComplexity.c
-
-$(OBJDIR)/dfft.o: $(SRCDIR)/dfft.c
- $(CC) -o $@ $(GCCFLAGS) $(SRCDIR)/dfft.c
-
-$(OBJDIR)/matrix.o: $(SRCDIR)/matrix.c defs.h externs.h utilities.h matrix.h
- $(CC) -o $@ $(GCCFLAGS) $(SRCDIR)/matrix.c
-
-$(OBJDIR)/genutils.o: $(SRCDIR)/genutils.c config.h genutils.h
- $(CC) -o $@ $(GCCFLAGS) $(SRCDIR)/genutils.c
-
-$(OBJDIR)/cephes.o: $(SRCDIR)/cephes.c cephes.h
- $(CC) -o $@ $(GCCFLAGS) $(SRCDIR)/cephes.c
-
-$(OBJDIR)/utilities.o: $(SRCDIR)/utilities.c defs.h externs.h utilities.h
config.h
- $(CC) -o $@ $(GCCFLAGS) $(SRCDIR)/utilities.c
-
-$(OBJDIR)/generators.o: $(SRCDIR)/generators.c defs.h externs.h utilities.h \
- config.h generators.h
- $(CC) -o $@ $(GCCFLAGS) $(SRCDIR)/generators.c
-
-clean:
- rm -f assess $(OBJDIR)/*.o
-
-rebuild: clean assess

	1 Introduction
	1.1 Overview of VeraCrypt
	1.2 Project Scope and Methodology
	1.3 Report Structure
	1.4 Project Results

	2 Evolution from TrueCrypt to VeraCrypt
	2.1 Identifying the Source Code Bases to Compare
	2.2 General Overview of the Development History
	2.3 Full Source Code Comparison (“Full Diff”)
	2.3.1 Approach
	2.3.2 Detecting Linux and macOS Source Files
	2.3.3 Changed Parts

	2.4 Categorization of Source Code Commits
	2.4.1 Tags
	2.4.2 Results and Use for the Further Analysis

	2.5 Changes in Cryptographic Functions
	2.5.1 Cryptographic Primitives
	2.5.2 Random Number Generation
	2.5.3 Key Derivation
	2.5.4 Hidden Volumes

	2.6 Changes Related to Application Security

	3 Security Model
	3.1 Application Use Cases
	3.1.1 Personal Computers
	3.1.2 External Data Storage Devices for Personal Use
	3.1.3 Sharing of Encrypted Data
	3.1.4 Encrypted Server Systems and Virtual Machines
	3.1.5 Publicly Accessible Systems
	3.1.6 Further Usage Aspects

	3.2 Security Goals
	3.2.1 Primary Security Goal
	3.2.2 Secondary Security Goals

	3.3 Attack Scenarios
	3.3.1 System Loss or Theft
	3.3.2 Multi-Access Attacks
	3.3.3 Targeted Alteration of Data
	3.3.4 Privilege Escalation on Host System
	3.3.5 Preparing Targeted Attacks
	3.3.6 Blocking Access to Data
	3.3.7 Side-Channel Attacks
	3.3.8 Online Attacks

	4 Security Analysis of Cryptographic Mechanisms
	4.1 Encryption Schemes
	4.1.1 Block Ciphers
	4.1.2 Mode of Operation
	4.1.3 Cascading Ciphers

	4.2 Cryptographic Hash Functions
	4.3 Key Derivation Function
	4.3.1 Personal Iterations Multiplier
	4.3.2 Keyfiles

	4.4 Random Number Generation
	4.4.1 Documentation
	4.4.2 Windows Platform
	4.4.3 Unix Platform
	4.4.4 Considerations for Entropy
	4.4.5 Changes in VeraCrypt 1.24

	4.5 Cryptographic Primitives
	4.5.1 Comparison with Public Sources
	4.5.2 Manual Source Code Examination
	4.5.3 Known-Answer Tests
	4.5.4 Randomness-Tests

	4.6 Management of Secret Data
	4.7 Memory Encryption
	4.8 Recommendations

	5 Application Security Review
	5.1 Static Code Analysis
	5.1.1 CppCheck
	5.1.1.1 Usage
	5.1.1.2 Results

	5.1.2 TScanCode
	5.1.2.1 Usage
	5.1.2.2 Results

	5.1.3 Clang Static Analyzer
	5.1.3.1 Usage
	5.1.3.2 Results

	5.1.4 Clang-Tidy
	5.1.4.1 Usage
	5.1.4.2 Results

	5.1.5 VisualCodeGrepper
	5.1.5.1 Usage
	5.1.5.2 Results

	5.1.6 cpplint
	5.1.6.1 Usage
	5.1.6.2 Results

	5.2 Dynamic Code Analysis
	5.2.1 Dr. Memory
	5.2.1.1 Usage
	5.2.1.2 Results

	5.2.2 Valgrind
	5.2.2.1 Usage
	5.2.2.2 Results

	5.3 Inspection of the Windows Kernel Driver
	5.3.1 Code Inspection
	5.3.2 Dynamic Analysis

	5.4 Security of Header Parser for Container Files
	5.4.1 Fuzzer
	5.4.2 Code Coverage
	5.4.3 Corpus
	5.4.4 Modification to VeraCrypt
	5.4.5 Fuzzing the Decryption Routine
	5.4.6 Remove Encryption/Decryption Layer and CRC Checks
	5.4.7 Separating the Header Parsing Routine
	5.4.8 Summary

	5.5 Security of Third-Party Libraries

	6 Code Quality and Documentation
	6.1 Evaluation of VeraCrypt’s Code Quality
	6.1.1 Programming Guidelines and Best Practices
	6.1.2 Source Code Complexity
	6.1.3 Code Duplicates
	6.1.4 Build Process
	6.1.5 Test Cases Review
	6.1.6 Automated Analysis

	6.2 Evaluation of Documentation
	6.3 Summary

	7 Previous Work on the Security of VeraCrypt
	7.1 Academic Publications
	7.1.1 PBKDF2 Key Derivation
	7.1.2 Hidden Volumes

	7.2 Security Analysis Reports
	7.2.1 Open Crypto Audit Project: TrueCrypt - Security Assessment
	7.2.2 Open Crypto Audit Project: TrueCrypt - Cryptographic Review
	7.2.3 VeraCrypt 1.18 Security Assessment
	7.2.4 Google Project Zero
	7.2.5 Other CVEs
	7.2.6 BSI Security Analysis of TrueCrypt
	7.2.7 Summary of all Reported Security Issues

	7.3 Development Documentation
	7.3.1 Reports in the SourceForge Forums
	7.3.2 Reports in the GitHub Issue Tracker

	8 Bibliography
	9 Appendix
	9.1 Detailed Results of Tagging the Source Code Commits
	9.1.1 Overview
	9.1.2 Tag-Specific Statistics
	9.1.2.1 Tag “Boot”
	9.1.2.2 Tag “Crypto”
	9.1.2.3 Tag “Driver”
	9.1.2.4 Tag “Security”
	9.1.2.5 Tag “Static”

	9.2 Technical Information on Fuzzing Tests of the Header Parser for Container Files
	9.2.1 Machine Used for Fuzzing
	9.2.2 Corpus

	9.3 Evaluation Methods in Related Work
	9.4 Patch for the NIST STS Software

