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1 Summary

1.1 Aim

TrueCrypt is an encryption program that was until recently freely available. The development
and distribution of TrueCrypt was terminated with version 7.1a without prior notice at the end
of May 2014. The reason for this decision is not well known. On the official TrueCrypt website
[10] “WARNING: Using TrueCrypt is not secure as it may contain unfixed security issues” is
written in red at the top of the page. As parts of TrueCrypt are also contained in the approved
product Trusted Disk, vulnerabilities in TrueCrypt could also have an impact on Trusted Disk.

It was for this reason that the German Federal Office for Information Security (BSI) commis-
sioned the Fraunhofer Institute for Secure Information Technology (SIT) to carry out a security
analysis of TrueCrypt. This report summarizes the results of that security analysis. As well as
uncovering possible vulnerabilities, the aim was also to point out possible areas for improvement
during any future developments of the program.

1.2 Procedure

Security issues can have a diverse range of causes such as incorrect design decisions, programming
errors and also misleading documentation. Therefore, the project was subdivided into a number
of different work packages in order to analyze TrueCrypt from a range of different viewpoints.
The results of the individual work packages are summarized in this report in their own chapters.

Analysis of the differences between versions 7.0a and 7.1a The product Trusted Disk
that is approved by the BSI is based on the previous version of TrueCrypt — version 7.0a.
In this work package, the changes between the current version 7.1a and version 7.0a were
recorded and evaluated in terms of their relevance to the security of the program. This
information will help to gauge whether vulnerabilities in the current version could also
have a potential impact on Trusted Disk.

Evaluation of the OCAP Phase 1 Test Report Before the TrueCrypt project was termi-
nated, a security analysis financed through crowd funding had already been started. The
results of the first phase of this analysis were published in a report [14]. The subject of
this work package was to evaluate these results and the procedures used for the analysis.

Review of the encryption mechanisms Cryptographic processes for deriving keys and for
encrypting data form the key functionality of TrueCrypt. Weaknesses in these functions
would have a particularly high potential for endangering the security goals of TrueCrypt.
Therefore, the aim of this work package was to investigate whether the cryptographic
functions in TrueCrypt were correctly implemented.

Evaluation using automated code analysis An analysis of the complete source code for
TrueCrypt for vulnerabilities was completed using different up-to-date tools. All of the
vulnerabilities identified by these tools were then investigated and evaluated — either
manually or using a tool-based approach.

Evaluation of the code quality and documentation Many security holes are based on er-
rors or incorrect assumptions made by developers or users. Easy to understand, maintainable
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source code, as well as complete, well-structured and target-group oriented documentation,
are thus very important for avoiding security issues. The code quality and documentation
also provides clues as to the importance given to non-functional aspects such as security
during the development of the program.

Conceptual evaluation of the architecture In this work package, possible attack vectors
that could endanger the security goals of TrueCrypt were determined and tested to evaluate
whether suitable decisions relating to the design and architecture of the program had been
taken to protect against these threats.

Identification of dispensable parts of the code One strategy to reduce the probability of
vulnerabilities is to avoid unnecessary attack surfaces and generally to reduce the complexity
of the system. Based on the analysis of the architecture, it was thus tested whether parts
of the TrueCrypt code could be removed without losing any important functions.

Evaluation of the OCAP Phase 2 Test Report Before the TrueCrypt project was termi-
nated, a security analysis financed through crowd funding had already been started. The
results of the second phase of this analysis were published in a report in March 2015 [2]. The
subject of this work package was to evaluate the findings and to derive recommendations
for action.

1.3 Results

The subject of the analysis was the last full version of TrueCrypt — version 7.1a. As only small
changes were identified between versions 7.0a and 7.1la that were not considered relevant to
security, it is possible, however, to also transfer the results to the older version that has been
used as the basis for, among other things, the product “Trusted Disk”.

Overall, the analysis did not identify any evidence that the guaranteed encryption charac-
teristics are not fulfilled in the implementation of TrueCrypt. In particular, a comparison of
the cryptographic functions with reference implementations or test vectors did not identify any
deviations.

Reviews of the source code and the cryptographic functions that were financed by crowd funding
were carried out in part simultaneously with this study (Open Crypto Audit Project, OCAP).
The 15 vulnerabilities published by OCAP were manually verified. One of the vulnerabilities
represents a high practical threat.

The application of cryptography in TrueCrypt is not optimal. The AES implementation is not
timing-resistant, key files are not used in a cryptographically secure way and the integrity of
volume headers is not properly protected. There are many redundant implementations (sometimes
for hardware-optimization) and disused algorithms are still present in a deactivated form in
the source code. In particular, this project identified a need to improve the implementation of
the random number generator for the Linux version and OCAP has uncovered a potentially
dangerous error in the implementation of the random number generator for Windows.

The source code for TrueCrypt was tested for possible errors and weaknesses using three
different static code analysis tools. As a result of a careful manual investigation of the tool-based
results, it was possible to identify all of the suspected vulnerabilities that were flagged as being
potentially critical to the security of the code — such as overflows — as false positives.

Quality defects were identified primarily in the maintainability and documentation of the
source code. The static code analysis, various automatically calculated evaluation metrics and the
manual review of the source code all revealed numerous indications of deficiencies and deviations
from generally accepted practice. Furthermore, there is a lack of suitable documentation for
developers. The source code only contains sporadic comments and there is no description of
the system architecture. This is not immediately relevant to the issue of security. However,
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the above-average effort required for maintenance due to the quality defects and the lack of
documentation make any possible continuation of the project by third parties difficult.

The user handbook for TrueCrypt is comprehensive but poorly structured. Much of the
detailed information is difficult to find and can only be understood with previous technical
knowledge. This creates a problem because the security characteristics of TrueCrypt are partially
dependent on user behavior (for instance avoiding sleep modes or the use of hidden volumes).

From a security perspective, the fact that TrueCrypt is a purely software solution means that
it cannot in principle protect against all relevant threats. Effective protection only exists when an
encrypted disk is lost or stolen in a deactivated state. TrueCrypt does not provide any protection
against active attack scenarios such as the installation of a key logger or malware. To protect
against these would require hardware-based security measures such as those provided by a TPM
or smartcard.
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2 Analysis of the differences between
versions 7.0a and 7.1a

This chapter describes the procedure used to compare the two versions of TrueCrypt based
on their source code. It describes the procedure used and the differences found, as well as
highlighting those differences that were classified as being relevant to security.

2.1 Procedure

The source code for both versions was used as the basis for finding the differences between
the two TrueCrypt versions. Version 7.0a was downloaded from the website https://github.
com/DrWhax/truecrypt-archive/blob/master/TrueCrypt’%207.0a%20Source.zip and Ver-
sion 7.la from https://github.com/AuditProject/truecrypt-verified-mirror?files=1.
Version 7.1a was not initially taken from the same archive as 7.0a because the Open Crypto
Audit Project had used the version from the above-mentioned link. However, a later comparison
of both 7.1a versions from these different sources demonstrated that they were identical.

Versions 7.0a and 7.1a were compared with the help of version 4.1.3 of the program KDFE
Kompare. Kompare processes either individual text files or whole directory trees. The latter
were used for the TrueCrypt comparison. Kompare compares every individual file in the first
directory tree against those in the second and displays the differences. If a new file was added in
the second directory tree, it is compared to an empty file and thus the complete file is marked as
being different. The program only displays the parts of the directory tree that contain different
files. For the comparison of the different versions of TrueCrypt, the two directory trees that
corresponded to one of the TrueCrypt versions were selected in Kompare. We then worked
through the differences that were highlighted in the directory tree in alphabetical order and
manually examined the changed lines of source code.

Firstly, we attempted to contextualize the different lines of code so that we could evaluate
whether the changes would have any potential impact on the security of TrueCrypt. In order
to identify the context for a particular change, we used the name of the method in which the
changes were found and the source code within it. If it was already possible to ascertain at this
stage that the change was highly unlikely to be relevant to the security of the program because
e.g. it only dealt with the relocation of a button in the graphical user interface, the change was
marked as such and was not examined further. However, if indications were found such as e. g.
key words like »password«, we then examined where in the source code this method was called
and what impact the change could have.

2.2 Differences relevant to security

There were only two changes between versions 7.0a and 7.1a that were relevant to the security of
TrueCrypt:

1. Outdated encryption algorithms are no longer offered as an option on the command line

2. The function for including the contents of a directory in the user password now ignores
hidden files

Federal Office for Information Security 9
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The first of the above-mentioned Changes can be found in the file CommandLineInterface.cpp
in directory Main in line 259. The encryption algorithms AES/Blowfish, AES/Blowfish/Serpent,
Blowfish, Castb and TripleDES were already marked as being outdated in the source code for
version 7.0a, while in version 7.la they are no longer accepted on the command line should the
user attempt to use them.

However, this change only has a small impact on the security of TrueCrypt because experienced
users would already have ignored these outdated algorithms and these algorithms were already
marked as being outdated in version 7.0a of TrueCrypt and the user is now made aware of this
fact in version 7.1a.

The second change can be found e.g. in the file Keyfiles.c in directory Common from line 333
onwards. This affects the function ApplyListToPassword. It now ignores hidden files. The
reason for this function is to enable the encryption key for containers to not only be derived from
the password set by the user but also to include a list of files. This process increases the entropy
of the key because users often tend to select only numbers and/or letters as passwords.

This change is considered just as uncritical to security as the first from a technical point of
view. Firstly, the user is able to freely chose whether or not they activate this option at all. If
the user decides to activate this option, a message is displayed telling the user that hidden files
in the directory selected by the user will be ignored. Should the user ignore this message and, in
the worst case scenario, select a directory that only contains hidden files, the user will receive
an error message because no files will be found. This change thus makes sense from a usability
standpoint because inexperienced users do not usually understand the difference between hidden
and non-hidden files and may possibly never have even seen hidden files.

2.3 Other differences

In the following section, we have listed the differences between the two versions that in our
opinion do not have any impact on the security of the software. They are mostly small changes
to functions in the software such as e.g. changes to buttons in the graphical user interface or
fixes to bugs that occurred with some PC BIOS. The differences are presented based on the
directory tree for the software and grouped according to the directory in which they are found.
Very small differences such as altered comments were ignored.

¢ Directory Boot/Windows

— The data structure BootArguments has had another field BootDriveSignature added
to it, which was designed to make partitions from which the system is booted easier
to recognize

— Some BIOS reported I/O errors too early. Now, certain actions are attempted more
often before an error is reported
e Directory Common

— Methods for parsing arguments of commands on the command line no longer accept
an »-« or »—-« before a parameter

Small changes to the GUI (sizes, buttons, word selection, etc.)
— New methods for tooltips via the taskbar icon in TrueCrypt

— The classBootEncryption has a new help method called
SystemdriveContainsNonStandardPartitions, which tests whether there are par-
titions on a drive that are not very common, meaning ones that are not e.g. Fatl6,
Fat32, Extended, etc.
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— Dlgcode.c has a method called MountVolume, whose parameter mountOptions must
now according to the comment always be »const« because otherwise problems could
occur elsewhere in the source code

e Directory Driver

— Some mutexes were removed

— Source text for reading the »boot« flag for a partition added.

— Workaround for sending »I/O Control Requests«, instead of directly aborting

— In the methodTCCreateDeviceObject, a »magic number« was removed that only
served to recognize the mounted volume

— Bug fix for unmounting volumes when they are nested

Compatibility problems with Windows tools such as diskmgmt, diskpart, vssadmin
were resolved

o Directory Format

— In certain circumstances, the operating system should not switch to sleep mode; this
is now enforced (see file TcFormat.c)

— Changes to the graphical user interface: Some warnings relating to Windows Vista
SP1 removed, warnings added for users who want to save files larger than 4 GB in
hidden OS mode to a non-hidden partition

— Other wizards and dialogs in multiboot operation

e Directory Main/Forms

— Button to show the donation form removed

¢ Directory Mount

— Mounting of favorites changed slightly and help function added as »Baloon popup«
via the TrueCrypt Tray Icon

— In the case of a crash, the file (winDir)\textbackslash MEMORY.DMP is now also
analyzed

e Directory Platform

— The methodErease in the file Memory . cpp now uses the method Rt1SecureZeroMemory
on Windows to delete the memory, which was specially developed by Microsoft to be
more secure than the standard method memset

2.4 Summary

We compared the source code for both TrueCrypt versions 7.0a and 7.1a with one another with
the help of the open source tool KDE Kompare version 4.1.3. The tool compares two directory
trees with one another at a file level. We then analyzed the changes found to see whether they
could have an impact on the security of TrueCrypt. We only identified two changes that could
be considered to be »relevant to security«. On the one hand, leaving out hidden files when
increasing the entropy for deriving a password for encrypted containers and, on the other hand,
ignoring outdated encryption algorithms on the command line. Other changes between the two
versions tended to be bug fixes or changes to the graphical user interface. Due to the rather
small change in the version number from 7.0a to 7.1a, we also didn’t expect to discover any
major changes. This mostly occurs in so-called major releases in which the initial digit in the
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version number increases. Therefore, if there are security-relevant errors in the source code for
TrueCrypt, these were already present in version 7.0a because there were no other changes in
this context except for the two already mentioned above.

Results of chapter 2

o There were only two small security-relevant changes between versions 7.0a and 7.1a
of TrueCrypt and these were not considered critical

— Outdated encryption algorithms are no longer offered as an option on the
command line

— The function for including the contents of a directory in the user password now
ignores hidden files

e The other changes were bug fixes or changes to the graphical user interface
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3 Evaluation of the OCAP Phase 1 Test
Report

3.1 Comments on OCAP

Junestam and Guido assessed the vulnerabilities of TrueCrypt and reported their finding in the
Open Crypto Audit Project!. The report was published in February 2014 and is based on an
analysis of TrueCrypt version 7.1a. In this chapter, we evaluate the scope of the report, discuss
its findings and check whether the reported vulnerabilities can be identified using automated or
manual analyses.

3.1.1 Scope of the report

The report assesses only parts of the TrueCrypt project: the bootloader, the Windows kernel
driver and also the setup process. In the project, TrueCrypt was assessed for vulnerabilities with
a focus on the areas of information disclosure, access rights and other similar security-relevant
issues. The assessment was completed using a range of proprietary and publicly available tools,
manual tests and direct analysis of the source code.

A total of 11 vulnerabilities were identified in the report, which can be categorized as follows:
insecure cryptographic functions, buffer overflows, and memory overflows.? The authors of
the report did not assign any of the findings a high level of severity. Finally, they provided
recommendations for short-term solutions to the individual problems.

The two appendices to this report provide details on the different types of vulnerabilities and
areas with poor code quality. We consider the description of the findings, as well as the examples
and recommendations provided, to be informative and illuminating, although there is a lack of
information that simplify reproducing the findings. There is no clear description of the methods
used for the analysis and it is thus not possible to judge whether the results of the analysis
are complete in relation to the tools used or whether only partial results have been reported.
Another criticism is that the source code for the individual vulnerabilities was, in general, no
provided. For example, we did not have enough information to precisely verify Vulnerability 2 in
the report. Furthermore, we note—as stated above—that the OCAP report only refers to three of
the six sub-projects: Boot, Driver and Setup. The projects Mount, Format and Crypto were
not covered in the report.

3.1.2 Comments on the individual findings of the OCAP report
This section discusses the findings of the OCAP Report.

Finding 1 — Weak volume header key derivation algorithm. TrueCrypt uses the
PBKDEF?2 algorithm to derive keys. In order to guarantee a sufficient level of security, a sufficient
number of iterations should be completed when using the PBKDF2 algorithm. The iteration
count is set in the method get_pkcs5_iteration_count (file Pkcs5. c of the subproject Boot)
in the TrueCrypt project. Depending on the hash algorithm, TrueCrypt selects an iteration count

"https://opencryptoaudit.org/
2The OCAP classification of the findings was as follows: 1 cryptographic vulnerability, 4 data exposure vulnera-
bilities. 3 data validation vulnerabilities, 2 denial of service vulnerabilities and 1 error reporting vulnerability.
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of 1000 or 2000; the recommended minimum iteration count is actually 1000 [22]. In contrast,
NIST recommends an iteration count of 10000000 [22] for critical keys. The authors do not
directly address the question of which iteration count should be selected for PBKDF2.

Finding 2 — Sensitive information might be paged out from kernel stacks. According
to the authors, TrueCrypt could cause the operating system to experience a memory overflow
resulting in stack data being paged out to the hard disk. This could mean that attackers could
gain access to non-encrypted, confidential data in the memory. Tools for identifying these types
of memory overflows in this scenario are rare. Therefore, we have come to the conclusion that
this vulnerability is very difficult to exploit.

Finding 3 — Multiple issues in the bootloader decompresser. The authors found buffer
overreads and buffer overflows in the file Decompressor.c in the Boot project. Unfortunately,
the report does not provide any details about how this could impact the security of TrueCrypt.

As automated tools such as Coverity experience problems when scanning the Windows version
of TrueCrypt (see 3.1.4), we decided to carry out a manual analysis of the implications of the
stated weakness. We came to the conclusion that, even if they could be exploited by attackers,
they would not endanger the security of TrueCrypt. Detailed information on the manual analysis
can be found in section 3.1.3.

Finding 4 — Windows kernel driver uses memset() to clear sensitive data. TrueCrypt
uses the function memset to overwrite locations in the memory. The authors explain that the
compiler can optimize out these function calls. A search for the keyword “memset” in the
TrueCrypt project demonstrates that the function is indeed used in multiple places. In general,
this method is used to initialize variables before they are used. However, the use of this method
is dangerous in some cases, as shown by the authors through two examples in the function
RMD160Final () in file RMD160.c. We confirm that the calls are optimized out by the compiler. [5].
In addition, we also confirm that it is possible as a result that confidential information could be
extracted from the memory.

Finding 5 — TC_IOCTL_GET_SYSTEM_ DRIVE_DUMP_ CONFIG kernel
pointer disclosure. The report highlights a vulnerability via which an attacker could identify
an address in the kernel address space using a malicious program in the user-space. As correctly
recognized by the authors, this could be used to break the kernel space ASLR. Although this
would be of relatively minor significance in practice.

Finding 6 — IOCTL_ DISK__ VERIFY integer overflow. In this finding, the authors
reported an integer overflow in the method ProcessVolumeDeviceControlIrp() in the file
Ntdriver.c. In addition, they explained that the error could theoretically occur. We
did a manual data flow for the variables that can cause the vulnerability. The content of
the variable comes from the method ExInterlockedRemoveHeadList(), which is part of
Microsoft Ntoskrnl.lib library 2. Thus, this vulnerability dependents on whether the method
ExInterlockedRemoveHeadList () intercepts an integer overflow. Therefore, the vulnerability
is not in TrueCrypt but rather in the Microsoft library. Nevertheless, it is possible under certain
circumstances for information to be extracted from the memory. It is thus relevant to the
security of the program and should be resolved.

3https://msdn.microsoft.com/en-us/library /windows/hardware/ff545427%28v=vs.85%29.aspx
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Finding 7 — TC_IOCTL_ OPEN_ TEST multiple issues. According to the authors, the
use of the method zwCreateFile() within the function ProcessVolumeDeviceConrrolIrp()
in file Ntdriver.c enables an attacker to derive information, for example, about whether files
exist or not (however, the attacker cannot open the files). The function zwCreateFile() is also
called in the method TCOpenFsVolue() within Ntdriver.c. Within the function, the method
InitializeObjectAttributes() with the parameter 0BJ_KERNEL_HANDLE is called first. This
sets the mode for the current caller to kernel mode*. The function zwCreateFile() is then
subsequently called. The file is then created in kernel mode. This means that access permissions
are no longer checked when accessing the file (even externally). Meta data such as the file
path could thus be accessed externally, although viewing the content of the file is not possible
externally.

Finding 8 — MainThreadProc() integer overflow. In this finding, the authors report
on another vulnerability relating to an integer overflow that was localized to the function
MainThreadProc() in the file EncryptedIoQueue.c. The vulnerability can trigger an integer
overflow and disclose information.

Finding 9 — MountVolume() device check bypass. In the method VolumeThreadProc()
in the file Ntdriver.c the authors report that access with pThreadBlock->mount->wszVolume
is not validated before it is used. This can lead to unintentional behavior of TrueCrypt. The
report does not go into more detail on the impact of a possible exploitation of this vulnerability.

Finding 10 — GetWipePassCount() / WipeBuffer() can cause BSOD. In the analysis
carried out by the OCAP project, it was possible to produce a Blue Screen of Death. This is
located within the functions GetWipePassCount () and WipeCount () in the file Wipe.c. The
default handler for a switch statement causes the blue screen by triggering an action that requires
administrator privileges. We can confirm that better error handling should be considered in this
case.

Finding 11 — EncryptDataUnits() lacks error handling. This finding of the report is
located in the function EncryptDataUnits() in the file Crypto.c. If a call within the function
fails, the program will nevertheless still continue as normal. In particular, methods that call this
function do not check whether the method has been successfully executed. Our analysis showed
that the method is called, for example, from SetupThreadProc() in the file DriverFilter.c.
Subsequently, the returned value of EncryptDataUnits() is directly written to the device —
without even testing whether EncryptDataUnits() was successful or not. This can corrupt the
files.

3.1.3 Detailed manual analysis of Finding 3

In the following paragraphs, we present our findings relating to Finding 3, Multiple issues in the
bootloader decompresser, of the OCAP report.

In principal, the decompressor is only used for full encryption of the hard disk. The first steps
in the booting process are then as follows: BIOS is run after switching on the PC. The code
in the boot sector is then executed, which consists of the following steps: as the TrueCrypt
bootloader is present in a compressed form, it needs to unpacked by the decompressor before it
can be executed. The decompressor is firstly loaded into memory for this purpose. The checksum
for the decompressor is then calculated to test its integrity. If this is confirmed, the compressed
TrueCrypt bootloader is loaded into memory. Checksums are also used during this step to check

“https://www.osronline.com/article.cfm?id=257
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for integrity. The bootloader is then unpacked using the decompressor and executed. It is only
now that the user is asked for their password.

It should be noted that the calculation of the checksums does not guarantee that the relevant
file has not been manipulated by an attacker. As it is easily possible for the attacker to change
the checksum used for the comparison, it is only possible for this process to determine whether
the file has been damaged as a result of hardware problems or similar issues — which was also
the intention of the programmers.

We will now describe why neither the buffer overflows nor the buffer overreads in the decom-
pressor represent a threat to the security of the program. In any case, it would be necessary for
an attacker to manipulate or totally replace the compressed bootloader that is saved on the hard
disk because this is the only input for the decompressor. This implies that the attacker must
have physical access to the hard disk.

Buffer Overflows The threat represented by buffer overflows is generally that an attacker
could, under certain circumstances, manipulate the program flow and thus run malicious code
that had been previously introduced. Time consuming analyses would be required to identify
whether a vulnerability could actually be exploited by an attacker, which are not necessary in
this case for the following reason: as already mentioned, an attacker must have replaced the
original, compressed bootloader with a manipulated version in order to exploit this vulnerability.
This would exploit the vulnerability in the decompressor to divert the program flow to other
code that the attacker would also have added to their manipulated bootloader. However, this is
obviously not expedient because it is easier for the attacker to change the bootloader so that it
runs this additional code as standard. Exploiting the buffer overflow is thus superfluous.

Buffer Overreads The threat represented by buffer overreads is generally that an attacker
could, under certain circumstances, read a memory area. If keys or passwords are located in
these areas as plaintext then they could fall into the hands of the attacker. The size of the
memory area that the attacker is able to read differs from case to case and would require a
time-consuming, manual analysis. However, this is not necessary in the case of the two buffer
overreads found in the decompressor because as previously described the decompressor is run
before the user enters their password. Therefore, there is nothing of interest in the memory at
this point in time and any exploitation of this vulnerability is pointless.

3.1.4 Checking the findings using Coverity

In order to additionally check the findings of the OCAP report, we analyzed TrueCrypt for
Windows using the automated code scanner software Coverity (see Chapter 5 for more details) and
compared its results to those of the report. It is important to note here that TrueCrypt for Win-
dows utilizes three different Microsoft compilers. In particular, the Microsoft Visual C++ 1.52¢
compiler from 1994 is used®. Coverity no longer supports this old compiler. The compiler is used
in the project Boot, therefore this project cannot be analyzed using Coverity. The analysis of
the results revealed that none of the vulnerabilities identified in the OCAP report were found by
Coverity. These vulnerabilities are thus viewed by Coverity as false negatives.

*http://support.microsoft.com/kb/145669

16 Federal Office for Information Security


http://support.microsoft.com/kb/145669

Security Analysis of TrueCrypt

3.2 Summary

Results of chapter 3

e The OCAP report describes a total of 11 vulnerabilities in TrueCrypt.

e The report has clear deficiencies when describing the underlying methods and
techniques used for the analysis. It is thus not possible to a large extent to reproduce
the findings precisely.

e The automated code analysis could not identify the vulnerabilities presented in the
OCAP report.

o For some of the vulnerabilities highlighted in the report, we were able to prove by
means of a manual analysis that they would be difficult to exploit by attackers in a
real TrueCrypt environment.

Federal Office for Information Security 17



Security Analysis of TrueCrypt

4 Review of the encryption mechanisms

4.1 Encryption algorithms

Version 7.1a of TrueCrypt supports the encryption schemes AES, Serpent and Twofish for
newly created volumes. The hash functions RIPEMD-160, SHA-512 and Whirlpool are used
for these volumes. The encryption process is always carried out here in XTS mode. In the
first part of this review, internal interfaces and data flows in the TrueCrypt implementation
were investigated in order to identify areas that may enable a comparison of the implemented
crypto functions with analogue functions in open source implementations. A call graph for the
TrueCrypt software compiled on Linux was generated in order to plan what tests could be carried
out. The evaluation and generation of the graphs was done with the help of the scripting language
Ruby in combination with the tools cscope [6] and rtags [1]. In order to support the analysis,
abstractions of the graphs (e. g. interfaces between classes) were also implemented. Checking the
entry points in the call graph revealed that these functions were part of the user interface or test
functions. The functions aes_encrypt_key, aes_encrypt_key192 and aes_encrypt_key128
were not used. In the version under investigation, only the function aes_encrypt_key256 was
used. Figure 4.1 illustrates the complexity of the calculated call graph, Figure 4.2 shows a part
of the call graph that contains all of the call paths to the basic function aes_encrypt which is
implemented in assembler.

In order to implement the tests for the review, the available algorithms and the corresponding
interfaces of the standard open source libraries were investigated. Table 4.1 lists the available
algorithms, as well as the availability of XTS mode for the algorithms to be tested which are
implemented in TrueCrypt, OpenSSL and Libgrypt.

Algorithm  TrueCrypt OpenSSL Libgcrypt

AES + + +
Twofish + - +
Serpent + - +
AES-XTS + + -
Twofish-XTS + - -
Serpent-XTS + - -

Table 4.1: Available algorithms

The table shows that Libgrypt can be used to test the implementation of all symmetric
encryption algorithms. The open source alternative tcplay[12] that is compatible with TrueCrypt
was selected for this test. It contains a generic XTS implementation and can be compiled in
combination with Libcgrypt. tcplay was modified to provide one library with the functions
required for the test.

The green nodes in Figure 4.3 show a part of the call graph used for the AES encryption in XTS
mode. This part does not contain any interfaces that could be used for a direct comparison with
teplay /Liberypt. For this purpose, the function EncryptionAlgorithm::EncryptSectors from the
generic part of the TrueCrypt implementation was selected (blue nodes). The tests implemented
for the comparison were initially carried out with test vectors defined in accordance with the
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IEEE P1619TM /D16 standard [13] in order to check the validity of the approach. This test was
successfully completed with the modified tcplay library. The data for further tests were created
by random:

e 256 bit AES key for the data encryption
e 256 bit AES “tweak key” for incorporating the position of the data in the encryption.
e 512 byte data blocks

As Serpent and Twofish also use the same key lengths as AES, it was possible to carry out the
tests for all algorithms in parallel using the same test data. The generated test data were written
to a CSV file (delimiter = ,) in accordance with the format defined inTable 4.2 . The data was
represented as hex string format (e.g. 4 bytes: CAFFEE(2).

Type Algorithm Length
Data key =~ Random 32 bytes
Tweak key Random 32 bytes
Data Random 512 bytes
Cipher AES, Serpent or Twofish 512 bytes

Table 4.2: Format of the test data for symmetric encryption

10 million tests were carried out. There was no difference identified in the calculated cipher in
any of the tests.

4.2 Key derivation

A 256 bit key was used for all of the tested encryption processes. Both of the keys required
for XTS mode were generated using the PBKDF2 method, which is specified in PKCS5 v2.0.
Figure 4.4 shows an extract from the TrueCrypt call graph with the functions for deriving the
keys as the end points.

OpenSSL was utilized in accordance with table 4.3 for testing the key derivation functions
used.

TrueCrypt OpenSSL

pkesbHmacRipemd160.DeriveKey PKCS5_ PBKDF2 HMAC digest: EVP__ripemd160
pkcsbHmacShal.DeriveKey PKCS5 PBKDF2 HMAC SHAI1
pkesbHmacShab12.DeriveKey PKCS5_PBKDF2 HMAC digest: EVP__shab12

pkcsbHmacWhirlpool.DeriveKey ~ PKCS5__PBKDF2_ HMAC digest: EVP_ whirlpool

Table 4.3: TrueCrypt / OpenSSL key derivation functions

The generated test data were written to a CSV file (delimiter = ,) in accordance with the
format defined inTable 4.4 . Except for the length values, the data was was represented as hex
string format (e.g. 4 bytes: CAFFEE(02). The lengths were given as a normal number in text
form. A CSV file was created for every algorithm.

The length values were selected in accordance with the existing TrueCrypt implementation.
A key length of 240 represents the maximum possible key length multiplied by two because
two keys are required for some modes. Both keys were each taken from the longest derived key
without overlapping, which was not a problem because during the derivation the maximum value
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Type Algorithm Length

Password length Random Variable

Password Random Password length (bytes)
Salt length - 4

Salt Random 4 bytes

Key length Ripemd160 240 bytes

Key Shal, Shab512, Whirlpool or Ripemd 160 Key length in bytes

Table 4.4: Format of the test data for the key derivation

is always used. The computed call graph was used to investigate whether this maximum value
was used in all cases. 10 million tests were also carried out here and no differences between the
calculated keys were identified.

4.3 Random number generation

The improvements presented in this code review, related to random number generation in the
file Core/RandomNumberGenerator.cpp, should be verified in a practical test. The function
RandomNumberGenerator: : AddSystemDataToPool adds greater entropy to the pool of random
numbers for the random number generator. This can apparently take place in two modes:
fast and non-fast — encapsulated by the calls RandomNumberGenerator: :GetDataFast and
RandomNumberGenerator: :GetData in the file Core/RandomNumberGenerator.h. This process
for generating random numbers is only used by the Linux or MacOS variants of TrueCrypt.
On the Windows platform the generation of random numbers in the file Common/Random.c
is carried out based on the Windows crypto functions. Vulnerabilities were also identified here
within the OCAP-2 report, which will be discussed in Chapter 9.2. The fast variant is only
found in the functions CoreBase: : ChangePassword! and a FatFormatter: :Format application.
These applications are not very critical but could nevertheless be handled using a better schema
(see below). All other calls are carried out with the non-fast variant.

However, the non-fast variant is implemented in such a way that it falls back to the fast
variant in certain cases. In both cases, the entropy pool is initially filled along its entire length
with data from /dev/urandom. Then the pool is enriched with as much data from /dev/random
as is currently available. The problem is caused, if there is no data currently available in
/dev/random. In this case the level of entropy is not greater than the fast variant. This is
particularly true for the first initialization of the entropy pool. Furthermore, all of the entropy
added to /dev/random by the kernel is also added to /dev/urandom. Therefore, the output from
/dev/urandom has at least the same level of entropy as added to the pool in this schema by
/dev/random and, most importantly, this is the same entropy.

The reason for using /dev/random at all lies in the fact that the Linux kernel only responds
to requests when it has collected sufficient entropy. Yet this type of call typically takes a
long time because it requires that every byte is filled with a corresponding minimum level of
entropy. However, requests are already initialized using /dev/urandom before. In the use case
for automated deployment, embedded systems and virtualisation (which generally display a
lack of entropy), the implementation used does not help because there are no requirements for
a minimum level of entropy imposed on /dev/random. In addition, once the minimum level
of entropy had been assured in the Linux kernel, the data from /dev/urandom could be used
directly and further calls /dev/random would be unnecessary?.

Yor the first n calls; followed by a non-fast call
2Note: Too much Entropy is not a bad thing
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Instead, a correct implementation would ensure that RandomNumberGenerator will read
a minimum level of entropy from /dev/random during initialization before delivering the first
random numbers. No further calls to /dev/random would be necessary. From this point in
time, either the data from /dev/urandom could be directly used or added to a pool, or this
precursory-entropy could supply a deterministic random number generator with a seed and no
further calls to /dev/random or /dev/urandom would be necessary. Since Linux 3.17, there has
also been the SysCall getrandom®. This tackles the problem of ensuring the correct initialization
of the Linux kernel without having to wait for results from /dev/random.

This statement based on a code review and should be verified in a practical test, for example,
on the basis of a QEmu setup or corresponding debugging points in the source code.

4.4 Summary

Results of chapter 4

e In order to identify suitable areas that would allow an investigation of the crypto-
graphic functions used in TrueCrypt, automated callgraphs were implemented.

o Tests to compare the currently used cryptographic functions for symmetric encryption
and the derivation of keys based on standard open source libraries were carried out.
The test data was generated randomly. Long-running tests (8times10 million test
cases) revealed no differences to the TrueCrypt implementation.

e An investigation of the random number generator for Linux revealed that in low
entropy scenarios there is no guarantee for a sufficient entropy level because the use
of the high entropy /dev/random requires significant improvement.

3http://man7.org/linux/man-pages/man2/getrandom.2.html
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5 Evaluation using automated code analysis

Automated static code analysis of software has established itself as an effective tool for software
development and provides a comprehensive and objective assessment of a software product.
Research over the last few years has enabled the high precision analysis of large-scale projects in
terms of the quality of their code and their security. The code scanner initially derives a static
model of the source code, which can then be examined for known patterns — so-called checkers.
In this process, the software does not need to be explicitly executed; some analysis tools do not
even require compilable code.

However, these tools still have great scope for improvement in the area of false positives. These
are warnings issued by the scanner that do not correspond to actual deficiencies but often occur
because the assumptions made by the scanner are too broad based. A large part of the scientific
research in this area currently focuses on drastically reducing the proportion of false positives.

In the last few years, some automated tools — both those under commercial license and open
source tools — have been launched on the market for a variety of programming languages. In this
project, we used three of the most well-known and most advanced static code analysis tools for
C and C++ : the Clang Static Analyzer, Coverity and Cppcheck. In the following sections, we
describe the features of these tools and focus, in particular, on their strengths and weakness, as
well as on the differences between them.

Clang

Clang Static Analyzer is an analysis tool for C, C++ and Objective-C that requires the software’s
source code. The tool is part of the Clang project, a front end for the LLVM compiler infrastructure
that is available for all standard platforms. This analysis tool specializes in the high precision
analysis of software errors in general — meaning it has a low false positive rate. In order to
keep false positives to a minimum, the symbolic execution technique is used. This technique
involves systematically scanning the program along all feasible paths and abstracting symbolic
values from concrete values in the program. Clang integrates several specialized checkers and
verifies these along the detected program paths. In our analysis, we activated all — stable and
experimental — standard checkers and also the security-relevant checkers. The command we used
for the analysis was thus:

scan-build -enable-checker core -enable-checker alpha.core \
-enable-checker security -enable-checker alpha.security

Many analysis tools based on the symbolic execution of a program experience problems with
path explosion. The number of all possible paths grows exponentially as the program get larger.
In order to produce a workable analysis, it is generally necessary to limit the depth of the analysis
to realistic programs. This can lead to incomplete results.

Coverity

Coverity is a commercial static code analysis tool and enables software developers to analyze their
programs for software errors. This tool is interesting because all possible paths — particularly
inter-procedural paths® — in the program are analyzed. Coverity assumes that the software being

!The effect of the way methods are called from within other methods is taken into account. This makes it possible
to form a complete model of the Software.
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analyzed can be compiled. The tool then taps into the build process and transforms the bytecode
into a static model that can then be analyzed by Coverity for typical patterns — checkers . The
patterns cover different categories of software errors. For example, Coverity reports deficiencies
in the code quality and also security holes.

An analysis using Coverity involves three steps:

1. Configure the compiler for Coverity. (once per compiler)

2. Compile the project within the Coverity environment. This transforms the code into an
intermediate representation that is used internally by Coverity.

3. Analyze the intermediate results — the desired checkers can then be activated for this
purpose.

We used the static code analysis tool on Linux and Windows builds. We have described the
actual command sequences used for scanning with Coverity below:

Details for Linux:

1. On Linux, TrueCrypt can be compiled using the compiler gcc?.

cov-configure gcc

2. Coverity expects a build command here. A directory in which the intermediate results will
be saved must also be entered as an argument. The complete build command for TrueCrypt
is given as a further argument. It is important to ensure here that a make clean command
is called in advance so that all previously compiled files are discarded and recompiled.

cov-build --dir ... make NOGUI=1 WXSTATIC=1

3. Analysis of the intermediate results with specific checkers.

This is carried out with: cov-analyze --dir ... --all --aggressiveness-level
medium

The files in the specified directory in the cov-build command are analyzed here.

The parameter aggressiveness-1level controls the intensity of the search. On the one hand,
it can increase the length of the analysis, while on the other hand, it can also return more false
positives.

For example, a total of 1382 results were found for the configuration aggressiveness-level
high, while in comparison a total of 58 errors were found for the setting medium. In terms of
the further manual inspection of the results, we limited the search to aggressiveness-level
medium.

Details for Windows: A TrueCrypt build on Windows uses a total of three different compilers,
which causes problems when carrying out the Coverity analysis. The TrueCrypt project comprises
the projects Boot, Driver, Crypto, Mount, Format and Setup. The subproject Boot uses the
Microsoft Visual C++ 1.52¢ compiler from 1994. Coverity does not support this compiler and
cannot be configured for this compiler (step 1). Therefore, the standard TrueCrypt build process
for a Visual Studio project cannot be used for the Coverity analysis. It was thus necessary
to break down the build process into its individual subprojects and their corresponding build
processes.

With the exception of Crypto and Driver, all other projects are directly dependent on Boot.
As Coverity requires a functioning build command, it is important to ensure that Boot has
already been compiled in advance. The following steps must be completed (see step 2):

https://gce.gnu.org/
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1. Configure the Visual Studio compiler:

cov-configure --msvc .../cl.exe

2. Compile the project Boot without Coverity:
msbuild /p:Configuration=Boot .../TrueCrypt.sln
Analysis of all other projects with Coverity:
cov-build --dir ... msbuild /p:Configuration={project} ../TrueCrypt.sln

The projects should be compiled here according to their dependencies, preferably in the
following sequence Driver, Mount, Format and Setup. The project Crypto cannot be
compiled on its own as the subprojects reference it directly.

3. Start the Coverity analysis:

cov-analyze --dir ... --all

The Coverity analysis uses the build for Boot previously created in step 2. Therefore, Coverity
does not analyze this project and thus no results can be expected within Boot. Using the default
value aggressiveness-level normal, the analysis returned 158 findings, which we will focus
on in the results section later.

Cppcheck

Cppcheck is a tool for finding software errors in C and C++. The tool directly analyzes the
program’s source code. The analysis searches for patterns to recognize memory leaks, uninitialized
variables or null dereferences. One advantage of scanning at a source code level is that the
semantics of the language can also be taken into account.

Cppcheck promises a 0 percent false positive rate. However, this also means that some
potentially interesting findings are either discarded by the analysis or not reported. In the case
of TrueCrypt 7.1a, most of the results from Cppcheck referred to bad programming practices,
which could but do not necessarily lead to security holes.

As the individual results are highly dependent on the underlying technology, it is necessary
when completing an automated security analysis to utilize a broad spectrum of tools. This was
also confirmed by a comparison of the (Linux) findings with one another. We were able to link
8 of the 209 results from Cppcheck with the 58 findings from Coverity. (Coverity groups error
messages of the same type in the same file as one result. Without this grouping, it would be
possible to link a total of 17 warnings.) In contrast, we were unable to identify any overlap
between the 71 results from Clang and those returned by the other tools.

5.1 Overview of the results of the analysis

In this section, we will provide an overview of the warnings that were reported by the different
tools. In order to make the results comparable, we classified them according to the taxonomy
Seven (plus one) Pernicious Kingdoms, which was developed by the Fortify Software Security
research group. This classification system is defined as CWE-700 and aims to categorize software
errors as concrete and specific problems rather than abstract and theoretical issues.

The software errors that were reported by the different analysis tools can be mapped to the
eight “Kingdoms”. The eight Kingdoms are (sorted in descending order of importance)

e Input Validation and Representation

o API Abuse
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Figure 5.1: Classification according to the Seven Pernicious Kingdoms [21]. The software errors
in the category “Input Validation” correspond to the security-relevant software errors

e Security Features
e Time and State
o FErrors

e Code Quality

¢ Encapsulation

o Environment

In this report, we integrated the categories “Errors” and “Environment” into the category “Code
Quality” because only a small number of software errors were reported in the first two categories
and we were able to attribute these to bad programming practices.

The classification of the results from the Clang, Coverity and Coverity scanners according
to CWE-700 can be found in Figure 5.1. Most of the errors found by Coverity and Cppcheck
can be attributed to deficiencies in code quality. It is also clear here that Cppcheck specializes
in identifying deficiencies in the code quality. In contrast, the Clang Static Analyzer primarily
reported errors that we attribute to incorrect API usage.

5.2 Details on the error reports and recommendations

In this section, we report on the results of the three analysis tools in relation to TrueCrypt.

We focus on each tool individually and discuss the the security-relevant classes of warnings.
The security-relevant software errors mainly fall into the first four Kingdoms (Figure 5.1).

By initially classifying the warnings, we were able to identify potentially security-relevant
software errors. We then subsequently analyzed every one of these software errors in detail and
came to the conclusion that they were false positive warnings. Therefore, we have merely covered
the interesting, non-trivial examples in this section.

5.2.1 Clang Static Analyzer

The analysis of TrueCrypt using the Clang Static Analyzer delivered a total of 71 warnings.
Following a manual analysis of the results, we are firmly convinced that all of the warnings are
false positives. The majority of the results (55) deal with data type conversions for pointers,
which could in principle lead to corrupt data but are actually unproblematic in this case. The
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ID File name Method Type Stated risk level
CLANG-1 /Crypto/Sha2.c sha_endl Out-of-bounds access High
CLANG-2 /Crypto/Sha2.c sha_end2 Out-of-bounds access High

Table 5.1: Risk level for the Clang results

563 | static vold sha_end2(unsigned char hvalll, shaSl12 ctx ctx[1], const unsigned int hlen)

564 {  uint_32t 1 = (uint_32t) (ctx-=count[0] & SHAS1Z MASK);

565

566 /* put bytes in the buffer in an order in which references to  #/

567 f* 32-bit words will put bytes with lower addresses into the */

568 /* top of 32 bit words on BOTH big and little endian machines  */

569 bsw_64(ctx-=wbuf, (1 + 7} == 3);

. & Within the expansion of the macro 'bsw_64':
a Access out-of-bound array element (buffer ]
overflow) {int i = {{i + 7) >> 3); while(_i--) {{uint_sst*)ctx->

wbufd[_1] = (({uint_sat) (({({({{uint_32t) ({(uint_sat*)ctx-=|
buf)[_i1))) == 24) | ((({uint_32t) (({uint_s6at*)ctx-=

570 wbufd[_11))) == (: 24))) & oxeoffooff) | (((({{uint_32t

) ) o Jilluint_sat*)ctx-=wbuf) [_11)]) == 8) | ((({uint_32t
571 /* we now need to mask valid bytes ) (((uint_sar+)ctx uf) [_11)]) =< (32 - 8))) & oxffooffoo
572 * ingle 1 bit and man ro 1) =< 32 | (0000 {uint_32t) (({ (uint_s4t=) ctx->wbuf
/% a single 1 b1t and as many zero () y)" 250 )y 20 20y | ((((uint_32¢) ((((uint_sat
573 /* we can always add the first padd+)etx-swbuf) [ 1 = 32))) << (32 - 24))) &
574 /* buffer always has at least one d ©x00ffooff) | ((((((uint_32t) ((((uint_sat*)ctx->wbuf)[_i]
. . ) == 32))) »>8) | ((((uint_32t) ((((uint_64t*)ctx
575 ctx-wbuf[} == 3] &= -L:!._64(ffffffff.__,_\,buf‘l[ i1) »= 32))) << (32 - 8))) & OxPfoOffo0
576 ctx->wbuf[1 == 3] |= li_s4(oooooood)));

Figure 5.2: SHA512 out of bound array access.

high number of false positives can be explained by the fact that these types of operation are
extremely difficult to recognize using an automated static code analysis because, for example, no
precise semantic handling of integer arithmetic (in concrete terms: semantics at a bit level) is
carried out, as is otherwise standard with symbolic execution.

The 11 results returned by Clang that related to code quality are not relevant to security.
Therefore, we have not included them here and refer you to Chapter 6. Nevertheless, we would
like to point out that it is possible to resolve most of the warnings with small improvements to
the source code. This would drastically reduce the number of results returned by the three tools.

The remaining six findings refer to potential out-of-bounds accesses. In Table 5.1, two
interesting warnings are listed that required further analysis before it was ultimately possible to
categorize them as false positives. Both warnings are caused by two similar functions. They both
carry out so-called digest calculations for the cryptographic hash functions SHA256 and SHA512.

Figure 5.2 shows a possible out-of-bounds access of the array ctx->wbuf within the function
sha_end2. An out-of-bounds access could be an exploitable security hole. Therefore, we continued
to investigate the circumstances under which the array access could occur.

The red box in Figure 5.2 shows the complex expression that calculates the index with which
the array is accessed. In this example, indices are calculated in a particular way that involves
complex binary operations such as shifts, OR and AND expressions. As already mentioned, it
is precisely these expressions that are extremely difficult to analyze — either automatically or
manually.

In this case, the fact that the observed array has a fixed size is helpful. Therefore, it can be
expected that only a limited number of execution paths exist in the program that can access this
array. It is thus sensible to use a symbolic execution tool that focuses on generating test cases.

KLEE is one such tool: It can analyze C and C++ and generate symbolic test cases. Thanks
to its integrated STP theorem prover, it can precisely handle expressions that involve bit-vector
arithmetic [4].

KLEE was able to complete a full symbolic analysis within less than a minute and identify
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ID File name Method Type Stated risk
level
COV-1 /Main/ AskPassword Out-of-bounds High
TextUserInterface.cpp access
COV-2 /Main/ ToKeyfileList Various High
CommandLineInterface.
cpp
COV-3 /Platform/Unix/File. GetPartition- Overflowed return ~ Medium
cpp DeviceStartOffset value

Table 5.2: Risk level for the Coverity results for Linux

if (!wverPhase && length < 1)
{
4 CID 10309 (#1 of 1): Out-of-bounds access (OVERRUN)
5. underrun-buffer: Undemrunning passwordBuf at -1 by passing argument 8uL [show details]

password ->5et (passwWwordBuf, 8);
return password ;

(a) The method is called with parameters that lead to a buffer underun according to Coverity.

7. loop_bounded_by_parm: charCount bounds loop condition i < charCount .

for (size_t i = 0; i < charCount; ++1)
{
8. index_parm_via_loop_bound: Pointer password Is accessed by i , whose upper bound is charCount in loop conditional i < charCount.
conv.c = password[i];
passwordBuf[i] = conv.b[1lsbPos]:
for (int j = 8; j < {int) sizeof (wchar_t); ++j)
{
if (j != 1sbPos && conv.b[j] != @)
unportable = true;

}

(b) Details for the method Set, which is called in the Figure above.

Figure 5.3: Details about the result COV-1.

17 different execution paths in the analyzed subprogram . The index for the array access was
generated for each individual program path. None of these indices led to an out-of-bounds access
to the array.

5.2.2 Coverity

Linux scan In total, the scan of the Linux version of TrueCrypt using Coverity returned
58 results. The proportion of the results relating to code quality was remarkably high. In
particular, these deal with some non-initialized variables in constructors. We were able to
categorize these software errors as not being relevant to security after a manual analysis, although
it would nevertheless be sensible to fix these errors in TrueCrypt. The results from Coverity are
extremely helpful for this purpose.

This section concentrates on three of the results that were categorized by Coverity as being
security-relevant (category: Input Validation) (see Table 5.2). Our analysis revealed that these
three results were false positives. We will present our findings below.
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A4 Handle escaped separator
1. var_decl: Declaring variable arr .
588 wxArraystring arr;
581 bool prevEmpty = false;

(a) The variable arr is initialized with the default constructor.

if (arr.Count() = 1)
{

arr.Add (L"");
continue;

w
[ I L N U R R A |
1]

}
4 CID 10307 (#2 of 2): Uninitialized pointer read (UNINIT)
9. uninit_use_in_call: Using uninitialized value arr.m_pItems when calling Last . [show details]
527 arr.Last({) += token.empty() ? L'." : token:

1

o

(b) The last element of the array is read later.

Figure 5.4: Details about the result COV-1.

129 A/ HDIO GETGED ifoctl is limited by the size of long
36 TextReader tr ("/sys/block/" + string (Path.ToHostDriveOfPartition().ToBaseName()) + "/" + string (Path.ToBaseName()) +

string line:

tr.Readline (line};
1. overflow: Multiply operation overflows on operands TrueCrypt: :5tringConverter: :TolInt64(line) and this->GetDeviceSectorSize() . Example values for
operands: this->GetDeviceSectorSize() =2147483648, TrueCrypt::StringConverter::ToUInt64(line) = 18397239859749060607.

4y CID 10284 {#1 of 1): Overflowed return value NTEGER_OVERFLOW)

2. overflow_sink: Overflowed or truncated value (or a value computed from an overflowed or truncated value)
TrueCrypt::StringConverter::TolInt64(line) * this->GetDeviceSectorSize() used as return value.

return StringConverter::TolUInt64 (line) * GetDeviceSector5ize():

Figure 5.5: Details about the result COV-3.

COV-1 In Figure 5.3, the details about the first result returned by Coverity are presented. The
method Set is called, whereby the second parameter is 0. Within the method Set, the second
parameter is the variable charCount. Coverity returns a warning in line 135 because it assumes
that the array passwordBuf is dereferenced with index i. However, it is clear that the value of
the variable i is limited and cannot be less than 0 or more than charCount. Furthermore, the
variable charCount is actually 0 in this call context and the loop is thus immediately skipped. A
buffer underrun cannot therefore occur.

COV-2 The second result (Figure 5.4) is due to the insufficient initialization of a variable
within the constructor for an included library (wxWidgets). The non-initialized variable is
accessed at a later point in time. However, the variable is a field of an object within the library.
The initialization is thus the responsibility of the developers of the library and not TrueCrypt.

COV-3 Figure 5.5 shows an integer overflow. A line is read from a file and then converted
into a unsigned integer variable with 64 bits. The subsequent multiplication with another integer
variable can cause it to exceed the maximum range for a variable of type uint64 of —2%3 + 1 to
263 — 1.

In any case, the variable 1ine is limited by the memory capacity of a long variable (of —231 41
to 23! — 1) (see comment). The result from GetDeviceSectorSite() is also of type long. A
multiplication of two variables of type long cannot, however, exceed the maximum range of
uint64.
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ID File name Method Type Stated risk
level
COV-4 /Common/Keyfiles. KeyFilesApply Out-of-bounds write High
c
COV-5 /Mount/Mount.c DismountIdleVolumes Insecure data Medium
handling
COV-6 /Format/InPlace. FastVolume- Overflowed return Medium
c HeaderUpdate value

Table 5.3: Risk level for the Coverity results for Windows

for (size_t i = @: i < keyfileData.size(): i++)
{
crc = WUPDC32 (keyfileDatali]., crc):

23. Incr: Incrementing writePos . The value of writePos may now be up to 64.
keyPool [writePos++] += (unsigned int8) {crc == 24},
4 CID 10927 (#1 of 1): Qut-of-bounds write (OVERRUN)
24, overrun-local: Overrunning array keyPool of 64 bytes at byte offset 64 using index writePos++ (which evaluates to 64).

keyPool [writePos++] += (unsigned intd) {crc »>> 16);
keyPool [writePos++] += (unsigned int8) {crc == 8);
keyPool [writePos++] += (unsigned intd) cre;

b=

10. Condition writePos » , taking false branch

o

.

14. Condition writePos > , taking true branch

o

-

18. Condition writePos » , taking false branch

o

19. cond_at_most: Checking writePos >= 64 implies that writePos has the value which may be up to 63 on the false branch.

if (writePos >= KEYFILE_POOL_SIZE)
writePos = @;

Figure 5.6: Details about the result COV-4.

Windows scan The scan of the Windows version of TrueCrypt returned a total of 158 warnings.
It is also important to note here that the majority of these warnings once again referred to code
quality. The 22 findings in the category “Input Validation” were of particular interest. We will
demonstrate the process for the manual analysis based on three (see Table 5.3) selected examples
that are relevant to security. We proceeded in the same manner with the other findings.

COV-4 This finding (see Figure 5.6) from Coverity is a false positive: Coverity returns here
an out-of-bounds write access. The array keyPool has a length of 64 and the static analysis
demonstrates that the array is written to with an index of 64. This would lead to a write
access outside the array. However, the analysis does not recognize the fact that the operation
writePos++ is called precisely four times within the loop. As writePos = 0 initializes to 0, the
invariant writePos % 4 == 0 is true after the loop. In the if statement in line 270, writePos
thus has a value that is a multiple of 4. The value is either precisely KEYFILE_POOL_SIZE = 64
or is less and thus has a maximum of 60. A further pass of the loop thus does not lead to any
write access outside the length of the array.

COV-5 The result in Figure 5.7 shows a so-called taint flow. The displayed code is within a
loop. The function DeviceIoControl sends a control sequence to a driver that carries out the
corresponding operation. These operations could, among other things, be read and write accesses
to a data volume. The static analysis assumes here that after the first pass through the loop the
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4, Condition LastKnownMountList.ulMountedDrives & (1 << i) ,taking true branch
17. Condition LastKnownMountList.ulMountedDrives & (1 << i) ,taking true branch

7896 if (LastKnownMountList.ulMountedDrives & (1 << 1))

{

memset (&prop, @, sizeof(prop)).:
prop.drivelNo = i;

5. tainted_data_argument: Calling function DeviceloControl faints argument prop.
4 CID 11150 (#1 of 1): Untrusted value as argument (TAINTED_SCALAR)
18. tainted_data: Passing tainted variable prop to a tainted sink.

7181 bResult = DeviceloControl (hDriver, TC_IOCTL_GET_WOLUME_PROPERTIES, &prop,
182 sizeof (prop)., &prop, sizeof (prop)., &dwResult, NULL);

Figure 5.7: Details about the result COV-5.

4 CID 11110 (#1 of 1): Use of untrusted scalar value (TAINTED_SCALAR)
7. tainted_data: Passing tainted variable header + &4 to atainted sink. [show details]
EncryptBuffer (header + HEADER_ENCRYPTED DATA_OFFSET, HEADER_ENCRYPTED_DATA _SIZE, headerCryptolnfo)) .

(a) The variable header contains information about a file header.

3. data_index: Using tainted variable (unsigned int)(unsigned char){left »> 24) asan index to pointer s .
369 right ®= (((s[GETBYTE(left,3)] + s[256+GETBYTE (left.2)])
178 A 5 [2*256+GETBYTE(left,1)]) + s[3*256+GETBYTE (left,.8)])
37 Mopli*isl];

left = (((s[GETBYTE(right,3)] + s[256+GETBYTE (right.2}])
374 A 5[2*256+GETBYTE(right,1)]) + S[3*256+GETBYTE (right.8)1)
375 A pr2*ie2];

(b) An integer representation of header is used later for encryption.

Figure 5.8: Details about the result COV-6.

argument prop could receive sensitive data e.g. through a read access. In the second pass, the
function DeviceIoControl is called once again. This could then write the data to another data
storage device. In this actual case, it can be seen that only data from the driver is loaded during
each pass through the loop. In addition, the values saved to prop are additionally deleted by the
call from memset (line 7098). Therefore, this ensures that prop does not store any data from the
last pass through the loop.

COV-6 This result (see Figure. 5.8) is interesting because Coverity identifies a taint flow
that uses a crypto function. The variable header contains information on a file header. This
information then flows into the function EncryptBuffer(...). Via multiple function calls, the
encryption algorithm BlowFish (depending on the settings) is ultimately used to encrypt the
header information. Part of the BlowFish algorithm can be seen in Figure 5.8 (b). The variable
left contains parts of the information from the variable header. Of course, an encryption
algorithm must use the (sensitive) incoming data in order to generate the encrypted data.
Nevertheless, the variable left is only used as an index to access the array s. Therefore, we do
not consider this result to be critical from a security standpoint.
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5.2.3 Cppcheck

This static code scanner primarily delivers results in the area of code quality. The tool only checks
the syntax of the source code and thus does not model any method calls. It was thus possible to
easily categorize the results. Four other array out-of-bounds accesses proved interesting, although
it was possible to quickly confirm these as false positives following a manual analysis.

5.3 Summary

As part of this work package, TrueCrypt 7.1a was analyzed in more detail for security holes with
the aid of static code analysis tools. The use of three different tools demonstrated that a variety
of different warnings could be found.

A precise analysis of the security-relevant warnings returned by the tools showed, however,
that these were false positives that either could not occur during the runtime or did not represent
a problem.

We exported the results from the scanners and have submitted them additionally alongside
the report.

Results of chapter 5

o It is sensible to use a broad spectrum of tools: Clang, Coverity and Cppcheck all
deliver different results.

e No security holes could be found in TrueCrypt 7.1a with an automated code analysis,
although it was possible to exclude some potential holes in the program .

o It was only possible to categorize some results as false positives after a comprehensive
analysis using additional tools.

e The results could make it possible to easily and efficiently resolve quality deficiencies
in the implementation of the program.
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6 Evaluation of the code quality and
documentation

6.1 Evaluation of the code quality

The ideal quality assessment of software artifacts would deliver a formal proof of the correctness
of the program. In the case of large and complex software such as TrueCrypt, formal verification
still remains impractical. The most common method for verifying software is thus via functional
tests. The thoroughness of these functional tests is mostly assessed based on their coverage of
the source code. Unfortunately, almost no suitable test cases exist for TrueCrypt, which means
that it is not possible to carry out a meaningful assessment of the quality of the software on this
basis.

Evaluating the code quality based on the software’s internal structure and source code is an
indirect but nevertheless helpful indicator of the overall quality of the software. In particular, it
has been shown that the code quality has a major influence on the long term maintainability of
a software project. Particularly in view of the termination of the official TrueCrypt project, we
believe that an evaluation of the maintainability of the code base is especially important. Those
institutions that decide to continue using TrueCrypt will necessarily be responsible themselves
for maintaining the code base.

6.1.1 Programming guidelines and best practices

The documentation for TrueCrypt does not contain any information on programming guidelines.
A set of programming guidelines is very common for large software projects because languages
such as C and C++ allow an extremely broad range of different programming styles. Defining
programming guidelines enables project managers to ensure that contributions by multiple
programmers to a common source code all have a uniform programming style. The reason for
the lack of programming guidelines for the TrueCrypt project is presumably the small number
of original developers. Nevertheless, the TrueCrypt source code displays a mix of different
conventions. For example, compound variable names are written both with an underscore
(file_name) and also using camel case (fileName). Equally, complex data structures are defined
using a mixture of the C++ constructs class and struct.

Violation of generally accepted rules

The use of the goto command was already criticized in the 1960s and 1970s by advocates of
structured programming such as E. W. Dijkstra [7]. In the TrueCrypt source code, we were able
to count 388 occasions when goto statements are used. However, the goto statement is generally
considered appropriate when used to deal with exceptional cases in the program because the C
programming language does not have its own construct for this purpose. Recent studies have
shown that programmers now primarily use the goto command only in a sensible manner [20)].
This is also the case with TrueCrypt. The use of goto statements is limited to exceptional cases.
In the normal control flow, goto is not used.
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Listing 6.1: GetSystemPartitions

1 static bool GetSystemPartitions (byte drive) A{
2 size_t partCount;
3 if (!GetActivePartition(drive))
4 return false;
5 // Find partition following the active one
6 [...]
7 return true;
8
Listing 6.2: File::Read
1 DWORD File::Read (byte *buffer, DWORD size) {
2 DWORD bytesRead;
3 if (Elevated) {
4 DWORD bytesRead;
5 Elevator::ReadWriteFile(false, IsDevice, Path,
6 buffer, FilePointerPosition,
7 size, &bytesRead);
8 FilePointerPosition += bytesRead;
9 return bytesRead;
10 }
11 throw_sys_if (!ReadFile (Handle, buffer, size, &bytesRead, NULL));
12 return bytesRead;
13}

Multiple return statements

Similar to the use of goto, multiple return statements within a function are also generally
considered to be bad style, although there are also exceptions to this rule. In his influential book
Code Complete [16], Steve McConnell wrote the following on this subject:

“Minimize the number of returns in each routine. It’s harder to understand a
routine if, reading it at the bottom, you’re unaware of the possibility that it returned
somewhere above.

Use a return when it enhances readability. In certain routines, once you know the
answer, you want to return it to the calling routine immediately. If the routine is
defined in such a way that it doesn’t require any cleanup, not returning immediately
means that you have to write more code.”

TrueCrypt contains a large number of functions with multiple exit points. Listing 6.1 shows
an example of an acceptable early exit from a function (abridged). The exit condition in line 3
can be calculated directly from the function parameters. An immediate exit has no side effects
with respect to the rest of the code in the function.

In contrast, listing 6.2 shows an example of a questionable use of a return command (line 9).
The calculation of the exit condition covers the majority of the body of the function and could
be easily overlooked.

Application logic within header files

Another noticeable feature is the violation of the standard rule that header files with the ending
.h should only contain definitions for interfaces and data structures. In the programming
language C, splitting interface definitions and implementations is common in order to allow them
to be compiled separately. In contrast, constructs such as template classes in the more modern
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Listing 6.3: WasHiddenFilePresentInKeyfilePath

1 static bool WasHiddenFilePresentInKeyfilePath() {
2 bool r = HiddenFileWasPresentInKeyfilePath;

3 HiddenFileWasPresentInKeyfilePath = false;

4 return r;

5}

programming language C++ are only created at the time the code is compiled. For this reason,
the implementation of the class templates must be available during compilation. This can be
achieved more simply by implementing the class templates in the header file. Better and more
elegant solutions for this problem exist and are preferable, although they are often dependent on
the compiler and are not portable.

In the TrueCrypt source code, there are a number of header files that contain application logic.
One example is the definition for function MountVolume in the file Core/Unix/CoreServiceProxy.
h, which contains more than 70 lines of complex code. However, MountVolume is a function
template and this justifies it being embedded in the header file.

A clearer violation of standard modularization is the presence of multiple short fragments of code
in header files that do not serve to define templates. Listing 6.3 from the file Volume/Keyfile.h
shows a typical example of this type of short function definition within a header file.

6.1.2 Complexity of the source code

One thing that intuitively makes sense and that has been substantiated by a large amount of
scientific work is the close interrelationship between the complexity of the source code and the
maintainability of the software. The simplest and most common metrics for measuring the
complexity of the source code include the length of the functions and the complexity of the
control flow. In particular, cyclomatic complexity is used to measure the complexity of the
control flow. Values larger than 15 indicate that refactoring would be sensible. Values over 30
are often associated with error prone code [15].

In order to evaluate the maintainability of TrueCrypt, we used the analysis tool Lizard!.
Lizard measures the length and cyclomatic complexity of C, C++ and Java functions and issues
warnings when various thresholds are exceeded. The results for TrueCrypt are worrying. There
are 170 functions with a cyclomatic complexity greater than 15. 75 functions had a cyclomatic
complexity greater than 30 and 9 even had a value over 100. The 75 functions with the highest
values are listed in Appendix A.

In terms of their length, five functions stand out due to the fact that they contain more than
500 lines of code. The three longest functions contain more than 1500 lines of code but implement
the user interface of TrueCrypt and are presumably not critical to the core functionality of
TrueCrypt. In contrast, the two functions ProcessMainDevice Controllrp and TCOpen Volume
each with a length of over 500 lines of code are part of the device driver that TrueCrypt integrates
into the Windows operating system and therefore safety critical.

6.1.3 Code Clones

Another typical indicator of the need for code refactoring is the presence of code clones — identical
sequences of code that are repeated in different sections of the project. It is obvious that this
type of repeated code should be combined in one function to improve the modularity of the code
and to avoid the duplicate code drifting apart due to negligent code maintenance.

"https://github.com/terryyin/lizard
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Listing 6.4: Codeduplikat in Mount.c

if (! VolumeSelected (hwndDlg)) {
Warning ("NO_VOLUME_SELECTED") ;
} else {
GetWindowText (GetDlgItem (hwndDlg, IDC_VOLUME),
volPath, sizeof (volPath));
WaitCursor () ;
if (1 IsAdmin () && IsUacSupported()&& IsVolumeDeviceHosted(volPath))

©® N o g~ W N e

The analysis tool Duplo? finds duplicate code in C and C+4+ source code. In the standard
setting, duplicate code with a length of three lines of code or more is identified. In the TrueCrypt
code base, Duplo identified 7091 duplicated lines of code in 1155 duplicated blocks of code (see
Appendix B).

One example of the duplicate code found by Duplo is shown in Listing 6.4. This code sequence
consisting of seven lines of code is present in identical form in four different locations in the file
Mount.c.

6.1.4 Summary

We would like to emphasize in summary that the problems with the quality of the source code
listed here are not necessarily vulnerabilities in TrueCrypt. However, they do justify questioning
the reliability of TrueCrypt to some extent. In particular, the high complexity of the code
combined with a lack of comprehensive test cases leads us to anticipate that the maintenance
work and maintenance costs will be very high. As the project will no longer be maintained by the
original developers, the responsibility for the maintenance work must be assumed by individual
users.

6.2 Evaluation of the documentation

The security characteristics of IT systems are mostly dependent on the fact that certain assump-
tions about the environment or the use case apply. If these assumptions are not fulfilled or if the
user is not aware of any limitations, security mechanisms can become ineffective or even have
the opposite effect due to configuration or user errors. For example, a user could in fact arouse
suspicion through the incorrect use of the plausible deniability function in TrueCrypt.

Developers, who join the project at a later point in time, and system administrators, who
acquire and set up software for others, also require a complete understanding of the assumptions
and limitations of the security functions. Otherwise, there is a danger that the security features
will be nullified by programming or configuration errors due to ignorance.

In the case of a security product such as TrueCrypt, complete, up-to-date and target-group
specific documentation of all security-relevant features is thus an indispensable component.

Available documentation

An English language “User’s Guide” [9] for end users was available for TrueCrypt until the
termination of the project, as well as a project website [10] that had identical content to a large
extent. The content available on the website before the project was terminated has been archived
and can be accessed under [24].

http://duplo.sourceforge.net/
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The source code for TrueCrypt 7.1a contains a file “Readme.txt” with instructions on how
to build the source code for the platforms Windows, Linux and MacOS. One paragraph in this
file is aimed at software developers who want to contribute to the source code. It is generally
recommended here that software developers get in contact with the TrueCrypt developers.

There is no other publicly available documentation to our knowledge. In particular, there
does not appear to be any publicly available information for software developers who want to
contribute to the further development of TrueCrypt or who want to use parts of the program in
their own projects.

Quality of the content and completeness of the documentation

The “User’s Guide” [9] describes the security features of TrueCrypt at a conceptual level. However,
the reader is already assumed to have an understanding of the basic functionality. For example,
it does not explain what encryption is and what purpose it serves.

The functionality of TrueCrypt is described in great detail, such as calculating keys from
keyfiles or the structure of volume headers in Chapter “Technical details”. The level of detail
provided in the document enables security experts to make a meaningful evaluation of the
security concept offered by TrueCrypt. It thus provides developers with a first point of entry for
understanding the design of the software.

In principle, the description appears to be sufficiently precise for all core functions of TrueCrypt
to be reimplemented based on it. However, the text contains some errors that were discovered by
the developers of the compatible product “tcplay” [12, README.md]:

“The TrueCrypt documentation is pretty bad and does not really represent the actual
on-disk format nor the encryption/decryption process.

Some notable differences between actual implementation and documentation:

o PBKDF using RIPEMD160 only uses 2000 iterations if the volume isn’t a system
volume.

e The keyfile pool is not XOR’ed with the passphrase but modulo-256 summed.

e Every field except the minimum version field of the volume header are in big
endian.

e Some volume header fields (creation time of volume and header) are missing in
the documentation.

o All two-way cipher cascades are the wrong way round in the documentation,
but all three-way cipher cascades are correct.”

The “User’s Guide” does not provide end users with sufficient information. For example, the
user is left to select the hash functions and encryption algorithms to be used. However, there is
no recommendation at all about which selection or selection criteria are most sensible.

A list of the basic assumptions and limitations can be found in Chapters “Security model”
and “Security requirements and precautions”. A lot of additional information about possible
threats and insecure ways of application is given throughout all of the chapters depending on the
relevant context. Therefore, it is necessary to read the whole document in order to be able to
take into account all of the information on the secure use of the program.

Comments within the source code

The TrueCrypt source code only has sporadic comments. In most cases, they are in the form of
shorthand notes at the end of lines, such as to describe the function of a variable.
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Warning messages for developers can be found in approx. 40 places labeled as “WARNING”
or “IMPORTANT"”. These make developers aware of possible sources of error if they change the
code, such as:

“IMPORTANT: Modifying this value can introduce incompatibility with previous
versions”

“WARNING: ADD ANY NEW CODES AT THE END (DO NOT INSERT THEM
BETWEEN EXISTING). DO *NOT* DELETE ANY”

A few comments are more comprehensive and also provide reasons for the warnings being
given. This type of information is very important for subsequent development work.

Overall, the comments focus on local implementation details. There is no description of the
overarching design or architecture aspects. There is not even any summarized descriptions of the
functions implemented in the individual source code files. One exception here is when parts of
the source code have been adopted from third party sources.

6.3 Summary

Results of chapter 6

Evaluation of the code quality:
e A lack of comprehensive test cases.

e No written program guidelines. The style of the source code is inconsistent. Failure
to observe best practices.

o Poor maintainability and thus high maintenance costs (partially due to the high
complexity, duplicate code)

Evaluation of the documentation:

e The documentation is primarily limited to the “Users’ Guide”. There is no documen-
tation for developers.

e The “Users’ Guide” contains lots of information on the functionality and use of
TrueCrypt but is nevertheless poorly structured and contains mistakes.

e The source code is supplemented sporadically with short comments.
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7 Conceptual evaluation of the architecture

7.1 Introduction

This chapter is dedicated to a threat analysis of TrueCrypt and based upon this a subsequent
conceptual evaluation of the TrueCrypt architecture. The basis for these evaluations is a series
of assumptions that cover the intended usage context and the resulting requirements. This is
necessary because an all-encompassing evaluation of the attack scenarios and suitability of the
system architecture can never be carried out in absolute terms but instead is always linked
to concrete, situation-specific factors. In the following section, we will firstly document these
assumptions and define a set of intended security goals. We will then present various potential
attack strategies and evaluate their relevance in relation to the TrueCrypt architecture.

7.2 Context and use cases

The usage context for TrueCrypt is to protect sensitive data from unauthorized access in a
private, official or company setting. These three areas of application are viewed as being broadly
similar for the purpose of this evaluation, although this report will touch on any special features
at certain points where required. We have assumed that those systems protected by TrueCrypt
in an official or company setting are at least logically embedded in a computer network and
maintained by administrators. Furthermore, we have assumed that at least stationary systems
(PCs) are generally operated at the premises of the relevant employer.

Use cases for TrueCrypt that are relevant for the further evaluation of the software are derived
from the description of the functionalities that we have taken from the TrueCrypt User’s Guide.
This resulted in the following three use cases:

ID: UC1
Title: Protecting information using system encryption

Description: The user utilizes a computer to process sensitive data. The user always
switches the computer off when it is not being used. The user utilizes TrueCrypt to
protect sensitive data on non-volatile memory (generally a hard disk) against unauthorized
access. TrueCrypt prompts the user to authenticate themselves when starting the system.
TrueCrypt prevents the booting of the operating system and thus access to the sensitive
data if the authentication process fails and only permits access when the authentication
process is successful. If the authentication process is successful, the user can work with the
data on the computer in the usual manner. This system encryption functionality is only
available for certain Windows versions.

Variants:

a) Encryption of the system disk
TrueCrypt encrypts the entire hard disk on which the system partition is located.
TrueCrypt asks the user to enter a password as authentication immediately after the
computer is started.

42 Federal Office for Information Security



Security Analysis of TrueCrypt

b) Encryption of the system partition
TrueCrypt only encrypts the system partition and asks the user to enter a password
as authentication immediately after the computer is started. Partitions other than
the system partition can remain unencrypted.

ID: UC2
Title: Protecting information using encrypted volumes

Description: The user processes sensitive data on a computer or wants to transfer a
copy of the data to an external non-volatile data storage device (e.g. as a backup copy,
or to share the data with project partners for official business use). The user wants to
protect the sensitive data against unauthorized access on the transport device and/or the
non-volatile data storage device. For this purpose, TrueCrypt is used to save the data
requiring protection in an encrypted volume. Instead of the unencrypted readable data,
the user transfers/saves the volume. In order for the user to be able to read, write and edit
the encrypted data again, TrueCrypt creates a virtual drive in which the contents of the
volume are displayed in readable form (»mounting«) after the successful authentication
of the user. As is the case with regular drives, the user can save, delete and edit files on
the virtual TrueCrypt drive. The changes are automatically mapped to the volume by
TrueCrypt.

Variants:

a) File-hosted volume
TrueCrypt provides the option of saving an encrypted volume to file (also known as
»file-hosted (container)«). This container is a regular file that can be saved, deleted
and otherwise edited like other files. In the context of this use case, the user could,
for example, save this file as a protected backup copy to an external hard disk or also
send it via email to a project partner.

b) Partition/device-based volume
Alongside a file-hosted volume, TrueCrypt also provides the option of so-called
partition/device-hosted volumes. Here, the volume is directly saved to a partition
on a data storage device or it utilizes the entire memory of a data storage device. If
the volume is saved within a partition on a data storage device, it is not permitted,
however, to use the system partition of the system that is currently running.

ID: UC3
Title: Maintaining confidentiality and protecting information using hidden volumes

Description: The user wants to save sensitive data that he/she has processed on a
computer in such a way that, on the one hand, it is protected against unauthorized access
and, on the other hand, its existence cannot be ascertained without the appropriate prior
knowledge. Therefore, the user cannot be forced to reveal the data because he/she can
plausibly claim that it does not even exist. The user utilizes TrueCrypt here to create
a hidden volume within a different TrueCrypt volume. From a user perspective, access
to the data in the hidden volume is achieved in the same way as access to data within a
regular volume. The user is firstly asked to authenticate themselves to TrueCrypt and then
receives access to a virtual drive on which the hidden data can be read.

Variants:
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a) Hidden volumes
TrueCrypt can be used to save a hidden volume within a different TrueCrypt volume,
which can be accessed in the same way as a regular volume. Both file-hosted and
partition/device-hosted volumes are suitable as the »outer« volume.

b) Hidden operating system

TrueCrypt can also be used to hide a complete system partition (»hidden operating
system«). At least three TrueCrypt volumes are required in total for this purpose.
The first TrueCrypt volume contains a complete system partition, whose existence
cannot be plausibly denied (known as the »decoy operating system«). The user could
thus be forced to reveal a password and hence the volume should not contain any
really sensitive data. In addition, there is a second TrueCrypt volume whose existence
also cannot be plausibly denied. However, this second volume serves as the »outer«
volume for the third hidden volume, which contains the hidden operating system.
When the computer is started, TrueCrypt asks for a password to be entered. If the
user enters the password for the decoy system, only the operating system for the first
partition is booted. However, if the user enters the password for the hidden operating
system, this system will be booted. This is a form of system encryption and is also
only available for certain Windows versions.

7.3 Security goals and requirements

In the following section, we will describe the security goals that we consider to be relevant in
the context of the use cases outlined above. They form the basis for a number of requirements
(R1-R7) that can be used for evaluating the system architecture.

Primary security goal

Based on the usage scenarios and the intended purpose of TrueCrypt, the primary security goal
is the protection of confidential data in a TrueCrypt volume or TrueCrypt container against
access or perusal by unauthorized persons (confidentiality of data in a container or volume).

R1: Protecting the confidentiality of data must be achieved through the use of suitable crypto-
graphic processes. The sole use of a simple authentication mechanism for restricting access,
such as the request for a password to enable a user to log in that is typical of operating
systems, is completely inadequate because this can be circumvented using the simplest of
means.

R2: Data whose confidentiality is to be protected by TrueCrypt must not be stored as plaintext
on a non-volatile data storage device or transferred to third parties by TrueCrypt. In
particular, this means that the cryptographic processes that are used to protect the data
must be carried out locally on the user’s computer. They are not, for example, permitted
to be outsourced to an external service provider.

Secondary security goals

Alongside the confidentiality of the saved data, there are other security goals that can be applied
to TrueCrypt to a limited extent. Thus, limited protection of the integrity of the data encrypted
by TrueCrypt is desirable: It should be impossible to make any changes to the ciphertext with
the aim of forcing certain plaintext to be revealed during the decryption process. Yet there is
nothing in the description of the TrueCrypt software indicating that the recognition of changes
to the ciphertext is a relevant security goal.
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Special features of the software are the modes »hidden volume« or »hidden operating system«.
In these operating modes, the deniability of the existence of the encrypted data is a relevant
security goal. This is a special feature of TrueCrypt in comparison to other encryption software.

R3: The integrity of the data whose confidentiality is protected by TrueCrypt should be
protected. A user should thus be able to recognize whether protected data has been
changed by any unauthorized person since the last time it was worked on with authorized
access.

R4: The integrity of TrueCrypt itself should be secure. An authorized user should be able to
recognize when using TrueCrypt whether it has been changed by any unauthorized person
since it was last used.

R5: TrueCrypt must not save any information on a non-volatile data storage device that
indicates whether a TrueCrypt volume contains another hidden volume or not. This is true
for both hidden volumes and also for hidden operating systems.

Derived security goals

The features of an encryption software reveal the fact that the confidentiality of the data in a
TrueCrypt volume or TrueCrypt container is directly dependent on the confidentiality of the key,
keyfiles or passwords used for the decryption. Therefore, the confidentiality of these metadata is
also a security goal of TrueCrypt, at least to the extent that TrueCrypt is able to influence the
security of this data.

R6: TrueCrypt is not permitted to save secret keys or passwords in plaintext on a non-volatile
data storage device at any time.

R7: TrueCrypt is not permitted to transfer secret key or passwords to third parties at any time.

7.4 Attack strategies

7.4.1 Preliminary considerations

In terms of the security provided by TrueCrypt, IT systems protected by TrueCrypt primarily
face a threat from potential attackers who want to gain knowledge about confidential information
stored on the system and then attempt to extract data from this IT system for this purpose. In
principle, it is also conceivable that the system may face a threat from attackers who want to
alter, add or delete data on the system. However, these threats have a lower level of significance,
see section 7.3.

As an attacker requires access in some form or other to the IT system protected by TrueCrypt,
it is possible at the beginning of this analysis to make a general differentiation between two
different situations (see Table 7.1). An attacker can gain both

physical access to an IT system protected by TrueCrypt, as well as

logical access to an IT system protected by TrueCrypt.

The access can be temporary or also permanent. Physical access is possible in situations where
the attacker gains unauthorized entry to the premises or locations in which the protected IT
system is operated or situated (offices, server room), or a protected I'T system can be left exposed
in an environment to which the attacker has authorized access (public areas, non-public areas with
public traffic). Logical access is possible if an attacker can influence the data handling processes
in the IT system, without having to physically access the system e.g. through unauthorized
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use of the remote access capabilities of a legitimate user or with the help of malware that has
infiltrated the system. Physical access often also enables logical access, although the reverse is
not true in most cases.

Another important differentiation is the ability of the attacker to gain either just single access
or repeated access to the IT system (see Table 7.1). Correspondingly, it is also possible to
differentiate here between

single access in which the attacker has access to the protected IT system or the data storage
device containing the protected data on a single occasion and

repeated access in which the attacker has access to the IT System or the data storage device
containing the protected data on multiple occasions, whereby the legitimate user of the IT
system or the data storage device regularly uses them between these attacks.

Cases of single access are not usually directly linked with targeted attacks that specifically
focus on the confidential data stored on a particular I'T system. The threat to the confidential
data is more often a side effect, whereas a single access attack targets the appropriation of
physical entities, especially the I'T system’s hardware. The most common example is access to
hardware in public areas or areas with public traffic, or break-ins to closed premises with the
objective of stealing expensive hardware such as laptops or servers.

In contrast, it can be assumed that targeted attacks often utilize possibilities for achieving
repeated access to the IT system. These possibilities are typically open to insiders (regular
employees or service personnel) through authorized access to IT systems or data storage devices
that are operated or stored without supervision at certain times. In premises with relatively poor
security (e.g. private houses or apartments), there is also the potential for repeated access. The
possibility of repeated access also always includes the possibility of single access; while logical
access enables repeated logical attacks on the IT system in many cases.

Attack scenario Description Examples

Theft

Attacker gains single access to the
data storage device or protected IT
system

Single access

Repeated access

Attacker gains repeated access to
the data storage device or
protected I'T system

»Evil maid attacks«, targeted
attacks on individual people

Physical access

Attacker gains physical access to
the data storage device or
protected IT system

Theft, entry to premises with the
IT system

Logical access

Attacker gains logical access to the
data storage device or protected IT
System

Malware, circumventing logical
access controls

Table 7.1: Types of attack scenarios and examples

7.4.2 Overview of attacks with physical access

In line with the security goals from 7.3 and taking into account the use cases from 7.2, those
attacks in which the attacker gains at least partial physical access to the system protected
by TrueCrypt for a short period of time are particularly important. In terms of this type of
access, there are a number of different possibilities for making an attack on the confidential data
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Figure 7.1: Options for attacking TrueCrypt with physical access

protected by TrueCrypt in these scenarios. Figure 7.1 shows a process flowchart that describes
in principle all of the attack strategies that will be explained in detail below.

As shown in Figure 7.1, it is always initially decisive whether in principle only single access or
also repeated access is possible. If repeated access is possible, the detection of passwords and
keys through cyber espionage is, depending on the technical capabilities of the attacker, the
method of choice because this attack strategy promises the greatest probability of success. At the
same time, there are also suitable attack vectors for a case of single access. If only single access
is possible, the attack vectors and thus the associated probability of success are dependent on
the condition of the compromised system. If the system is active and TrueCrypt’s decryption is
running, the attacker can attempt to read the available encryption key from the volatile memory.
Depending on the system being attacked, this requires an advanced or high level of technical
expertise; while it also promises a successful outcome in principle. If the system is inactive or
the attacker only gains access to the data storage device, the only options are a forensic search
for passwords and keys or brute-force attacks.

7.4.3 Detailed overview of the attack strategies
Brute force attacks

A brute-force attack involves the attacker attempting to guess a TrueCrypt password or a
cryptographic key by trying to decrypt the TrueCrypt volume header with randomly selected
keys or passwords. This strategy can lead to success if the user of the system has selected their
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passwords or keys from a small set of all possible passwords or keys. If this is not the case, the
probability of the attacker succeeding is very unlikely.

Brute-force attacks are made more difficult by »Key stretching« in the key derivation function,
meaning the repeated use of a hash function in an access key or the derived intermediate key in a
loop. When testing possible passwords, the attacker must then also run through these iterations
every time for each password, as well as the associated effort involved in the data processing.

Brute-force attacks can generally be considered when the attacker gains possession of encrypted
date (ciphertext) through

e Permanent possession of the I'T system through theft or

o Possession of data storage devices containing the encrypted data (e.g. due to the withdrawal
from service of data storage devices) or

e Copying encrypted data

but cannot extract the key from the system or data storage device in any other way; the
attacker has no method of interaction with the original owner of the system (e.g. through social
engineering) or the possession of the system or data storage device has already been noticed by
the victim. Brute force attacks are thus a typical strategy when only one single physical access
to the IT system or data storage device is possible.

Forensic analysis of unencrypted data in the IT system

Instead of attempting to break the TrueCrypt encryption by testing potential keys or passwords,
an attacker can also attempt to examine the unencrypted data stored on the IT system to
forensically search for clues to the keys and passwords used. Potential targets for this type of
forensic analysis are primarily non-volatile memory but also volatile memory if the attacker has
access to a running system.

In the forensic analysis of non-volatile memory, the focus is mainly placed on files in which the
operating system or TrueCrypt itself could have temporarily stored or logged keys and passwords.
Examples include swap files, temporary files, log files or input buffers. The analysis does not
only have to focus here on files that are referenced in the existing file systems, but it can also
cover areas of memory on the data storage device that are no longer referenced but have not yet
been otherwise overwritten. If TrueCrypt is used to not only encrypt data partitions but also
the partition containing the operating system, the probability of success for this type of attack is
low.

If the IT system is still in an active state when the attacker gains access, forensic attacks
of the volatile memory are also possible in principle e.g. so-called cold boot attacks in which
the attacker attempts to read content on the main memory with their own software, either by
removing memory modules that have been cooled for this purpose or booting their own system.
In certain circumstances, an attack is also possible via external interfaces e.g. via DMA.

Detection of passwords and keys using cyber espionage

If an attacker has the opportunity to gain repeated access to the I'T system between periods of
use by the legitimate user, the detection of passwords and keys using cyber espionage will be the
first choice of attack. The precise form of the attack is dependent on the technical capabilities of
the attacker, how inconspicuous the attack should be and the time available for accessing the I'T
system. Overall, the range of conceivable attack vectors is extremely diverse and thus it is only
possible to outline selected ones at this point:

A relatively simple but thoroughly effective measure is to install a hardware keylogger between
the keyboard and the computer to record all keyboard inputs, including TrueCrypt passwords.
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However, this is only possible without too much effort on desktop computers or on laptop docking
stations. If the operating system partition is not encrypted, the attacker can also install a
software keylogger instead of a hardware keylogger. In some cases, the attacker may need to
temporarily remove the data storage device and install the cyber espionage software on it using
another system, which would take more time. Manipulating software on an encrypted operating
system demands a higher level of technical knowledge because it requires changes to be made to
the boot loader. If the attacker possesses the appropriate level of technical expertise, he or she
can complete the manipulation themselves within a few minutes — as Tiirpe et al have already
demonstrated using the example of Microsoft BitLocker [23].

Rather more conspicuous but just as possible in principle is for the attacker to replace the
computer with one that looks identical. The »duplicate« would only run the Trojan horse and
then cause the boot process to fail with a realistic error e.g. an alleged data storage device error
that makes the system unusable. As the data storage device is completely encrypted, in practice
it is initially difficult to detect that it is actually a different device. Closer examination for any
signs of use, serial numbers or an attempted decryption with a backup of the master key could
reveal the attack. However, the attacker may then already be in possession of the password.

It is also conceivable that an attacker could attempt to directly introduce malicious code onto
the data storage device via the data processed by TrueCrypt and then execute it e.g. via a buffer
overflow. For this purpose, the attacker could either alter header data or ciphertext. In contrast
to the other types of attack, this would, however, require a vulnerability in TrueCrypt. Apart
from the relative simplicity of the attack, this type of attack does not offer any advantages over
the others already described.

An attacker does not necessarily need to read the key and password gained through cyber
espionage via a second physical access to the computer. In principle, it is also possible for the
attacker to utilize a wired or wireless network or a broadband connection. If the attacker has
already copied the encrypted data storage device on-site in advance, they can directly decrypt
the data storage device once they have gained the key or password through cyber espionage.

In summary, it should be noted that the »repertoire« of cyber espionage attacks is almost
limitless. Should an attacker have repeated access to the TrueCrypt-encrypted system — whereby
only the first access needs to be of a physical nature in some circumstances — a multitude of
different cyber espionage attacks are possible. The attacker can adapt almost any number of
different factors: The level of risk the attacker is prepared to accept with respect to the attack
being discovered, the logical accessibility of the system through network interfaces, the time
available for the physical access and the gullibility of the legitimate user. It is thus plausible to
assume that there is a high probability that a cyber espionage attack carried out by a technically
sophisticated attacker with corresponding criminal intent will prove successful.

Side-channel attacks

Side-channel attacks on TrueCrypt could play a role if an attacker gains physical or logical access
to an IT system on which a decryption process for a data volume encrypted by TrueCrypt is
already running. In this type of situation, it is conceivable that an attacker could record physical
parameters from the system, e.g. the power consumption of certain components, in order to be
able to draw conclusions about the key used for processing the data. If logical access is possible,
other information could also serve this purpose such as program execution times or memory
usage.

However, it should be noted that side-channel attacks generally require a high level of technical
expertise and that the attacker is well equipped with the necessary material resources, at least if
the attacker wants to gain access through the monitoring of physical parameters. Nevertheless,
side-channel attacks remain a realistic scenario even though an attacker, for economic reasons
alone, would prefer to utilize other types of attack insofar as the situation allows.
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Attacks with logical access to the IT system

Even if an attacker only has limited logical access to the IT system on which the TrueCrypt
decryption process is running, there are nevertheless conceivable attack scenarios that exploit
vulnerabilities in the security of TrueCrypt. These scenarios could arise when logical access is
limited due to access rules on the data storage device, partitions or parts of the file system on the
IT system so that an attacker is not permitted to read all of the encrypted TrueCrypt volume
or TrueCrypt container. For example, a vulnerability in the TrueCrypt driver could enable a
privilege escalation through which the attacker can gain far-reaching, additional access rights. An
example of this type of vulnerability in a FAT driver can be found under [17]. Just recently, two
vulnerabilities of this kind were found in TrueCrypt [18, 19]. As part of the privilege escalation,
it could also be possible to gain access to encrypted data that is secured by access controls.

However, this type of attack is a fringe scenario: firstly because in principle any other driver, or
the kernel itself, could have a vulnerability that would enable a privilege escalation. TrueCrypt is
thus impacted by this security risk because it is a software that runs in the kernel and not because
of its encryption software characteristic. Secondly, this attack scenario requires the attacker
to already be capable of exchanging data with the TrueCrypt driver in order to exploit this
vulnerability. Essentially, this would only be the case if the attacker could already interact with
TrueCrypt’s administrative tools or if the attacker already had (limited) access to a TrueCrypt
encryption or decryption process. In both cases, the attacker would already possess far-reaching
privileges for the system being attacked e. g. user access to certain program execution privileges
and read privileges for the data storage device.

Indirect attacks without physical access to the system

Alongside the aim of expanding his or her own privileges, if an attacker already has direct,
logical access to the IT system, it is also conceivable that he or she would »plant« maliciously
compromised data within that of the legitimate user for processing in TrueCrypt. This could
include e. g key files, TrueCrypt containers or plaintext data or files for encryption by TrueCrypt
at a later point in time. An attacker could specifically exploit a vulnerability in the testing and
processing of input data in TrueCrypt e.g. provoking a buffer overflow by executing malicious
code.

As a result of the unauthorized execution of malicious code on the IT system running TrueCrypt,
an attacker could attempt to weaken or nullify the security mechanisms of TrueCrypt. However,
it is necessary to question what form this scenario would actually take in reality and what
cost-benefit effect the attacker could achieve in comparison to other attack strategies. In order
to compromise the I'T system with malicious code, other methods for exploiting vulnerabilities
would be more suitable e.g. via attacking rendering algorithms for web browsers, in Adobe
Flash software, in PDF software, etc. If an attacker could achieve far-reaching logical access to
the system with these types of attack, he or she would generally already be capable of reading
confidential data from unlocked TrueCrypt containers or partitions. However, this type of attack
becomes interesting from a practical standpoint for preparing for a possible physical attack; the
attacker could, for example, use malicious code to save keys in plaintext in non-volatile memory.
Then, when the attacker subsequently gains physical access to the system, he or she simply has
to steal the data storage device and the key required for the decryption process could then be
read directly from it.

Attacks via backdoors

Another special attack strategy is the exploitation of so-called »backdoors« in TrueCrypt, which
are only known to the attacker. In order for an attacker to integrate a backdoor into TrueCrypt,
he or she must have had access to the software’s source code that has gone unnoticed or have
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worked as a developer on the software. A backdoor can also find its way into the software through
other means e.g. through manipulation of the source code in a source code repository that
remains unnoticed by the developers. Alternatively, an attacker could have manipulated the
source code or compiled sections of the program before they are transferred from the developer
to the end user, maybe even including the required public key for certifying the code.

The backdoor can implement a variety of functions, whereby it is often important for the
attacker that manipulations remain undiscovered. Hiding the backdoor is particularly important
if the attacker has directly compromised the original source code of the developers. Alterations
to the original source code could and should be very subtle e.g. a deliberate weakness in the
implementation of a cryptographic algorithm to simplify cryptographic analyses. Large-scale
manipulation is more suitable for already compiled code, such as a targeted alteration before or
while the end user downloads the TrueCrypt program package.

Altering encrypted data

In contrast to the previously described attacks on the confidentiality of data encrypted with
TrueCrypt, an attacker could in principle also wish to compromise the integrity of the protected
data. An attacker could alter the ciphertext of data encrypted with TrueCrypt, whereby the
real goal is to alter the program flow in a system encrypted with TrueCrypt. For example, an
(uncontrolled) alteration to an encrypted configuration file could be used by the attacker to make
certain access controls in the IT system ineffective.

However, it should be noted that even if this attack strategy appears to be possible in theory,
the associated effort required compared to the probability of success and the principal benefits
remains questionable. Firstly, an attacker must know the location of the data or files to be
compromised within the encrypted TrueCrypt volume or container. This assessment is associated
with a not insignificant level of uncertainty, requiring more extensive alterations to the ciphertext
and thus making the detection of the change more probable. Furthermore, this attack scenario
assumes that the attacker has physical access to the system or comprehensive logical access.
This then raises the question of why an attacker would decide on such an uncertain, partially
uncontrollable and conspicuous attack strategy. It would be easier in these circumstances to
attack the unencrypted data, achieving the desired malfunction in the system in an easier and
more targeted way.

7.4.4 Preliminary conclusions

The analysis of the conceivable attack strategies raises the question of which countermeasures
could be taken in TrueCrypt to combat which of these described attacks that would disable or
hinder this kind of attack strategy. In conclusion, it can be firstly stated that TrueCrypt cannot
as a matter of principle implement any effective measures against attacks in repeated-access
scenarios. As Tiirpe et al. have already demonstrated, it is hardly possible to deliver this type
of protection even on systems with TPM-based secure boot mechanisms [23]; in the case of
Microsoft Bitlocker Drive Encryption, for example, there is no effective protection. For technical
reasons, TrueCrypt cannot deliver a higher level of security in this area.

The second important conclusion is that should an attacker with above-average technical
expertise gain access to an active I'T =system running TrueCrypt decryption, the risk of a
successful extraction of key or plaintext information should always be considered high. This
risk is system and situation imminent — at least the required key for enabling the decryption is
stored in the volatile memory. The software architecture used for TrueCrypt can at best provide
flanking measures for protecting this key, such as e.g. protecting against side-channel attacks or
the »economical« storage of passwords and key material in the volatile memory. In contrast,
there are, however, a broad range of attack strategies, such as cold boot attacks and other attacks
on the hardware, or other methods for exploiting possible vulnerabilities in the operating system,
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network services and other software running on the system. Whether these types of attack are
successful or not does not primarily depend on the security mechanisms in TrueCrypt but on the
overall state of the I'T system and the expertise and material capabilities of the attacker. Viewed
conservatively, it can be concluded that an active I'T system running TrueCrypt decryption must
be considered per se as easy to compromise.

Attacks involving single access to inactive I'T systems with TrueCrypt are also a relevant
part of the discussion. In particular, those vulnerabilities in TrueCrypt in which information
about the keys and passwords used by the system are written in plaintext on non-volatile
data storage devices or in which the encryption process itself exhibits algorithmic weaknesses
could enable attacks. It is even possible here that attackers who have previously had write
access to TrueCrypt’s source code could have introduced vulnerabilities to this source code in a
targeted manner as »backdoors«. Once a vulnerability exists, it can be exploited by the attacker
themselves through the (temporary) theft of the data storage device and subsequent forensic
analysis.

7.4.5 Comparison with the security model used by TrueCrypt

The security model used by the TrueCrypt developers envisages a very narrow scope of application
for the software [9, Page 83ff.]: TrueCrypt encrypts data before writing it to a non-volatile data
storage device and then decrypts it again after it has been read.

In addition, the developers explicitly point out that TrueCrypt does not generally possess the
following characteristics and functions:

¢ Protection of data on an IT system that an attacker can manipulate or control in some
manner, or which the attacker can monitor

e Protection of data on an IT system to which an attacker has gained access before, during
or directly after TrueCrypt has been executed

¢ Protection of the integrity or authenticity of data
e Encryption of data in volatile memory

e Protection of information about changes to data on encrypted data storage devices or in
encrypted volumes.

¢ Protection of data flows outside of the TrueCrypt encryption, e.g. the transmission of data
over computer networks.

If we take this security model as a basis, the developers have already categorically excluded the
provision of protection against many of the attack strategies mentioned in 7.4.3. In particular, this
also includes cases of repeated access to systems, single access to systems with active TrueCrypt
decryption, attacks with logical access to I'T systems and cyber espionage attacks. This analysis
is consistent with the conclusion drawn in the preliminary conclusions in 7.4.4 that these attacks
represent a major challenge for system security in general and it is hardly possible to mitigate
them with encryption software. Overall, the security model appears to have been conservatively
designed with relatively few assurances and lots of references to residual security risks.

In particular, the focus of the security model is placed on the unintentional saving of keys,
passwords and plaintext files in unencrypted areas of the data storage device. These unintentional
»outflows« of plaintext data are especially problematic if an attacker has the opportunity to
forensically analyze a data storage device containing data encrypted by TrueCrypt. The developers
refer here to security-relevant features of operating systems (page files, sleep mode, etc.) and
special hardware features (wear leveling, physically moved sectors, deletion of volatile memory,
etc.).
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Figure 7.2: Simplified illustration of the runtime components of TrueCrypt; (a) shows the com-
ponents for a Linux-based system, (b) for a Windows system

7.5 Evaluation of the architecture

In this subchapter, we discuss the suitability of the TrueCrypt architecture for addressing the
described attack scenarios. We will firstly provide an overview of the runtime components in
TrueCrypt. Afterwards, we will explain how these components interact with one another to
implement the functionalities described at the beginning of this chapter in the use cases. We will
evaluate here how the requirements R1-R7 are fulfilled and focus on the relevant attack scenarios.
Finally, we will consider the topics of maintainability and testability and offer recommendations
for improvements in a partial reimplementation.

7.5.1 An overview of the components

In the following section, we will describe the different runtime components that make up
TrueCrypt and explain what basic role they fulfill within the overall system. This architectural
perspective — which describes the system during runtime — is particularly important in the
context of evaluating attack scenarios and the fulfillment of security goals because all of the
attacks considered here are carried out when the system is running (or if switched off, it at least
remains capable of being run).

We will not provide a detailed model of the structure of the source code. In principle, there
are also attack scenarios that target the integrity of the source code e.g. integrating a backdoor
into the code that is designed to be as difficult to detect as possible. However, we will not focus
here on these scenarios in more detail and the structure of the source code is thus not of central
importance at this point in time.

Figure 7.2 shows an overview of the runtime components of TrueCrypt. Depending on the
target platform, TrueCrypt is made up of different components. On the one hand, the reason for
this is that the functionality offered by TrueCrypt differs across the various platforms, whereby the
largest range of functions is available on Windows systems. On the other hand, platform-specific
features may require the runtime components to be organized differently.
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On Linux-based systems, TrueCrypt only consists of one core component that interacts with
the other system components:

Main We describe the main component on Linux-based systems as »Main« because it is also
named as such in the source code. It is an executable file that implements both a command
line interface and also a graphical user interface. Every direct user interaction with
TrueCrypt takes place through one of these interfaces. Any functionalities that are offered
by TrueCrypt on this platform are implemented in this component. Main utilizes, on the
one hand, operating system functions (e.g. for displaying the user interface) and, on the
other hand, FUSE (»Filesystem in Userspace«) for this purpose. FUSE is a kernel module
and is used to mount encrypted volumes as virtual drives. FUSE is an independent software
that is not part of the TrueCrypt project. It is also used for similar purposes by a large
number of other projects on Linux-based systems.

TrueCrypt consists of the following four components on Windows systems:

Format Format is an executable file that can be directly controlled by the user via the command
line or graphical user interface. The program is basically a wizard that helps the user to
create volumes and/or initiate a system encryption.

Mount Alongside Format, Mount is the second executable file with which the user can interact
with the program through a text-based or graphical interface. As the name suggests, this
program is used to mount already created volumes as virtual drives. In order to implement
this functionality, Mount utilizes the TrueCrypt component Driver. In the graphical user
interface, Mount also offers users the option of creating volumes and starting a system
encryption, although Format is then directly started for this purpose. This functionality is
thus not implemented again within Mount.

Driver The Driver is a kernel driver and a central component of TrueCrypt on Windows systems.
On the one hand, it is used to mount encrypted volumes as virtual drives, whereby in
principle it takes over the functionality of FUSE in this usage context. In addition, it
can also be integrated into the functions of the operating system as an »intermediary«
component to such an extent that all write and read accesses to the data storage device are
initially routed through it. As a result, the Driver can carry out »on-the-fly« encryption
and decryption.

Boot The Boot component consists of a boot loader and implements what would generally
be described as »pre-boot authentication«. Boot is only used if a system encryption has
been carried out because an encrypted system partition is by implication not bootable.
When the computer is started, the component asks the user to enter the password that is
required to access the encrypted content. At this early phase of the start-up process, Boot
is then responsible for the »on-the-fly« encryption and decryption so that the original boot
loader can be loaded and control transferred to it. As soon as the operating system has
been started, Driver takes over responsibility for the task of transparent encryption and
decryption and Boot no longer fulfills any role.

7.5.2 The core functionality of TrueCrypt

We will describe below how the three core functionalities of TrueCrypt are technically implemented.
Then we will evaluate their implementation with regards to the requirements R1-R7. Finally, we
will discuss the suitability of the architecture with respect to the relevant attack scenarios.
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Encrypted volumes The first step in the use of an encrypted volume is its creation. The user
utilizes the TrueCrypt component Format on Windows systems for this purpose. Format is
built like a wizard and initially asks the user to enter all of the information required for
creating a volume step by step. Format then creates and saves the desired volume. As
already explained in section 7.2, this could be a file-hosted or a partition/device-hosted
volume. The data structure used for creating volumes is documented in the TrueCrypt
User’s Guide and is generally the same for both file-hosted and other type of volumes.

In order to access content in an already created volume, the user utilizes the TrueCrypt
component Mount. Mount asks the user to enter the required data (e.g. path to the volume,
password, password files, etc.) and passes on this information with a command to the
Driver. The Driver creates a virtual drive and redirects all write and read accesses to this
drive to the volume. During this »redirection process«, the Driver carries out on-the-fly
encryption and decryption.

The redirection process is carried out as follows: In regular operation, applications use
the so-called Win32 subsystem. The subsystem provides a comprehensive API (including
Kernel32.dll, User32.dll, etc.) for standard operations, such as reading and writing data to
a data storage device. This type of input/output operation is passed from the Windows
subsystem to another Windows system component which then processes the request — the
I/O manager. The I/O manager initially creates and initializes a so-called input/output
request packet (IRP), which contains all of the information about the desired write/read
operation. This IRP is then sent by the I/O manager to the device stack responsible for the
respective data storage device. The device stack contains all of the drivers (e.g. bus driver,
file system driver, etc.) that are required to talk to the device. In the case of a virtual
drive created by TrueCrypt, the TrueCrypt kernel driver (Driver) is part of this stack and
thus also receives the IRPs that describe a write and read process. This is precisely the
stage at which the Driver »steps in«, carries out the encryption and decryption and, in the
event of a write process, creates a non-volatile copy of the new data in the volume. It is
thus irrelevant to applications whether the data is read/written from a TrueCrypt volume
or from an unencrypted data storage device because the API for the subsytem is always
addressed in the same manner.

System encryption The encryption of a system disk or a system partition brings with it a
special feature: The encrypted system cannot simply be booted. In order for a TrueCrypt
encrypted system to be booted at all, it requires the TrueCrypt component Boot that
was installed as part of the initial system encryption by TrueCrypt. The TrueCrypt boot
loader is started instead of the original boot loader and firstly asks the user to enter
their secret password. The password is used by the Boot component to read the secret
key in the volume header that is required to access data on the encrypted system. This
component than executes a so-called interrupt hook to redirect subsequent read accesses to
the encrypted data through a decryption routine. In detail, the process works as follows:
Shortly after the system has been started, it is in so-called real mode. In real mode, the
boot loader and any code loaded afterwards use so-called BIOS interrupts for carrying
out basic input and output operations. Interrupt 13h (in short: INT 13h) is particularly
interesting at this point for our analysis because this interrupt is used for the read and write
operations on the hard disk. The TrueCrypt component Boot now uses an interrupt hook
to manipulate the functionality of INT 13h so that read and write operations are processed
through an encryption and decryption routine. Once this has occurred, TrueCrypt passes
on control to the original boot loader. The original boot loader can now use INT 13h, to
load the actual encrypted core components of the system and then pass on control. As
soon as the operating system has taken over control, the read and write accesses are no
longer processed through INT 13h but handled instead by kernel drivers. The TrueCrypt
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component Driver takes over the on-the-fly encryption and decryption at this point in the
same way as has already been described for encrypted volumes.

Hidden volumes Every volume essentially consists of an encrypted header and encrypted user

data. In all cases, a header reserves dedicated space for a second header, which can belong
to a hidden volume. If a TrueCrypt volume is not being used as an outer volume for
a second hidden volume then this dedicated space for the second header is filled with
random numbers. In this case, the unused memory in this volume is also filled with random
numbers. The situation is different when a volume is actually acting as an outer volume.
In this case, the dedicated space for the second header is actually the encrypted header for
the hidden volume. The encrypted user data in the hidden volume is then located in the
unused memory for the outer volume. It is not possible to read either the header or the
user data for the hidden volume without the corresponding password. An attacker cannot
actually tell the difference in this situation between the encrypted data and the random
data; the existence of the hidden volume can thus be plausibly denied.

In general, TrueCrypt behaves as follows: If a user attempts to access a volume, TrueCrypt
firstly requests a secret password. This process is handled by the TrueCrypt components
Boot or Mount, depending on whether a system encryption has been carried out or not.
The relevant TrueCrypt component (Boot or Driver) then firstly uses the password entered
by the user to attempt to read the outer header. If this is successful then the contents of this
outer volume are made accessible. If this process fails, TrueCrypt then uses the password
entered by the user in the next step to attempt to read a possible second header. If this
process also fails, TrueCrypt notifies the user that the password is incorrect. However, if
this process succeeds, the system is now certain that this is an attempt to access an actually
existing hidden volume and the user data on this hidden volume is made accessible. From
a technical standpoint, access to the user data on the hidden volume is achieved in almost
precisely the same way as access to the outer volume. In the case of a hidden operating
system, the process is very similar to that described in the section »System encryption«,
while in the case of a hidden volume, the process is as described in the section » Encrypted
volumes«.

Following this explanation of the basic technical implementation of TrueCrypt, we will now
examine the extent to which the requirements R1-R7 are fulfilled:

R1 - »Use of suitable cryptographic processes«: TrueCrypt uses recognized cryptographic meth-

R2 -

ods for protecting the data in a volume. The AES, Serpent and Twofish algorithms are
thus available as block ciphers. XTS is used as the operating mode. We thus consider this
requirement to be fulfilled.

»Confidential data must not be saved as plaintext«: An encrypted volume is initially
empty when it is first created. All data that is subsequently written to the volume is
encrypted as part of the output operation from the component Driver. As part of the
initialization of a system encryption, the whole system (depending on the chosen option,
either a system partition or a system disk) is encrypted on the data storage device. In any
event, the Driver only decrypts the encrypted data during a read operation in RAM and
passes it on to the application that sent the request. TrueCrypt thus does not make a
non-volatile copy of the data as plaintext in regular operation. The Driver is executed on
the user’s system and does not make use of any services that are external to the system.
Therefore, we consider this requirement to be fulfilled.

R3 - »Ensuring the integrity of the protected data«: The encryption ensures that an attacker

can not arbitrarily manipulate data so that certain plaintext is created after it is decrypted.
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Yet there is no process for ensuring the integrity of the data that would indicate an
unauthorized manipulation of a volume. We thus consider this requirement to be partially
fulfilled. Nevertheless, ensuring the integrity of the data has a lower priority in this context
than protecting the confidentiality of the data.

R4 - »Ensuring the integrity of TrueCrypt itself«: The officially published binary files for Mount,
Format and Driver are digitally signed and thus their integrity can be easily checked by the
user. Some Windows versions also require the kernel driver to be signed by default for them
to be used at all. However, we are not aware of the publication of a TrueCrypt boot loader
that can be used in combination with Secure Boot. Secure Boot is a technical measure that
is being used to an increasing extent and which guarantees that only signed boot loaders
can be used when the system is started. This makes it more difficult for attackers who
want to manipulate the boot loader. This requirement is thus not completely fulfilled.

R5 - »Information about hidden volumes must not be saved«: In accordance with the specifica-
tions in the TrueCrypt User’s Guide, every volume contains a header with metadata. This
header must have dedicated space reserved for the possible existence of a second encrypted
header. Without the corresponding password, it is thus not possible for an attacker to
reliably decide whether the reserved space is only filled with random numbers or with an
actual header. The same is true for the encrypted user data in the hidden volume: This is
either found in the unused space of the outer volume or this space only contains random
numbers. An attacker is also not able to differentiate between these two possibilities. As
there is no further information pointing to the existence of a second volume, we consider
this requirement to be fulfilled.

R6 - »Keys or passwords must not be saved as plaintext«: There is no functionality that would
require keys or passwords to be saved as plaintext. We could not find any indications that
TrueCrypt is doing anything similar. The requirement is fulfilled.

R7 - »Keys or passwords must not be transferred to third parties«: On the basis of the uses
cases and the functional description, there is no need for keys or passwords to be transferred
to third parties. We could not find any indications that TrueCrypt is doing anything of
this sort. The requirement is fulfilled.

At this stage, we will now consider the suitability of the basic technical implementation of
TrueCrypt with respect to the described attack scenarios. Firstly, it should be noted that an
encrypted volume opened by TrueCrypt on a running system is essentially unprotected. This
is true for all applications and functionalities. As a general rule, the opened volume will look
like a regular drive to an attacker who has logical access. Therefore, it can be easily read or
manipulated. The fact that TrueCrypt does not make a non-volatile copy of the encrypted
content of a volume in plaintext is also true for all functionalities. Even in the event of a sudden
system crash, the data is not present in an unencrypted form, not even if the volume was open
at the time of the crash.

If the system is switched off or the volume is closed then TrueCrypt actually provides effective
protection. However, the functionalities offered by TrueCrypt and the use cases in which the
these functionalities are used are more or less susceptible to certain attack scenarios.

An attacker has the largest range of options to select from in the case of a file-hosted or
partition/device-hosted volume. This includes the following:

o The simplest way to analyze and manipulate the user’s system is through a single logical
or physical access. For example, an attacker can install malware (such as a keylogger or
remote access software) to monitor the future input of passwords or to directly access the
data on an opened volume remotely.
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e The use of keyfiles can make brute force attacks significantly more difficult. In this area,
TrueCrypt offers users the option of linking a number of keyfiles to a volume. This process
can be carried out when the volume is created or also for already existing volumes. When
mounting this kind of volume, it is then no longer sufficient to simply enter the correct
password, the user must also enter the keyfiles linked to the volume. TrueCrypt then uses
the content of the keyfiles and password entered by the user to calculate the secret key
for the volume header. If either the password entered by the user or the stated keyfiles
do not correspond to those linked to the volume by the authorized user, the process for
generating the key will fail and access to the volume remains blocked. This increases the
level of difficulty for brute force attacks because not only does the password need to be
correctly guessed but also the content of the keyfiles used in each case. However, it is
important to note for this analysis that TrueCrypt only processes a maximum of the first
1,048,576 bytes (1024 - 1024 bytes corresponding to 1MB) in each keyfile for generating the
key. If a keyfile is larger, the additional data is ignored. Keyfiles can be stored on external
data storage devices such as USB sticks or also on smartcards. The number of keyfiles that
can be linked to a single volume is practically unlimited.

e Ensuring the integrity of TrueCrypt itself can be beneficial in some situations. For example:
TrueCrypt is used to save an encrypted backup to an external data storage device. In order
to make access easier, a portable version of TrueCrypt is saved to the backup device. It is
then easy to check the integrity of the TrueCrypt binary files before the volume is accessed.
It would be difficult here for an attacker to falsify the signature.

e The use of hidden volumes is also associated with plausible deniability. It is thus more
difficult for an attacker to gain access to the encrypted data by threatening the user.

From the perspective of the attacker, the encryption of a system partition needs to be considered
a little differently than a regular volume.

e As a general rule, analyzing and manipulating the system requires more effort if the system
partition is completely encrypted. Therefore, the possibilities for installing malicious
software are limited to some extent.

¢ Nevertheless, any unencrypted partitions that may exist are still accessible to the attacker
and could be used for a forensic analysis. It is possible that exploitable data has been saved
here by applications or the operating system that could make further attacks easier. Indeed,
it is even possible that the user themselves has inadvertently saved data in unencrypted
areas.

¢ As Secure Boot is not supported, the boot component represents a vulnerability. As has
been demonstrated in practice (e.g. Stoned), an attacker can infect this unencrypted
component whose integrity is not protected and thus attack the system encryption.

e No keyfiles can be used here and it is thus not possible to make brute force attacks more
difficult.

The encryption of the entire system disk imposes the greatest limitations on an attacker in
terms of those functionalities being considered here. In contrast to the encryption of the system
partition, there are no longer any unencrypted partitions that could provide an attacker with
useful data. In the special case of a hidden operating system, the fact that its existence cannot
be proved provides additional protection.

Some attack scenarios are nevertheless still possible. For example, the integrity of the hardware
is not protected by TrueCrypt. An attacker could, for example, install a hardware keylogger or
another monitoring tool within the system in order to gather confidential information via cyber
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espionage. In an extreme case, an attacker could even replace the user’s entire hardware with a
manipulated copy.

In summary, it can be said that the functionalities offered by TrueCrypt permit a whole series
of attack scenarios. The basic technical implementation of TrueCrypt is nevertheless appropriate
because it does not introduce any serious, avoidable vulnerabilities.

7.5.3 Maintainability and testability

Unit tests should play an important role in the test and development process for TrueCrypt, as
well as for any software based on it. There are a series of frameworks available, such as CppUnit!
or Google Test?, which can be used to help develop corresponding test cases for C++ code. A
comprehensive test suite ensures that certain sections of the code conform to expectations. As
part of the further development of any software, they serve as regression tests to prevent new
errors being introduced into already existing code when changes are made to the source code.

Microsoft provides documentation and tools® that are especially useful for testing drivers on
Windows. Alongside comprehensive support in current editions of Visual Studio, designed to
simplify the development of drivers, there is also, for example, the Static Driver Verifier (SDV)*.
The SDV analyzes the driver’s source code to identify errors and design issues that could threaten
a flawless interaction with the Windows kernel. This could enable serious problems to be found
at an early stage of the development process. Alongside specialist solutions for drivers, there are
also a series of other tools — generally available commercially — that can find software errors using
static program analysis. The capabilities of these products can sometimes vary considerably
and introducing this type of analysis software into the development process should thus only be
carried out on the basis of a careful examination.

In addition to testing methods based on the source code, a testing method called fuzzing can
also be employed. Fuzzing is a technique where the interfaces to the software are tested while
it is running with a very high number of random inputs in order to identify any input values
that could possibly cause an error in the software critical to its security. This method can be
used to identify security issues that cannot be identified with static analyses and which were not
taken into consideration when the unit tests were created. In particular, it would be expedient
to analyze the interfaces to the TrueCrypt driver component because it generally implements the
core functionality of the program. The authors of the OCAP Phase 1 Test Report state that
they have tested some interfaces to the driver and the boot loader using fuzzing.

Another elaborate method for verifying certain characteristics of a tested software is formal
verification. By applying a mathematical verification method it can be proven whether part
of the software conforms to a given formal specification. As this verification generally requires
a great deal of effort, the process could not be used on the entire software for TrueCrypt but
would need to be limited to particularly critical parts of the system. The authors of the OCAP
Phase 2 Test Report recommend verifying the functions EncryptBufferXTSNonParallel and
DecryptBufferXTSParallel in this way because they believe there is potential for error prone
»pointer arithmetic« and »bounds checking«.

In order to increase the testability and maintainability of TrueCrypt and other software based
on it, deficiencies in the code quality should firstly be resolved and the build infrastructure
updated. Last but not least, the maintainability of software is also closely linked to a clear
and well-documented software design. Well-defined interfaces and a modular software structure
also simplify testing. A modern build infrastructure is required in order to be able to utilize
up-to-date analysis software and development tools. Some of these products are integrated into

http://sourceforge.net/projects/cppunit/

*nttps://code.google.com/p/googletest/
3https://msdn.microsoft.com/en-us/library/windows/hardware/f£554651%28v=vs.85%29.aspx
‘https://msdn.microsoft.com/en-us/library/windows/hardware/f£552808%28v=vs.85%29.aspx
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the build process for analysis purposes and the use of very old software could cause problems.

7.5.4 Recommendations for improvements

The need to resolve deficiencies in the code quality and to update the build infrastructure has
already been emphasized on a number of occasions. Alongside this clear recommendation, there
are also a series of other proposals for improvements designed to improve the security and
usability of the software.

Alternatives to XTS-AES Firstly, the operating mode XTS-AES, which is used for encrypt-
ing volumes, has been generally criticized. As discussed in Chapter 9, the authors of the OCAP
Phase 2 Test Report point to possible attack scenarios associated with the insufficient protection
of integrity and the small block size (16 bytes) in AES. As a result, an attacker can manipulate
a single cipher block on a data storage device for the purpose of altering a particular memory
location for their own purposes, without this attracting the attention of the user. Although the
attacker cannot predict what effect this manipulation of the ciphertext will have on the plaintext
without knowledge of the key, they can certainly guarantee that only the actually manipulated
block is changed. An attacker can thus take advantage of this fact by overwriting certain parts
of an executable file in order to alter its control flow for their own benefit. Manipulation of the
configuration files and the Windows registry is also possible. In order to carry out this type
of attack, the attacker must have knowledge of a memory location that would be beneficial if
manipulated but would not damage the functionality of the system in a conspicuous manner.
The authors of the test report highlight the possibility of utilizing an alternative solution to
combat this problem — which was originally developed by Microsoft for Bitlocker and is discussed
in [8]. The publication discusses in detail the use of AES-CBC in combination with a so-called
diffuser. The diffuser combines the plaintext of multiple AES blocks together in one large block.
Before encryption and also after decryption, the diffuser applies a mathematical operation to
the plaintext to distribute local changes across the entire combined block. The block size of the
diffuser is significantly larger than that in AES and can vary in the range of 512-8192 bytes.
The use of the diffuser ensures that any manipulation of the ciphertext has significantly greater
effects on the plaintext than would be the case when using XTS-AES. Even the minimum block
size of 512 bytes is considerably larger than the 16 bytes in XTS-AES and thus significantly more
difficult to attack. However, the authors clearly state in [8] that the use of the described method
should firstly be carefully examined and is not necessarily suitable for all use cases. Before a
similar method is used as part of the further development of TrueCrypt, a detailed analysis of its
effects is urgently required.

A possible alternative approach for guaranteeing the integrity of the plaintext could be to use
a special file system that already possesses the necessary functionality. Btrfs is one example
of a file system that assigns a checksum to all data and metadata to ensure the integrity of
the saved data. In the context of TrueCrypt, even when using XTA-AES, the unauthorized
manipulation of the ciphertext would become apparent because the checksum calculated by the
file system would no longer be correct. An attacker without knowledge of the key would have no
opportunity to correspondingly adapt the checksum — which like the data is itself encrypted — to
the manipulation.

Support for multiple users Especially when TrueCrypt is used in an official or company
setting, support for multiple users per volume makes good sense. TrueCrypt does not currently
provide any direct option for linking multiple individual users to a single volume. This type
of functionality could be implemented, for example, by adapting the volume header format so
that the secret key for the volume is not just added once but multiple times. Each copy of the
key could be encrypted with the password of a different user so that each user could access the
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volume using their own individual password. The specific requirements for supporting multiple
users is highly dependent on the use case. Therefore, there is no general solution that fulfills the
requirements for every case. As explained in the TrueCrypt User’s Guide, a similar functionality
can be achieved by using smartcards in combination with keyfiles.

Removing the hidden volume functionality In a professional setting, it may be preferable
for the employer to remove the option of creating hidden volumes. This would make it more
difficult for users to save secret data on a work computer that would even be hidden from the
employer themselves. Even if the employer has complete trust in the user, the removal of this
functionality would contribute to reducing the software’s code base. A small code base is also
linked to less testing and maintenance work and could also possibly result in a smaller attack
surface. The removal of unnecessary functionalities can thus be useful and should be investigated
for specific usage scenarios.

7.6 Summary

Results of chapter 7

e There are three main use cases for TrueCrypt:
— Protecting information using system encryption
— Protecting information using encrypted volumes

— Maintaining confidentiality and protecting information using hidden volumes
e The primary aim is to protect the confidentiality of data in a TrueCrypt volume.

o Alongside the primary security goal, there are other goals such as protecting integrity
or enabling deniability.

o The attacker’s opportunities for accessing the system can be split into two dimensions:
— physical/logical access

— Single/repeated access
e There are no effective measures against attackers that have repeated access.
e An open volume on a running system is easy to compromise.

e The basic technical implementation of TrueCrypt is appropriate because it does not
introduce any serious, avoidable vulnerabilities.
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8 Identification of dispensable parts of the
code

8.1 Aim

The aim of this work package was to investigate the code base in order to identify components,
files and functions that are not required for the desired functionality and thus could possibly
be removed to reduce the attack surface. After consultation with the client, all possible usage
scenarios offered by TrueCrypt in practice should be taken into account. In this respect, a
function can only be considered to be dispensable if it is not used in any possible configuration
of the software.

8.2 Procedure

Component level In order to identify dispensable parts of the code at a component level,
it is helpful to fall back on the description of the software architecture in Chapter 7.5.1. This
provides a detailed description of the runtime components and their dependencies.

File level This work package focused at a file level on the comparison of the log files with the
Windows and Linux build directories to determine whether every .c and .cpp file was actually
used when compiling the program. In the case of a Linux build, the source code is compiled in
files with the ending .o and for a Windows build it is compiled in .obj files. If neither a .o nor
a .obj file exists for a source code file, it can be concluded that the corresponding source code
file is not used in the build for that platform.

Function level In order to determine which functions are used in practice, the call graph from
Chapter 4 was utilized on the one hand, while the source code was also investigated manually
for call dependencies on the other hand. Further information was provided by the results of
the static code scanner from Chapter 5, which have additional checkers for unused functions,
branches and variables.

8.3 Results

Component level In terms of the components, the description of the software architecture
from Chapter 7.5.1 suggests that all components are required in a general usage scenario (see
Figure 7.2). If the usage scenario is restricted, complete components could be omitted. It is
possible, for example, to leave out the Boot components on Windows if the user has no interest
in an encryption of the complete system.

File level Only the files for the user interface in the Linux variant (mainly found in folder
Main/Forms) were not required by the compilation. However, this can be explained by the fact
that we explicitly deactivated the user interface during the build process and the analysis is
based on the command line variant of TrueCrypt. Furthermore, the file Crypto/Aescrypt.c was
also not compiled. This is used for architectures other than x86 that are not covered by this
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analysis. Overall, it can be concluded that if there is no restriction of the usage scenario then all
of the files are required at a file level.

Function level In general, no large fragments of code were found that are not used in
TrueCrypt, although not all of the unused sections of code have been consequently eliminated.
For example, the functions aes_encrypt_key, aes_encrypt_key128, aes_encrypt_key192 can
be activated by setting a preprocessor variable, yet there are no circumstances in which they are
called.

The tools Clang, Coverity Scan and Cppcheck (described in Chapter 5) that are used for
carrying out static code analyses only returned a few indications of unused fragments of code.
Coverity and Clang reported a total of three unused variables in the code; these should definitely
be deleted, but furthermore do not point to large unnecessary sections of the code.

Other recommendations In the case of defined usage strategies for TrueCrypt, it is possible
to make detailed statements about dispensable sections of the code. The tool gcov can be
utilized, for example, on Linux for this purpose. However, this is a dynamic tool that delivers
statistics about used and unused calls in the code during the runtime of the program. This
requires that the desired operations e.g. encrypting and decrypting a partition using TrueCrypt
are carried out. The statistics can then be used afterwards to argue which sections of the code
are not significant for the functionality executed by the program.

However, it is important during this process to be aware that the tool logs information
dynamically, meaning during runtime. Those execution paths that are not reported are thus not
necessarily dispensable. For example, paths that are followed in the event of errors may not have
been taken into account because the program has possibly followed a different execution path
during runtime.

8.4 Summary

Results of chapter 8

e In the case of a general usage scenario for TrueCrypt, all components and files are
required to execute TrueCrypt.

e A further restriction of the usage scenarios would make it possible under certain
circumstances to dispense with complete components.

e At a functional level, some functions could be identified in the subprojectCrypto
that are not executed.
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9 Evaluation of the OCAP Phase 2 Test
Report

9.1 Comments on OCAP-2

As part of the Open Crypto Audit Project!, the second phase of the audit of TrueCrypt in
Version 7.1a was completed. The report by Alex Balducci, Sean Devlin and Tom Ritter was
published in March 2015 [2]. In this chapter we evaluate the scope of the report, discuss its
findings and submit recommendations for software based on TrueCrypt.

Scope of the report

The second phase of the OCAP focused on the cryptographic services of the TrueCrypt software.
This included a comprehensive source code review and specific debugging of the software on
a Windows platform. Reverse engineering of the assembler code or a comparison between the
TrueCrypt binary files and the source code were not carried out. The focus of the source code
review was the AES implementation in XTS mode, as well as the random number generators and
the SHA-512 hash function. In addition, the header volume format was analyzed. In particular,
it is notable that there was no analysis of the non-secure deletion of memory.

This analysis revealed 4 vulnerabilities. However, none of them would allow a general attack
on any TrueCrypt installations. Two vulnerabilities were categorized as having a high level of
severity, one as having a low level of severity and one with an undetermined level of severity. The
difficulty of exploiting these vulnerabilities was categorized as undetermined or high in all cases.

9.2 Comments on the results

We will discuss the findings of the OCAP Report in the following section.

Finding 1 — CryptAcquireContext may silently fail in unusual scenarios The first
vulnerability is related to the fact that the random number generator in TrueCrypt on Windows
relies in some scenarios on poor sources of entropy, without causing abortion of the program
or at least issuing of a warning message. > The relevant source code is located in the file
Common/Random. ¢ in lines 101-105, 645 and 756.

The vulnerability relates to the fact that calls to CryptAcquireContext® can fail, if, for
example, a Windows group policy has been set that prevents access to the key store of the
Cryptographic Service Provider. TrueCrypt exclusively uses this context for generating random
numbers via CryptGenRandom and thus no access is actually required.

If no context for the Cryptographic Service Provider is available, TrueCrypt uses its own
sources of entropy instead, such as the process number or the current runtime of the system. A
list can be found in Annex A of the OCAP-2 Report, as well as in the file Common/Random.c in
lines 614 and 639 or 667-752 via the functions RandaddBuf and RandaddInt32.

"https://opencryptoaudit.org
2In this sense, the title of this vulnerability is unfortunately very technically focused and not target-oriented.
3See https://msdn.microsoft.com/en-us/library/windows/desktop/aa379886.aspx
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The OCAP-2 Report recommends setting of CRYPT_VERIFYCONTEXT? in the 5th parameter.
The result is that no access to the key storage is requested when initializing the Cryptographic
Service Provider context. Therefore, CryptAcquireContext would also not fail even if access to
the key storage were prohibited.

In addition, in case of an error where not context is returned, an error message should be
issued and execution aborted.

This is similar to the situation with the Debian-OpenSSL-Bug®, whereby more sources of
entropy are actually used. However, in scenarios involving virtual machines, embedded systems
and the automated booting of devices, these sources of entropy (used by TrueCrypt) can be
considered almost equally vulnerable as the Debian-OpenSSL-Bug. Accordingly, software based
on these sources should urgently implement the sensible recommendations in the OCAP-2 Report
and replace old keys that were generated in these types of scenarios.

The implementation of the random number generator in Linux in the file
Core/RandomNumberGenerator.cpp can also lead to vulnerabilities in the entropy, as described
in Chapter 4.3.

Finding 2 — AES implementation susceptible to cache timing attacks The second
vulnerability describes the possibility that the AES key could be detected while it is being used
through cyber espionage. The report states that the implementation in file Crypto/AesSmall.c
uses an implementation that is susceptible to cache-timing attacks.

A cache-timing attack on a key exploits the fact that an AES implementation uses look-up
tables and optimizes access to these tables in a naive manner. The attack will thus work as
follows: an attack program is applied such that the cache lines in the CPU are shared with the
victim program. The attack program then uses its scheduler slot to flood the cache with its
data. In the next slot (after the victim program just executed), the attack program once again
attempts to access its data. Due to the latency of the data access, it can now determine which
cache lines were flushed. This information provides an access pattern for all programs that are
running in parallel. These access patterns can be used to draw conclusions about possible keys
in the AES implementation, which could reduce the potential search area and lead to exposure
of the secret key.

In order to be able to carry out this type of attack, the attacker would, however, need access
to the same computer and the opportunity to execute code. In this context, the OCAP-2 Report
refers to advances in attack techniques, such as those using JavaScript. The report recommends
the use of alternative implementations, such as that of Késper, as well as the use of other
mitigation strategies.

In general, this recommendation should certainly be followed. In particular, this would prepare
the way for scenarios in which new projects are created based on the TrueCrypt source code, as
well as enabling the existing code to still be used for other purposes. There should not generally
be a problem when used within TrueCrypt because AesSmall.c is only used for the boot module
(see Boot/Windows/Boot.vcproj and Boot/Windows/Makefile). This only represents a problem
in a scenario where TrueCrypt carries out full disk encryption in a virtual machine and the
attacker has access to another virtual machine. In this type of scenario, the level of difficulty
increases even further, although cache timing attacks on the AES key in TrueCrypt would then
be possible.

Finding 3 — Keyfile mixing is not cryptographically sound The algorithm for deriving
a key from keyfiles (also in combination with a password) is not cryptographically secure. The
problem lies in the fact that the method used by TrueCrypt — which is based on CRC and ring

“https://msdn.microsoft.com/en-us/library/windows/desktop/aa379886.aspx#crypt_verifycontext
®See https://www.debian.org/security/2008/dsa-1571
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addition — is not collision resistant in the sense of a cryptographically secure hash function. This
means that it is possible for a given set of keyfiles (and/or passwords) to generate another keyfile
(and/or password) that results in the keypool having a previously desired value for the calculation
of the key. In particular, it is also possible — with knowledge about a keypool formed from a
number of keyfiles (and/or password) — to generate an alternative keyfile (and also a password to
some extent) that would generate the same key.

The OCAP-2 Report recommends the use of a cryptographically secure hash function and
rates the severity of this hole as low.

However, the purpose of this function is to allow the possibility of multi-factor authentication
and the four or six-eye principle. The possibility of negating this multi-factor characteristic both
during and also after the generation of the keypool and the fact that it is not possible to prove
this type of manipulation means that it should be given a medium rating and a medium level of
difficulty.

The scenarios could occur as follows: A password and a keyfile (on a USB stick) are used to
secure a key. The attacker manipulates the PC on which the keyfile for the password is generated.
During the generation process, the keyfile is not randomly chosen but instead selected so that a
second password exists that generates the same key without a keyfile. Another scenario could be
that three keyfiles are generated for a six-eye principle, whereby two of the keyfiles are selected
so that they negate each other. It is then subsequently possible to generate the AES key both in
accordance with the six-eye principle as well as for the owner of the non-negated keyfile alone.

According to the OCAP-2 Report, a cryptographically secure hash function should be used.
In order to retain the characteristic that keyfiles can be entered in any order in TrueCrypt, the
keyfiles could be sorted according to their values before they are hashed. This would ensure that
this change does not result in the loss of this feature.

In cases where it cannot be guaranteed that the creator of a keyfile has not manipulated it, or
an attacker did not have at least temporary access to the keypool to generate a »MasterKeyfile«,
all keys should be regenerated in accordance with this secure method. This is particularly
important because this type of manipulation cannot be proven. Even in the case of self-negating
keyfiles, it would instead be possible to generate ones that enable access with a password in
combination with the third keyfile.

Finding 4 — Unauthenticated ciphertext in volume headers A common requirement
in cryptography is to protect the confidentiality and also the integrity of some data using a
symmetric key. It is common practice here to add a checksum in the form of a CRC or hash code
within the encrypted memory block and to check it for plausibility — whether it is correct based
on the actual data — after decryption. Due to the encryption of the memory block, it should not
be possible in theory for an attacker to alter the actual data and also the checksum (as well as
the magic string) so that the results then again appear plausible.

However, it is difficult to prove this in practice. Instead of the selected approach, it is common
practice to secure the integrity of the data cryptographically without indirections. The OCAP-2
Report discusses this issue and makes a good recommendation that a second key — alongside the
encryption key — should be derived from the main key and should then be used with a message
authentication code (MAC) — this could be both a CMAC or a HMAC. In this way, the integrity
of the data could be guaranteed in accordance with best practices in the field of cryptography.

Above and beyond this recommendation, it is also possible to complete the cryptographic
encryption in modes for authenticated encryption. The modes CCM and GCM offer the possibility
of guaranteeing both the confidentiality and also the integrity of the data in one step.
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9.3 Further findings

XTS Mode The OCAP Phase 2 Test Report generally criticizes XTS as an operating mode
for hard disk encryption. Consequently, the report believes that the integrity of the data is not
guaranteed to a sufficient degree. As is the case with some other operating modes, protection
against unauthorized alterations in XT'S mode is only based on the fact that an attacker cannot
alter the ciphertext in a way that would enable a defined and predictable manipulation of the
plaintext without knowledge of the key. As unauthorized manipulations cannot be directly
recognized, which would be the case if using a message authentication code (MAC), this form of
protection is described in literature as »poor man’s authentication«. The test report describes
the problem as being that the block size (16 bytes) is very small in XTS-AES, which means
that an attacker can target the manipulation of certain areas of the hard disk by manipulating
the ciphertext. Although the concrete effects of this manipulation of the ciphertext on the
plaintext are not foreseeable without knowledge of the key, it nevertheless guarantees that the
alteration only affects the actually manipulated block and the other blocks remain unaffected.
An attacker could take advantage of this fact by overwriting certain parts of an executable file in
order to change its control flow for his/her own benefit. Manipulation of configuration files or
the Windows registry is also possible. A prerequisite for this type of attack is that the attacker
must have knowledge of a memory location useful for manipulation but would not damage the
functionality of the system in a conspicuous manner. In Chapter 7.5.4 of this report, proposals
are discussed for combating this problem.

Alongside this general criticism of XTS, the authors of the test report recommend the formal
verification of selected functions in TrueCrypt (EncryptBufferXTSNonParallel, DecryptBuffer-
XTSParallel) that are used as part of the encryption and decryption processes. In particular,
this should be designed to exclude errors in the »pointer arithmetic« and »bounds checking«.

Further recommendations Further recommendations in the report include a continuation
of the code review and improvements of the code. In particular, the pointer arithmetic and
bounds checking in the XTS implementation on various platforms with different endianness
seem to be significant here. The parameters for the encrypted areas and the overall size also
appear to be possible trapdoors and should be examined throughout the entire source code — only
DriveFilter.c was examined for this purpose in the OCAP-2 Report. Finally, the program
flow should be specifically reviewed with a focus on how errors are handled and the implact of
errors from certain function calls beyond the actual cryptographic functions.

Moreover, the program logic appears very complex and should be simplified. In particular, the
diverse range of cryptographic functions and redundant implementations (see also Chapter 4
Figure 4.1) result in a high level of complexity. The report explicitly highlights hardware-
optimized implementations as an exception. Another example of the increased level of complexity
can be found in Appendix D of the report — which highlights the use of defensive coding practices.
Cases such as the described fall-through and switch statements without defaults significantly
increase the complexity for programmers and reviewers.

Furthermore, the report recommends better error handling and logging. The case involving
the poor handling of errors in random number generators provides a very good example. If the
program would have been terminated with a corresponding error message, the programmers
would probably already have incorporated the improvements described under Finding 1. Logging
would probably have provided the required information in the current implementation, while the
termination of the program would have provided the motivation for finding a correct solution.
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9.4 Summary

Results of chapter 9

e The random number generator in the Windows version is significantly weakened
in case of certain group policy settings. This can go unnoticed and lead to poorly
encrypted volumes in many systems. This should be resolved in the code and affected
volumes regenerated.

e The implementation of the bootloader for full disk encryption is susceptible to cache
timing attacks. However, this is only relevant when used for virtual machine booting
and even then only with a lot of effort.

o The mix of multiple keyfiles and /or a password is not cryptographically secure against
collision attacks. Consequentually, the system is incapable of actual multi-factor
authentication and four-eye principles.

o The volume header in the ciphertext should be secured either by MAC or CCM/GCM
instead of via CRC.

e The use of XTS-AES is associated with risks because an attacker can overwrite
certain memory locations in a targeted manner without attracting the attention of
the user.

e Simplifying the program logic, defensive coding and better error handling and output
would make it easier for programmers and reviewers to guarantee security.

e Further reviews should follow, with a particular focus on the pointer arithmetic
in the XTS implementation, the handling of header volume parameters and the
program flow outside of the cryptographic functions.
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Appendix A

Functions with a cyclomatic complexity
greater than 15

NLOC CCN  token PARAM location

1832 440 8579
1536 416 8087
1542 368 12019
604 138 3990
522 113 2956
345 107 1760
306 103 1495
344 102 1898
443 102 2374

MainDialogProc@5368-7770@./Format/Tcformat.c
MainDialogProc@4637-6565@. /Mount/Mount.c
PageDialogProc@3292-5364Q. /Format/Tcformat.c
ProcessMainDeviceControlIrp@805-1553@./Driver/Ntdriver.c
TCOpenVolume@36-732@. /Driver/Ntvol.c
TestSectorBufEncryption@637-1030@./Common/Tests.c
TestLegacySectorBufEncryption@1033-1363Q./Common/Tests.c
EncryptionTest: :TestXts@473-861Q./Volume/EncryptionTest.cpp
TCFormatVolume@73-675Q./Common/Format.c

377 98 2751 CommandLineInterface: :CommandLineInterface@20-483@./Main/CommandLineInterface.cpp
368 87 2064 VolumeCreationWizard: :ProcessPageChangeRequest@514-972@./Main/Forms/VolumeCreationWizard.cpp
393 78 2491 PasswordChangeD1gProc@1381-1867@./Mount/Mount.c

282 78 2128 TextUserInterface::CreateVolume@477-8460./Main/TextUserInterface.cpp
332 74 1112 AfterWMInitTasks@8423-8914Q./Format/Tcformat.c

232 72 1399 MountVolume@5963-6263@. /Common/Dlgcode. c

245 70 1232 volTransformThreadFunction@2261-2576@./Format/Tcformat.c

306 68 1478 RestoreVolumeHeader@7668-8074@. /Mount/Mount . c

291 67 1722 ReadVolumeHeader@163-575@./Common/Volumes.c

324 63 1753 EncryptPartitionInPlaceResume@638-1102@./Format/InPlace.c

241 59 1496 RawDevicesD1gProc@2869-3180@./Common/Dlgcode.c

229 59 1123 ChangePwd@117-421@./Common/Password.c

245 58 1550 SetupThreadProc@1150-1466Q./Driver/DriveFilter.c

266 57 1878 AnalyzeKernelMiniDump@8609-8940@. /Mount/Mount .c

165 56 927 MountAllDevices@3687-3915@. /Mount/Mount.c

212 55 1244 LoadPage@2578-28500. /Format/Tcformat.c

120 55 706 TCDispatchQueueIRPQ@199-349@Q. /Driver/Ntdriver.c

155 54 1067 TCTranslateCode@1864-2024@. /Driver/Ntdriver.c

209 53 1638 MainThreadProc@482-756@./Driver/EncryptedIoQueue.c

150 53 1183 PreferencesD1gProc@2190-2383@. /Mount/Mount.c

226 53 1300 ExtractCommandLine@6567-6845@. /Mount/Mount.c

225 51 1322 FavoriteVolumesDlgProc@101-407@./Mount/Favorites.cpp

258 49 2002 VolumePropertiesD1gProc@2624-2968@€./Mount/Mount.c

268 49 2112 CipherTestDialogProc@5044-5400@./Common/Dlgcode. c

287 48 1748 LoadDriveLetters@978-1334@. /Mount/Mount.c

229 47 1458 PasswordD1gProc@1876-2167@./Mount/Mount .c

61 46 740 EncryptionTest: :TestLegacyModes@42-113@./Volume/EncryptionTest.cpp

161 45 1059
162 45 1010
115 44 697
415 44 1308
207 43 1220
54 43 393

Volume: :0pen@100-308@. /Volume/Volume.cpp
BackupVolumeHeader@7446-7665@. /Mount/Mount . c

Mount@3364-35300. /Mount/Mount . c

UserInterface: :ProcessCommandLine@867-1323@./Main/UserInterface.cpp
HotkeysD1gProc0270-5230. /Mount/Hotkeys.c

Hotkey: :GetVirtualKeyCodeString@62-127@./Main/Hotkey.cpp

WORNRPOWWOORANBABRNBARLRRLPNNNRRL,AORAMINRLRORPE,BERRNRLORREO®WMADD

72 42 605 GetKeyName@42-120@. /Mount/Hotkeys.c

162 42 1230 ExceptionHandlerThread@1657-1855€./Common/Dlgcode.c

157 42 1130 LoadLanguageFile@104-313@./Common/Language.c

249 41 1815 ProcessVolumeDeviceControlIrp@493-802@./Driver/Ntdriver.c

190 41 1200 16 CreateVolumeHeaderInMemory@685-983@Q./Common/Volumes.c

62 40 549 11 StringFormatter::StringFormatter@15-83@./Main/StringFormatter.cpp

181 40 1177 1 GraphicUserInterface::RestoreVolumeHeaders@1112-1359@./Main/GraphicUserInterface.cpp
140 39 693 0 CheckMountList@4445-4632@./Mount/Mount.c

145 38 1182 1 IoThreadProc@298-479@./Driver/EncryptedIoQueue.c

164 37 602 1 SwitchWizardToSysEncMode@749-947@./Format/Tcformat.c

191 37 1353 4 TravelerDlgProc@2971-3216@./Mount/Mount.c

139 37 1160 3 CoreLinux: :MountVolumeNative@290-473@./Core/Unix/Linux/CoreLinux.cpp

108 37 575 1 TextUserInterface::MountVolume@1061-1194@./Main/TextUserInterface.cpp

218 36 1051 3 EncryptPartitionInPlaceBegin@302-635@Q./Format/InPlace.c

92 36 521 1 GraphicUserInterface::MountVolume@647-755@Q./Main/GraphicUserInterface.cpp
205 35 1448 1 VolumeCreationWizard: :GetPage@75-335Q./Main/Forms/VolumeCreationWizard.cpp
111 34 622 4 MountFavoriteVolumes@7143-7282@./Mount/Mount.c

47 34 350 0 InitOSVersionInfo@2223-2276€./Common/Dlgcode.c

161 34 1219 1 PerformBenchmark@4261-4504@./Common/Dlgcode.c

134 34 1141 1 DoAutoTestAlgorithms@1366-1563@./Common/Tests.c

152 34 745 1 CoreUnix: :MountVolume@393-575@./Core/Unix/CorelUnix.cpp

128 33 877 4 LanguageDlgProc@317-480€./Common/Language.c

93 33 630 4 BootEncryption::CreateBootLoaderInMemory@961-1082@./Common/BootEncryption.cpp
141 32 1067 4 MountOptionsD1gProc@2386-2573@./Mount/Mount.c

136 32 752 4 PerformanceSettingsDl1gProc@8083-8254@./Mount/Mount.c

134 32 755 6 OpenVolume@8457-8637@./Common/Dlgcode.c

118 32 753 4 GetAvailableHostDevices@9333-94830./Common/Dlgcode.c

156 32 986 1 TextUserInterface::RestoreVolumeHeaders@1263-1476@./Main/TextUserInterface.cpp
138 31 643 2 CheckRequirementsForNonSysInPlaceEnc@88-299@./Format/InPlace.c

141 31 685 0 RepairMenu@842-1025@./Boot/Windows/BootMain.cpp

145 31 1074 5 FormatFat©256-445@./Common/Fat.c

187 31 1068 4 SecurityTokenKeyfileDlgProc@9056-9286@Q./Common/Dlgcode.c
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188 30 780
149 30 1060
89 29 468
128 29 827
153 28 1139
93 28 623
137 27 861

ExtractCommandLine@7772-8015@./Format/Tcformat.c

Process: :Execute@26-201@. /Platform/Unix/Process.cpp

handleError@3842-3945@. /Common/Dlgcode. ¢

GraphicUserInterface: :BackupVolumeHeaders@109-283@./Main/GraphicUserInterface.cpp
CoreService: :StartElevated@339-524@. /Core/Unix/CoreService. cpp
PlatformTest::TestA110234-347@./Platform/PlatformTest.cpp
KeyfileGeneratorDlgProc@4862-5036@./Common/Dlgcode.c

81 27 429 GetWindowsEdition@8223-8321@./Common/Dlgcode.c

86 26 515 SaveFavoriteVolumes@650-761@./Mount/Favorites.cpp

165 26 1249 MultiChoiceDialogProc@5497-5716@./Common/Dlgcode.c

93 25 563 GetDrivePartitions@359-472@./Boot/Windows/BootDiskIo.cpp

105 25 688 RandomPoolEnrichementDl1gProc@4715-4844@./Common/Dlgcode.c

67 25 421 MainFrame: : OnHotkey@884-965@. /Main/Forms/MainFrame . cpp

85 25 432 MainFrame: :0nTimer@1215-1317@./Main/Forms/MainFrame.cpp

88 25 1061 aes_init@274-421@./Crypto/Aestab.c

66 24 341 VerifySizeAndUpdate@1255-1334@. /Format/Tcformat.c

105 24 631 DecryptDrive@699-839@./Boot/Windows/BootMain.cpp

98 24 593 DismountA11@3562-3685@. /Mount/Mount.c

76 24 454 main@26-127@./Main/Unix/Main.cpp

73 24 415 TextUserInterface: :ChangePassword@360-4520./Main/TextUserInterface.cpp
50 23 261 UpdateNonSysInPlaceEncControls@1835-1896@./Format/Tcformat.c

105 23 659 AnalyzeHiddenVolumeHost@8066-8213@. /Format/Tcformat.c

145 23 1078 MountDrive@220-404Q. /Driver/DriveFilter.c

76 23 480 BootMenu@481-572@. /Boot/Windows/BootMain. cpp

115 23 601 SecurityTokenPreferencesD1gProc@8257-8401@Q. /Mount/Mount.c

133 23 785 KeyFilesApply©217-387@./Common/Keyfiles.c

137 23 842 InitApp@2281-2472@./Common/Dlgcode.c

103 23 595 TextInfoDialogBoxD1gProc@2717-2843€./Common/Dlgcode.c

108 23 832 PlatformTest::SerializerTest@26-160@./Platform/PlatformTest.cpp

61 22 308 PrintFreeSpace02853-2919@. /Format/Tcformat.c

75 22 314 main@1035-11616./Boot/Windows/BootMain. cpp

103 22 679 Int13Filter@26-1770Q./Boot/Windows/IntFilter.cpp

76 22 602 LoadFavoriteVolumes@501-597@. /Mount/Favorites.cpp

152 22 979 KeyFilesD1gProc@418-607@./Common/Keyfiles.c

58 22 579 UpdateProgressBarProc@61-130@./Common/Progress.c

60 22 382 MountVolume@65-133@./Core/Unix/CoreServiceProxy.h

112 22 700 CoreService: :ProcessRequests@84-225@. /Core/Unix/CoreService. cpp

75 22 415 File::0pen@185-279@./Platform/Unix/File.cpp

90 22 550 VolumeCreationWizard: :0nVolumeCreatorFinished@397-512@./Main/Forms/VolumeCreationWizard.cpp
78 22 376 UserInterface: :DismountVolumes@144-2330Q./Main/UserInterface.cpp

82 22 469 UserInterface: :MountAllDeviceHostedVolumes@572-671@./Main/UserInterface.cpp
7 21 552 FinalPreTransformPrompts@3148-3250Q./Format/Tcformat.c

46 21 324 LoadImageNotifyRoutine@1035-1091€@./Driver/DriveFilter.c

87 21 508 CopySystemPartitionToHiddenVolume@577-693@./Boot/Windows/BootMain. cpp
72 21 282 ChangeSysEncPassword@3960-40500. /Mount/Mount . c

60 21 301 HandleHotKey@7353-7429@. /Mount/Mount.c

100 21 504 BootLoaderPreferencesD1gProc@8410-8531@. /Mount/Mount.c

83 21 791 GetFatParams@27-132@./Common/Fat.c

148 21 1227 BenchmarkD1gProc@4507-4712@. /Common/Dlgcode.c

110 21 829 VolumeCreator: :CreateVolume@177-330@./Core/VolumeCreator.cpp

83 21 791 GetFatParams@43-148@./Core/FatFormatter.cpp

75 21 474 ChangePasswordDialog: : 0On0OKButtonClick@75-165@./Main/Forms/ChangePasswordDialog. cpp
92 21 601 TextUserInterface: :BackupVolumeHeaders@233-358Q./Main/TextUserInterface.cpp
63 20 524 VolumeHeader: :Deserialize@134-216@./Volume/VolumeHeader . cpp

65 20 495 MoveClustersBeforeThresholdInDir@1588-1676Q./Format/InPlace.c

83 20 379
7 20 374
83 20 466

QueryFreeSpace@3038-3145@Q. /Format/Tcformat.c
DriverAttach@3423-3543@./Common/Dlgcode.c
WriteRandomDataToReservedHeaderAreas@1088-1196@./Common/Volumes.c

PR OWWWORWRREPREPRNWWORWOWNNGNOOOHRRHONRORONUDHFWWWRRREPRELBARLBOUONNWRRLRWORANRHEPAWOOWORNNPOWINRINITRLRNRLORLBEIPRNOPORELENON

79 20 435 TextUserInterface: :AskPassword@84-181@Q./Main/TextUserInterface.cpp

110 20 598 GraphicUserInterface::0nInit@768-913@./Main/GraphicUserInterface.cpp

55 19 477 dynamic@329-398€./Boot/Windows/Decompressor.c

78 19 368 DriverUnload@3319-3420@./Common/Dlgcode.c

60 19 372 EncryptionThreadPoolStart@218-307@./Common/EncryptionThreadPool.c

82 19 531 CoreMac0SX: :MountAuxVolumeImage@109-211@. /Core/Unix/Mac0SX/CoreMacOSX. cpp
21 19 189 ChangePasswordDialog: :OnPasswordPanelUpdate@167-194@./Main/Forms/ChangePasswordDialog.cpp
48 19 267 MainFrame: :0nClose@726-785@./Main/Forms/MainFrame. cpp

99 18 586 DecoySystemWipeThreadProc@1692-1821@./Driver/DriveFilter.c

80 18 435 S1lowP011@535-651@./Common/Random. ¢

59 18 255 cleanup@233-308@./Common/Dlgcode.c

64 18 452 BootEncryption: :GetSystemDriveConfiguration@847-927@./Common/BootEncryption.cpp
98 18 703 VolumeCreator: :CreationThread@44-175@./Core/VolumeCreator.cpp

60 17 235 OpenPartitionVolume@1177-1247@./Format/InPlace.c

84 17 457 DumpFilterEntry@20-137@./Driver/DumpFilter.c

103 17 509 MountDevice@2611-2641@./Driver/Ntdriver.c

52 17 335 BroadcastDeviceChange©5884-5949@. /Common/Dlgcode. ¢

83 17 468 BootEncryption: :GetPartitionForHidden0S@409-518@./Common/BootEncryption.cpp
103 17 580 BootEncryption: :ChangePassword@2050-2193@. /Common/BootEncryption.cpp

69 17 508 EncryptionThreadProc@123-215@./Common/EncryptionThreadPool.c

84 16 471 EncryptionThreadPool: :DoWork@25-133@./Volume/EncryptionThreadPool.cpp

62 16 383 UnmountDevice02643-2727@. /Driver/Ntdriver.c

45 16 271 HiberDriverEntryFilter@957-1014@./Driver/DriveFilter.c

55 16 259 GetPoolBuffer@34-103@./Driver/EncryptedIoQueue.c

82 16 609 EncryptedIoQueueStart@868-979@./Driver/EncryptedIoQueue.c

81 16 463 DisplayHotkeyList@165-266@./Mount/Hotkeys.c

62 16 508 InitMainDialog@220-304@./Mount/Mount.c

62 16 225 DecryptSystemDevice@4100-4170@. /Mount/Mount . c

71 16 294 CreateRescueDisk@4196-4277@./Mount/Mount .c

53 16 416 AddMountedVolumeToFavorites@31-98@./Mount/Favorites.cpp

105 16 779 InitDialog@1106-1239@./Common/Dlgcode.c

38 16 207 BootEncryption: : CheckRequirements@1862-1912@. /Common/BootEncryption. cpp
68 16 462 GetArgumentID@130-210@./Common/Cmdline.c

48 16 222 Wipe35Gutmann@83-139@./Common/Wipe.c

59 16 300 CoreMac0SX: :DismountVolume@32-100@./Core/Unix/Mac0SX/CoreMac0SX. cpp

83 16 510 MainFrame: :UpdateVolumeList@1455-1561@Q./Main/Forms/MainFrame.cpp

48 16 362 UserInterface: :ExceptionToMessage@298-365@./Main/UserInterface.cpp

46 16 385 UserInterface: :ExceptionToString@367-436@./Main/UserInterface.cpp

Total nloc Avg.nloc Avg CCN Avg token Fun Cnt Warning cnt Fun Rt nloc Rt
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79853 20 4.68 135.88 3272 170 0.05 0.43
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Appendix B

Duplicate code (excerpt)

Boot/Windows/BootConsolelo.cpp(50)
Boot/Windows/BootConsoleIo.cpp(35)
if (ScreenOutputDisabled)

return;

__asm

mov bx, 7

mov al, ¢

Boot/Windows/BootDiskIo.cpp(220)
Boot/Windows/BootDiskIo.cpp(143)

if (result == BiosResultEccCorrected)

result = BiosResultSuccess;

} while (result != BiosResultSuccess && --tryCount != 0);
if (!silent && result != BiosResultSuccess)

Boot/Windows/BootDiskIo.cpp(214)
Boot/Windows/BootDiskIo.cpp(136)
int 0x13

jnc ok

mov result, ah

ok:

Boot/Windows/BootDiskIo.cpp(200)
Boot/Windows/BootDiskIo.cpp(116)

BiosResult result;

byte tryCount = TC_MAX_BIOS_DISK_IO_RETRIES;
result = BiosResultSuccess;

__asm

Boot/Windows/BootMain. cpp(293)
Boot/Windows/BootConsoleIo.cpp(288)
__asm

push es

Xor ax, ax

mov es, ax

Boot/Windows/Decompressor.c(142)
Boot/Windows/Decompressor.c(114)
local int decode(struct state *s, struct huffman *h)
int len;
int code;
int first;
int count;
int index;

Boot/Windows/Decompressor.c(166)
Boot/Windows/Decompressor.c(127)
return h->symbol[index + (code - first)];
index += count;
first += count;
first <<= 1;
code <<= 1;

Boot/Windows/IntFilter.cpp(525)
Boot/Windows/IntFilter.cpp(518)
popad

popf

leave

add sp, 2

Boot/Windows/IntFilter.cpp(616)
Boot/Windows/IntFilter.cpp(602)
mov ax, es:[si]

mov [di], ax

mov ax, es:[si + 2]

mov [di + 2], ax

Boot/Windows/IntFilter.cpp(154)
Boot/Windows/IntFilter.cpp(110)
IntRegisters.Flags &= ~TC_X86_CARRY_FLAG;
else

IntRegisters.Flags |= TC_X86_CARRY_FLAG;
passOriginalRequest = false;

break;

Boot/Windows/IntFilter.cpp(384)
Boot/Windows/IntFilter.cpp(318)
Print ("EAX:"); PrintHex (IntRegisters.EAX);

Print (" EBX:"); PrintHex (IntRegisters.EBX);
Print (" ECX:"); PrintHex (IntRegisters.ECX);
Print (" EDX:"); PrintHex (IntRegisters.EDX);
Print (" DI:"); PrintHex (IntRegisters.DI);

Boot/Windows/IntFilter.cpp(312)
Boot/Windows/IntFilter.cpp(46)

uint16 spdbg;

__asm mov spdbg, sp

PrintChar (° ’);

PrintHex (spdbg);

PrintChar (’<’); PrintHex (TC_BOOT_LOADER_STACK_TOP);

Boot/Windows/Platform.cpp(49)
Boot/Windows/Platform.cpp(18)
__asm

jnc nocarry

mov carry, 1

nocarry:

Common/BaseCom. cpp (155)
Common/BaseCom. cpp (130)

catch (SystemException &)

return GetLastError();

catch (Exception &e)

e.Show (NULL);

return ERROR_EXCEPTION_IN_SERVICE;
catch (...)

return ERROR_EXCEPTION_IN_SERVICE;
return ERROR_SUCCESS;

Common/BaseCom. cpp (180)
Common/BaseCom. cpp(155)

catch (SystemException &)

return GetLastError();

catch (Exception &e)

e.Show (NULL);

return ERROR_EXCEPTION_IN_SERVICE;
catch (...)

return ERROR_EXCEPTION_IN_SERVICE;
return ERROR_SUCCESS;

Common/BaseCom. cpp (205)
Common/BaseCom. cpp (180)

catch (SystemException &)

return GetLastError();

catch (Exception &e)

e.Show (NULL);

return ERROR_EXCEPTION_IN_SERVICE;
catch (...)

return ERROR_EXCEPTION_IN_SERVICE;
return ERROR_SUCCESS;

Common/BaseCom. cpp(180)
Common/BaseCom. cpp (130)

catch (SystemException &)

return GetLastError();

catch (Exception &e)

e.Show (NULL);

return ERROR_EXCEPTION_IN_SERVICE;
catch (...)

return ERROR_EXCEPTION_IN_SERVICE;
return ERROR_SUCCESS;

Common/BaseCom. cpp (205)
Common/BaseCom. cpp (155)

catch (SystemException &)

return GetLastError();

catch (Exception &e)

e.Show (NULL);

return ERROR_EXCEPTION_IN_SERVICE;
catch (...)

return ERROR_EXCEPTION_IN_SERVICE;
return ERROR_SUCCESS;

Common/BaseCom. cpp (130)
Common/BaseCom. cpp (65)
catch (SystemException &)
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return GetLastError();

catch (Exception &e)

e.Show (NULL);

return ERROR_EXCEPTION_IN_SERVICE;
catch (...)

return ERROR_EXCEPTION_IN_SERVICE;
return ERROR_SUCCESS;

Common/BaseCom. cpp (205)
Common/BaseCom. cpp (130)

catch (SystemException &)

return GetLastError();

catch (Exception &e)

e.Show (NULL);

return ERROR_EXCEPTION_IN_SERVICE;
catch (...)

return ERROR_EXCEPTION_IN_SERVICE;
return ERROR_SUCCESS;

Common/BaseCom. cpp (155)
Common/BaseCom. cpp (65)

catch (SystemException &)

return GetLastError();

catch (Exception &e)

e.Show (NULL);

return ERROR_EXCEPTION_IN_SERVICE;
catch (...)

return ERROR_EXCEPTION_IN_SERVICE;
return ERROR_SUCCESS;

Common/BaseCom. cpp (180)
Common/BaseCom. cpp (65)

catch (SystemException &)

return GetLastError();

catch (Exception &e)

e.Show (NULL);

return ERROR_EXCEPTION_IN_SERVICE;
catch (...)

return ERROR_EXCEPTION_IN_SERVICE;
return ERROR_SUCCESS;

Common/BaseCom. cpp (205)
Common/BaseCom. cpp (65)

catch (SystemException &)

return GetLastError();

catch (Exception &e)

e.Show (NULL);

return ERROR_EXCEPTION_IN_SERVICE;
catch (...)

return ERROR_EXCEPTION_IN_SERVICE;
return ERROR_SUCCESS;

Common/BootEncryption.cpp(2247)
Common/BootEncryption.cpp(2234)

BootEncryptionStatus encStatus = GetStatus();

if (encStatus.DriveMounted)
throw ParameterIncorrect (SRC_POS);
CheckRequirements ();

Common/BootEncryption.cpp(2360)

Common/BootEncryption.cpp(2344)

BootEncryptionStatus encStatus = GetStatus();

if (lencStatus.DeviceFilterActive || !encStatus.DriveMounted
|| encStatus.SetupInProgress)

throw ParameterIncorrect (SRC_P0S);
BootEncryptionSetupRequest request;

ZeroMemory (&request, sizeof (request));

Common/BootEncryption.cpp(1151)
Common/BootEncryption.cpp(1129)

Device device (GetSystemDriveConfiguration().DevicePath);
byte mbr [TC_SECTOR_SIZE_BIOS];

device.SeekAt (0);

device.Read (mbr, sizeof (mbr));

Common/BootEncryption.cpp(1175)

Common/BootEncryption. cpp(1137)

device.SeekAt (0);

device.Write (mbr, sizeof (mbr));

byte mbrVerificationBuf [TC_SECTOR_SIZE_BIOS];
device.SeekAt (0);

device.Read (mbrVerificationBuf, sizeof (mbr));

if (memcmp (mbr, mbrVerificationBuf, sizeof (mbr)) != 0)
throw ErrorException ("ERROR_MBR_PROTECTED");

Common/BootEncryption. cpp(1323)

Common/BootEncryption. cpp(1265)

Device device (GetSystemDriveConfiguration().DevicePath);
byte mbr [TC_SECTOR_SIZE_BIOS];

device.SeekAt (0);

device.Read (mbr, sizeof (mbr));

Common/BootEncryption.cpp(1265)
Common/BootEncryption.cpp(1151)

Device device (GetSystemDriveConfiguration().DevicePath);
byte mbr [TC_SECTOR_SIZE_BIOS];

device.SeekAt (0);

device.Read (mbr, sizeof (mbr));

Common/BootEncryption.cpp(347)
Common/BootEncryption. cpp(238)

FILE_FLAG_RANDOM_ACCESS | FILE_FLAG_WRITE_THROUGH, NULL);
try

throw_sys_if (Handle == INVALID_HANDLE_VALUE);

catch (SystemException &)

if (GetLastError() == ERROR_ACCESS_DENIED && IsUacSupported())
Elevated = true;

else

throw;

FileOpen = true;

FilePointerPosition = 0;

[...1
Results:
Lines of code: 48774
Duplicate lines of code: 7091
Total 1155 duplicate block(s) found.

Time: 8.04078 seconds
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Appendix C

Detail of the static analysis tools’ warnings

Clang

Kingdom

Warning type

N. of warnings

Security relevant

Input validation

malloc() size overflow
Out of bound array access

X
X

API Abuse

Cast from non-struct type to struct type

Code quality

Assigned value is garbage or undefined
Dead assignment

Dead initialisation

Dereference of null pointer
Uninitialized argument value

Use fixed address

Cppcheck

Kingdom

Warning type

N. of warnings

Security relevant

Input validation

Buffer access out of bounds

X

API Abuse

Memset with POD

Code quality

C style cast

Redundant condition

Use Initialisation List
Uninitialised variable

Variable scope

Unassigned variable
Uninitialised member variable
Unused structure member

No copy constructor

Unread variable

Unused variable

Invalid printf argument type string
Invalid printf argument type int
Invalid scanf

Invalid scanf specific to libc
Wrong printf/scanf arguments
Clarify condition

Clarify calculation

Uninitialised data

Wrong copy of pointer

Use strcmp()

Redundant assignment

Bad use of ¢_str

Prefix operators for non primitive types

— RN
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Coverity Unix
Kingdom Warning type N. of warnings | Security relevant
Insecure data handling 2 X
Sy Integer handling issues 2 X
Input validation Memory corruptions 1 X
API usage errors 1
APT Abuse Build system issues 2
Time and state Performance inefficiencies 1
Concurrent data access violations 1
Program hangs 3
Error handling issues 2
Null pointer dereferences 11
. Parse warnings 4
Code quality Resource leaks 1
Uninitialised members 26
Various 1
Coverity Windows
Kingdom Warning type N. of warnings | Security relevant
Insecure data handling 18 X
s Integer handling issues 1 X
Input validation Memory corruptions ) X
Memory illegal accesses 7 X
Various 1 X
APT usage errors 1
APT Abuse Integer handling issues 3
Various 1
. Program hangs 1
Time and state Security best practices 1
Code maintainability issues 1
Control flow issues 16
. Error handling issues 19
Code quality Incorrect expression 6
Integer handling issues 1
Null pointer dereference 3
Performance inefficiencies 23
Parse warnings 3
Possible control flow issues 1
Resource leaks 13
Security best practices 33
Uninitialised variables 11
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