
Smart App Control

Analysis of the Smart App Control feature from Windows 11

Document history

Version Date Editor Description

1.0 29.11.2023 Final Version

Table 1: History of the document.

Federal Office for Information Security

P.O. Box 20 03 63

53133 Bonn

Internet: https://www.bsi.bund.de

© Federal Office for Information Security 2021

Federal Office for Information Security 3

Table of Contents

1 Introduction ... 5

1.1 Generalities .. 5

1.2 State of the art and existing work .. 6

1.3 Overview of SAC architecture .. 7

1.4 Questions & Answers regarding the project .. 8

1.4.1 Kernel pre-notification .. 8

1.4.2 Microsoft Defender Antivirus Analysis ... 8

1.4.3 Microsoft Defender Antivirus and Cloud Communication ... 9

1.4.4 Kernel post-notification ... 10

1.4.5 SAC switching state .. 10

1.4.6 Log & Tracing .. 11

2 Executive summary .. 12

3 Concept and terms .. 14

3.1 Terms specific for SAC analysis .. 14

3.1.1 Configurable and unconfigurable Code Integrity .. 14

3.1.2 Remote Procedure Call ... 14

3.1.3 Notion of Signature... 15

3.1.4 Extended Attributes and Kernel Extended Attributes .. 16

3.1.5 Microsoft’s cloud-based backend ... 16

3.1.6 Cloud-based Analysis... 16

3.1.7 Pre and Post Notification ... 16

3.1.8 Eligibility of an image .. 17

3.1.9 Smart App Control modes ... 17

3.1.10 Cryptcatsvc service ... 17

3.1.11 Microsoft Defender Antivirus .. 17

3.1.12 WinHTTP framework .. 18

3.2 Evolution of the notion of code integrity check over the different versions of Windows 19

3.3 Execution Flow of Smart App Control ... 21

3.3.1 Eligible image for SAC analysis ... 22

3.3.2 Signature check and image hash generation ... 23

3.3.3 WDAC Policy Matching ... 23

3.3.4 External authorization and SAC initialization... 24

3.3.5 File mapping operation .. 24

3.3.6 Scan analysis in Microsoft Defender Antivirus for SAC .. 24

3.3.7 Post-analysis Notification .. 25

4 Technical Analysis of Functionalities ... 29

4 Federal Office for Information Security

4.1 Smart App Control pre-analysis part ... 29

4.1.1 Analysis of CipExternalAuthorizationCallback function .. 29

4.1.2 RPC notification with CiCatDbSmartlockerDefenderCheck function ... 30

4.1.3 From kernel RPC to Microsoft Defender Antivirus ... 30

4.1.4 Scan analysis Overview .. 33

4.1.5 From Microsoft Defender Antivirus to the analysis provided by Microsoft’s cloud-based

backend ... 34

4.1.6 SAC Operating Mode .. 44

4.1.7 SAC Dynamic Signature Persistence ... 51

5 Configuration and Logging Capabilities .. 53

5.1 Configuration Capabilities .. 53

5.2 Logging Capabilities .. 54

5.2.1 Event Tracing for Windows .. 54

5.2.2 File logging capabilities .. 54

6 Final Remarks ... 56

6.1 Main considerations about SAC ... 56

6.2 Further work .. 57

Bibliography ... 58

Federal Office for Information Security 5

1 Introduction

1.1 Generalities

Smart App Control (further on abbreviated by “SAC”) has been introduced with Windows 11 version 22H2

(version 22572 or higher) by Microsoft as a new security feature, even present in Microsoft’s promotion

videos (Microsoft). The main idea of this feature – as announced by Microsoft – is to block the unsafe

applications, just allowing the safe ones to run. Presented as an “intelligent”, “cloud-powered security

service”, this one is learning to understand which applications are safe to run or not. But the most general

emphasis relative to SAC is the enhancement of the user experience concerning security. The user should just

be able to use his or her computer without having to worry about potential security concerns regarding

applications. Announced as free and part of the operating system (further on abbreviated by “OS”), this is one

of the new security features of Windows 11.

Note this new security feature is disabled if the computer is running Windows in S mode. Also, if sending of

optional diagnostic data (Microsoft) has been turn off during the installation procedure or during the

evaluation phase of Windows 11, SAC is automatically turn off (deactivated) also.

SAC works alongside another security software, such as Microsoft Defender Antivirus and Microsoft

Windows Defender Application Control (Microsoft) or non-Microsoft antivirus tools, for added protection

(Microsoft). SAC is claimed by Microsoft to provide “application control for consumers” and to allow

“enterprise customers to create a policy that offers the same security and compatibility with the ability to

customize it to run line-of-business (LOB) apps” (Microsoft). One significant point concerns the fact that SAC

can only be used on new Windows 11 installs. SAC is only activated when Windows has been either reset or

when it has been just freshly installed, a state also called “out-of-the-box”. In this context, starting with the

operating system, SAC is by default in evaluation mode. It means the feature is leaning from the user, checking

if the behavior of this one is compatible with the security feature. During this time, SAC does not prevent the

execution of any application. At worst, it just informs the users about that a given application would have

been blocked if SAC would have been turned into enforcement (with a real application blocking capacity)

mode.

The technology of SAC is described by Microsoft in multiple medias and for the sake of concision, we propose

in the current paragraph a resume of the different statements made by Microsoft. In the Microsoft’s

presentation of SAC (Microsoft), it is written that SAC is “blocking apps that are malicious or untrusted”. If

malicious directly refers to (known or unknown) malware, the notion of “untrusted” app is a bit blurrier.

Officially, Microsoft explains the “trust” evaluation of an application is based on two criteria. At first, the

application must be digitally signed, meaning the signature procedure involves a digital certificate that

verifies the identity of the developer of that application, and this one has not been tampered with by

somebody else after the developer published it. Then, the evaluation is based on “Microsoft’s experience”

provided through their “intelligent cloud-powered security service” (Microsoft), notified every day with “a

huge number” of different applications. Only in the case where the cloud-based analysis service could

perform a reliable prediction (based on the experience Microsoft claims to have with the application and the

signature of that application), the application may be allowed to be executed or not. If for any reason, it is not

possible to get a confident prediction for a given application, this last one is by default considered as

untrusted and blocked. The procedure is without appeal, meaning it is not possible to bypass the protection

by adding exceptions from the user or the administrator side. The only possible action is to provide feedback

to Microsoft, potentially disclosing the blocked application or to require from the original developer of this

application to sign it with a valid certificate. Another point is that when SAC is deactivated, it cannot be turn

on anymore. This choice is explained by Microsoft “to be sure that there are not already untrusted apps

running” in the system before SAC.

In a nutshell, SAC is an automatic and optionless security feature whose purpose is to block applications

running on the system if they are not trusted by the security analysis provided by the Microsoft’s cloud-based

6 Federal Office for Information Security

backend. The only thing that the user may decide is to deactivate it or not – considering that the deactivation

procedure is definitive, meaning there is no way back to the activated state.

This brief overview of SAC technology – based on Microsoft’s documentation – potentially raises some

questions. Especially, it is relevant to understand how this security feature really works. If for practical

reasons it is not possible to perform a cloud-based analysis of the learning models used by Microsoft, it

remains possible to evaluate “in a black box context” this new security feature. It is worth noting what is

provided to Microsoft’s cloud-based backend and which is the feedback of that cloud-based analysis. It is

possible to specify related questions based on sub-topics. For instance,

• which kind of executable files are in an application concerned by SAC?

• which are the parameters accessible (nor not) configuring SAC?

• where is the initial entry point of the SAC feature?

• which elements of Windows “out of the box” are involved in SAC, how do these elements work

internally?

• what do really mean the different modes of SAC (evaluation, enforcement), and how is it possible to

pass from one to another?

The resumed answers to these questions are provided in section 1.4.

All these questions frame the context of the present study. The goal is first to provide a technical overview of

the SAC feature. As a natural corollary, this document aims removing the mystery about real capabilities of

SAC, especially describing its capabilities of detection threats or about the reality behind the new feature.

Without ever pretending to be perfectly exhaustive, this study documents the main points of the SAC feature

as it is principally designed, removing sometimes internal or irrelevant programming details.

To proceed, the document is structured as follows. The section 1 is an introduction to SAC, covering existing

work about SAC and giving an overview of the SAC architecture. The section 3 concerns the general concepts

driving SAC, especially the different phases, modes and elements involved in this new security feature. In

addition, this second section define the vocabulary which will be used (and required to be understood) for

this study. The section 4 is a technical dive into the most relevant elements of SAC, retracing mainly the main

steps of a submission of an unsigned executable file to the cloud-based analysis of Microsoft. Also, this section

covers the network analysis of SAC (data sent and received to and from Microsoft) and the SAC switching

mode procedure (from evaluation to either enforcement or deactivate). The section 5 mainly concerning

logging and configuration possibilities when interfacing with SAC. In the end, the section 6 draw the final

remarks about this work, especially taking care to resume the main findings of this study but also talking

about potential implications of them and questions raising from them.

1.2 State of the art and existing work

It is important to mention that SAC technology has been partially documented by others, especially by Javier

Redondo (alias “n4r1b”) on his own blog. Based on two main posts, its own study documents first the

initialization of the SAC feature in kernel-mode (n4r1b) and about the kernel execution flow of SAC (n4r1b).

This technical work has the main advantage of laying the foundations of what is SAC but also to describe

some internal details about the kernel of Windows. The present works aims to cover what has not been

covered or what could have changed from the time the analysis has been initially performed. Also, the current

study tries to provide a more generic and conceptual view of the big picture of what SAC is instead of diving

into any implementation details which are – and we will explain that further – not always directly related to

SAC.

The initial configuration part has already been explored deeply and this why the intended reader is

encouraged to read the post for further details. The second part is rather technical, and it covers a lot of

different elements, all togethers at the same time. In our case, in addition of having updated what deserved

to be, we aim to provide a more generic view of SAC, especially in the kernel part. Also – and this may be the

Federal Office for Information Security 7

main contribution to this work – we provide the analysis of SAC in user-mode (namely in Microsoft Defender

Antivirus) and from the network points of view, which was out of the score pf the n4r1b’s blog.

1.3 Overview of SAC architecture

SAC technology is a set of dispersed elements within the system. It is not a single service, DLL or driver that

would take care of this security feature. It is a technology spread in different components all over the system

which aims to block malicious or untrusted apps. Even if SAC is a new feature shipped with Windows 11, this

one relies for a large part on existing code, mainly Windows Defender Application Control (further on

abbreviated by “WDAC”) from Code Integrity (ci.dll) in the kernel. One may consider SAC as a technology

built on top of existing features, linking together different components of Windows to provide a new feature.

SAC technology can be split over four main phases. The first one relies on the initialization of the technology.

By checking SAC is enable, it consists mainly of knowing in which state (enforce, evaluation or deactivated)

it is. This phase happens once for all, at booting time. The second phase checks if an executable image loaded

in memory should be verified to know if it is legitimate to be executed or not. This verification is performed

in a third phase, mainly by requesting external feedback to the Microsoft’s cloud-based backend via Microsoft

Defender Antivirus. In this last case, sub-phases apply by extracting information from the analyzed file,

processing them, and asking an analysis coming from the Microsoft’s cloud-based backend. In the end, the

fourth phase applies the decision returned by Microsoft Defender Antivirus analysis.

It is worth noting that the different phases of SAC belong in kernel-land and in user-land, notwithstanding

the internet connection with Microsoft’s servers, as represented in Figure 1. The final mechanisms where the

analysis is triggered and where the decision is finally applied belongs in kernel-mode. But the decision

making (to know if an image must be executed or not) procedure belongs to user-land, directly provided

from Microsoft Defender Antivirus’s analysis, and more specifically related to a notification to the Microsoft’s

cloud-based analysis.

The different phases of the SAC procedures are described in the sections 3 and 4. Because it has been

extensively covered in (n4r1b), the present study does not cover in detail the configuration loading of SAC in

kernel-mode (concerning the ci.dll library). This is the main reason why the present study focusses more on

phases 2, 3, and 4, from ci.dll to Microsoft Defender Antivirus.

The ci.dll library usually plays a central role in implementing core functionalities of the WDAC. It is

responsible for critical tasks, including parsing and enforcing of WDAC policies. In this context, WDAC

policies works as a centralized point for configuring and managing the WDAC capabilities, with SAC being

one of these capabilities. Within the context of the WDAC, Microsoft Defender Antivirus extends additional

verification capabilities of the WDAC. This includes providing in-depth analysis, conducted by the Microsoft

cloud-based backend, as an integral part of SAC. Once Microsoft Defender Antivirus has performed its

Figure 1. Main phases of SAC technology.

8 Federal Office for Information Security

analysis work, this one delivers a HTTPS request to the Microsoft’s cloud-based backend for further

reputation information concerning the targeted application. Based on the received answer, feedback is

provided to the kernel (Ci.dll) for taking a decision (blocking the application or not, notifying the user or not).

1.4 Questions & Answers regarding the project

This study has been driven with the mindset to answer specific questions concerning SAC. This subsection

resumes all the different questions answered in the SAC study. The questions are divided into different

subsets each representing a phase of the SAC feature (as described in this study through the section 1.3).

1.4.1 Kernel pre-notification

Question In which context SAC is notified in kernel mode?

Answer SAC is notified as part of the image mapping procedure, especially when a new process is about

to be created. Instead of using a dedicated Mini-Filter technology as any antivirus software would

do, the notification is directly performed by the kernel within ci.dll. More information in section

3.3.1.

Question Which kind of files are required to be analyzed by SAC?

Answer Except for Microsoft-signed applications, all user-mode applications are automatically analyzed

by SAC. It means that executable files (.exe, .dll) and installers (.msi) are relevant for SAC. Drivers,

script files (for instance, powershell or javascript), documents, and other non-executable files are

not submitted to SAC for analysis. More information in section 3.3.1.

Question What is the relationship between SAC and WDAC policies?

Answer The notification from the kernel to SAC is initialized within the WDAC policies management, in

ci.dll. In the kernel of Windows, SAC can be directly enabled or disabled through a WDAC policy.

But such a WDAC policy is not configurable as a regular WDAC policy, where it is possible to detail

specific behaviors. It means that if SAC is disabled by WDAC policy, the whole feature is in the end

deactivated.

In the kernel, SAC is part of the WDAC evaluation procedure, with some lines of codes added to

the WDAC evaluation procedure. More information in section 4.1.

Question How does the kernel notify Microsoft Defender Antivirus for analysis?

Answer The kernel notifies Microsoft Defender Antivirus though RPC. The notification procedure is

performed in two steps. At first, the kernel calls an RPC interface in a service called “cryptcatsvc”.

Then, the cryptcatsvc service calls with an RPC interface to Microsoft Defender Antivirus to

transfer the initial notification of the kernel. More information in sections 4.1.2 and 4.1.3.

1.4.2 Microsoft Defender Antivirus Analysis

Question How do the kernel-mode components communicate with user-mode Microsoft Defender
Antivirus in the context of SAC?

Answer The communication is performed through an RPC interface which exports different functions to

interface with Microsoft Defender Antivirus. This interface is protected through a specific SDDL

definition. More information in section 4.1.3.

Federal Office for Information Security 9

Question What are the different modules involved in Microsoft Defender Antivirus for SAC?

Answer There is not a single module for SAC, but instead of, many elements used for different purposes.

For instance, in Microsoft Defender Antivirus, it involves MsMpEng.exe, MpClient.dll, MpSvc.dll,

and MpCommunication.dll as the main components used in the context of SAC. More information

in section 3.1.11 and accord section 4.

Question What are the main steps in the analysis process of Microsoft Defender Antivirus for SAC?

Answer The first step is to ensure that SAC technology is correctly initialized (and if not, Microsoft

Defender Antivirus initializes it) before asking for a memory scan operation to Microsoft Defender

Antivirus. This scan procedure extracts different data (see section 4.1.5.2) from the executable

file before requesting the Microsoft’s cloud-based backend to get feedback about the file’s

reputation processed during a cloud-based analysis. More information in section 4.1.4.

Question Which information is retrieved from the analyzed file?

Answer Signatures and hash of the file’s content are the main elements extracted from an analyzed file,

including some metadata such as the full path name where the analyzed file belongs. In no case

we observed, the full content of the analyzed file is disclosed during the cloud-based analysis of

Microsoft. More information in section 4.1.5.2.

1.4.3 Microsoft Defender Antivirus and Cloud Communication

Question What is the network communication protocol used?

Answer HTTPS is the protocol used to communicate with the Microsoft’s cloud-based backend. More

information in section 4.1.5.1.

Question Are there any security measures to secure the communication?

Answer A check of the certificate chain is performed to ensure the communication is not intercepted with

the WinHTTP API. More information in section 4.1.5.1.

Question Which information is provided to the Microsoft cloud-based backend?

Answer To get a confident prediction for each of the file to be analyzed, a comprehensive report is

generated for each of them by Microsoft Defender Antivirus. This report is serialized with the

“Bond” framework and transferred through a HTTPS POST request to the Microsoft cloud-based

backend, where each report will be used for an analysis. More information in section 4.1.5.2.

Question Which information is retrieved from the Microsoft cloud-based backend?

Answer The responses from the cloud-based analysis are presented in the form of dynamic signatures,

serialized using the “Bond” framework. This signature encapsulates the outcomes of the cloud-

based analysis, including feedback about the file reputation and potentially a status update for

SAC (from evaluation to enforcement or deactivated). More information in section 4.1.5.2 and

4.1.6.2.

10 Federal Office for Information Security

Question What is happening when there is no internet connection?

Answer When there is no internet connection, there is no possibility to perform a cloud-based analysis. In

this context, there is a difference if the file about to be executed had already been correctly

analyzed by SAC. If it had been already allowed, there is a cache mechanism - which has previously

been set for allowed files - guaranteeing the execution of that file. Otherwise, if the cache

mechanism is not present or the file has never been analyzed, due to a lack of feedback, the

execution is refused. More information in section 3.3.7.

1.4.4 Kernel post-notification

Question What is the content of the answer returned by Microsoft Defender Antivirus?

Answer The content of the answer contains many elements but two are the most relevant. On the first

hand, a set of values representing the reputation of the submitted metadata representing the file

being analyzed. On the other hand, it may have a specific set of values requesting a configuration

update of SAC, mostly to switch from evaluation to enforcement or deactivated mode. More

information in section 3.3.7.1.

Question What are the resulting actions based on the file's reputation?

Answer There are three possible results: known to be good, known to be malicious or unknown. The result

is a combination of values where a threshold defines a limit used to know if the file’s reputation

is sufficient or not. More information in section 3.3.7.1.

Question How the status of SAC impacts the answer given to an analyzed file?

Answer If the reputation of the file is known to be good, the execution of that file is guaranteed. Otherwise,

if the reputation is unknown or known to be malicious, the resulting actions are twofold,

depending on the status of SAC. Either SAC is in evaluation mode and in this case, there is only a

notification displayed to user’s eyes, but the execution is guaranteed, or SAC is in enforcement

mode and in this context, execution is refused with a message box displayed to the user. More

information in section 3.3.7.2.

1.4.5 SAC switching state

Question Is the Microsoft cloud-based backend able to change the state of SAC?

Answer In the cloud-based analysis answers returned after an analysis, there may be a specific answer

providing this information to turn SAC into enforcement mode or to deactivate it. In addition,

there is a manual procedure through the Smart App Control setting in Windows Security settings.

In the end, there is a synchronization between the configuration of Microsoft Defender Antivirus

and ci.dll. More information in section 4.1.6.2.

Federal Office for Information Security 11

1.4.6 Log & Tracing

Question Is there a way to observe SAC technology through ETW?

Answer SAC is neither a single nor a dedicated component, meaning that there is no direct way to collect

all logs related to this one. But it is still possible to track kernel and Microsoft Defender Antivirus’s

ETW providers to monitor the activity. More information in section 5.2.

Question What are the configuration options of SAC?

Answer The SAC configuration can be easily accessed through the Smart App Control setting in Windows

Security settings or Windows policies. But the internal configuration of SAC mostly depends on

Microsoft Defender Antivirus and many other configuration components, including third party

software installed (i.e.: other antivirus software). More information in section 5.1.

12 Federal Office for Information Security

2 Executive summary

As defined with the German Federal Office for Information Security, the following analysis has been

performed on the release of the Windows 11 Enterprise system build VL 22621, 64-bit, English (United-

States) language. The analysis presented in this work was performed by applying static and dynamic code

analysis methods using the Windbg debugger and the IDA disassembler.

The present document analyses the Smart App Control (SAC) feature introduced in Windows 11 version

22H2 (version 22572 or higher) by Microsoft. This feature is presented by Microsoft as a “cloud-powered

security service”, which first learns from the user’s activity to understand which applications are safe to run

or not. When the learning (evaluation) period is over, SAC can be turned on or off, depending on the

Microsoft’s cloud-based backend decision if the user does not force SAC to be turned on or off.

The main objective is to provide an in-depth technical analysis of the components of SAC and their

interactions together. To proceed, a deep reverse engineering analysis of the different components of SAC

was performed and experiments were performed when necessary. The present document proposes a deep

technical overview of the SAC feature, especially in the context where a file is about to be executed by the

system and SAC will be therefore notified for an analysis.

In this context, the present study determines which files SAC checks and how SAC ensures that these files are

not replaced after a successful check. SAC evaluates user-mode applications (see section 3.3.1). It concerns

applications (EXE and DLL files) and installers (MSI files). Drivers are directly handled by the kernel by

regular Code Integrity checks (including AppLocker and WDAC if configured). Scripts are not directly

analyzed by SAC, but programs responsible to interpret scripts can be analyzed by SAC as any regular

executable files. There is an exception for files digitally signed by Microsoft, otherwise, all files (including

executables digitally signed by Authenticode certificates) are transmitted by SAC for a cloud-based analysis.

The tampering protection is ensured with a mechanism of Kernel Extended Attributes (definition given in

section 3.1.4), ensuring that a file modified after an analysis will be automatically retransmitted to Microsoft

for a subsequent analysis if it is about to be executed. This protection is designed so that only drivers

(administrator rights only would not be sufficient) can tamper with such a mechanism.

Despite the fact SAC is presented to be a new feature and it directly provides a new security functionality,

SAC is not a new “component” of Windows. This feature mainly relies on existing elements of Windows

(namely Code integrity check in the kernel, WDAC, and Microsoft Defender Antivirus). Say otherwise, SAC is

not implemented in a single file but in different elements of the OS. This is the kernel-mode Code Integrity

check (ci.dll) which notifies Microsoft Defender Antivirus for further analysis, resulting in the end in an

HTTPS request to the Microsoft’s cloud-based backend (see section 3.3). From a technical point of view, SAC

is mostly a subset of lines of codes inserted in existing features to link together different components which

already exist in the system for different purposes.

The main difference between SAC in evaluation mode and SAC in enforcement mode is in the way the

feedback provided by the cloud-based analysis is considered (see section 3.3.7). On the one hand, when SAC

is still in its evaluation mode and if the feedback is negative, a message is displayed to the user, informing the

last one that the expected file to be executed would have been blocked if SAC would have been set in

enforcement mode. On the other hand, if SAC is set to be in enforcement mode, the decision of the cloud-

based analysis is respected by the system which can refuse the execution of a file, depending on the cloud-

based feedback.

To proceed to such an analysis, the present work analyses which data is transferred to the Microsoft’s cloud-

based backend during an analysis notification (see section 4.1.5). The data is transferred by HTTPS

connection using the “Bond” framework to encode the content data. When decoding the information

exchanged (see section 4.1.5.2), we observe metadata about the analyzed file, including its digital signature

(if there is at least one) and hashes from its content. Also, there are some file system metadata such as the

full path name of the analyzed file, but not its full path name. The data transferred also include information

Federal Office for Information Security 13

about the Microsoft Defender Antivirus software (for instance, configuration and version numbers) and the

system (for instance, the current version of Windows 11). We did not observe that the full content of a file is

sent to Microsoft’s cloud-based backend during a SAC notification.

In the last section 5, we provide information about the configuration and logging capabilities of the SAC

feature.

In our humble opinion, SAC may be considered as a kind of automatic way to use WDAC. The trade-off for the

user or organization is to provide optional diagnostic data to Microsoft. This acceptance of this trade-off

should be evaluated by any organization. Configuring a WDAC policy for many computers in an organization

and maintaining it for different kind of users can be a complex task. By “outsourcing” the WDAC policy

definition to the Microsoft’s cloud-based backend evaluation related to Microsoft Defender Antivirus, SAC

automatizes the full process of WDAC policy definition and maintenance. That way, the files are executed in

the system if and only if their reputations are known to be good. This design introduces three direct

consequences.

- Users having a large variety of executable files whose reputation is unknown would see a lot of their

applications blocked by SAC. This concerns for instance developers who create and execute different

instances of a single program when developing it. This is why SAC evaluates if the feature may “fit”

to the user’s usage of the system and if not, the evaluation provided by the Microsoft’s cloud-based

backend decides to deactivate SAC for this kind of users. In this context, some users are automatically

excluded from SAC if they do not decide directly to turn SAC to enforcement mode manually.

- Since it is not possible to turn SAC back to evaluation or enforcement mode once it has been

deactivated without resetting the whole Windows 11 operating system (with a fresh install, for

instance), it means that the user’s behavior and the system’s configuration during evaluation mode

is decisive.

- It explicitly requires almost always an internet connection to be efficient. Otherwise, the user’s

system can be turned hard to use, except for Microsoft signed applications. As a direct consequence,

it also means the agreement of the users to disclose information to Microsoft.

If SAC is not an antivirus by itself, it mainly relies on Microsoft Defender Antivirus. But at the opposite of

Microsoft Defender Antivirus which uses regular standalone drivers to be notified when a file is about to be

executed, the SAC feature is deeply embedded into the kernel, and it directly notifies Microsoft Defender

Antivirus. This might raise the question of the central position of Microsoft Defender Antivirus in this context

and the position of this one comparing to other antivirus vendors which may be running in the system.

14 Federal Office for Information Security

3 Concept and terms

3.1 Terms specific for SAC analysis

Regarding the Smart App Control technology, it is relevant to define specific terms that will be used

subsequently in this report. The definitions provided are coming from Microsoft or other sources duly

referenced when it is relevant. But in some specific cases, when there is no valid definition which is either

enough accurate or relevant for specific concepts and terms, we propose our own definition. In these cases,

we explicitly explain that the definition is provided by us.

3.1.1 Configurable and unconfigurable Code Integrity

The notion of Code Integrity in Windows is spread over two main concepts. These two concepts are already

largely covered in the AP-7 from Sisyphus Project (ERNW GmbH). On the first hand, there is a what we call

the unconfigurable code integrity. It concerns all checks performed by Windows to check if an executable

file (whatever is its kind) is valid to be executed or not. It principally matters for drivers as a security feature,

only loading signed drivers. Also, the unconfigurable Code Integrity concerns the security of the kernel of

Windows, first introduced with Kernel Patch Protection (KPP) (Microsoft), informally known as

“PatchGuard” and then enhanced by Memory integrity (Microsoft), also called hypervisor-protected code

integrity (HVCI). The Memory integrity is based on Virtualization-based Security (VBS), a technology using

the Hyper-V hypervisor to enhance the security of the Windows operating system. The system is divided into

at least two virtual machines called Virtual Trust Levels (VTLs), with at least one owning a “secure kernel”

protected by the hypervisor and in charge of the security checks.

The notion of configurable Code Integrity concerns the possibility for the administrator of the machine to

define which code should be allowed to be executed on the system. It concerns AppLocker (Microsoft) and

WDAC (Microsoft) implemented in the ci.dll library. In both cases, based on different criteria (called WDAC

policies or AppLocker rules) including metadata such as the execution path, the file name or the installer

provider’s identity or the content of the file itself (signature, hash, …), it is possible to define if an executable

file will be allowed to be run by the system or not. And because this kind of criteria is freely configurable by

the user, we define it in opposition to the unconfigurable one own by the kernel of Windows.

An historical retrospection about the notion of Code Integrity in Windows is provided in section 3.2 for

further reading.

3.1.2 Remote Procedure Call

In our context, a Microsoft Remote Procedure Call (RPC) (Microsoft) defines a programming technology

used for inter-process interactions, and more precisely by calling a function potentially in another process.

The goal of this technology is to hide the communication details for the programmer who can focus on the

details of the application’s implementation.

This technology can be used for inter-process communication facility, transferring the execution flow of a

given process to another one and vice-versa. Three levels of RPC interface are available. At first, on a network

where it is possible to call a function hosted by a process running on a different machine on a network. In

SAC, this capacity is not used. A second level is the effective inter-process level, meaning a given process calls

a function in another process. The last level is local to a process, meaning a function is called in the context

of a single process using RPC technology. Although perfectly superfluous comparing to a regular function call,

this last case is comparable to localhost for network, when an application requests a server or the same

physical machine. The last two RPC levels (inter-process and local to a process) are used in SAC.

RPC architecture involves a set of “client” and “server” applications (wherever are located these applications,

including the possibility to confuse them into a single application). The server application provides an

interface of functions “exported” to any application connecting to it. To export such an interface, the server

Federal Office for Information Security 15

application registers itself giving it a “name” based on a GUID though a specific API, including the

RpcServerRegisterIf3 function.

Concerning the client application, this one must interface with the server. The server is identified with its

GUID by the client. This is usually the conjunction of the RpcBindingCreate and the RpcBindingBind

functions which is used to get access to the server’s RPC interface for a client.

Comparing to other programming technology, RPC has many advantages. At first, it allows to authenticate

client applications based on their access token (inherited from the user running the process). That way, it is

possible to filter who can access to a specific RPC interface. Then, the RPC technology provides

“impersonation” techniques (Microsoft), allowing the server’s function called to execute in the security

context of the caller, limiting potential elevation of privileges. In the end, the RPC technology when used

locally relies on Advanced Local Procedure Call (ALPC), an undocumented technology used to exchange

messages in Windows which has relatively good performances.

3.1.3 Notion of Signature

The notion of signature is twofold in this study. On the first hand, one may consider a signature as a

cryptographic digital signature (Microsoft) used to sign a binary file. Necessary for a driver (Microsoft),

this technique can be extended to any kind of MZ-PE executable files (DLL, executable, driver) or Microsoft

Software Installer (MSI) file.

On the other hand, one may consider the signature of the Microsoft Defender Antivirus. Partially

documented thanks to a work of reverse engineering in (Bar and Attias), the antivirus’ signatures help to

identify executable files already known as malware. In this document, we make the distinction between static

signatures and dynamic signatures. On the first case, static signatures are used to identify already known

malware and they must be preloaded into the Microsoft Defender Antivirus’s signatures database1. On the

second case, dynamic signatures are more “compartmental” signatures, not targeting a specific malware but

instead a specific behavior used by malware. That way, it is possible to catch potential new or unknown

threats using some specific and well identified behaviors. With both approaches (static and dynamic

signatures), Microsoft Defender Antivirus provides a protection against both well-known and potentially

unknown malware.

In SAC, this is especially the notion of digital signature which is relevant. A digital signature is a cryptographic

procedure used to ensure the integrity of a binary file and the identity of the person who signed the binary

file. As a specific point, the integrity check provided by the signature is based on a hash procedure. This hash

is useful for Code Integrity check.

There are two different ways to compute the hash of a binary file. On the first hand, a flat file hash method

can be considered, meaning that the hash of the file is the one computed from the file hash, as the file’s content

is stored on the hard drive. On the other hand, the WDAC uses the Windows Authenticode Portable

Executable Signature Format (Microsoft). This one omits the file's checksum, the Certificate Table, and the

Attribute Certificate Table, removing management overhead to avoid revising the policy hash rules when the

digital signature on the file is updated. In the end, different kind of hashes (SHA-1 or SHA-256) may be

produced based on how the file is signed and the scenario in which the file is used. For instance, if the file is

page-hash signed, the WDAC validates each page of the file, avoiding loading the entire file in memory to

calculate the hash.

1 The Microsoft Defender Antivirus’s signature database, which is typically located at

'C:\ProgramData\Microsoft\Windows Defender\Definition Updates,' contains threat detection resources.
Within this directory, files with the '.vdm' extension house a collection of multibed files named 'modules.'
These modules serve as repositories for essential malware signatures and patterns.

16 Federal Office for Information Security

3.1.4 Extended Attributes and Kernel Extended Attributes

The notion of Extended Attributes (EA) refers to a file system feature used to associate metadata with a file

stored on disk. On Windows, they are mainly supported on NTFS (and on FAT) under the name of NTFS

streams (Microsoft). An EA is a set of a name of the attribute (which is a regular string of characters) and the

data associated to this attribute. If it is possible to directly interface with them from the command line and

with the user-mode API (Microsoft), the real API interface belongs in kernel-mode with the

ZwQueryEaFile and the ZwSetEaFile functions.

The notion of Kernel Extended Attributes (Kernel EA) relies on regular EA, but they are only accessible to

kernel-mode code (any user-mode attempt to temper with Kernel EA will be silently ignored) (Microsoft).

Introduced with Windows 8, only NTFS supports Kernel EA. To set a Kernel EA, this extended attribute must

begin with the prefix "$Kernel." followed by a valid EA name string. Only accessible to drivers (being

administrator would not be enough to modify it), this mechanism is used to boost the performance of image

file signature validation. Note that under specific circumstances, an auto delete of Kernel EAs feature was

added to NTFS.

3.1.5 Microsoft’s cloud-based backend

We define as Microsoft’s cloud-based backend the infrastructure provided by Microsoft to support an

analysis about a file to be executed in the context of SAC. It is a set of servers maintained by Microsoft to

provide feedback concerning the reputation of a given application, but also to control remotely the current

configuration of the SAC feature, on the machine where SAC is deployed.

3.1.6 Cloud-based Analysis

We define as Cloud-based Analysis the notification performed by Microsoft Defender Antivirus in the

context of SAC to the servers of the Microsoft’s cloud-based backend for further analysis. Symbol names of

functions and structures refer to this kind of notification as reports generated by the Microsoft Active

Protection Service (abbreviated MAPS and internally referenced by the “Spynet”name in Microsoft’s

symbols). The MAPS is a general component of Microsoft Defender Antivirus, used in different contexts for

different purposes, including SAC. Disregarding internal details related MAPS, we can see the report

generated as a structure transferred to Microsoft’s servers and containing information about different kinds

of resources (executable file, but also, scripts, URL, …) to be analyzed (even if in SAC, it is about the executable

file only). To maintain consistency with Microsoft's debugging symbols, we refer to reports generated by

Microsoft Defender Antivirus in the context of SAC by “Synet Reports”. Factually, this cloud-based analysis

allowed through MAPS is an extension of the capabilities of Microsoft Defender Antivirus based on the

Microsoft’s cloud-based backend. In SAC, such a notification is conceptually in the spirit of the “Intelligent

Security Graph” (Microsoft).

3.1.7 Pre and Post Notification

For convenience reasons while studying SAC, it makes sense to define a temporality during the analysis. As

explained in sections 3.3, the SAC procedure is designed to notify Microsoft Defender Antivirus for retrieving

an analysis provided by the Microsoft’s cloud-based backend. In this context, we consider as pre-notification

the period starting with the kernel notification that a file must be evaluated by SAC through a notification to

the Microsoft’s cloud-based backend performed by Microsoft Defender Antivirus. Similarly, we consider as

post-notification the period starting with the answer retrieved from the cloud-analysis to the final decision

held by the kernel. That way, it is possible to reference a specific context during the SAC notification

procedure.

Federal Office for Information Security 17

3.1.8 Eligibility of an image

We call eligibility the potential of a mapped image in memory to be selected for a specific kind of analysis. It

references the ability for an application to be selected, based on its own characteristics, for a specific

procedure. In SAC, it concerns the kind of applications which are eligible to be analyzed by SAC.

3.1.9 Smart App Control modes

The SAC feature may belong in three different modes, exclusive with each other. Theses modes define the

reaction of a SAC facing an image to analyze but also the effective status of the feature (on or off). Only the

“evaluation mode” where SAC learns about the system to know if the last is a good candidate for such a

security feature is clearly defined over Microsoft’s documentation (Microsoft) and the graphical interface of

the Smart App Control setting in Windows Security settings. By an abuse of language based on the learning

operation performed by SAC in the “evaluation mode”, we call it sometimes “learning mode”.

The two other modes correspond to the activation or deactivation of SAC as a security feature. If activated, it

means that SAC has somehow transited from the evaluation mode to another mode where it does not learn

about the system but where it applies the decisions allowing or refusing applications to run. This corresponds

to set SAC to “on” in the Smart App Control setting in Windows Security settings. For the sake of simplicity,

we propose to call this specific mode the “enforcement mode”.

If SAC is deactivated (corresponding to “off” in the Smart App Control setting in Windows Security settings)

for any reason, we consider that SAC is in the “deactivated mode”. In this context, SAC feature does not

operate anymore, meaning that the kernel does not provide any more notifications to Microsoft Defender

Antivirus but also that there is no more request from Microsoft Defender Antivirus to the analysis returned

by the Microsoft cloud-based backend.

3.1.10 Cryptcatsvc service

This service is used to manage cryptographic catalog files. According to the Microsoft’s documentation

(Microsoft), a digitally signed catalog file (.cat) contains a collection of cryptographic hashes, or thumbprints.

Each thumbprint corresponds to a file that is included in the collection. Since ci.dll is vested with the signature

validation enforcement, this one has an interface with the Cryptographic Catalog Service.

3.1.11 Microsoft Defender Antivirus

Microsoft Defender Antivirus is the antivirus software developed by Microsoft and deployed in Windows

out-of-the-box as the default antivirus. Usually stored in “C:\Program Files\Windows Defender”, the true

location of the active version of Microsoft Defender Antivirus is technically referenced by the following

registry value: “HKLM\SOFTWARE\Microsoft\Windows Defender\ProductAppDataPath”. This software is a

complex software whose architecture is far beyond the scope of this document. Nevertheless, we need to

cover some of these modules for a better understanding.

As any antivirus software, Microsoft Defender Antivirus has one foot in the kernel with a set of drivers and

one foot in user-mode with regular executable file and associated libraries. In the scope of the project, this is

the analysis of the user-mode components of Microsoft Defender Antivirus which is relevant. Involved in the

SAC feature, there are five main components.

- MsMpEng.exe: this is the antivirus’ main application. This one is a regular service holding the

different modules and libraries attached to the antivirus. This is the application which is

automatically launched as a service to interface with the drivers’ notifications for analysis.

- MpSvc.dll: This library is the central part of the antivirus, holding the general configuration of the

antivirus service at initialization time and then housing the main analysis functions. This library is

responsible to perform the heavy job concerning analysis of and kind of resources submitted to

Microsoft Defender Antivirus.

18 Federal Office for Information Security

- MpClient.dll: This library has two sides, and it represents the client interface of the antivirus. At first,

this DLL is mandatory for a process that would like to directly interface with Microsoft Defender

Antivirus. This one may load a specific configuration per process which would allow a “per

requesting process” analysis configuration. But also, MpClient.dll is directly loaded and it is used in

Microsoft Defender Antivirus as a support in some analysis operations.

- MpEngine.dll: Potentially stored in another location than the active directory of Microsoft Defender

Antivirus (location of this library is resolved at runtime), this DLL is responsible – among other things

– to coordinates what is internally called “signals” but which in the end corresponds to central tasks

performed by the antivirus, especially the analysis of submitted resources.

3.1.12 WinHTTP framework

Microsoft Windows HTTP Services (usually abbreviated WinHTTP) (Microsoft) is an API from Windows

used to provide a high-level interface to the HTTP Internet protocol. It is designed for server applications,

meaning there is no interactions expected from a potential user, in contrast to Windows Internet (usually

abbreviated WinINet) (Microsoft) which is also an API providing a high-level interface to access HTTP

Internet protocol. The WinHTTP framework serves as the foundation for building networked applications on

the Windows platform, offering essential features such as customizable timeouts and secure communication.

In SAC, this API is used to establish the communication with the Microsoft’s cloud-based backend.

Federal Office for Information Security 19

3.2 Evolution of the notion of code integrity check over the different
versions of Windows

The notion of code integrity check is a long evolvement over the different versions of Windows. Aiming to

protect personal and corporate data, the goal is to control tightly which program is allowed to be executed

in the system, based on different criteria. Containing different features over the different versions of

Windows, SAC is the ultimate piece of the effort made by Microsoft to ensure that legitimate code runs in

their customer’s systems.

At the beginning, starting with Windows Vista and only for 64-bit versions of Windows (and subsequent

versions), drivers must be digitally signed (Microsoft). This was a strong requirement introduced in

Windows Vista to prevent malware authors to develop their own drivers, most of the time for rootkit

purposes. It means that any unsigned kernel-mode software will not load and will not run on x64-based

systems. At that time, it was necessary to obtain what Microsoft called a “Software Publishing Certificate

(SPC)” from a Certificate Authority (CA) accredited by Microsoft. The kernel of the operating system checks

the digital signature embedded in the driver file (mandatory for boot driver) or in the catalog file associated

with the driver. If the signature is valid and the certificate root chain is correctly validated by the kernel, the

driver can be loaded.

As a side note, regarding kernel security introduced by Windows Vista, the notion of code integrity covers

what was called Kernel Patch Protection (KPP) (Microsoft), informally known as “PatchGuard”. This security

aims to avoid any malicious manipulation of the kernel integrity (integrity of the kernel code and main data

structures instantiated in memory) without being perfect (Luc Reginato).

The signature check security (which, at first, only concerned 64-bits drivers) has been extended to user-mode

applications but with a different logic. With the kernel code integrity check, there was nothing configurable.

Users must accept that only signed drivers are loadable, not matter which driver it is since the last is signed.

Since Windows 7 (Enterprise and Ultimate versions), this procedure is enhanced by configurable security

checks calling AppLocker, validating if an application is allowed to run on a given system. AppLocker helps

to control which apps and files users can run (Microsoft) and it can be configured over Group Policies (GPO).

This control operates over executable files, scripts, Windows Installer files, dynamic-link libraries (DLLs),

packaged apps, and packaged app installers.

AppLocker has been designed to prevent end-users from running unapproved software on their computers.

But this feature does not meet the servicing criteria for being a security feature, as defined by the Microsoft

Security Response Center (MSRC) (Microsoft). This is why Microsoft introduced with Windows 10, in

addition to AppLocker, the WDAC to allow organizations to control which drivers and applications are

allowed to run on Windows, based on rules. With these rules, it is possible to define which program

(applications, drivers, DLLs, scripts, …) is allowed to be executed based on different criteria (code signing

certificates, applications’ attributes, reputation, installer, and launcher filiation, …), extending possibilities

provided by AppLocker. Note that both technologies (AppLocker and the WDAC) can, and they should be

used in conjunction, especially in an environment where different versions of the Windows operating system

operate.

In parallel to the WDAC, Windows 10 (and higher) proposes authorize of the execution of an application

based on its reputation, with the Intelligent Security Graph (ISG). Defining an application control policy can

be a complex task for organizations, especially for those which have a limited control over their applications

ecosystem (Microsoft). Hence, it is possible to configure the WDAC to automatically allow applications that

Microsoft's ISG knows as having a good reputation (Microsoft). Such an evaluation is performed through an

internet request to the servers of Microsoft. This feature is highly limited and not recommended for binaries

involved in the boot of the system (since no internet connection may not be available and ISG is not driver

applicable) or business critical (since Microsoft might not be aware of them). The reputation of an application

is based on feedback provided by “trillions of signals collected Windows endpoints” (such as power Microsoft

Defender SmartScreen and Microsoft Defender Antivirus) or other sources “internal to Microsoft”

20 Federal Office for Information Security

(Microsoft). These signals are processed over machine learning analytics to help classify applications as

having "known good", "known bad", or "unknown" reputation. Since this feature is based on machine learning

and, according to Microsoft, on a day-to-day updated input data, the reputation of an application may change

from one day to the next.

Aside application execution control, Windows 10 (and higher) provides also a code integrity feature relying

on virtualization-based security (VBS) (Microsoft) to improve the protection of the kernel integrity and more

generally exploits in the Windows kernel (Microsoft). Called hypervisor-protected code integrity (HVCI) or

hypervisor enforced code integrity, this feature originally written in Device Guard is today called “Memory

integrity” (Microsoft). This one ensures that the kernel of Windows is not altered in a malicious way, in

addition to critical structures. Also, based on hypervisor technology, there are extra protections aiming to

limit potential exploitation of vulnerabilities.

Starting with Windows 11 version 22H2, a new feature called Smart App Control has been introduced. This

feature is directly based on the WDAC, as explained by Microsoft (Microsoft). This feature is only available

on clean installation of Windows 11 to start in evaluation mode2. In this mode, the feature learns for the

system which applications are executed and it the system is a good candidate to be protected by SAC. To

make “confident prediction about its safety”, each application is evaluated before running (Microsoft). In this

mode, all applications are in the end allowed to be executed. But after a certain period in evaluation, SAC

switches in enforced or deactivated mode, since the learning procedure has decided if the system is a good

candidate for SAC. In the enforced mode, an unknown or untrusted application is going to be effectively

blocked on the system. Otherwise, if SAC is deactivated, SAC is not notified for analysis purpose, and it does

not provide any protection. But other WDAC/AppLocker policies and rules still apply. To avoid any gap in

the continuity of the security, it is not possible to reactivate SAC once the last has been deactivated, except

by resetting to zero Windows 11.

Starting with Windows Vista, the notion of code integrity has been evolved in different context, from the self-

protection of the system with unconfigurable code integrity to the configurable code integrity provided

through the different features carried out first by AppLocker and then the WDAC. Concerning the WDAC,

features such as ISG has been designed on top of it, same with SAC that is directly based on WDAC. In these

last two cases, there is a strong emphasis on the user experience, allowing to simplify the configuration and

the use of advanced security features such as the WDAC.

In the Figure 2, we represent the main steps one can consider in Code integrity over the different versions of

Windows.

2 Provided that the sending of optional diagnostic data is allowed, which is the case in the default

configuration.

Figure 2. Historical timeline of the features taking part in Code Integrity over the different versions of Windows.

Federal Office for Information Security 21

3.3 Execution Flow of Smart App Control

Creating a process in Windows is a several stages procedure carried out between the kernel of the operating

system and different user-mode components (mainly the API involved in calling the CreateProcess or the

StartService functions). If the creation of a process asked by a user is most of the time initiated by the

user-mode API call, the heavy work is performed in kernel-mode.

In the kernel of Windows (ntoskrnl.exe), a new process is usually related to the NtCreateUserProcess

function. This one is a several stages procedure (Yosifovich) resulting in the creation of a new environment

able to allow the execution of the executable file. Part of this procedure, in between opening an executable

file to create a section object (that is to say, a memory mapped file object from user-land’s point of view) and

the initialization of the EPROCESS and subsequent structures, there is a code integrity step. The transition

point from the regular process creation procedure to the code integrity assessment is performed within the

CiValidateImageHeader function.

The validation of an image in code integrity is also a serval stages procedure. This procedure is distributed

among several functions and subfunctions called for different purposes, mainly in the WDAC. In Figure 3, we

represent the main stages of the SAC procedure, and the following list resumes the main stages associated.

The operations performed in each stage are described with more detail in the subsequent subsections.

1. Check which kind of image mapped in kernel-mode memory is eligible to an evaluation (driver,

script, application, signed, unsigned, ….).

2. Extract (the signature) and compute (the hash) information from the executable file mapped in

memory to perform integrity checks.

3. Apply the WDAC policies to the image. It means checking if a rule defined in a policy matches the

loaded image.

4. Part of the WDAC policy evaluation, there is an external evaluation assessment which is requested

by ci.dll to user-mode components. The transition from kernel to user-mode is performed with RPC

Figure 3. Overview of the main steps of the execution flow of SAC.

22 Federal Office for Information Security

notification to the cryptcatsvc service. The last is responsible first to enable the “Smart Locker”

feature in Microsoft Defender Antivirus, if it has not been done before.

5. The loading executable file is mapped into user-mode memory for further analysis. This procedure

is performed in several steps, including an RPC notification to Microsoft Defender Antivirus.

6. The scan of the file and the notification to the Microsoft’s cloud-based backend for evaluation is

performed within Microsoft Defender Antivirus.

7. Once the cloud-based analysis has been performed and returned to the Microsoft Defender Antivirus,

the answer is provided back to the kernel so that a decision is taken based on the analysis run by

Microsoft Defender Antivirus and especially the cloud-based analysis.

The procedure described in Figure 3 represents the main steps when a notification from the kernel to

Microsoft Defender Antivirus is performed. Once the cloud-based analysis has been provided back to

Microsoft Defender Antivirus, the answer follows the trace back of the function call stack until reaching back

the kernel in ci.dll. In this context, a decision is taken based on the cloud-based analysis and the SAC current

mode (evaluation or enforcement) to decide whether the process must be executed or not.

3.3.1 Eligible image for SAC analysis

In the WDAC, it matters to know which kind of evaluation is given to a specific image. For instance, a driver

requires every time to be digitally signed to be loaded while an executable file does not. Based on the file

extension and internal flags set at compilation time (such as the /INTEGRITYCHECK compilation option set

in Visual Studio (Microsoft)), an executable file (.sys, .dll, .exe, or .msi) or a script (.js, .ps1, .vbs, …) is selected

for specific evaluation in WDAC. Based on Windows’ debug symbols, this notion is sometimes called “action

for image” evaluation, especially in the CiGetActionsForImage function.

The Table 1 represents the different kind of files evaluated during the creation of a process. It represents the

files provided to the CiValidateImageHeader function in a process creation. This is relevant to

understand which kind of image related to Code Integrity are susceptible to be eligible for SAC analysis. The

Table 1 is the result of an analysis performed with a debugger in Windows 11. The tests were performed with

Windows 11 “out-of-the-box” (which means Windows 11 in default configuration) with SAC in evaluation

mode and not specific WDAC policy enforcement setup. More information is available in Annex A about the

experiment resulting in observations provided in Table 1.

Signature Type

Im
ag

e
T

yp
e

Microsoft Signed
Trusted third-party

signature

Untrusted third-

party signature
Unsigned

Application X X X X

Script

Driver X X X X

Installer X X X X

Table 1. Matrix of code integrity check notification based on Image and Signature Types.

After an internal procedure of selection to know which kinds of file are eligible for analysis, the final set of

files sent to SAC is different. SAC only concerns a small subset of notifications. For short, the code integrity

evaluation procedure can take care of a lot of cases by itself. This is specifically the case for drivers which are

only evaluated in kernel-mode without requesting any further assistance from Microsoft Defender Antivirus

in this context (which does not prevent the regular Microsoft Defender Antivirus filtering mechanism in

kernel mode to perform its own notification by itself). In Table 2, we represent the different types of files

notified to SAC through ci.dll. The empirical observations are performed by checking which image is notified

to the SSCatDBSmartlockerDefenderCheck2 function. The experimental environment is the same as

the one used to make the observations given by the Table 1.

Federal Office for Information Security 23

Signature Type
Im

ag
e

T
yp

e

Microsoft Signed
Trusted third-party

signature

Untrusted third-

party signature
Unsigned

Application X X X

Script

Driver

Installer X X X X

Table 2. Matrix of SAC notification based on Image and Signature Types.

Then, an internal cache evaluation is performed. Dealing with image eligibility, the

CipValidateFileInCache functions is called. This function is mainly based on a Kernel Extended

Attribute (see section 3.1.4) called “$Kernel.Purge.ESBCache” (in some specific version of Windows, the name

could also be “$Kernel.Purge.CIpCache”). This Kernel EA holds a structure representing different information

already checks for a given file, avoiding reevaluating them. We also note there is a specific mechanism

concerning an expiration timestamp set in the Kernel EA to reevaluate periodically the content of the cache

data stored. The validity period is retrieved in the CipGetFileCache function, parsed with the

CipParseFileCache function, and evaluated in the CipVerifyFileCache function, in comparison

with the current time when the WDAC evaluation is performed.

Also, part of the WDAC policy matching procedure (in the CipApplySIPolicyUMCI function), the Kernel

EA called “$Kernel.Purge.TrustClaim” is checked. If this one is correctly setup, the verification is skipped.

Further information about this specific Kernel EA (which is automatically removed if the associated file is

modified) can be found in (Graeber).

3.3.2 Signature check and image hash generation

This part is a preparation for the WDAC evaluation. It aims to parse the MZ-PE file in memory and to extract

the digital signature of the file if there is one. The principle of signature extraction respects the Windows

Authenticode Portable Executable Signature Format as explained in section 3.1.3. In case of a digital signature

would be present, this one is checked by computing its hash integrity. This procedure is clearly a preparation

step for the WDAC evaluation performed thereafter.

In specific circumstances (if the machine supports VBS and VBS is activated), the signature extraction and

verification can be performed in an isolated user mode (IUM) (Microsoft) procedure. Based on the VTL

provided by the Hyper-V Hypervisor, this check involves HVCI capacities to perform the signature integrity

check.

Once the signature extraction has been done and checked, there is a notification to the User Mode Code

Integrity (UMCI). The user-mode in this context should be interpreted as a check for user-mode component

but not especially performed in the user-mode. This is the kernel-mode CipApplySIPolicyUMCI function

which is called to start the WDAC policy evaluation.

3.3.3 WDAC Policy Matching

After having extracted signature and other relevant information from the evaluated image, the WDAC applies

in a loop all the “signature verification” procedures. The iterate procedure from one signature verification to

another one is performed via a direct call to the CiGetNextSignatureVerification function.

The signature verification is performed in the CipApplySiPolicyEx function. The WDAC engine is

notified to validate the policies provided in the context of the signature verification. Part of the verification

procedure is driven by the CipExternalAuthorizationCallback function which is used as a callback

function. This callback function is called part of the policy validation to perform a SAC notification.

24 Federal Office for Information Security

3.3.4 External authorization and SAC initialization

The callback function called in the context of the WDAC policy is responsible – in the end – to notify the user-

mode component involved in the analysis of SAC. This operation is performed by interfacing with the RPC

interface provided by the cryptcatsvc service (RPC UUID {f50aac00-c7f3-428e-a022-a6b71bfb9d43}). This

service is a proxy in between ci.dll and Microsoft Defender Antivirus. Since ci.dll is naturally interfaced with

cryptcatsvc service for signature verification purpose (especially to query the chain of certificates for a given

signature), Microsoft just added a “SmartLocker” interface accessible via RPC to this service, enhancing the

original architecture of code integrity check with SAC.

The SmartLocker RPC interface allows to interface with the SAC mode (enforce, evaluation, deactivate) in

addition to submit an analysis request to SAC. Such a request is called a “Defender Check”. For a Microsoft

Defender Antivirus check, the operation is twofold. On the first hand, such an operation starts by interfacing

with Microsoft Defender Antivirus and to initialize it if it has not been performed before. Under the wood,

the MpClient.dll library is loaded, and then internal functions are called to initiate the SAC feature. This is the

MpSmartLockerEnable function which is responsible of this action.

The initialization is performed once for all, meaning that a recall to the initialization procedure is a

transparent operation. The initialization procedure is complex, and it involves a lot of internal

implementation details in Microsoft Defender Antivirus. This procedure checks different points about the

current operating system version and if Microsoft Defender Antivirus is up to date, in addition to load many

configuration values, including for instance the quarantine location directory path. Then, the procedure

ensures that the RPC interface dedicated to SAC is correctly setup and in case of, it instantiates it. That way,

it also checks that the calling process is trusted, checking for instance that the calling process is running in

the context of the user whose SID is “S-1-5-80-242729624-280608522-2219052887-3187409060-

2225943459”. For security purpose, SAC initialization ensures that the process trying to interface with

Microsoft Defender Antivirus is registered as a Protected Process Light (PPL).

3.3.5 File mapping operation

This is the cryptcatsvc service which opens the file to analyze. Even if the file has already been mapped in

kernel-memory, it is necessary to remap it into user-mode memory for analysis purpose in the context of

Microsoft Defender Antivirus. The analysis of the file by Microsoft Defender Antivirus will be performed in

the memory context of cryptcatsvc service, meaning the parsing operations are performed remotely by

Microsoft Defender Antivirus.

The transition between the cryptcatsvc service and Microsoft Defender Antivirus engine for analysis is

performed through RPC context, more specifically with the MpCheckMappedFileTrust function from

MpClient.dll. The RPC interface of Microsoft Defender Antivirus is referenced with the {C503F532-443A-

4C69-8300-CC0D10FBDB3839} GUID. This RPC interface proposes a full list of functions allowing to perform

different kind of operations on Windows. Among other things, it is possible to request for getting the threat

history, getting the quarantine content, updating the signature engine, generating Spynet analysis report,

querying the default folder guard list, asking for a network capture, and demanding a scan for analysis (with

many possibilities such as fast analysis, in memory, offline, …).

3.3.6 Scan analysis in Microsoft Defender Antivirus for SAC

The analysis is started by a scan notification performed from MpClient.dll to MpSvc.dll through the RPC

interface exported by Microsoft Defender Antivirus. The name of the RPC function in MpSvc.dll used to

perform a SAC analysis is the ServerMpRpcMemoryScanStart function.

The implementation relies on instantiating a “memory scan engine VFZ”, with no specific information about

the meaning of VFZ. This is the “MpService::CMpMemScanEngineVfz” class which rules this engine

providing generic capabilities (URL scanning, Amsi, Executable files). That way, the same engine can provide

Federal Office for Information Security 25

different capabilities to analyze different kind of potential threats. In SAC, this engine is only used to analyze

executable file, showing the “normal analysis flow” taken by SAC.

The analysis relies on a complex system of internal notifications, due principally to a system of thread pool

used to manage a request to a “memory scan context”. This engine is a generic engine configured to analyze

any kind of resource (executable, script, or URL to scan). Based on our observations, with SAC notified from

the kernel, the analysis first concerns user-mode executable code. This engine is based on a thread pool used

to optimize the scheduling of the different scan operations to be performed across multiple threads.

The internals of the scanning operation are directly related to Microsoft Defender Antivirus analysis

procedure, which is out of topic concerning SAC. The most relevant point is the cloud-based analysis

notification which provides information to Microsoft about the analyzed file. The pieces of information

provided are threefold. Firstly, there is a set of elements extracted or computed from the file to analyze. For

instance, this concerns the hash of some sections of the file, headers from MZ-PE format, and signature of the

file is there is any (more details in section 4.1.5.2). Secondly, there is set of metadata related to the file such

as the file path of the file or modification timestamps. Thirdly, there is a set of information concerning the

Microsoft Defender Antivirus’s configuration (version number but also specific configuration values set) and

the system in general (version of the operating system). All this information is transferred to be used in the

context of the cloud-based analysis. This operation is performed through a secure HTTPS connection using

“Bond” content type to encapsulate data.

3.3.7 Post-analysis Notification

3.3.7.1 Feedback procedure

Once the Microsoft cloud-based backend has provided back its analysis, this is Microsoft Defender Antivirus

which receives the answer. This is the answer to the HTTPS request previously sent. The answer is parsed to

extract information, for instance in the MpService::IMpSpyNetReportContext::HandleResponse

function from MpSvc.dll. Once this parsing operation has been performed, it is possible to differentiate in the

answer at least three kinds of answers.

- An answer concerning the result of the cloud-based analysis about the current file submitted. A

scoring value used to describe the “reputation” of the file, according to the cloud-based analysis.

- An answer concerning the reference of the submission performed, especially internal values which

can be considered as a “tracking index” regarding the submitted file. This ensure that the answer is

correctly related to the original submission but

- An optional answer concerning the status of SAC in the client, especially to switch it from evaluation

to enforcement or deactivated mode.

The first kind of answer is directly used to provide a hint for the final decision taken in the end by the kernel.

The second kind is used for tracking operations. And the last one is used to configure remotely and

automatically the status of SAC.

All this information is packed into a specific structure ready to be returned to the kernel which originally

performed the RPC call. All these parsing and packing operations are based on different procedures which

are common to any analysis in Microsoft Defender Antivirus, especially using thread pool technology for

optimization purpose.

The transition from Microsoft Defender Antivirus in user-mode to ci.dll in kernel-mode is quite direct since

the original notification for scan has been performed within an RPC function call. Back in kernel-mode, in

ci.dll, the procedure extract information from the cloud-based analysis forwarded to the kernel. There is a

scoring value associated with the file originally submitted to the scan which is used. This scoring value is

composed also by different flag values which will be used in the end to explicit the reason of a potential

denying of execution. In conjunction to a set of conditions relative to the extensions files possibly submitted

to SAC, a decision is taken regarding the current file. Either the evaluation does not consider the file has

dangerous and the execution is allowed (even if further WDAC policies are taken into consideration for the

26 Federal Office for Information Security

final choice), either the evaluation negatively consider the file and the result depends on the current mode of

SAC. Either SAC is in evaluation mode and in such a case only a WNF toast is displayed to user’s eyes (in

addition to some logging capabilities and a kernel debug print if a debugger has been previously attached in

the SIPolicyProcessDbgSettingAndReprieve function in ci.dll). In the end, the

CiValidateImageHeader function returns a status value resulting in the execution if the returned value

is not an error value, otherwise a deny of execution if the returned value is an error value.

In the response returned by the cloud-based analysis and transferred to the kernel, it is possible to switch

the mode in which SAC belongs. Part of the post-analysis operation in the kernel, there is a check to know if

such a specific order has been provided. In case of, this switching mode operation will trigger the

CiAsyncPolicyRefreshRoutine function in kernel mode, resulting in an RPC call to the

s_SSCatDBSendSmartQppControlSwitchEnforceToast function in crytcatsvc service. The

transition is based on a call to the WldpSendSmartAppControlSwitchEnforceToast function from

the Wldp.dll. Behind the stage, this is the “Windows Push Notification Platform” API which is used to proceed

(Microsoft). This last consideration illustrates the remote control that the cloud-based analysis has on SAC

for each computer.

The procedure of the feedback from Microsoft Defender Antivirus to the Code Integrity check module in the

kernel is illustrated in Figure 4. It is worth noting here the different kinds of messages sent at once from

Microsoft Defender Antivirus to the kernel. In one case, the feedback is used to take a decision about the

possible execution of the given image notified to the system. On the other case, the feedback is used to switch

the current mode of SAC (from evaluation to enforced or deactivated).

Figure 4. Feedback of the cloud-based analysis loop providing different kind of answers to ci.dll.

Federal Office for Information Security 27

3.3.7.2 Enforcement mode consequences

In the case where SAC would be switched to enforcement mode, the main logic of the security feature will be

like the one described previously. The only difference relies in the post-notification where a blocking decision

may be taken depending on the feedback provided by Microsoft Defender Antivirus which needs Internet to

operate. It raises the question of the lack of internet connection. Without Internet, the result is clear: any

analyzed file will be blocked. The reason relies in the fact that Microsoft explains to block files whose

reputation is known to be malicious or unknown. Without any internet connection, the reputation of the file

remains unknown.

But it is also relevant to note that not all the executable files in the machine about to be executed will be

blocked without internet connection. The operating system must remain functional, meaning that all

executable files signed by Microsoft are always considered as valid (since they are never notified for cloud-

based analysis). Same for drivers or scripts. Only MSI installers may be impacted, like executable files non

signed by Microsoft. Nevertheless, in this last case, one further important clarification is in order.

In the kernel-code integrity check procedure, there is a cache check which is performed before an executable

file is about to be notified. This specific procedure concerns the CipValidateFileInCache functions

which reads a kernel-EA, looking for a potential former analysis result that would have been performed

before by the system. If such a cache is associated with a file, the system directly reuses it, without notifying

again Microsoft Defender Antivirus for a cloud-based analysis. This specific optimization mechanism has two

direct consequences.

At first, because the optimization avoids a cloud-based analysis, the lack of internet connection is not a

problem for already analyzed files. At least, for a certain amount of time3 since the kernel-EA cache associated

to the file is considered as valid.

The second consequence of this optimization mechanism is the smooth transition between the learning mode

and the enforcement mode. There is no re-evaluation of already evaluated files when switching to

enforcement mode – at least since the cache associated to a file is still considered as valid. Supposing there

were few (and possibly no) executable files considered with an insufficient reputation to be executed, it

means that all existing applications executed on the system are known to be good by the cloud-based analysis.

It could also mean that when the cloud-based analysis switch to enforcement mode for a given machine, there

3 This validity period is not directly hardcoded in the kernel, but it depends on WDAC’s configuration.

Details about this point is out of the scope of this study, but a reference to this value is set in the Kernel
EA associated to the file.

Figure 5. Illustration of the message displayed to the user's eyes in case of SAC blocking operation - extracted

from Microsoft’s promotion videos (Microsoft).

28 Federal Office for Information Security

is a measure at Microsoft’s side that the impact of the enforcement mode should be low (or null) for the user

experience.

In the case where the user would face the situation of a blocked file when SAC is in enforcement mode, in

addition to the execution file being blocked by the kernel, there is a specific GUI Window displayed to user’s

eyes. This one is provided in Figure 5. In such a case, it is possible to send feedback to Microsoft and try to

get an equivalent application from the Microsoft Store of Apps.

Federal Office for Information Security 29

4 Technical Analysis of Functionalities

The present section highlights relevant technical points concerning the Smart App Control feature in

Windows 11. It is worth noting that only the most relevant specific points of the feature are detailed in this

part. The reason is twofold. On the first hand, SAC is a highly fragmented feature, dispatched over different

modules and relying on different technology. Behind the wood, it is most a construction of different pieces of

technology linked together than a standalone feature. On the other hand, if the internal implementation

details of SAC are interesting, they are probably not as important as the key points on which rely SAC.

Especially, the implementation details (class instantiation, thread pool management, internal data structures,

…) of in between parts of SAC are ignored here. This is the reason why the following subsections are mainly

focused on critical points of SAC, trying to provide a technical background to propose a reliable analysis of

SAC and relevant questions concerning it.

In this context, the present section relies mainly on the regular SAC notification activity, meaning that a file

must be analyzed. To cover the most generic case (and probably the most common one), we propose an

analysis which follows the notification by the kernel to an unsigned executable file (.exe) executed by an

authenticated user. Other possibilities may have been considered (digitally signed executable, installer), but

without any loss of generalities, the general execution flow of the SAC feature remains the same.

4.1 Smart App Control pre-analysis part

4.1.1 Analysis of CipExternalAuthorizationCallback function

The CipExternalAuthorizationCallback function is definitively central in the procedure resulting

in a SAC notification. The internal logic of the CipExternalAuthorizationCallback function is

complex since it evolves WDAC policy objects and a lot of global flags in the system. We propose to describe

the function with its main steps concerning the SAC notification.

Af first, there is an evaluation of the Smart Locker procedure by calling the

CipCheckSmartlockerEAandProcessToken function. This function queries on Kernel EA concerning

Smart Locker (accessed through CipSmartlockerGetValidEA function) if there is some, and Security

Attributes Token (SAT) which is an internal artifact of Authz4 (Microsoft). In the last case, this is the function

SeQuerySecurityAttributesToken which is used to query the two attributes

"SMARTLOCKER://ORIGINCLAIM" and “SMARTLOCKER://SMARTSCREENORIGINCLAIMNOTINHERITED”.

Thereafter, there are different checks performed through the CipCheckForExtensionAgainstList

function to know if the extension in the file name of the targeted file mapped into memory could be relevant.

By relevant, it means that the extension could correspond to one defined in the “Dangerous Extensions” list

(available in Annex C) or an “Installer Extensions” (.msi). Regarding an unsigned executable file with no pre-

existing kernel-EA, only the installer extension is checked. In either case, there is a call to the

CiCatDbSmartlockerDefenderCheck function. This last call is definitively the most important one

since it directly notifies Microsoft Defender Antivirus for direct analysis.

The main point of the CipExternalAuthorizationCallback function is the call to the

CiCatDbSmartlockerDefenderCheck function. This function is directly responsible to notify the

Microsoft Defender Antivirus with an RPC for SAC analysis. The remaining of the callback is about managing

the post-notification of this last call. Then, there is an evaluation to check if the RPC call has succeeded or not,

followed, if necessary, by a cache update associated with the validated file (and only for validated files) thanks

to a call to the CipSetFileCache function.

4 From Microsoft documentation (Microsoft), this API allows applications to cache access checks for

improved performance.

30 Federal Office for Information Security

4.1.2 RPC notification with CiCatDbSmartlockerDefenderCheck function

Whenever it comes from the CipCheckSmartlockerEAandProcessToken or directly from the

CiCatDbSmartlockerDefenderCheck functions, the transition from the kernel-mode to Microsoft

Defender Antivirus’s service, is performed within the CiCatDbSmartlockerDefenderCheck function.

In this last function’s name taken from the Windows’ symbols (Microsoft), we note the transition from the

notion of “Smart Locker” to the “Defender” one, highlighting the different internal names of “Smart App

Control” from the kernel point of view.

Mainly, there is a call to the CipCatDbRpcConnect function. The last one creates a bind RPC endpoint

called "keysvc" with the use of the RpcBindingCreateW function. The Authentication-Level set in the

binding procedure is RPC_C_AUTHN_LEVEL_PKT, meaning that all data received is from the expected client,

without validating the data itself. The RPC interface ID targeted is the UUID {f50aac00-c7f3-428e-

a022a6b71bfb9d43}. Subsequently, regular operations of synchronization are performed with

KeWaitForSingleObject, RpcAsyncCancelCall, and RpcAsyncGetCallStatus functions on the

RPC handle, waiting for the answer from Microsoft Defender Antivirus.

After the CipCatDbRpcConnect function call, the CiCatDbSmartlockerDefenderCheck function

uses an endless loop to perform a call to RpcAsyncInitializeHandle and

SSCatDBSmartlockerDefenderCheck2 functions. This last function is responsible to directly notify

Microsoft Defender Antivirus through the RPC interface. Once the RPC call notification is performed, there is

a wait operation for Microsoft Defender Antivirus’s answer for a certain amount of time. This time internal

is based on the policy whose GUID is {283AC0F-49AE-FFF1-938A-A1ADD6CA3031} and retrieved by the

SIPolicyIsPolicyActive function. The wait operation is performed with a call to the

KeWaitForSingleObject function, as a regular kernel-mode wait. If the wait operation is issued before

the RPC respond (RPC could be RPC_NT_SERVER_TOO_BUSY), there is a delay issued to wait for a less busy

time for RPC analysis (with the use of the KeDelayExecutionThread function).

In case of success, the end of the procedure is about to extract the number of “answers” returned by Microsoft

Defender Antivirus and to parse the content of these answers. In addition, the total time elapsed for the

operation is kept, likely for log and statistical purposes.

4.1.3 From kernel RPC to Microsoft Defender Antivirus

4.1.3.1 Identification of the RPC server and the RPC routine called

The RPC notification from the kernel to the SAC interface in Microsoft Defender Antivirus is done by the

SSCatDBSmartlockerDefenderCheck2 function. This function is nothing but a call to the

Ndr64AsyncClientCall function. This last one is used to transfer an RPC client call to an RPC server

interface.

The targeted RPC server is the one registered under the {f50aac00-c7f3-428e-a022-a6b71bfb9d43} GUID.

Using the RpvView tool5 to find that GUID, it is possible to identify the service housing the RPC server as

“C:\windows\system32\svchost.exe -k NetworkService -p -s CryptSvc”. The endpoint is identified as

5 https://github.com/silverf0x/RpcView

https://github.com/silverf0x/RpcView

Federal Office for Information Security 31

“keysvc”, confirming the binding procedure observed in section 4.1.2. Observation of the name of the DLL

related to the cryptcatsvc is given in Figure 6, identifying C:\Windows\System32\cryptcatsvc.dll.

The cryptcatsvc is a Dll used as a kind of service to provide an interface (through exported functions of RPC

server interface) to manage cryptographic catalog files. According to the Microsoft’s documentation

(Microsoft), a digitally signed catalog file (.cat) contains a collection of cryptographic hashes, or thumbprints.

Each thumbprint corresponds to a file that is included in the collection. Since ci.dll is vested with the signature

validation enforcement, there is a logic to connect it with the Cryptographic Catalog Service.

The RPC function targeted by the Ndr64AsyncClientCall function can be identified with the

“nProcNum” parameter. This one corresponds to the index referencing the function exported by the RPC

server in its Dispatch Table.

4.1.3.2 Initialization of the Crypcatsvc service and RPC server interface setup

In Windows, cryptcatsvc is a library originally used to provide digitally signed catalog files capabilities.

During the initialization procedure linked to that DLL, there is in the CatalogStart function, a security

descriptor setup. This one is built from a string and converted in a security descriptor with the

ConvertStringSecurityDescriptorToSecurityDescriptorW function. The ACE strings

representing this security descriptor is:

"D:(A;;GRGWGX;;;WD)(A;;GRGWGX;;;RC)(A;;GA;;;BA)(A;;GA;;;OW)(A;;GR;;;AC)(A;;GR;;;)"

The previous ACE string can be interpreted as given in Table 3.

Object's Owner. Associated Rights

Everyone AccessAllowed (GenericExecute, GenericRead,

GenericWrite)

OWNER RIGHTS AccessAllowed (GenericAll)

NT AUTHORITY\RESTRICTED AccessAllowed (GenericExecute, GenericRead,

GenericWrite)

BUILTIN\Administrators AccessAllowed (GenericAll)

APPLICATION PACKAGE AUTHORITY\ALL

APPLICATION PACKAGES

AccessAllowed (GenericRead)

S-1-15-3-1024-3203351429-2120443784-

2872670797-1918958302-2829055647-

4275794519-765664414-2751773334

AccessAllowed (GenericRead)

Table 3. Translation of the ACE associated to the RPC in cryptcatsvc.dll.

This security descriptor is open widely open to any client, which makes sense since it is supposed to be used

for Catalog validation purposes – a need potentially shared by everyone in the system. This security

descriptor is directly associated with the RPC server thanks to the use of RpcServerRegisterIf3

function. This one takes several parameters, indicating that the RPC accepts as much as possible clients

(RPC_C_LISTEN_MAX_CALLS_DEFAULT), it is automatically listening (RPC_IF_AUTOLISTEN) and the RPC

Figure 6. Screenshot from RpcView identifying the RPC server interface used between ci.dll and Microsoft

Defender Antivirus in the context of a SAC notification.

32 Federal Office for Information Security

runtime rejects calls made by remote clients (RPC_IF_ALLOW_LOCAL_ONLY). In addition, the security-

callback function CryptSvcSecurityCallback provided with the RpcServerRegisterIf3 function

only accepts local clients with the use of the I_RpcBindingIsClientLocal function. But the most

interesting parameter provided to the RpcServerRegisterIf3 concerns its RPC_SERVER_INTERFACE,

illustrated in Figure 7.

The Figure 7 illustrates this RPC interface where it is possible to observe (indicated in red) the GUID of the

server RPC (corresponding to {f50aac00-c7f3-428e-a022-a6b71bfb9d43}, as targeted by ci.dll) and the

“InterpreterInfo” table (indicated in blue), providing an access to a MIDL_SERVER_INFO structure. The

second entry of this structure corresponds to a Dispatch Table of server routines (as illustrated in Figure 8).

This table (given in Figure 8) references the whole list of RPC functions exported for clients.

In the kernel, SSCatDBSmartlockerDefenderCheck2 function calls the Ndr64AsyncClientCall

function with the parameter “nProcNum” equals to 8. This means that the 8th entry of the RPC server dispatch

Figure 7. Dump of the RPC_SERVER_INTERFACE provided by cryptcatsvc.dll.

Figure 8. List of routines exported by the RPC server in the Server RPC Dispatch Table Routines.

Federal Office for Information Security 33

routine table will be called. In our case, it means that s_SSCatDBSmartlockerDefenderCheck2

function will be RPC called.

4.1.4 Scan analysis Overview

The notification procedure is a three steps operation. Starting from the MpCheckMappedFileTrust

function in the MpClient.dll, there is first the initialization and the launch of the scan operation with the call

to the ClientMpRpcMemoryScanStart function. In the MpSvc.dll, after having initialized a “memory scan

engine VFZ” in the MpService::CMpMemScanEngineVfz::Initialize function, there is a thread

pool notification performed via the CommonUtil::CMpSimpleThreadPool::Submit function to

register a scan work to be performed by the Microsoft Defender Antivirus’s engine. Previously during the

initialization of Microsoft Defender Antivirus, this thread pool has been initialized to be driven with the

CommonUtil::CMpThreadPoolProviderVista::WorkCallback function callback. This one

dequeue a work item (representing a scan operation in our case) already pushed in the working queue to

perform a scan operation. This scan operation has a short transition by the engine of Microsoft Defender

Antivirus, routing an “internal signal” to the ScanStreamBuffer function in mpengine.dll. The most

relevant part of this scan procedure (for SAC) is the generation of a Spynet report with and its submission to

the Microsoft’s cloud-based backend. This last operation is performed by the

MpService::CMpSpyNetManager::SubmitReport function from MpSvc.dll.

Once the report has been generated and sent to Microsoft, the notification procedure waits for the answer

from the cloud-based analysis. The wait operation is driven by some “queued events” linked to the request.

Once the answer from the cloud-based analysis has been retrieved, there is a parsing operation and an

extraction of information, the last being performed by the

ServerMpRpcMemoryScanQueryNotification function from MpSvc.dll.

Many kinds of answers are returned by the cloud-based analysis, in a queue of elements extracted before by

the parsing operation. The identification of the different kinds of answers is based on the header value of

each element represented in the answer. This is a value whose hexadecimal value must be either 0x31001,

0x31002, or 0x4005. Depending on the header value hence returned, the structure representing the element

in the answer will be different (since it does not hold the same kind of information). The goal of this

procedure is to get an access to each element of the answer for further proceedings, including taking the

decision to know if the submitted application must be executed or not (if SAC is in enforcement mode).

Otherwise, if SAC is in evaluation mode, it is just about warning the user with a WNF toast notification that

the application would have been refused if SAC would have been in enforcement mode (in such a case, SAC

is in evaluation mode).

34 Federal Office for Information Security

4.1.5 From Microsoft Defender Antivirus to the analysis provided by
Microsoft’s cloud-based backend

Part of the scan procedure, there is a notification to the Microsoft’s cloud-based backend for an analysis. This

one is central since it is responsible to collect information from Microsoft to know if a given file could be

executed but also because of the potential disclosure of information it may represent. These two axes are the

focus given to this subsection about the network analysis of SAC feature. The goal is not to document here

internal implementation details but instead to provide a clear view about the data transiting on the network

in SAC.

It is worth noting that the internal functions used in Microsoft Defender Antivirus to communicate over the

network are not dedicated to SAC. This is a reuse of a code which can be notified in other context, mainly for

the purpose of obtaining a cloud-based analysis.

The data exchanged over the network is principally between the Microsoft Defender Antivirus and

Microsoft's backend infrastructure. The primary focus is on the network interface allowing communication

between the Microsoft Defender Antivirus and the Microsoft backend infrastructure.

As a first step to analyze the network interface, a network capture has been performed using the Wireshark

utility6. This utility enables the analysis of network data that is being transmitted between the Microsoft

Defender Antivirus and the Microsoft’s cloud-based backend infrastructure. An illustration of a section of the

output generated by WireShark is given in Figure 9. The output shows the communication between Microsoft

Defender Antivirus and Microsoft occurs over a network connection that is secured using Transport Layer

Security (TLS). Within this secure connection, the exchange involves messages formatted using the Hypertext

Transfer Protocol (HTTP), as evidenced by the information presented in the ‘SrcPort’, ‘DstPort’, and ‘Protocol’

columns within Figure 9, but also with further analysis in the module implementing this exchange of

information.

6 https://www.wireshark.org/

Figure 9: A snippet of the output of WireShark

Federal Office for Information Security 35

Before any data exchange occurs over a TLS-secured network interface, a communication session must be

established. This procedure typically involves server authentication, negotiation of a cipher suite designated

for data encryption, as well as the generation of a session encryption key. During session establishment,

Microsoft Defender Antivirus sends a ‘client hello’ message to the server, along with the supported cipher

suites (see ‘Cipher Suites’ in Figure 11).

Figure 11. A piece of a ‘client hello’ message.

Figure 10. A portion of a ‘server hello’ message.

36 Federal Office for Information Security

Microsoft Defender Antivirus directly communicates information with the “https://wdcp.microsoft.com”

URL which is resolved in our case by the 20.82.207.122 IP address. The TLS certificate associated with the

HTTPS connection is provided in Figure 10.

The API used for the communication is based on the Microsoft Windows HTTP Service (see section 3.1.12)

framework. Microsoft Defender Antivirus operates this framework through the mpcommu.dll library.

Together, this library and the WinHTTP framework are the core of the network capabilities used by the

service to communicate with the Microsoft’s cloud-based backend.

4.1.5.1 TLS Server Certificate Validation Policy

The WinHTTP framework is responsible to handle the procedure of setting up a HTTP connection over a TLS

protected tunnel. Such a procedure is achieved through the invocation of a predefined sequence of functions,

each playing a distinct role in the establishment of the TLS protected connection (as outlined in (Microsoft)).

When implementing an HTTPS connection, the state of the art to secure the implementation involves the use

of an event driven callback mechanism to check the certificate of the targeted server once the connection has

been established. This is the WinHttpSetStatusCallback function which allows to set this callback

mechanism. This function serves to establish a callback function, thereby enabling WinHTTP to invoke the

specified callback function as the sequence unfolds (see (Microsoft)).

Among other things, this callback mechanism is used to verify the authenticity of the server providing the

cloud-based analysis. It ensures the legitimacy of the server with whom the connection is established. When

the message is received, the established callback function is triggered, directing the invocation towards the

winHttp::CRequest::OnSendingRequest function. This function invokes the

winHttp::CRequest::CheckCertForMicrosoftRoot function, which is responsible for verifying

the certificate chain's integrity and confirming its authenticity. Code Block 1 illustrates a portion of the

winHttp::CRequest::CheckCertForMicrosoftRoot function, enlighten the criteria upon which

the verification of the certificate chain's integrity and authenticity is carried out.

winHttp::CRequest::CheckCertForMicrosoftRoot(HINTERNET hInternet)

{

[...]

 if (WinHttpQueryOption(hInternet, WINHTTP_OPTION_SERVER_CERT_CONTEXT, &pCertContext, &dwPtrLength)

) {

[...]

 if (CertGetCertificateChain(

 0,

 pCertContext,

 0,

 pCertContext->hCertStore,

 &pChainPara,

 0,

 0,

 &pChainContext))

{

 [...]

 pPolicyPara.dwFlags = MICROSOFT_ROOT_CERT_CHAIN_POLICY_CHECK_APPLICATION_ROOT_FLAG;

 if (CertVerifyCertificateChainPolicy(CERT_CHAIN_POLICY_MICROSOFT_ROOT, pChainContext,

&pPolicyPara, &pPolicyStatus)) {

 [...]

 if (pPolicyStatus.dwError) {

 dwError = LOWORD(pPolicyStatus.dwError) | 0x80070000;

 if ((int)pPolicyStatus.dwError <= 0)

 dwError = pPolicyStatus.dwError;

 }

 else { dwError = 0; }

 }

 [...]

 return dwError;

}

Code Block 1: Portion of CheckCertForMicrosoftRoot function.

The function assesses the validity of a server's certificate chain in relation to Microsoft's root certificate

authorities. The key steps are as follows:

Federal Office for Information Security 37

1. Certificate Context Retrieval: The WinHttpQueryOption function acquires the certificate context of the

server associated with the provided hInternet handle representing the HTTPS connection. This

certificate is the one associated with the ‘server hello’ message. Stored in the pCertContext variable,

this context becomes the foundation of subsequent evaluations.

2. Certificate Chain Retrieval: The CertGetCertificateChain function initializes a certificate chain

context, beginning from the provided certificate and potentially extending backward to a trusted root

certificate, based on the previously acquired pCertContext variable. Upon successful completion, the

resulting chain context is stored in the pChainContext variable.

3. Certificate Chain Policy Verification: The function CertVerifyCertificateChainPolicy is used to

perform a verification of the chain context stored within the pChainContext variable. The first

parameter CERT_CHAIN_POLICY_MICROSOFT_ROOT indicates that the last element of the chain must

corresponds to a Microsoft root public key. In addition, the dwFlags attribute of the

CERT_CHAIN_POLICY_PARA structure indicated by the pPolicyPara parameter includes the

MICROSOFT_ROOT_CERT_CHAIN_POLICY_CHECK_APPLICATION_ROOT_FLAG flag. By setting this

flag, the function does an additional verification by checking if the last element of the chain corresponds

to a "Microsoft Root Certificate Authority 2011" public key. This means that the hash of the public key is

validated against a predefined instance of a public key hash associated with the "Microsoft Root Certificate

Authority 2011". This hash is statically predefined within the crypt32.dll file. This procedure is called

“certificate pinning” in secure programming area.

4. Error Handling: In the considered scenario, if the last element of the chain does not correspond to a public

key associated with "Microsoft Root Certificate Authority 2011", the dwError attribute of the

CERT_CHAIN_POLICY_STATUS structure referenced by the pPolicyStatus parameter is set to

CERT_E_UNTRUSTEDROOT (0x800B0109). Accessed through the dwError variable of the

winHttp::CRequest::CheckCertForMicrosoftRoot function, the returned error code depends

on the value set in the dwError attribute of the CERT_CHAIN_POLICY_STATUS structure. If there is an

error, the low-order word value of the dwError attribute is extended with the value 0x80070000. In

addition, if the dwError attribute value is negative, it is assigned directly to dwError variable.

Note: Relevant events related to certificate operations (e.g., certificate verification) are logged by the ETW

provider with GUID 5bbca4a8-b209-48dc-a8c7-b23d3e5216fb. This provider is registered under the name

Microsoft-Windows-CAPI2. It logs data related to the certificate verification process described in

this section.

When the certificate verification process implemented in the

winHttp::CRequest::CheckCertForMicrosoftRoot takes place, the following events are

logged in a sequential order: Event ID 10, Event ID 11, Event ID 30, and Event ID 90. The events with IDs

10, 11, and 90 are generated in the CertGetCertificateChain function. The event with ID 10

indicates that the extraction of the certificate chain from the ‘server hello’ message has started. The event

with ID 90 shows that actual certificates are part of this chain. The event with ID 11 indicates the validity

of the certificate chain. In the end, the event with ID 30 is generated in the

CertVerifyCertificateChainPolicy function to indicate the validity of the root certificate.

Note 1: ETW information related to certificate operations.

4.1.5.2 Microsoft Defender Antivirus and Cloud-Based Security Service Data
Exchange

To get a confident prediction for each of the file to be analyzed, a report holding information about the file is

generated for each of them by Microsoft Defender Antivirus, more specifically by the different modules

composing the MsMpEng service, i.e., MpSvc, Mpengine and MpCommu DLLs. The goal is to transfer these

reports over the network to use the capabilities of the cloud-based analysis. This operation is performed

through a HTTPS POST request as explained in section 4.1.5.1.

38 Federal Office for Information Security

Based on the rich information contained within these reports, the cloud-based analysis provides an answer

concerning the potential trustworthy assessment regarding the file submitted. The decision arising from the

cloud-based analysis is subsequently communicated back through a HTTPS response to Microsoft Defender

Antivirus. This exchange of information empowers Microsoft Defender Antivirus with the authority to make

cloud-based informed decisions regarding whether to allow or deny the execution of the specific file

originally requested by the kernel.

For a better overview of the data exchanged over the network, it matters to describe the content of the

requests exchanged over the network. That way, we propose to consider first the request sent to the

Microsoft’s cloud-backend for analysis and then the answer. To make the distinction between the two

requests, we call the initial request the “initial request” and the return from the server the “answering

request”.

Initial Request:

The initial HTTPS POST request is used to send a report to the Microsoft’s cloud-based backend. As any

HTTPS request, it consists of two main components: the request header and the request body. Together, the

header and the body define the intent and the content of a regular HTTPS request.

On the one hand, the request’s header contains specific information to properly communicate with Microsoft

Defender Antivirus. In particular, the header of the request holds of a specific user-agent

(“MpCommunication”) and specific Microsoft defined non-standard request fields. This informs us how to

communicate with the servers of the Microsoft’s cloud-based backend but also how to potentially filter

requests to monitor the traffic related to cloud-based analysis performed via Microsoft Defender Antivirus.

Code Block 2 shows the information provided through the HTTPS request’ header to the URL

“https://wdcp.microsoft.com/wdcp.svc/bond/submitreport” when submitting a report. We propose to

detail the most relevant fields of this request’s header.

POST /wdcp.svc/bond/submitreport HTTP/1.1: This is the request line indicating that it is a POST request to

the /wdcp.svc/bond/submitreport endpoint using the HTTP protocol version 1.1.

Connection: Keep-Alive: It specifies that the connection should be kept alive for potential reuse, which is a

performance optimization.

Content-Type: application/bond: It informs that the content of the request body is in the application/bond

format. This header tells the server how to interpret the data in the request body.

Accept: application/bond: It specifies the expected response format, indicating in our case that the client can

accept a response in the application/bond format.

Accept-Charset: utf-8: It specifies that the client can accept characters encoded in UTF-8, indicating the

character encoding used in the response.

User-Agent: MpCommunication: It provides information about the user agent or client making the request. In

this case, it identifies itself as "MpCommunication."

POST /wdcp.svc/bond/submitreport HTTP/1.1

Connection: Keep-Alive

Content-Type: application/bond

Accept: application/bond

Accept-Charset: utf-8

User-Agent: MpCommunication

X-MS-MAPS-CUSTOMERTYPE: Consumer

X-MS-MAPS-OSVERSION: a00000000585d

X-MS-MAPS-PLATFORMVERSION: 400125a1e03ec

X-MS-MAPS-ENGINEVERSION: 100015a1e03ed

Content-Length: 2890

Host: wdcp.microsoft.com

Code Block 2: Http request header.

Federal Office for Information Security 39

X-MS-MAPS-CUSTOMERTYPE: Consumer, X-MS-MAPS-OSVERSION: a00000000585d, X-MS-MAPS-

PLATFORMVERSION: 400125a1e03ec, X-MS-MAPS-ENGINEVERSION: 100015a1e03ed: These are custom

headers that provide additional information to the server. They are not standard HTTP headers but are used

by the service for additional context or version information. We recognize in this context the version of the

current operating system and the version of Microsoft Defender Antivirus.

Content-Length: 2890: It specifies the length of the request body in bytes. This is important for the server to

know how much data to expect in the request body.

Host: wdcp.microsoft.com: It specifies the domain name or the IP address of the server to which the request

is being sent.

On the other hand, the request’s body carries the actual data being transmitted to the cloud-based security

service. The format and the content of the request body depend on the specified Content-Type in the request

header. In our context, the expected format is “Bond”7, an open-source and cross-platform framework8 used

to work with schematized data about to be serialized and deserialized9. According to Microsoft, Bond is

broadly used at Microsoft in high scale services, and it is claimed to be particularly well-suited for scenarios

where data needs to be exchanged between different systems or components written in different languages

and running on different platforms. Code Block 3 illustrates a portion of the request body that carries the

actual data being transmitted where we can observe – as expected – that the data is serialized as a binary

“blob” (hexadecimal values) where some can be interpreted as text.

7 https://github.com/microsoft/bond
8 https://microsoft.github.io/bond/manual/bond_cs.html
9 Serialization is the procedure of converting data into a format, which is efficient in terms of both space and

speed. This makes it suitable for scenarios where minimizing data size and reducing network or storage
I/O are important. Deserialization is the procedure of reconstructing data from its serialized form.

00000224`a76d2a1d 43 42 01 00 a9 3c 4d 69-63 72 6f 73 6f 66 74 2e CB...<Microsoft.

00000224`a76d2a2d 50 72 6f 74 65 63 74 69-6f 6e 53 65 72 76 69 63 ProtectionServic

00000224`a76d2a3d 65 73 2e 45 6e 74 69 74-69 65 73 2e 52 61 77 2e es.Entities.Raw.

00000224`a76d2a4d 53 70 79 6e 65 74 52 65-70 6f 72 74 45 6e 74 69 SpynetReportEnti

00000224`a76d2a5d 74 79 01 01 cb 0a 0b 01-0e 00 ca 14 a9 3c 4d 69 ty...........<Mi

00000224`a76d2a6d 63 72 6f 73 6f 66 74 2e-50 72 6f 74 65 63 74 69 crosoft.Protecti

00000224`a76d2a7d 6f 6e 53 65 72 76 69 63-65 73 2e 45 6e 74 69 74 onServices.Entit

00000224`a76d2a8d 69 65 73 2e 52 61 77 2e-53 70 79 6e 65 74 52 65 ies.Raw.SpynetRe

00000224`a76d2a9d 70 6f 72 74 45 6e 74 69-74 79 01 01 cb 14 0f 01 portEntity......

00000224`a76d2aad 06 c9 1e 24 66 63 66 30-34 31 30 36 2d 61 38 63 ...$fcf04106-a8c

00000224`a76d2abd 66 2d 34 63 32 34 2d 39-33 33 31 2d 33 30 38 38 f-4c24-9331-3088

00000224`a76d2acd 31 30 66 32 65 30 62 34-c9 28 0b 31 2e 33 39 35 10f2e0b4.(.1.395

00000224`a76d2add 2e 34 39 38 2e 30 c9 2b-0b 31 2e 33 39 35 2e 34 .498.0.+.1.395.4

00000224`a76d2aed 39 38 2e 30 c9 32 0b 31-2e 33 39 35 2e 34 39 38 98.0.2.1.395.498

00000224`a76d2afd 2e 30 c9 3c 0e 31 2e 31-2e 32 33 30 37 30 2e 31 .0.<.1.1.23070.1

00000224`a76d2b0d 30 30 35 c9 46 0b 31 2e-33 39 35 2e 34 39 38 2e 005.F.1.395.498.

00000224`a76d2b1d 30 c9 50 0e 31 2e 31 2e-32 33 30 37 30 2e 31 30 0.P.1.1.23070.10

00000224`a76d2b2d 30 35 c9 96 08 31 30 2e-30 2e 30 2e 30 cb aa 05 05...10.0.0.0...

00000224`a76d2b3d 01 dd b0 01 cb b4 10 01-80 04 cb be 0f 01 02 cb

00000224`a76d2b4d c8 10 01 bc 01 cb d2 05-01 80 40 cb dc 04 01 09 @.....

00000224`a76d2b5d e9 18 01 24 37 37 62 64-61 66 37 33 2d 62 33 39 ...$77bdaf73-b39

00000224`a76d2b6d 36 2d 34 38 31 66 2d 39-30 34 32 2d 61 64 33 35 6-481f-9042-ad35

00000224`a76d2b7d 38 38 34 33 65 63 32 34-e9 22 01 01 32 e9 2c 01 8843ec24."..2.,.

00000224`a76d2b8d 0f 34 2e 31 38 2e 32 33-30 37 30 2e 31 30 30 34 .4.18.23070.1004

00000224`a76d2b9d eb 90 01 0b 01 0a 01 cb-14 02 01 01 cb 28 0b 01 (..

00000224`a76d2bad 0a 01 cb 0a 10 01 02 c9-14 28 36 62 38 61 34 36 (6b8a46

00000224`a76d2bbd 35 66 61 61 39 36 34 30-39 33 32 36 33 31 31 37 5faa964093263117

00000224`a76d2bcd 63 63 38 64 36 31 66 36-66 32 37 37 62 62 65 35 cc8d61f6f277bbe5

00000224`a76d2bdd 32 30 c9 1e 40 63 31 62-38 39 65 61 61 65 31 65 20..@c1b89eaae1e

00000224`a76d2bed 36 38 31 32 63 39 65 30-34 37 37 32 35 64 66 62 6812c9e047725dfb

00000224`a76d2bfd 65 62 38 36 61 32 38 39-38 37 65 31 65 64 30 62 eb86a28987e1ed0b

00000224`a76d2c0d 62 32 31 63 38 64 32 36-34 32 64 34 38 33 33 65 b21c8d2642d4833e

00000224`a76d2c1d 32 61 61 37 66 c9 3c 63-31 2c 35 2c 32 31 2c 32 2aa7f.<c1,5,21,2

00000224`a76d2c2d 33 2c 33 31 2c 33 37 2c-34 35 2c 38 34 2c 39 34 3,31,37,45,84,94

00000224`a76d2c3d 2c 39 37 2c 31 30 36 2c-31 30 39 2c 31 31 30 2c ,97,106,109,110,

00000224`a76d2c4d 31 31 33 2c 31 31 34 2c-31 31 35 2c 31 31 36 2c 113,114,115,116,

00000224`a76d2c5d 31 31 37 2c 31 31 39 2c-31 32 32 2c 31 32 36 2c 117,119,122,126,

00000224`a76d2c6d 31 34 31 2c 31 35 37 2c-31 35 38 2c 31 39 35 2c 141,157,158,195,

00000224`a76d2c7d 32 30 32 2c 32 31 34 2c-32 32 35 c9 46 93 05 30 202,214,225.F..0

40 Federal Office for Information Security

Once deserialization is done, the report is a schematized data

structure, that can conceptually be interpreted as a property

tree structure (i.e., hierarchical structure). This schematized data structure uses “elements” and “attributes”

to describe data within the report. Conceptually, this is not far from an XML-based property tree structure.

An explanation of elements and attributes in a Microsoft Defender Antivirus generated file report is

presented below:

Elements: They serve as the fundamental building blocks that represent containers for data in a report. They

play a central role in defining the hierarchical structure of the data within the report. Each element has a

distinct name, and it may be accompanied by attributes. Additionally, elements can be embedded inside other

elements as child elements (hence the tree structure), and they can also contain data content, representing

the values associated with the element.

Attributes: They serve as metadata linked to an element, offering supplementary details regarding the

element itself, rather than the data encapsulated within it. These attributes are always tied to a specific

element, and they are composed of a name-value pair. They are commonly employed to impart further traits

or properties to elements.

Code Block 4 illustrates the parsed content of the report property tree structure, presenting both the names

and values of elements along with their associated attributes.

<SpynetReport>

 <enginereportguid=AC25A8A8-E1E9-4F0B-A52B-17A83123E455>

 <revision=33>

 <xmlns=AntiMalwareServices.Components.SpynetReport>

 <machineguid=FCF04106-A8CF-4C24-9331-308810F2E0B4>

 <productguid=77BDAF73-B396-481F-9042-AD358843EC24>

 <appversion=4.18.23070.1004>

 <assigversion=1.395.498.0>

 <avsigversion=1.395.498.0>

 <sigversion=1.395.498.0>

 <osver=10.0.0.0>

 <osbuild=22621>

 <ossuite=256>

 <ostype=31>

 <studyid=GR-OfficeRingNotSet>

 <cioptions=132>

 <engineversion=1.1.23070.1005>

 <computernetbiosname=DESKTOP-D647BKN>

 <osplatform=31>

 <officeconfigurationvalue=4294967295>

 <passivemoderemediation=30>

 <servicestartstates=30>

 <tamperprotectionstate=31>

 <tamperprotectionexclusionsstate=30>

 <cloudbadlistversion=35>

 <pvpring=4294967295>

 <computerdnsnamehash=0bc1e87a>

 <membership=32>

 <nriengineversion=1.1.23070.1005>

 <nrisigversion=1.395.498.0>

 <engineloadtime=133365711362038044>

 <osproducttype=34>

 <osrevision=1702>

 <geoid=94>

 <lcid=8192>

 <processor=39>

 <supportedcompressions=Xor,DeflateLevel1Xor>

 <autosampleoptinvalue=31>

 <puamode=32>

 <wuuniqueid=4117f91d-2707-46c2-a744-e204a93d8a8a>

 <machinesqmid={44E12583-63E7-4102-8AC0-588135985892}>

 <vditype=31>

 <ismeterednetwork=30>

 <isverifiedandreputabletrustmode=31>

00000224`a76d2c8d 78 38 35 33 61 39 37 62-35 3a 30 78 30 30 30 30 x853a97b5:0x0000

00000224`a76d2c9d 31 38 65 37 63 62 61 61-34 61 30 39 2c 30 78 65 18e7cbaa4a09,0xe

00000224`a76d2cad 33 66 36 34 38 34 37 3a-30 78 30 30 30 30 31 66 3f64847:0x00001f

00000224`a76d2cbd 65 37 34 32 64 31 65 39-33 35 2c 30 78 36 39 66 e742d1e935,0x69f

[...]

Code Block 3: Serialized HTTP request body

Federal Office for Information Security 41

 <isverifiedandreputableperfmode=30>

 <SignatureRequest>

 <dsssource=31>

 <averagerttime=37737>

 <rttimestddev=27270>

 <rttimehistory=5068,3618,60000,60000,60000>

 <lowficount=31>

 <isvfz=31>

 <rtsd=31>

 <FileQuery>

 <realpath=C:\Users\test\AppData\Local\Temp\Temp1_QSlice.zip\QSlice\QSlice.exe>

 <hashedfullpath=7751e6b401a4cee531e7b48b2d9ec91e0a402982>

 <filename=QSlice.exe>

 <type=31>

 <sha1=6b8a465faa964093263117cc8d61f6f277bbe520>

 <sha256=c1b89eaae1e6812c9e047725dfbeb86a28987e1ed0bb21c8d2642d4833e2aa7f>

 <md5=a6ec35b8d4289ddb5d0486d3d6745ce9>

 <partialcrc1=07331507>

 <partialcrc2=9d6ce0e4>

 <partialcrc3=07ec90ed>

 <crc16=ab6ea4b5>

 <filesize=40960>

 <scenario=32>

 <agent=771>

 <namedattributes=0x853a97b5:0x000018e7cbaa4a09,0xe3f64847:0x00001fe742d1e935,0x69fa3b04:0x00

0065e719e6bf60,0x0237c5a9:0x000090e7598832e2,0xea5e5ef0:0x00000e965423df74,0x3dcfccd7:0x000030e74569

fcbf,0xcb0224c1:0x000062bd35849f17,0xaafe9f57:0x000098e770c9c9b8,0x02335526:0x000024e74bd1dcb7,0x677

23404:0x0001ccbdd4aed7de,0xb52f98d7:0x0000c1e779917b93,0x23ebf6a6:0x000062788d314f8a,0xb1eb3f24:0x00

001d61e0587711,0x99c32ee3:0x00002c78457f7afc,0xbb89c891:0x0000517876bd2f81,0xea4fb480:0x00005878c84c

8ef3,0xa8113bde:0x00006e7892221938,0x6a98a299:0x000038e7f286fca8,0x53ccbda9:0x000201bd3ab7c237,0x419

40c02:0x000018e78ecbe76a,0xf331e554:0x002ab0bdce726dc0,0x2920d030:0x00019ebdd6fddd48>

 <peattributes=1,5,21,23,31,37,45,84,94,97,106,109,110,113,114,115,116,117,119,122,126,141,15

7,158,195,202,214,225>

 <sigattrevents=12362>

 <filetypestring=BM_MZ_FILE>

 <imphash=f34d5f2d4577ed6d9ceec516c1f5a744>

 <pdbproject={4240609C-A95A-4412-8F20-1C610AFB046C}-1-

C:\Dev\QSlice\QSlice\obj\Release\QSlice.pdb>

 <extendedkcrcs=KFWD:8c5affbb:a40d8a23:03b0f146:80001000,KREV:8c5affbb:c6fb44bb:fe8f7320:8000

1000,KSTD:8c5affbb:c6fb44bb:e2b4bfab:80001000,KHEA:9cc88bce:35ccb4b3:c709eefb:80000400,KFOO:e6f5aa52

:8a729cc9:8acfb54c:80000400>

 <name=QSlice>

 <originalname=QSlice.exe>

 <version=1.0.0.0>

 <ctph=768:PWwywT++ofkLqhf9v6xetXqGh34WyrBjyXntYcFOKc6K:PpJlnWhf9Lt335MBjQ/OKcl>

 <lshashs=ff7cad5849f02d1696ad47801bfa6eb061c5f42b1319e8ac18cef21f3043b53c>

 <lshash=efffe67ff7dd9a7aeb7569fbbb5e795aba97f7a97f7655a5af57dabfad6955ef567d77f9b6fedf699f9a

9756aafdead9e596aeb5adfaff9a955f9e65a79bf95a>

 <threattrackingid=1988DFFB-62C8-4F84-9983-2BDE6E3462D9>

 <isvfz=31>

 <motwreferrerurl=C:\Users\test\Downloads\AllTools1\AllTools-master\QSlice.zip>

 <markoftheweb=33>

 <filedevicecharacteristics=131104>

 <samplesubmissionineligiblereason=31>

 <rtpscanreason=16>

 <index=31>

 <ResearchDataEx>

 <MpKeyValuePair>

 <key=MSILMVID>

 <value=ea22081b95d32c458f099dff9f1db12900000000>

 <MpKeyValuePair>

 <key=SECTHDR>

 <value=94428f077a51b67e0d4cce707ae43d0d9fdc98a4>

 <MpKeyValuePair>

 <key=PESTRUCT>

 <value=0db6f885ed4092d91e754ce22d59caca5bdfc828>

 <Audit>

 <sigseq=0001ccbdd4aed7de>

 <sigsha=94e38f7de08ae29cca09bdd5f24225dc44c7fb98>

 <isprimary=31>

Code Block 4: Deserialized HTTP request body.

The interesting point about the data sent relies in the diversity of information sent to Microsoft. We can make

the distinction between different three different kinds of information. At first, there are all the data

concerning the Microsoft Defender Antivirus metadata, especially the versions of the antivirus’ engine or the

signature database. Then, we have the data related to the operating system itself. It includes the Windows’

42 Federal Office for Information Security

version number, but also machine’s identification numbers. Finally, we have information about the file

submitted, mainly metadata concerning the file (file path for instance, size of the file) and different kinds of

hashes (SHA1, SHA256, MD5) of the file. We also note the presence of an index GUID representing the report

submitted, used as a tracking number, especially in the answering request.

Answering request:

The answer returned to the HTTPS request represents the cloud-based analysis answer to the initial

Microsoft Defender Antivirus’s analysis request. It contains information regarding the outcome of the

request, allowing Microsoft Defender Antivirus to understand the reputation of the file submitted for

analysis.

The content of the answer consists of two main components: the response header and the response body. In

the header of the answer, besides the HTTP status code indicating whether the request was successful or not,

there is a mention of the server’s name, “Kestrel” in our case (as shown in Code Block 5).

HTTP/1.1 200 OK

Content-Length: 448

Content-Type: application/bond

Date: Tue, 15 Aug 2023 11:32:53 GMT

Server: Kestrel

Code Block 5: HTTP response header.

The body of the response holds all the relevant information convoyed by the cloud-based analysis. It is used

to provide feedback about the analyzed file but also potential information about the current mode in which

SAC is running. We observe the answer is “personalized” for SAC, meaning that the generic SpyNet

communication system – potentially used by different elements of Microsoft Defender Antivirus – is

identified with the input parameters provided by the initial request.

The content of the answer is formatted the same way the initial request was, with the “application/bond”

content-type. After having parsed the content of the answer (Code Block 6), it is possible to observe different

kinds of elements. At first, there is a notion of “signature”, as given in (Code Block 6) and explained in section

3.1.3.

<SpynetReportResponse>

 <Revision=5>

 <SampleRate=1>

 <SignaturePatches=0>

 <EnableBlob=

 'ec 00 01 00 98 e1 d4 05 bc ae 79 3c 5e 0e e2 34'

 '58 cb 5a a0 e8 ce c2 63 33 02 d6 9f 65 54 4d 40'

 'fe ba 21 8e 6c fa 2a 78 f1 21 ed c2 c0 0d c4 4c'

 '21 9d 47 10 4b 7c 1e e3 86 e3 c5 63 e5 a6 36 2c'

 'ee 72 16 97 3f 1d 69 e5 e5 67 ff 4f 2d 4b 64 03'

 'c0 9e 92 01 9a bd 63 a6 4f 90 bf 11 80 dd 9b 29'

 'ad fd bc 16 c4 f1 eb a0 22 05 68 37 ea f2 5a 1f'

 '65 87 fd 12 ea 44 c4 99 69 57 bc 47 c4 76 83 34'

 'd6 ae a1 b3 2b c2 be f6 e3 ae b4 99 65 84 21 c1'

 '3d 7a 98 87 83 0b 77 2d b8 a1 f3 f7 b2 12 cc c3'

 '0e 5d 12 eb f5 ff b7 cc bd 0f 7d 43 43 b8 66 c6'

 'ee b7 82 bf 04 8e 96 51 0e bc 2e c0 d1 3f 94 ac'

 '06 18 2c 82 65 c4 57 bc c8 1d 24 61 2d 69 4d 5c'

 '45 0d b4 37 8a 0f 30 5a 48 a3 a0 be a8 55 f5 e4'

 '67 e9 97 66 97 12 b2 5d b3 c4 d2 03 d6 90 91 c2'

 '1c 35 34 7d a7 ec 7f 19 59 83 6f 66 32 3a 6b 58'

 '3a 55 2e 41 aa 14 00 00 08 30 01 01 a0 86 01 00'

 '00 00 00 00 e2 c0 36 3b 6c cf d9 01 67 36 00 00'

 '07 15 33 07 ed 90 ec 07 e4 e0 6c 9d 00 a0 00 00'

 '00 10 6b 8a 46 5f aa 96 40 93 26 31 17 cc 8d 61'

 'f6 f2 77 bb e5 20 0f 23 43 6c 6e 46 69 6c 65 49'

 '6e 4d 69 6e 3a 31 '>

 <SignatureMatches=0>

 <Index=1>

Code Block 6: Deserialized HTTP response body

Federal Office for Information Security 43

Another highly meaningful element in the response returned to SAC is the “EnableBlob” field. The last one

contains the dynamic signature previously introduced in section 3.1.3. The Code Block 7 shows a dynamic

signature generated based on the answer returned by the Microsoft’s cloud-based backend.

'ec 00 01 00 98 e1 d4 05 bc ae 79 3c 5e 0e e2 34' 16

'58 cb 5a a0 e8 ce c2 63 33 02 d6 9f 65 54 4d 40' 32

'fe ba 21 8e 6c fa 2a 78 f1 21 ed c2 c0 0d c4 4c' 48

'21 9d 47 10 4b 7c 1e e3 86 e3 c5 63 e5 a6 36 2c' 64

'ee 72 16 97 3f 1d 69 e5 e5 67 ff 4f 2d 4b 64 03' 80

'c0 9e 92 01 9a bd 63 a6 4f 90 bf 11 80 dd 9b 29' 96

'ad fd bc 16 c4 f1 eb a0 22 05 68 37 ea f2 5a 1f' 112

'65 87 fd 12 ea 44 c4 99 69 57 bc 47 c4 76 83 34' 128

'd6 ae a1 b3 2b c2 be f6 e3 ae b4 99 65 84 21 c1' 144

'3d 7a 98 87 83 0b 77 2d b8 a1 f3 f7 b2 12 cc c3' 160

'0e 5d 12 eb f5 ff b7 cc bd 0f 7d 43 43 b8 66 c6' 176

'ee b7 82 bf 04 8e 96 51 0e bc 2e c0 d1 3f 94 ac' 192

'06 18 2c 82 65 c4 57 bc c8 1d 24 61 2d 69 4d 5c' 208

'45 0d b4 37 8a 0f 30 5a 48 a3 a0 be a8 55 f5 e4' 224

'67 e9 97 66 97 12 b2 5d b3 c4 d2 03 d6 90 91 c2' 240

'1c 35 34 7d a7 ec 7f 19 59 83 6f 66 32 3a 6b 58' 256

'3a 55 2e 41 aa 14 00 00 08 30 01 01 a0 86 01 00' 272

'00 00 00 00 e2 c0 36 3b 6c cf d9 01 67 36 00 00' 288

'07 15 33 07 ed 90 ec 07 e4 e0 6c 9d 00 a0 00 00' 304

'00 10 6b 8a 46 5f aa 96 40 93 26 31 17 cc 8d 61' 320

'f6 f2 77 bb e5 20 0f 23 43 6c 6e 46 69 6c 65 49' 336

'6e 4d 69 6e 3a 31'

Code Block 7: Dynamic signature based on the cloud-based analysis.

The general structure of the dynamic signature is organized in a sequence of chunks of bytes, where each

chunk consists of a header part and a body part.

Header: The structure of the header is defined over a 4-byte binary value that holds crucial information. The

first byte of this value serves as a magic number, acting as a unique identifier to specify the body type.

Following this one, the following 3 bytes specify the length of the body binary data part10 of the current chunk.

The length represented on 3 bytes is casted with a specific arithmetic procedure to fit on a regular 4-byte

value.

Body: The body is a binary data blob that matches a wide range of data types and formats. The format and

the meaning of the content of the body depend on the first byte of the header (magic number). It can

indifferently hold various data elements, including signatures, hashes, strings, numerical values, and more.

Moreover, the body can represent one or many elements, either serving as a single value holder or as an array

of values. For instance, it might include a hash value, followed by a string, and then followed by an integer.

The “EnableBlob” presented in Code Block 7 consists of three distinct chunks, documented as follows:

• Chunk-1: In the first chunk, the header specifies a magic number whose value is '0xEC' and a body length

of 256 bytes. It means that the body of the chunk is an RSA signature. This signature will be used to

validate the authenticity and the integrity of the data within the dynamic signature, for authenticity

reasons. The body length suggests that it is a 2048-bit RSA key (hence encoded on 256 bytes), which is a

regular design for security purposes.

Chunk-2: In the second chunk, the header specifies a magic number whose value is '0xAA' and a body length

of 20 bytes. Within the body of this chunk, we can find information related versioning of Microsoft Defender

Antivirus.

Chunk-3: In the third chunk, the header specifies a magic number whose value is '0x67' and a body length of

55 bytes. Its body contains a combination of data properties, including 'partialcrc,' 'sha1,' and 'sig properties,'

notably marked by the absence of names but represented as structured elements like '(ClnFileInMin:1).' This

chunk appears to provide a compact representation of properties and attributes, aligning with the file report

send to the Microsoft’s cloud-based backend.

10 This value represents a total size of 4 bytes plus the body length.

44 Federal Office for Information Security

Note: It is important to emphasize that the magic numbers and offsets presented in this section are

potentially subject to frequent changes. However, the overall logic and mechanisms behind these values to

remotely drive SAC or for file analysis should remain valid. These magic numbers and offsets were observed

in mpengine.dll version 1.1.23070.1005.

Note 3: Addition information about magic numbers.

4.1.6 SAC Operating Mode

SAC offers the flexibility to operate in three distinct operating modes, which are deactivated, evaluation, and

enforcement. These modes can be configured and managed through manual or automatic means. Manual

control involves the user interacting with the system settings, typically accessible through the Smart App

Control setting in Windows Security settings, as detailed in the configuration section (see section 5).

Automatic control confers authority to Microsoft Defender Antivirus, enabling it to make autonomous

decisions regarding the configuration of SAC. By default, SAC is set in the evaluation mode, and the automatic

control retrieved from cloud-based analysis rules a possible decision to switch SAC either to deactivated

mode or to enforcement mode. The dynamic decision-making procedure is dependent on real-time

evaluation issued from Microsoft Defender Antivirus and various contextual factors exclusive to the cloud-

based analysis. This procedure plays a central role in the SAC feature since it directly controls the status of

the feature, especially with the possibility to deactivate it without any possibility to turn it back (except by

reinstalling Windows 11).

It is important to emphasize how the configuration of SAC is designed. This one is split in two sides. On the

kernel-mode side, the configuration of ci.dll is mainly based on its own registry values and WDAC policies.

On the user-mode side, the configuration of Microsoft Defender Antivirus is independent and mainly based

on its own internal configuration elements. Then, once the two entities of SAC are running (in user-mode and

in kernel-mode), both configurations can be “synchronized”. More specifically, when there is no human

interaction in the loop (what we call “automatic mode"), this is the Microsoft Defender Antivirus’s

configuration which has authority on the system, and which is used to rule the one concerning SAC in ci.dll.

4.1.6.1 Different configurations for different elements of SAC

4.1.6.1.1 Kernel-mode configuration

The SAC feature in Windows operates at two levels: kernel-mode and user-mode. Similarly, the configuration

of SAC applies at these two levels also. On the one hand, there is the ci.dll library related to the enforcement

of WDAC policies. This includes:

Note: From the processing logic of dynamic signatures, it can be inferred that the provided answer directly

controls the logic sustaining the current SAC mode. For instance, two specific chunks are directly associated

with SAC, especially to control its current mode:

1. The chunk with a header magic number value of '0xCE'. When a chunk begins with this specific

magic number, it means a transmission of a control order related to SAC. More specifically, where

there is at the offset 12 relative to the beginning of the chunk, the magic number '0x9B' set followed

by another data value, therefore there is an update of the remaining duration during which SAC

remains in its evaluation state.

2. The chunk with a header magic number value of '0x55'. When a chunk begins with this specific

magic number, it means a transmission of control order related to SAC. More specifically, when

there is at the offset 8 relative to the beginning of the chunk the magic number '0x9A' set followed

by a data value, therefore there is an update of the current mode where SAC belongs (from

evaluation state to enforcement or deactivation).

Note 2: Additional information about the logic sustaining the current SAC mode.

Federal Office for Information Security 45

1. SAC is enabled by loading a specifically tailored SAC related WDAC policy (storer under the

System32\CodeIntegrity\CiPolicies).

2. Unique WDAC policies are maintained for the evaluation and enforcement operating modes, each

explicitly defining the parameters and behaviors of SAC within its respective mode. It is worth noting

that there is no dedicated WDAC policy for the deactivated mode, as deactivated implies that no SAC-

related WDAC policy is loaded.

a. PolicyGUID: {0283AC0F-FFF1-49AE-ADA1-8A933130CAD6} - Enforce SAC policy,

activated when SAC is loaded to enforcement mode.

b. PolicyGUID: {1283AC0F-FFF1-49AE-ADA1-8A933130CAD6} - Evaluate SAC policy,

activated when SAC is loaded to evaluation mode.

Notably, ci.dll also considers the values stored under the

“HKLM\SYSTEM\CurrentControlSet\Control\CI\Policy” registry key. In particular, the

VerifiedAndReputablePolicyState value is used to define the current mode of SAC (0 deactivated,

1 enforcement, and 2 evaluation, see also Table 4) according the Microsoft’s documentation (Microsoft). The

second value called VerifiedAndReputablePolicyStateMinValueSeen is used for checking

purpose of the first value.

The primary responsibility of the VerifiedAndReputablePolicyStateMinValueSeen value is to

prevent the VerifiedAndReputablePolicyState from surpassing a specific value. By doing so, it

maintains the VerifiedAndReputablePolicyState within well-defined limits, ensuring that the value

represents transitions applicable in a single direction, moving from a higher value (e.g., 2 for evaluation

mode) to a lower one (e.g., 0 for deactivated mode). This control mechanism safeguards the integrity and the

consistency of SAC's operation mode, preventing undesirable shifts in its configuration.

Note: It is important to emphasize that the keys can only be influenced from different system state contexts

(i.e., during boot, kernel initialization, etc.). For example, the

VerifiedAndReputablePolicyStateMinValueSeen value can only be influenced when the

system is booting. When the system is running, the key is directly protected by the kernel of Windows (with

a dedicated procedure registered in ci.dll) to ensure that it is not possible to arbitrary change the value

across reboots. At the opposite, the VerifiedAndReputablePolicyState value can be changed at

any time considering the change is performed with appropriate rights (i.e., in ci.dll).

Note 4: Additional information regarding when SAC registry keys can be modified.

Since WDAC policies are initially loaded by the Winload component (as described in (ERNW GmbH), section

2.2.1) during the system boot, this registry values are also taken into consideration. There are many points

where these two values are evaluated during the initialization of Windows (Winload and ci.dll) to finally

activate the SAC feature in the kernel.

For instance, when SAC is configured in evaluation mode during system boot, both the

VerifiedAndReputablePolicyState and

VerifiedAndReputablePolicyStateMinValueSeen registry values are initially set to the same

value, which is 2. This configuration triggers the loading of the evaluation mode WDAC policy (PolicyGUID:

{1283AC0F-FFF1-49AE-ADA1-8A933130CAD6}).

However, when the evaluation mode is altered during a subsequent reboot, such as transitioning to

enforcement mode, Winload synchronizes the value of

VerifiedAndReputablePolicyStateMinValueSeen with

VerifiedAndReputablePolicyState before the loading of the enforcement WDAC policy. As a result,

both keys have the same value again, (namely 1).

Considering the case where there would be an attempt to revert to evaluation mode following a reboot,

VerifiedAndReputablePolicyState would have a higher value than

VerifiedAndReputablePolicyStateMinValueSeen, which is not allowed (moving from a lower

value (e.g., 1 for enforcement mode) to a higher one (i.e., 2 for evaluation mode)). In such a configuration,

46 Federal Office for Information Security

only the value of VerifiedAndReputablePolicyStateMinValueSeen would be considered, and the

VerifiedAndReputablePolicyState value would be aligned with the previous value. This procedure

helps maintain the consistency of SAC operating modes. This procedure matches the 'buddy' principle, where

one component safeguards the configuration values of the other.

4.1.6.1.2 User-mode configuration

On the other side, we have the “user-mode component of SAC”, namely Microsoft Defender Antivirus if we

take abstraction of the crytpcatsvc service used as an RPC proxy. The configuration of Microsoft Defender

Antivirus is initialized by the MpConfigInitialize function in mpclient.dll.

Practically, this means invoking the MpConfig::ConstructConfigKeySchemes function to set up the

internal structures representing the configuration loaded in memory. This function is responsible to initialize

the Microsoft Defender Antivirus configuration based on the Windows' registry, system environment

variables, values hardcoded within Microsoft Defender Antivirus binaries and with the msmplics.dll11.

With all this different sources of information, Microsoft Defender Antivirus is about to load its own

configuration in memory. The procedure is complex, and it covers different kinds of elements in an antivirus,

such as the quarantine directory to use or the list of allowed applications registered for a given protected

folder. From a technical point of view, the structure used to store the Microsoft Defender Antivirus’s

configuration can be considered as a “tree”. There is a hierarchical organization of the data to regroup

configuration elements belonging to the same concept (for instance, configurations concerning IP addresses

or folder paths can be regrouped under the “Exclusions” concept to allow exception in analysis). By abuse of

terminology, one can see such a configuration structure as structure of “folders” and “subfolders” where the

different elements belonging to the same configuration topic would be regrouped. As a side note, it is worth

noting that access to sub-configurations is internally done with backslash separators, as with directories in

Windows explorer (for instance, the "Windows Defender Exploit Guard\Network Protection" configuration).

An element of configuration can be anything, from a numerical value or a string of characters to a full

structure composed of different kinds of data.

This internal configuration structure could be anecdotic by itself, but Microsoft Defender Antivirus’s uses it

extensively to calibrate its actions, especially to know which kind of operation it must (or must not) run and

specifically when running an analysis, how and with which means the analysis must be run. Access to this

configuration tree is performed with a set of “setter” and “getter” (i.e., MpConfigSetValue and

MpConfigGetValue) functions used to respectively write and read to the configuration tree.

The Figure 12 represents a part of the configuration tree concerning different elements of the configuration

of the SAC feature. Other configuration elements may be involved in the analysis of SAC since a great part of

the analysis is common to a lot of analysis submission in Microsoft Defender Antivirus. In the Figure 12, we

represent some of the elements composing the configuration of Microsoft Defender Antivirus. The

configuration tree is much bigger than the one presented in Figure 12, and it contains many more elements.

All these elements are linked to the “root” configuration called “.” at the top of the general configuration tree.

From this point, there are two kinds of configuration entries. On the one hand, the sub-folders which are

literally sub-branches in the configuration tree. On the other hand, relative to sub-folders (considering the

root “.” is also a sub-folder), there are configuration elements providing a real configuration content, such as

a numerical value or a string of characters, for instance.

But the elements which matters the most in SAC are provided in the Figure 12, linked to the root of the tree.

It matters to mention SacEvalModeExpirationTime, SacLearningModeSwitch,

11 The rationale behind the utilization of this library for certain configuration parameters is to exercise control

over the features made available within Microsoft Defender Antivirus, particularly in conjunction with the

Windows licensing model. Once this library file has been loaded into memory, configuration information is

extracted from the file. For instance, the ProductGUID is 77BDAF73-B396-481F-9042-AD358843EC24

in our case.

Federal Office for Information Security 47

SmartLockerMode, VerifiedAndReputableTrustModeEnabled, and HybridModeEnabled. We

propose to detail them as follows:

• SmartLockerMode: The value of this configuration element is either true or false, and its purpose is to

indicate whether SAC is currently in enabled or deactivated state.

• VerifiedAndReputableTrustModeEnabled & HybridModeEnabled: These two configuration

entries are both Boolean values used to inform Microsoft Defender Antivirus about the active operating

mode of SAC. They are retrieved through the wldp.dll library, asking policy configuration to the kernel.

When VerifiedAndReputableTrustModeEnabled is set to true, it indicates that a SAC-specific

WDAC policy is active and loaded, with a setting called VerifiedAndReputableTrustMode set to

true. This informs Microsoft Defender Antivirus that SAC is in evaluation mode because only the

evaluation policy has this value set (see section 4.1.6.1.1 policy). At the opposite, if both

VerifiedAndReputableTrustModeEnabled and HybridModeEnabled configuration values are

Figure 12. Illustration of the internal structure used by Microsoft Defender Antivirus to store its configuration.

The tree structure has main entries (in green) and sub-entries (in blue) containing configuration values.

48 Federal Office for Information Security

set to true, it informs Microsoft Defender Antivirus that SAC is operating in enforcement mode. In this

case, it means that a SAC-specific WDAC policy is active and loaded, with both

VerifiedAndReputableTrustMode and VerifiedAndReputablePerfMode settings set to

true.

Among the different possible values linked to these two configuration variables

[VerifiedAndReputableTrustModeEnabled, HybridModeEnabled], we have:

- [true, true]: SAC is enabled, and the enforcement mode WDAC policy is loaded.

- [true, false]: SAC is enabled, and the evaluation mode WDAC policy is loaded.

- [false, true]: Not defined/not used.

- [false, false]: SAC is deactivated, meaning no WDAC policy is loaded.

• SacLearningModeSwitch: This configuration value holds the most important information to control

SAC's behavior. It operates on a simple principle: 0 signifies no action, 1 implies the disabling of SAC, and

2 triggers the transition of SAC into the enforcement mode. In essence, it serves as a control switch for

SAC, allowing Microsoft Defender Antivirus to make specific choices. A value of 0 means SAC remains

unaffected, 1 disengages the SAC functionality, and 2 shifts SAC into enforcement mode, enhancing

security measures.

• SacEvalModeExpirationTime: The purpose of this configuration value is to regulate the remaining

duration time during which SAC remains in evaluation state.

4.1.6.2 Dynamic Decision-Making Procedure

Automatic control of SAC’s mode confers authority to Microsoft Defender Antivirus to take autonomous

decisions regarding the configuration of SAC. The configuration values listed above exhibit dynamic changes

throughout the operational lifecycle of Microsoft Defender Antivirus. Specifically, these changes begin when

Microsoft Defender Antivirus is initialized for the first time (i.e., the system is started after the installation of

Windows), and SAC is configured in learning mode. Subsequently, considerations are given to deactivate SAC

or its transition into enforcement mode, whereby these deterministic elements have a direct impact on the

configuration.

After the installation of the Windows operating system and the initial launch of Microsoft Defender Antivirus,

SAC is configured to operate in learning mode within the system. In practical terms, this initiation unfolds as

follows:

• SmartLockerMode configured to [1]: By default, set to 1 at the initiation of the Microsoft Defender

Antivirus service.

• VerifiedAndReputableTrustModeEnabled & HybridModeEnabled configured to [1; 0]:

Configured to 1 and 0 in accordance with the loaded dedicated SAC WDAC policy.

• SacLearningModeSwitch configured to [0]: Initially set to 0 during the initiation of Microsoft

Defender Antivirus when the tree-like configuration structure is initialized.

• SacEvalModeExpirationTime configured to [0]: Initially set to 0 during the initiation of

Microsoft Defender Antivirus when the tree-like configuration structure is initialized.

As previously mentioned, these initial values are subject to adjustments throughout the operation of

Microsoft Defender Antivirus. In practical terms, alongside the operation of learning mode, there is a

possibility to transition from evaluation mode to enforcement or deactivated mode. This transition reflects

Microsoft Defender Antivirus’s adaptive nature, where it initially acquires knowledge and then it employs

that knowledge to implement more rigorous security measures, as needed. However, the change in values

regarding the transition from evaluation mode to enforcement or deactivated modes can be further

narrowed down through two different cases:

Federal Office for Information Security 49

Modifications occur in response to a time interval: In Microsoft Defender Antivirus’s configuration, a crucial

aspect matters for the timing of evaluation. This temporal orchestration is achieved through the utilization

of the CreateTimerQueueTimer function, which plays a central role in managing the scheduling and the

execution of the MpService::CHeartbeatManager::OnHeartbeat callback function. The function is

invoked after a predetermined interval of time has elapsed. This interval is fully configurable and it depends

on the value stored under the path “./Reporting/HealthEventInterval” in the Microsoft Defender Antivirus’s

configuration tree.

The “./Reporting/HealthEventInterval” is expressed as a DWORD value, typically initialized by default to 60.

This value is essential in determining the expected duration time before the callback function is called. To

derive the time in milliseconds, the value configured for this entry is multiplied by 60000, subsequently

translating into the elapsed time required for the execution of the callback function. Consequently, this

mechanism enables Microsoft Defender Antivirus to effectively time its operations, thereby ensuring timely

evaluations and responses based on the configured “./Reporting/HealthEventInterval”.

In SAC, this procedure ultimately leads to the execution of the

MpService::CHeartbeatManager::SACEvalModeOnHeartbeat function. This function is directly

involved in the management of the SacLearningModeSwitch configuration element. Its principal goal is

to dynamically adjust this configuration element based on a specific time interval beginning when Microsoft

Defender Antivirus is initialized for the first time.

The assessment of whether the designated time interval elapsed begins after a duration of 1.25 days and

concludes after 45 days. It means that before 1.25 days after the initial installation of the operating system,

it is not necessary for Microsoft Defender Antivirus to expect feedback concerning a potential switch mode

update for SAC. The same way, the by default upper limit of the evaluation time is fixed to 45 days. It means

that if there is no feedback concerning the SAC status coming for the cloud-based analysis, the SAC feature

will be automatically deactivated. If it is considered as necessary by the Microsoft’s cloud-based backend, the

duration of the evaluation can be extended through the remote update of the

SacEvalModeExpirationTime configuration element. This mechanism ensures the adaptive control of

SAC's learning mode over time.

Modifications are instigated by the Microsoft cloud-based backend: The Microsoft cloud-based backend has

the capability to modify configuration elements, as necessary (see Note 2). This control is exercised through

dynamic signatures in SAC (see section 4.1.5.2). This modification has a dual effect:

On the one hand, it can impact the configuration entry SacLearningModeSwitch. This adjustment

occurs during the parsing of the dynamic signature. If a chunk within the dynamic signature contains the

magic number 0x55, it triggers the execution of the function SendSacLearningModeNotification,

which invokes the function MpHandleSacLearningMode through a callback mechanism. In this end,

this results in the alteration of the SacLearningModeSwitch data value to match the value transmitted

from the Microsoft’s cloud-based backend.

On the other hand, it can also affect the configuration entry SacEvalModeExpirationTime. Like the

previous scenario, this modification takes place during the parsing of the dynamic signature. When a

chunk bearing the magic number 0xCE is present, the SendSacRemainInEvalNotification

function is triggered, subsequently invoking the MpHandleSacRemainInEval function using the same

callback mechanism. This leads to the adjustment of the SacEvalModeExpirationTime data value to

match the value transmitted from the Microsoft’s cloud-based backend.

50 Federal Office for Information Security

The synchronization between Microsoft Defender Antivirus, as the entity wielding decision-making

regarding changes in SAC's operational mode, and the ci.dll component, which manages the kernel-mode

configuration side, is a crucial element in the automated control of SAC's mode. This collaborative procedure

requires a streamlined communication channel, ensuring that Microsoft Defender Antivirus effectively

communicates its decisions regarding configuration alterations. Once receiving this communication, ci.dll

interprets the directives and it implements the required modifications according to preestablished

procedures. Following the implementation of the configuration changes, ci.dll provides feedback to confirm

the actions taken. This ensures that the new configuration is accurately acknowledged and duly considered

by Microsoft Defender Antivirus. This synchronization mechanism is vital for maintaining an automated and

coherent control over SAC's operational modes. Figure 14 illustrates the procedural flow, wherein Microsoft

Defender Antivirus makes a configuration decision and where it communicates this decision to ci.dll.

Subsequently, ci.dll actively implements the configuration changes and provides feedback back to Microsoft

Defender Antivirus. This illustration shows the sequential steps involved in the communication and

configuration process between Microsoft Defender Antivirus and ci.dll.

The following discusses the fundamental activities illustrated in Figure 14, outlining their sequential

progression in the transition from evaluation to enforcement mode. It must be emphasized that the

procedure for transitioning to deactivated mode is conceptually identical, and for this reason, it will not be

explicitly covered in the following discussion.

1. Sharing the decision: Microsoft Defender Antivirus bases its decisions on two main scenarios: either

triggered after the deadline of SAC evaluation or at the initiative of the Microsoft’s cloud-based

backend in the response of an analysis request. The critical factor here is the ultimate value of

SacLearningModeSwitch, as it controls SAC's behavior concerning its configuration. To

reiterate, the value of 0 maintains the status quo for SAC, while the value 1 switches SAC into

deactivated mode, and the value 2 switches SAC into enforcement mode. The outcome of the

Figure 13: Illustration of the dynamic decision-making procedure

Figure 14. Illustration of the configuration update procedure between Windows Defender and Ci.dll.

Federal Office for Information Security 51

decision-making process is conveyed to ci.dll whenever an analysis is triggered by ci.dll through the

CiCatDbSmartlockerDefenderCheck function (see section 4.1.1). This implies that the value

of SacLearningModeSwitch must be correctly considered, and the relevant information is

passed to ci.dll as an output parameter when the function concludes and returns.

2. Configuring the kernel side: After the successful return of the

CiCatDbSmartlockerDefenderCheck function, the output parameter reflecting information

about SacLearningModeSwitch is assessed within the CiHandleDefenderSignals function.

In SAC’s configuration, this function encompasses two core responsibilities: adjusting registry values

and instigating the update of the WDAC policy in alignment with the determined decisions. For

example, when the transition to enforcement mode is required, it configures the registry value

VerifiedAndReputablePolicyState to 1 and it initiates the loading of the WDAC

enforcement policy.

3. Update the SAC related WDAC policy: To update the SAC-related WDAC policy, the function

CiAsyncPolicyRefreshRoutine is invoked. This function calls the CiUpdatePolicies

function, responsible for transitioning the existing active SAC WDAC policy (i.e., the evaluation policy,

as outlined in section 4.1.6.1.1) to the SAC enforcement WDAC policy.

4. Update the Microsoft Defender Antivirus configuration’s parameters: Once the policy has been

successfully updated, the CiAsyncPolicyRefreshRoutine function signals Microsoft Defender

Antivirus to update its configuration as well, ensuring synchronization with the kernel configuration

side. This update occurs through an indirect communication method utilizing the Windows

Notification Facility (WNF) API. Whenever the CiUpdatePolicies function updates a WDAC

policy, a WNF notification is triggered (specifically, WNF_CI_CODEINTEGRITY_MODE_CHANGE).

Microsoft Defender Antivirus actively monitors this WNF notification, allowing it to update the two

configuration values VerifiedAndReputableTrustModeEnabled and

HybridModeEnabled. For instance, when the SAC related WDAC policy is updated to the

enforcement policy, Microsoft Defender Antivirus retrieves the values through the wldp.dll library

(see section 4.1.6.1.2) and it adjusts them accordingly. In this last case, it would mean that

VerifiedAndReputableTrustModeEnabled and HybridModeEnabled are finally set to 1.

5. Informing the user (in parallel to the 4th action): Only for the purpose of displaying information to

the user, the CiAsyncPolicyRefreshRoutine function notifies the user of a configuration

change by using the RPC interface provided by the cryptcatsvc service (see section 3.3.4). For

example, when transitioning to enforcement mode, the kernel calls the

CiCatDbSendSmartAppControlSwitchEnforceToast function to finally notifies the RPC

s_SSCatDBSendSmartAppControlSwitchEnforceToast function. The same way, this is the

CiCatDbSendSmartAppControlBlockToast function, which is called from kernel mode,

notifying in the end the RPC’s s_SSCatDBSendSmartAppControlBlockToast function in

cryptcatsvc service. Consequently, this function triggers the display of a notification containing

pertinent information about the configuration update.

4.1.7 SAC Dynamic Signature Persistence

Microsoft Defender Antivirus makes the distinction between static and dynamic signatures. As the term

implies, static signatures, are preloaded into the Microsoft Defender Antivirus’s signature database12. These

signatures are the main object used for identifying known malware threats. In contrast, dynamic signatures

are generated or acquired on-the-fly during runtime to address emerging or specialized threats. By

12 The Microsoft Defender Antivirus’s signature database (located at 'C:\ProgramData\Microsoft\Windows

Defender\Definition Updates') contains vital threat detection resources. Within this directory, files with
the '.vdm' extension house a collection of multiple files named 'modules'. These modules serve as
repositories for essential malware signatures and patterns.

52 Federal Office for Information Security

categorizing signatures in this manner, Microsoft Defender Antivirus service efficiently manages protection

against well-known but evolving threats.

The signatures obtained through the assessment conducted by the cloud-based security service are

categorized as dynamic signatures. These dynamic signatures diverge from the traditional approach used for

managing static signatures, as they are not stored within the Microsoft Defender Antivirus’s signature

database. Instead, each dynamic signature resides in the file system as single file, typically located at

C:\ProgramData\Microsoft\Windows Defender\Scans\RtSigs.13

This means that whenever a signature has been received and evaluated as valid, it is then stored in a file using

the FpPersistBlob function. Doing so, a custom algorithm is used for encoding the dynamic signature. The

core within the algorithm is the use of a lookup table. This table likely maps input values (as bytes) to specific

output values (as bytes also). For example, the byte at the current position pointed to by the pByte pointer

is used as an index into this table, and the value stored at that index is retrieved. The value retrieved from

the lookup table is then written back to the memory location pointed to by the pByte pointer. This effectively

replaces the original byte pointed to by the pByte pointer with the value from the lookup table. In summary,

this algorithm is used to encode or decode (see Code Block 8 and Code Block 9) the signature data blob by

looking up each byte of the data blob in a table, replacing it with the corresponding value from the table, and

repeating this process for all bytes in the data blob.

000000075AEE46B0 C9 69 9D A8 21 63 5E B0 5A 22 53 C5 5C 25 9F A9 Éi.¨!c^°Z"SÅ\%Ÿ©

000000075AEE46C0 B9 1C 8A 59 3D 4B A4 0C BD 27 D2 92 6B 79 66 90 ¹.ŠY=K¤.½'Ò’kyf.

000000075AEE46D0 F9 12 4F DC 65 7C 8F B5 C0 E0 5B 76 6F FB FE 78 ù.OÜe|.µÀà[voûþx

000000075AEE46E0 33 9A 74 88 E5 29 D8 41 BF 4A EC F7 71 5D 4E 0A 3štˆå)ØA¿Jì÷q]N.

000000075AEE46F0 35 E3 14 05 D7 FC 04 77 A3 17 F6 00 E7 AD F8 6A 5ã..×ü.w£.ö.çøj

000000075AEE4700 67 46 93 C7 0F 89 44 ED 82 DE E2 C8 FA 38 72 C2 gF“Ç.‰Dí‚ÞâÈú8rÂ

000000075AEE4710 60 BC 99 31 13 80 C3 3E 18 F2 CE E4 EA 73 3F AC `¼™1.€Ã>.òÎäês?¬

000000075AEE4720 E6 91 0B D1 1E DA 19 1A D0 A7 52 AE 36 55 2A CB æ‘.Ñ.Ú..Ð§R®6U*Ë

000000075AEE4730 EE CC 5F A2 06 49 97 EB FD D4 6D 87 16 4D 8B 75 îÌ_¢.I—ëýÔm‡.M‹u

000000075AEE4740 FF 81 85 57 34 C6 23 09 6E F0 B1 61 56 2E 4C 2B ÿ.…W4Æ#.nð±aV.L+

000000075AEE4750 B3 B6 42 02 D5 7A 45 EF 08 C1 3A 8D D3 0D 98 9C ³¶B.ÕzEï.Á:.Ó.˜œ

000000075AEE4760 43 7F 1D 58 D9 AB E9 A0 7D 48 01 7B DD 62 84 BA C..XÙ«é }H.{Ýb„º

000000075AEE4770 03 54 DB B8 64 C4 F5 39 B4 83 E1 94 2F 70 50 A5 .TÛ¸dÄõ9´ƒá”/pP¥

000000075AEE4780 B7 2C 9E 1F 24 A6 CF 7E 40 B2 AA 30 20 10 AF 47 ·,ž.$¦Ï~@²ª0 .¯G

000000075AEE4790 F4 2D 95 A1 3B 68 3C 96 86 DF 8C BE F1 07 E8 0E ô-•¡;h<–†ßŒ¾ñ.è.

000000075AEE47A0 CA 15 CD 37 6C 32 26 BB 8E 11 D6 28 1B 9B 51 F3 Ê.Í7l2&»Ž.Ö(.›Qó

Code Block 8: Encoding lookup table (g_PatternEncodingTable).

000000075ADCAE10 4B BA A3 C0 46 43 84 ED A8 97 3F 72 17 AD EF 54 Kº£ÀFC„í¨—?r.ïT

000000075ADCAE20 DD F9 21 64 42 F1 8C 49 68 76 77 FC 11 B2 74 D3 Ýù!dBñŒIhvwü.²tÓ

000000075ADCAE30 DC 04 09 96 D4 0D F6 19 FB 35 7E 9F D1 E1 9D CC Ü..–Ô.ö.û5~ŸÑá.Ì

000000075ADCAE40 DB 63 F5 30 94 40 7C F3 5D C7 AA E4 E6 14 67 6E Ûcõ0”@|ó]Çªäæ.gn

000000075ADCAE50 D8 37 A2 B0 56 A6 51 DF B9 85 39 15 9E 8D 3E 22 Ø7¢°V¦Qß¹…9.ž.>"

000000075ADCAE60 CE FE 7A 0A C1 7D 9C 93 B3 13 08 2A 0C 3D 06 82 Îþz.Á}œ“³..*.=.‚

000000075ADCAE70 60 9B BD 05 C4 24 1E 50 E5 01 4F 1C F4 8A 98 2C `›½.Ä$.På.O.ôŠ˜,

000000075ADCAE80 CD 3C 5E 6D 32 8F 2B 47 2F 1D A5 BB 25 B8 D7 B1 Í<^m2.+G/.¥»%¸×±

000000075ADCAE90 65 91 58 C9 BE 92 E8 8B 33 55 12 8E EA AB F8 26 e‘XÉ¾’è‹3U.Žê«ø&

000000075ADCAEA0 1F 71 1B 52 CB E2 E7 86 AE 62 31 FD AF 02 D2 0E .q.RËâç†®b1ý¯.Ò.

000000075ADCAEB0 B7 E3 83 48 16 CF D5 79 03 0F DA B5 6F 4D 7B DE ·ãƒH.ÏÕy..ÚµoM{Þ

000000075ADCAEC0 07 9A D9 A0 C8 27 A1 D0 C3 10 BF F7 61 18 EB 38 .šÙ È'¡ÐÃ.¿÷a.ë8

000000075ADCAED0 28 A9 5F 66 C5 0B 95 53 5B 00 F0 7F 81 F2 6A D6 (©_fÅ.•S[.ð..òjÖ

000000075ADCAEE0 78 73 1A AC 89 A4 FA 44 36 B4 75 C2 23 BC 59 E9 xs.¬‰¤úD6´uÂ#¼Yé

000000075ADCAEF0 29 CA 5A 41 6B 34 70 4C EE B6 6C 87 3A 57 80 A7)ÊZAk4pLî¶l‡:W€§

000000075ADCAF00 99 EC 69 FF E0 C6 4A 3B 4E 20 5C 2D 45 88 2E 90 ™ìiÿàÆJ;N \-Eˆ..

Code Block 9: Decoding lookup table (g_PatternDecodingTable).

13 Storing frequently used data in a persistent cache can significantly improve application performance by

reducing the need to retrieve data from slower sources, such as cloud-based security service.

Federal Office for Information Security 53

5 Configuration and Logging Capabilities

5.1 Configuration Capabilities

Note: The functionality of SAC is based on a variety of technologies that may not be immediately

identifiable as integral components. Consequently, the configuration of the set of technologies involved in

SAC can each have a direct influence on SAC. This section exclusively provides configurations that have a

direct correlation. Configurations that may have an impact on SAC but are not identifiable as such due to

their association with another technology are outside the scope of this study. For instance, other WDAC

policies definition in the context of Code Integrity.

This section discusses the available configurations for SAC. It must be emphasized, that unlike certain

features within Microsoft Defender Antivirus, the centralized management of SAC through group policies is

not possible. The available settings reside within the Smart App Control settings, accessible via the Windows

Start button → Settings → Update & Security → Windows Security → App & browser control. Figure 15

illustrates the configuration options that are available via the Smart App Control settings.

Enforcement (On): This option signifies the evaluation phase has approved the full activation of SAC. SAC no

longer operates in its evaluation mode, wherein the execution of processes is only audited without any

actively blocking. There is no mandatory prerequisite for going through the evaluation phase prior to

transitioning into the active mode, even if it is recommended to keep the evaluation phase until it finishes.

Administrators have the autonomy to manually switch from evaluation mode to the active mode, bypassing

the possibility to complete the evaluation phase14.

Evaluation: During the evaluation phase, SAC enters in a mode dedicated to the assessment of the suitability

of the Windows system for SAC adoption. After successfully passing this assessment, the system

automatically switches to active mode. It is important to note that a system under evaluation does not block

processes, but it only audits them. In scenarios where the evaluation phase identifies processes that are

unsuitable for SAC or it anticipates potential issues arising from implementation, SAC will be deactivated.

Deactivated (Off): SAC will be switched off (deactivated) if it would cause disruptions of applications used by

the user or the system is not suitable for SAC protection (i.e., when evaluation phase is not completed

14 After the evaluation phase concludes, or if SAC is manually switched on or off, reverting to the evaluation

mode is not possible unless Windows is reinstalled or reset to zero.

Figure 15: Smart App Control setting

54 Federal Office for Information Security

successfully). Additionally, if SAC is about to run on a Windows not issued from a fresh installation (“out of

the box”), SAC is also turned off.

Registry implementation: Table 4 presents the registry implementation of the Smart App Control settings

configuration options.

Name Value
Registry hive HKEY_LOCAL_MACHINE

Registry path SYSTEM\CurrentControlSet\Control\CI\Policy

Value name VerifiedAndReputablePolicyState

Value type REG_DWORD

Evaluation mode 2

Enforcement mode 1

Deactivated mode 0

Table 4: Registry implementation of Smart App Control settings.

5.2 Logging Capabilities

5.2.1 Event Tracing for Windows

Event Tracing for Windows (Microsoft) can effectively capture and log activities associated with SAC. Table

5 lists the manifest based ETW providers, whereas Table 6 provides a list of trace logging ETW providers

integrated into Microsoft Defender Antivirus.

ETW Provider GUID
0A002690-3839-4E3A-B3B6-96D8DF868D99 Microsoft-Antimalware-Engine

E4B70372-261F-4C54-8FA6-A5A7914D73DA Microsoft-Antimalware-Protection

11CD958A-C507-4EF3-B3F2-5FD9DFBD2C78 Microsoft-Windows-Windows Defender

8E92DEEF-5E17-413B-B927-59B2F06A3CFC Microsoft-Antimalware-RTP

751EF305-6C6E-4FED-B847-02EF79D26AEF Microsoft-Antimalware-Service

CFEB0608-330E-4410-B00D-56D8DA9986E6 Microsoft-Antimalware-AMFilter

Table 5: Manifest based ETW providers of Microsoft Defender Antivirus.

ETW Provider GUID
05eec406-6e71-5f61-e1ea-0f2a6d7e78ba Microsoft.Defender.EndpointDlp

0be29c0b-0729-534d-0c1d-5fad98cc6118 Microsoft.Defender.EndpointDlp.Tracelog

39bd9805-3945-4878-aecc-096a23369f68 Microsoft.Windows.SmartScreen

65a1b6fc-4c24-59c9-e3f3-ad11ac510b41 Microsoft.Windows.Sense.Client

6d1b249d-131b-468a-899b-fb0ad9551772 TelemetryAssert

703fcc13-b66f-5868-ddd9-e2db7f381ffb Microsoft.Windows.TlgAggregateInternal

7af898d7-7e0e-518d-5f96-b1e79239484c Microsoft.Windows.Defender

af2ae1c8-cf6d-4268-8159-fcce3c2e67db TelemetryAssertDiagTrack

bf94eeee-f654-4baa-9f8a-7f9cb446e18e Microsoft.Windows.Defender.TeTest

Table 6: Trace logging based ETW providers of Microsoft Defender Antivirus.

5.2.2 File logging capabilities

In the initialization of Microsoft Defender Antivirus, there is a procedure to initialize text files containing logs

providing a detailed view over the actions performed by Microsoft Defender Antivirus. In particular, the

MiscConfig::InternalMiscConfigInitialize function (in MpClient.dll) is responsible to hold the

entry point of this procedure.

At the beginning of this function, there is a call to the MpLoggingOpen function calling itself the

MpLog::CMpLogging::CmpLogging function. This functions first starts by crafting the log path holding

all log files used by Microsoft Defender Antivirus. The generated path depends on the string stored in the

"ProductAppDataPath" configuration value (it corresponds to the folder location where Microsoft Defender

Federal Office for Information Security 55

Antivirus is currently executed) concatenated with "\Support" as a subfolder name. Once the path is crafted,

the directory access is guaranteed. Then, the MpLogginOpen function search for a file whose name is

starting by “MPLog-”. This function iterates over files whose extension is “*.log” in a directory, checking for

outdated ones based on their last modification date. By default, it represents 2.592.000 seconds,

corresponding to 30 days. Also, there is a check about the size of the log file fixing the maximum size based

on the "SupportLogMaxSize" configuration value, which is by default set to 0x2000000 bytes (32 Mb).

Once the log file has been found, the filename of the log file is generated. This one follows the follows

template: “C:\ProgramData\Microsoft\Windows Defender\Support\<PrefixLogFile>YYYYMMDD-

HHMMSS.log” where “<PrefixLogFile>” corresponds to the prefix log file name (“MPLog-” in our case) and

“YYYYMMDD-HHMMSS” describe the date and time where the file has been generated. Once the file name is

generated, this one is created on the disk. The same applies for "MPDetection-" and "MPDeviceControl-" log

files.

Once the MpLoggingOpen function has finished, the MpLogServiceStart function is executed. This one

initializes first an internal buffer (called a “session”) flushed (with the MpLogWriteSession function) from

time to time to the log file, for performance reasons. The function used to write inside a log file is the

MpLogMessage function. After the initialization of this log procedure, we observe the use of the

MpLogMessageWithTime function to log the content of some configuration values, among other things.

56 Federal Office for Information Security

6 Final Remarks

6.1 Main considerations about SAC

More than the technical considerations, the internal documentation of SAC performed in this project raises

two important questions. On the one hand, there is a real concern about the privacy of user’s information. On

the other hand, there is a real concern about the position of Microsoft Defender Antivirus in the Windows 11

operating system.

At first, concerning data disclosure, SAC is nothing but an automatic notification mechanism to the Microsoft

cloud-based backend. It discloses metadata about the executable files executed on the user’s system but also

information on the system itself (from Microsoft Defender Antivirus’ version and configuration to the

operating system). This is not something new that Microsoft has telemetry capacities (ERNW GmbH) but this

is another means for information disclosure. In the case where another antivirus would be present in the

system (side-by-side mode) or Microsoft Defender Antivirus would have been set in passive mode, SAC is

still active, and it conserves some cloud-based analysis capabilities. In Microsoft’s documentation concerning

SAC (Microsoft), it is directly written SAC works even if there is already an antivirus in the system.

“Smart App Control works alongside your other security software, such as Microsoft

Defender or non-Microsoft antivirus tools, for added protection.”

It means that even though the user may have chosen another antivirus software (for any reason) or to turn

Microsoft Defender Antivirus into passive mode, this last one is still present in the system, and it still has

notification from the kernel for analysis. We also note the necessity to turn on the optional diagnostic data

(ERNW GmbH) in Windows 11 to activate SAC. This raises a question of control over the security tools

available in the Windows environment, and the choice left to the organization or the respective user.

Then, concerning the position of SAC in the system, this one is far from being trivial. An antivirus is usually a

standalone component in the system. It means it can be installed and removed from the system without

impacted the general behavior of the last. An antivirus takes its information from notification performed by

a dedicated driver (usually a mini-filter driver registering a callback via the

PsSetLoadImageNotifyRoutine function to be notified for each new executable image loaded into

memory). It means this driver is a standalone component that can be added to and removed from the system.

In the case of SAC, this one is directly embedded in the kernel, more specifically in ci.dll and not in one of the

Microsoft Defender Antivirus’s drivers which however uses which uses the callback registration API).

If the internal RPC notification from the kernel to Microsoft Defender Antivirus is triggered in ci.dll by the

CipExternalAuthorizationCallback function, the “external” word in the function’s name means

Microsoft Defender Antivirus and no one else. There is no way to substitute Microsoft Defender Antivirus for

another antivirus since the callback is directly hardcoded into the kernel. That way, SAC is a security feature

which forces to use Microsoft Defender Antivirus, not as a standalone software as any other antivirus but as

a key core component of Windows. Of course, it remains possible to deactivate SAC and Microsoft Defender

Antivirus totally and manually, but this is a choice which is more and more “everything” or “nothing” for the

organization or the respective user.

Considering the two questions together, SAC literally questions the position of Microsoft Defender Antivirus

in the system. By linking it directly to the kernel without any substitution interface and by collecting a lot of

information on the user’s system, Microsoft Defender Antivirus may be considered as an unavoidable

component in the Windows’ environment. By deeply embedding SAC, that way, to the kernel and to Microsoft

Defender Antivirus, this feature definitively raises the question of the current impossibility for potential

alternatives proposed by competitors.

Federal Office for Information Security 57

6.2 Further work

As a further work, it could be interesting to evaluate deeper different interactions of SAC concerning different

scenarios, especially to measure with different notifications the reputation of diverse files submitted to

Microsoft’s cloud-based backend for analysis. The notion of digital signature would also deserve a deep

evaluation in SAC, especially to know more precisely in which situation a file is considered with a good

reputation. The cloud-based architecture prevents us from directly understanding the algorithm behind the

scenes used to perform this evaluation.

Another point concerns the assessment of the automatic switch to enforcement mode, especially when the

cloud-based analysis decides it. In such a context, it could be interesting to test different use cases scenario

looking for the situations where a deactivation is required and when an enforcement is activated.

Finally, the security of the feature should be regarded, especially concerning potential fake notification

performed from a rogue machine to Microsoft’s cloud-based backend to deactivate SAC on another machine.

After all, the notification is a single HTTPS request and if the security is correctly assessed on client side with

a certificate pinning, nothing prevent the last to forge fake notification about random or untrusted

applications in order deactivate SAC remotely. Such a work would definitively be interesting in a context of

a security assessment.

58 Federal Office for Information Security

Bibliography

Bar, Tomer und Omer Attias. „Defender - Pretender, When Windows Defender Updates Become a Security

Risk.“ Las Vegas: Black Hat USA, 2023. <https://i.blackhat.com/BH-US-23/Presentations/US-23-

Tomer-Defender-Pretender-final.pdf>.

ERNW GmbH. „SiSyPHuS Win10: Analyse von Device Guard.“ Work Package 7. Federal Office for

Information Security, kein Datum.

<https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Cyber-

Sicherheit/SiSyPHus/Workpackage7_Device_Guard.pdf?__blob=publicationFile&v=1>.

—. „Telemetry (Version 1.0).“ Work Package 4. Federal Office for Information Security, kein Datum.

<https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Cyber-

Sicherheit/SiSyPHus/Workpackage4_Telemetry.html?nn=1011494>.

Forshaw, James. „The Definitive Guide on Win32 to NT Path Conversion.“ Google Project Zero, 29. 02 2016.

<https://googleprojectzero.blogspot.com/2016/02/the-definitive-guide-on-win32-to-nt.html>.

Graeber, Matt. „Documenting and Attacking a Windows Defender Application Control Feature the Hard

Way.“ A Case Study in Security Research Methodology. SpecterOps, 22. 06 2018.

<https://posts.specterops.io/documenting-and-attacking-a-windows-defender-application-

control-feature-the-hard-way-a-case-73dd1e11be3a>.

Luc Reginato, @_YouB_. „Updated Analysis of PatchGuard on Microsoft Windows 10 RS4.“ 2019.

<https://blog.tetrane.com/downloads/Tetrane_PatchGuard_Analysis_RS4_v1.01.pdf>.

Microsoft. „/INTEGRITYCHECK (Require signature check).“ 14. 08 2023. <https://learn.microsoft.com/en-

us/cpp/build/reference/integritycheck-require-signature-check?view=msvc-170>.

—. „5.1 NTFS Streams.“ 14. 12 2021. <https://learn.microsoft.com/en-

us/openspecs/windows_protocols/ms-fscc/c54dec26-1551-4d3a-a0ea-4fa40f848eb3>.

—. „About Event Tracing.“ 01. 07 2021. <https://learn.microsoft.com/en-us/windows/win32/etw/about-

event-tracing>.

—. „About Extensible Storage Engine.“ 07. 01 2021. <https://learn.microsoft.com/en-

us/windows/win32/extensible-storage-engine/about-extensible-storage-engine>.

—. „About WinHTTP.“ 07. 01 2021. <https://learn.microsoft.com/en-us/windows/win32/winhttp/about-

winhttp>.

—. „Antimalware Scan Interface (AMSI).“ 23. 08 2019. <https://learn.microsoft.com/en-

us/windows/win32/amsi/antimalware-scan-interface-portal>.

—. „Antivirus API.“ 15. 08 2017. <https://learn.microsoft.com/en-us/previous-

versions/windows/internet-explorer/ie-developer/platform-apis/ms537365(v=vs.85)>.

—. „App capability declarations.“ 18. 08 2023. <https://learn.microsoft.com/en-

us/windows/uwp/packaging/app-capability-declarations>.

—. „Application Control for Windows.“ 31. 08 2023. <https://learn.microsoft.com/en-

us/windows/security/application-security/application-control/windows-defender-application-

control/wdac>.

—. „Application User Model IDs (AppUserModelIDs).“ 07. 01 2021. <https://learn.microsoft.com/en-

us/windows/win32/shell/appids?redirectedfrom=MSDN>.

—. „AppLocker.“ 26. 07 2023. <https://learn.microsoft.com/en-us/windows/security/application-

security/application-control/windows-defender-application-control/applocker/applocker-

overview>.

Federal Office for Information Security 59

—. „Authorize reputable apps with the Intelligent Security Graph (ISG).“ 26. 07 2023.

<https://learn.microsoft.com/en-us/windows/security/application-security/application-

control/windows-defender-application-control/design/use-wdac-with-intelligent-security-graph>.

—. „Automatically allow apps deployed by a managed installer with Windows Defender Application

Control.“ 26. 07 2023. <https://learn.microsoft.com/en-us/windows/security/application-

security/application-control/windows-defender-application-control/design/configure-authorized-

apps-deployed-with-a-managed-installer>.

—. „Catalog Files and Digital Signatures.“ 05. 03 2022. <https://learn.microsoft.com/en-us/windows-

hardware/drivers/install/catalog-files>.

—. „Consumer antivirus software providers for Windows.“ 01. 05 2023.

<https://support.microsoft.com/en-US/windows-antivirus-software-providers>.

—. „CreateTimerQueueTimer function (threadpoollegacyapiset.h).“ 13. 10 2021.

<https://learn.microsoft.com/en-us/windows/win32/api/threadpoollegacyapiset/nf-

threadpoollegacyapiset-createtimerqueuetimer>.

—. „cscript.“ 03. 02 2023. <https://learn.microsoft.com/en-us/windows-server/administration/windows-

commands/cscript>.

—. „Diagnostics, feedback, and privacy in Windows.“ 03. 09 2021. <https://support.microsoft.com/en-

us/windows/diagnostics-feedback-and-privacy-in-windows-28808a2b-a31b-dd73-dcd3-

4559a5199319>.

—. „Digital Signatures.“ 07. 01 2021. <https://learn.microsoft.com/en-

us/windows/win32/seccrypto/digital-signatures>.

—. „Digital Signatures for Kernel Modules on Systems Running Windows Vista.“ June 2007.

<https://learn.microsoft.com/en-us/previous-versions/dotnet/articles/bb530195(v=msdn.10)>.

—. „Driver Signing.“ 08. 05 2023. <https://learn.microsoft.com/en-us/windows-

hardware/drivers/install/driver-signing>.

—. „File Streams (Local File Systems).“ 07. 01 2021. <https://learn.microsoft.com/en-

us/windows/win32/fileio/file-streams>.

—. „Impersonation.“ 21. 08 2020. <https://learn.microsoft.com/en-

us/windows/win32/com/impersonation>.

—. „InstallELAMCertificateInfo function (sysinfoapi.h).“ 13. 10 2021. <https://learn.microsoft.com/en-

us/windows/win32/api/sysinfoapi/nf-sysinfoapi-installelamcertificateinfo>.

—. „Isolated User Mode (IUM) Processes.“ 07. 01 2021. <https://learn.microsoft.com/en-

us/windows/win32/procthread/isolated-user-mode--ium--processes>.

—. „Kernel Extended Attributes.“ 09. 08 2023. <https://learn.microsoft.com/en-us/windows-

hardware/drivers/ifs/kernel-extended-attributes>.

—. „LoadLibraryExA function (libloaderapi.h).“ 09. 02 2023. <https://learn.microsoft.com/en-

us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibraryexa>.

—. „Memory integrity and VBS enablement.“ 07. 04 2023. <https://learn.microsoft.com/en-us/windows-

hardware/design/device-experiences/oem-hvci-enablement>.

—. „Microsoft Defender for Endpoint.“ 14. 06 2023. <https://learn.microsoft.com/en-us/microsoft-

365/security/defender-endpoint/microsoft-defender-endpoint?view=o365-worldwide>.

—. „Microsoft public symbol server.“ 23. 12 2023. <https://learn.microsoft.com/en-us/windows-

hardware/drivers/debugger/microsoft-public-symbols>.

60 Federal Office for Information Security

—. „Microsoft Security Advisory 932596.“ Update to Improve Kernel Patch Protection. 14. 08 2007.

<https://learn.microsoft.com/en-us/security-updates/securityadvisories/2007/932596>.

—. „Naming Files, Paths, and Namespaces.“ 15. 12 2022. <https://learn.microsoft.com/en-

us/windows/win32/fileio/naming-a-file#nt-namespaces>.

—. „Privileges.“ 07. 01 2021. <https://learn.microsoft.com/en-us/windows/win32/secauthz/privileges>.

—. „Protect security settings with tamper protection.“ 26. 06 2023. <https://learn.microsoft.com/en-

us/microsoft-365/security/defender-endpoint/prevent-changes-to-security-settings-with-tamper-

protection?view=o365-worldwide>.

—. „Protecting anti-malware services.“ 08. 08 2022. <https://learn.microsoft.com/en-

us/windows/win32/services/protecting-anti-malware-services->.

—. „Remote procedure call (RPC).“ 08. 02 2022. <https://learn.microsoft.com/en-

us/windows/win32/rpc/rpc-start-page>.

—. „Set-ExecutionPolicy.“ 13. 12 2022. <https://learn.microsoft.com/en-

us/powershell/module/microsoft.powershell.security/set-executionpolicy?view=powershell-7.3>.

—. „Setting Up Kernel-Mode Debugging.“ 15. 12 2021. <https://learn.microsoft.com/en-us/windows-

hardware/drivers/debugger/setting-up-kernel-mode-debugging-in-windbg--cdb--or-ntsd>.

—. „Test Signing.“ 08. 05 2023. <https://learn.microsoft.com/en-us/windows-

hardware/drivers/install/test-signing>.

—. „Test your app's signature with Smart App Control.“ 15. 12 2022. <https://learn.microsoft.com/en-

us/windows/apps/develop/smart-app-control/test-your-app-with-smart-app-control>.

—. „Understand Windows Defender Application Control (WDAC) policy rules and file rules.“ 26. 07 2023.

<https://learn.microsoft.com/en-us/windows/security/application-security/application-

control/windows-defender-application-control/design/select-types-of-rules-to-create>.

—. „Understanding Application Control event tags.“ 26. 07 2023. <https://learn.microsoft.com/en-

us/windows/security/application-security/application-control/windows-defender-application-

control/operations/event-tag-explanations#validatedsigninglevel>.

—. „Using Authz API.“ 07. 01 2021. <https://learn.microsoft.com/en-us/windows/win32/secauthz/using-

authz-api>.

—. „Virtualization-based Security (VBS).“ 20. 03 2023. <https://learn.microsoft.com/en-us/windows-

hardware/design/device-experiences/oem-vbs>.

—. „What is Smart App Control?“ 24. 03 2023. <https://support.microsoft.com/en-us/topic/what-is-smart-

app-control-285ea03d-fa88-4d56-882e-6698afdb7003>.

—. „Windows 11 Security - Smart App Control, enhanced phishing protection and memory integrity

features.“ 01. 11 2022. <https://www.youtube.com/watch?v=auBmX4X7PCA>.

—. „Windows Authenticode Portable Executable Signature Format.“ 21. 03 2008.

<https://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-

d599bac8184a/Authenticode_PE.docx>.

—. „Windows Defender Application Control and AppLocker Overview.“ 26. 07 2023.

<https://learn.microsoft.com/en-us/windows/security/application-security/application-

control/windows-defender-application-control/wdac-and-applocker-overview>.

—. „Windows Internet.“ 19. 08 2020. <https://learn.microsoft.com/en-

us/windows/win32/wininet/portal>.

Federal Office for Information Security 61

—. „Windows Pro in S mode.“ 27. 04 2023. <https://learn.microsoft.com/en-us/windows/deployment/s-

mode>.

—. „Windows Push Notification Services (WNS) overview.“ 17. 03 2023. <https://learn.microsoft.com/en-

us/windows/apps/design/shell/tiles-and-notifications/windows-push-notification-services--wns-

-overview>.

—. „WinHTTP Sessions Overview.“ 01. 07 2021. <https://learn.microsoft.com/en-

us/windows/win32/winhttp/winhttp-sessions-overview>.

—. „WinHttpSetStatusCallback function.“ 30. 06 2022. <https://learn.microsoft.com/en-

us/windows/win32/api/winhttp/nf-winhttp-winhttpsetstatuscallback>.

„MSASCui.exe und MSASCuiL.exe in der Windows 10 1809 nicht mehr vorhanden – Erklärung.“

deskmodder.de. 12. 08 2018. <https://www.deskmodder.de/blog/2018/08/12/msascui-exe-und-

msascuil-exe-in-der-windows-10-1809-nicht-mehr-vorhanden-erklaerung/>.

n4r1b. „Smart App Control Internals (Part 1).“ Deep dive into the internals of the latest Windows Security

feature: "Smart App Control". 29. 08 2022. <https://n4r1b.com/posts/2022/08/smart-app-control-

internals-part-1/>.

—. „Smart App Control Internals (Part 2).“ 08. 09 2022. <https://n4r1b.com/posts/2022/09/smart-app-

control-internals-part-2/>.

Shafir, Yarden. „HyperGuard – Secure Kernel Patch Guard: Part 1 – SKPG Initialization.“ Winsider Seminars

& Solutions Inc. , 01. 01 2022. <https://windows-internals.com/hyperguard-secure-kernel-patch-

guard-part-1-skpg-initialization/>.

Yosifovich, Pavel and Russinovich, Mark E. and Solomon, David A. and Ionescu, Alex. Windows Internals,

Part 1: System Architecture, Processes, Threads, Memory Management, and More (7th Edition). USA:

Microsoft Press, 2017.

62 Federal Office for Information Security

Glossary

ALPC
Advanced Local Procedure Call, 15

API
Application Programming Interface, 9, 15, 16,

18, 21, 26, 29, 36, 51, 56, 58, 60
cryptcatsvc

Cryptographic Catalog Service, 8, 22, 24, 31, 51
DLL

Dynamic Link Library, 12, 18, 31
EA

Extended Attributes, 16, 23, 27, 29, 52
FAT

File Allocation Table, 16
GUID

Globally Unique Identifier, 15, 24, 30, 32, 37,
42, 54

HTTP
Hypertext Transfer Protocol, 18, 34, 36, 38, 39,

40, 41, 42
HTTPS

Hypertext Transfer Protocol Secure, 8, 9, 12,
25, 36, 37, 38, 42, 57

HVCI
Hypervisor-Protected Code Integrity, 14, 20, 23

ISG
Intelligent Security Graph, 19, 20, 59

KPP
Kernel Patch Protection, 14, 19

MAPS

Microsoft Active Protection Service, 16, 38, 39
MSRC

Microsoft Security Response Center, 19
NTFS

New Technology File System, 16, 58
RPC

Remote Procedure Call, 4, 8, 14, 15, 21, 22, 24,
25, 26, 29, 30, 31, 32, 33, 46, 51, 56, 60

SAC
Smart App Control, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 33, 34, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51, 53, 54, 56, 57, 64, 65

TLS
Transport Layer Security, 34, 35, 36

UMCI
User Mode Code Integrity, 23

VBS
Virtualization-based Security, 14, 20, 23, 59,

60, 65, 66
WDAC

Windows Defender Application Control, 3, 7, 8,
12, 13, 14, 15, 19, 20, 21, 22, 23, 24, 25, 27,
29, 44, 45, 47, 48, 51, 53, 60, 65

WinHTTP
Microsoft Windows HTTP Services, 3, 9, 18, 36,

58, 61
WinINet

Windows Internet, 18

Federal Office for Information Security 63

Annexes

64 Federal Office for Information Security

Annex A

Description of the experiment:

It is desirable to understand which kind of file are analyzed by SAC. To proceed, it matters to know which

kind of file are specifically oriented to be analyzed by Microsoft Defender Antivirus during a memory scan,

the internal name of the procedure involved.

Why performing an experiment? Even if a large part of the kernel and Microsoft Defender Antivirus has been

reverse engineered for this study, it matters to check what is really happening during execution. On the first

hand, it confirms by the experiment what has been observed during the analysis of SAC. On the other hand,

it helps to illustrates the diversity of possible situations where SAC is or could have been involved, especially

in the context of the eligibility of an image to be notified to SAC.

To proceed, we propose to make the difference between the files originally rooted to the code integrity

analysis and the one finally notified to Microsoft Defender Antivirus when dealing with SAC. From the kernel

point of view, it matters to check which kind of files are provided to the CiValidateImageHeader

function (the entry point of the code integrity analysis) and the CiCatDbSmartlockerDefenderCheck

function (the notification entry point from the kernel to Microsoft Defender Antivirus). In another way, it

would also be interesting to check when it may be relevant the ServerMpRpcMemoryScanStart function

relative to the SAC analysis in Microsoft Defender Antivirus.

In Windows, many elements are susceptible to be executed. Nevertheless, the system can only natively

execute the executable files following the MZ-PE format. It means that regular application (.exe) and (.dll) are

considered, in addition to drivers (.sys). We also consider the notion of script files, specifically PowerShell

ones. For SAC feature, the digital signature of a file matters. By consequence, we evaluate the different files

executed in conjunction with the different levels of digital signature they may have.

Conditions of the experiment:

- The evaluation is performed for different kinds of files (application, library, driver, and script).
- The evaluation is performed for different levels of digital signatures.

- The executable file is launched on a Windows 11 machine in debug mode with an attached

debugger.

- There are two breakpoints set in the system (the CiValidateImageHeader function and the

CiCatDbSmartlockerDefenderCheck function) to check which files are forwarded to SAC

when there is an execution.

- No specific modification has been performed on the Windows 11 virtual machine.

Experimental protocol:

The experiment has been conducted with the Windbg debugger attached in kernel-mode to a virtual machine

running Windows 11. The experimental protocol aims to launch an application, a script, an installer, or a

driver in the virtual machine, looking for potential breakpoints hit during the experimental session. The

breakpoints have been set before the experimental session and couple of checks have been performed in a

context where SAC is notified to check there are perfectly functionals.

Results and detailed analysis:

The results are provided in section 3.3.1 in Table 1and in Table 2. Many observations can be withdrawn from

the experiment.

The first observation is that only applications are notified to SAC. By applications, we mean the regular

executable files whose extension is “.exe” but also the installers. In the last case, there are two kinds of

installers. The first kind is the usual “setup.exe” which is just a regular application in the end. The other kind

concerns Microsoft Software Installer (“.msi” files) whose file format is undocumented by Microsoft. But in

both situations, the executable image is mapped into memory as any other user-mode application.

Federal Office for Information Security 65

It is worth noting here regular applications digitally signed by Microsoft are not notified to SAC. No matters

the digital signature of the application is legitimately trusted by Windows as a third party-party legitimate

certificate, this one is notified to SAC. Also, in the context of installer, even when they are signed by Microsoft,

these ones are notified to SAC.

The second main observation concerns the scripts. In our experiment, we tested two types of scripts, namely

PowerShell and Visual Basic Script (VBS). The first kind of script is a little complex to consider since

PowerShellscript execution is naturally restricted by default on Windows out-of-the-box (Microsoft).

Different tests have been performed to ensure the highest possible degree of reliability in the experiments

we carry out. On the first hand, the “AllSigned” PowerShell execution policy makes sense in the context of

digitally signed scripts, this configuration does not include unsigned script. On the other hand, the “ByPass”

or the “Unrestricted” PowerShell execution policy allows any kind of script to be executed but it might

prevent WDAC to perform any check on scripts, meaning that SAC (which relies on WDAC) could be impacted.

To solve this issue, we decided to test in both situations. Whatever is the PowerShell execution policy set, the

result is the same. No script is notified to SAC and even more unnotified to the CiValidateImageHeader

function. In Microsoft Defender Antivirus, checking for the ServerMpRpcMemoryScanStart function in

MpSvc.dll, there is no further notification.

The same observation applies for VBS scripts. If VBS does not have an execution policy embedded in Windows

as specific as PowerShell, any VBS script can be directly executed with the “cscript” interpreter (Microsoft).

In each context evaluated, there is no notification observed to SAC in Microsoft Defender Antivirus, including

to the ServerMpRpcMemoryScanStart function in MpSvc.dll.

The last observation refers to drivers. None of them are notified to SAC even if they are directly taken into

consideration by the Code Integrity check (through the CiValidateImageHeader function). The first

analysis related to the Code Integrity check makes sense since drivers are expected to be signed since

Windows Vista on 64-bit version (Microsoft). The lack of SAC notification could be explained by two

arguments that are not mutually exclusive. On the first hand, since the signature of the driver is trusted, there

is no necessity to go further in the analysis procedure. Also, there is a technical issue analyzing boot drivers

since at that time Microsoft Defender Antivirus and Internet are not yet operational in the system. On the

other hand, it may be the experiment environment that polluted the measurement, especially when the

Windows 11 is run in a virtual machine set to debug mode (Microsoft). Therefore, test signing mode

(Microsoft) is automatically enabled, especially for drivers. In such a case, any driver signed or unsigned will

be authorized to be loaded. This consequence may have impacted the measured results, especially for

drivers’ notification to SAC since – in the end – the kernel knows it is going to load the driver, no matter would

be the analysis provided by SAC.

In the end, the SAC feature is first a security mechanism dedicated to user-mode applications, including MSI

installers which are especially taken into consideration. We observe that Microsoft’s applications are

exempted to by notified to SAC, based on their signature. This exception may be explained because of

performance optimization, avoiding analyzing well-known and Microsoft considered safe applications. We

note an exception concerning .NET libraries. Even though there are part of Windows out of the box, the last

ones are systematically notified to SAC. The signature is probably the most relevant explanation in this

context.

66 Federal Office for Information Security

Annex B

The following gives an overview of the different files tested in the context of the experiment provided in

Annex A.

- Executable application files:

o Unsigned: HelloWorld.exe – executable file written in C and compiled with Visual Studio,

only supposing to display “Hello World” on screen.

o Untrusted third-party Signature: HelloWorld.exe self-signed.

o Trusted third-party Signature: processhacker.exe, signed with a Digicet EV certificate.

o Microsoft Signed: calc.exe, notepad.exe, paint.exe.

- Script:

o PowerShell:

▪ Unsigned: HelloWorld.ps1 – a simple PowerShell script resulting in display “Hello

World” on screen.

▪ Untrusted third-party Signature: HelloWorld.ps1 self-signed.

▪ Trusted third-party Signature: SpeculationControlCompliance.ps1 written by

Merlin from Belgium (@merlin_with_a_j) and stored on the PowerShell Gallery.

▪ Microsoft Signed: The Loaded of DdcHelper library, part of the Powershell Scripts

provided with Microsoft Defender Antivirus.

o VBS:

▪ Unsigned: HelloWorld.vbs – a simple VBS script displaying display “Hello World” on

screen if it is executed with cscript.
▪ Untrusted third-party Signature: HelloWorld.vbs self-signed.

▪ Trusted third-party Signature: guitools.vbs from the kilibri-installer-windows

project (signed with Symantec certificate issued by VeriSign to “Foundation for
Learning Equality, Inc.”).

▪ Microsoft Signed: adoquery.vbs from Microsoft’s github depot.

- Driver:

o Unsigned: HelloWorld.sys driver bases on WPP display.

o Untrusted third-party Signature: HelloWorld.sys self-signed.

o Trusted third-party Signature: kprocesshacker.sys, signed with a Digicet EV certificate.

o Microsoft Signed: CmBatt.sys, the default driver provided by Microsoft for ACPI Control

Method Battery Driver (not run by default, only on demand).

- Installer:

o Unsigned: installer from Perl strawberry project (.msi file).

o Untrusted third-party Signature: Perl strawberry project self-signed.

o Trusted third-party Signature: OpenVPN 2.5.7.

o Microsoft Signed: Windows Driver Kit setup.

https://www.powershellgallery.com/packages/SpeculationControlCompliance/1.1/Content/SpeculationControlCompliance.ps1
https://github.com/Mr-Un1k0d3r/ATP-PowerShell-Scripts/blob/main/0e3d6d2d-06cc-486d-9465-9ef3bee75444.ps1
https://github.com/microsoft/Windows-classic-samples/blob/main/Samples/Win7Samples/netds/adsi/general/ADOQuery/adoquery.vbs

Federal Office for Information Security 67

Annex C

• ".appref-ms"

• ".appx"

• ".appxbundle"

• ".bat"

• ".chm"

• ".cmd"

• ".com"

• ".cpl"

• ".dll"

• ".drv"

• ".gadget"

• ".hta"

• ".iso"

• ".js"

• ".jse"

• ".lnk"

• ".msc"

• ".msp"

• ".ocx"

• ".pif"

• ".ppkg"

• ".printerexport"

• ".ps1"

• ".rdp"

• ".reg"

• ".scf"

• ".scr"

• ".settingcontent-ms"

• ".sys"

• ".url"

• ".vb"

• ".vbe"

• ".vbs"

• ".vhd"

• ".vhdx"

• ".vxd"

• ".wcx"

• ".website"

• ".wsf"

• ".wsh"

	1 Introduction
	1.1 Generalities
	1.2 State of the art and existing work
	1.3 Overview of SAC architecture
	1.4 Questions & Answers regarding the project
	1.4.1 Kernel pre-notification
	1.4.2 Microsoft Defender Antivirus Analysis
	1.4.3 Microsoft Defender Antivirus and Cloud Communication
	1.4.4 Kernel post-notification
	1.4.5 SAC switching state
	1.4.6 Log & Tracing

	2 Executive summary
	3 Concept and terms
	3.1 Terms specific for SAC analysis
	3.1.1 Configurable and unconfigurable Code Integrity
	3.1.2 Remote Procedure Call
	3.1.3 Notion of Signature
	3.1.4 Extended Attributes and Kernel Extended Attributes
	3.1.5 Microsoft’s cloud-based backend
	3.1.6 Cloud-based Analysis
	3.1.7 Pre and Post Notification
	3.1.8 Eligibility of an image
	3.1.9 Smart App Control modes
	3.1.10 Cryptcatsvc service
	3.1.11 Microsoft Defender Antivirus
	3.1.12 WinHTTP framework

	3.2 Evolution of the notion of code integrity check over the different versions of Windows
	3.3 Execution Flow of Smart App Control
	3.3.1 Eligible image for SAC analysis
	3.3.2 Signature check and image hash generation
	3.3.3 WDAC Policy Matching
	3.3.4 External authorization and SAC initialization
	3.3.5 File mapping operation
	3.3.6 Scan analysis in Microsoft Defender Antivirus for SAC
	3.3.7 Post-analysis Notification
	3.3.7.1 Feedback procedure
	3.3.7.2 Enforcement mode consequences

	4 Technical Analysis of Functionalities
	4.1 Smart App Control pre-analysis part
	4.1.1 Analysis of CipExternalAuthorizationCallback function
	4.1.2 RPC notification with CiCatDbSmartlockerDefenderCheck function
	4.1.3 From kernel RPC to Microsoft Defender Antivirus
	4.1.3.1 Identification of the RPC server and the RPC routine called
	4.1.3.2 Initialization of the Crypcatsvc service and RPC server interface setup

	4.1.4 Scan analysis Overview
	4.1.5 From Microsoft Defender Antivirus to the analysis provided by Microsoft’s cloud-based backend
	4.1.5.1 TLS Server Certificate Validation Policy
	4.1.5.2 Microsoft Defender Antivirus and Cloud-Based Security Service Data Exchange

	4.1.6 SAC Operating Mode
	4.1.6.1 Different configurations for different elements of SAC
	4.1.6.1.1 Kernel-mode configuration
	4.1.6.1.2 User-mode configuration

	4.1.6.2 Dynamic Decision-Making Procedure

	4.1.7 SAC Dynamic Signature Persistence

	5 Configuration and Logging Capabilities
	5.1 Configuration Capabilities
	5.2 Logging Capabilities
	5.2.1 Event Tracing for Windows
	5.2.2 File logging capabilities

	6 Final Remarks
	6.1 Main considerations about SAC
	6.2 Further work

	Bibliography

