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1 Introduction 

This study begins with a short summary of its contents, both in English and in German. Then following, the 

motivation behind its conception, contribution and structure are presented. 

1.1 Summary 

In the research areas of formal methods and software engineering, various algorithms and techniques exist 

that perform static program analysis, e.g., to detect redundant code or programming rule violations via 

analyzing variable dependencies or removing possible flaws in device drivers. One more recent request is 

to find security issues in program code that can be exploited by an attacker, such as buffer overflows. 

This study aims to scope and summarize the research area of machine learning-based approaches to static 

analysis security testing (SAST) so that subsequent efforts concerning the conception of a concrete tool may 

then resort to the results of this work. Such a tool could, for instance, exist as an addition to the compiler, 

which warns programmers of producing insecure code that may enable malicious attacks. Machine learning 

algorithms based on textual pattern detection and abstract syntax tree analyses or distinguished features 

are applied here. Such detection technique does not have to suffice the requirement of providing perfect 

detection rates but instead should provide a lower false positive ratio than conventional methods to offer a 

timely assessment during the development process of code. 

1.2 Summary in German 

Im Bereich formaler Methoden und Softwareentwicklung finden sich verschiedenste Algorithmen und 

Techniken, die eine statische Analyse des Quelltextes vornehmen, z.B. um redundanten Code, Verletzungen 

von Programmierrichtlinien, oder Fehler in Treiberdateien aufzudecken. Ein aktuelles Anliegen ist es, 

bereits während der Programmierung Sicherheitslücken für verdeckte Angriffsmöglichkeiten, wie 

Pufferüberläufe, aufzudecken. 

Diese Studie zielt auf ein Tool, das den Programmierer vor sicherheitskritischen Programmfehlern im 

Quellcode warnt. Zu diesem Zweck sollen maschinelle Lernverfahren basierend auf textueller 

Mustererkennung, abstrakten Syntaxbäumen oder ausgewählten Eigenschaftsvektoren eingesetzt werden. 

Ein solches Tool muss dabei nicht dem Anspruch genügen, eine perfekte Erkennungsrate vorweisen zu 

können. Vielmehr gilt es, eine gegenüber herkömmlichen Tools, reduzierte Fehlerrate zu erreichen, um eine 

zeitige Einschätzung während der Entwicklung von Software zu bieten. 

1.3 Motivation 

Static analysis is the automated analysis of source code without executing the application. When the 

analysis is performed during program execution, it is referred to as dynamic analysis. Static analysis is 

often used to detect security vulnerabilities, performance issues, non-compliance with standards or the use 

of out-of-date programming constructs. 

The basic concept common to all static analysis tools is searching source code to identify specific coding 

patterns that have some sort of warning or information associated with them. However, static analysis tools 

vary in how they implement this functionality, e.g., source code parsing technology to create an abstract 

syntax tree (AST), text regular expression matching, or a combination of the two. 

Regular expression matching on text is very flexible, and it is easy to write rules to match. On the downside, 

however, such simple rules often lead to a high number of false positives, and the matching rules do not 

consider the surrounding code context. This holds in particular true, as purely regular languages cannot 

capture the complete semantics of the most likely Turing-complete languages they are checking. More 

advanced methods may rely on complex forms of code representation. AST matching, for instance, compiles 

the source code into a tree-like data structure prior to checking instead of relying on simple files filled with 
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text. This allows for more specific, contextual matching and can reduce the number of false positives 

reported against the code. There are several other data structures to represent source code, subject to a 

static analysis. Even with more advanced forms of code representation or by the employment of more 

capable languages for the definition of rules, ultimately, one cannot deterministically reason about any non-

trivial property of a program, as stated by Rice’s theorem[1]. Consequently, whether a given program is 

free of vulnerabilities cannot be ascertained, as it is only possible to prove the opposite if a vulnerability is 

found. Doing so, however, poses a challenging task, and conventional rule-based methods are hindered by 

severe limitations, such as the ones stated above. The study aims to explore the possibility of applying 

machine learning techniques to this end to alleviate some of these limitations. Such techniques may be 

more capable, picking up on more subtle code patterns indicative of a vulnerability than conventional 

methods. 

Static application security testing (SAST) is an integral part of a security development lifecycle (SDL) 

to detect security bugs in program code as early as possible. SAST tools are an important means to improve 

the security and quality of C/C++ program code as these programming languages allow low-level 

programming, which is error-prone[2], [3]. SAST tools promise to automatically detect low-level 

programming bugs, such as buffer overflows, heap overflows, race conditions or memory management 

errors, and over the last years, there has been great progress in this area. Despite some early progress, 

however, SAST tools may miss important security bugs, so-called false negatives, or vice versa, they may 

also produce false positives. While the former may lead to overlooked security holes, the latter could 

potentially fatigue the security analyst, who finally may ignore critical errors or even turn off the tool in 

certain situations. 

1.4 Contribution 

Due to these shortcomings, the question arises of how the functionality of SAST tools can be improved to 

obtain more precise results with better false positive and false negative rates. One possible way of 

enhancement is to use machine learning (ML) for static analysis in an ML-SAST approach. For example, 

ML may help to automatically infer rules indicative of vulnerable code patterns, which a conventional SAST 

tool could then use to detect errors in previously unseen code. In addition, ML may help a SAST tool to 

automatically learn insecure programming practices, such that unknown bugs can be detected earlier and 

with fewer false negative rates. 

In recent years, several approaches to ML-SAST have been proposed in academia and by commercial tool 

vendors. To better understand the underlying technical concepts, both with respect to static analysis and 

ML methods, the prospects as well as the limitations of ML-SAST, a broad survey on current ML-SAST 

approaches is valuable for SAST-tool developers, researchers, and software security professionals. 

The study addresses this demand in several ways. First, expert interviews with software security 

professionals are conducted. This serves the purpose of obtaining information on the limitations of current 

SAST tools, error use cases that are usually hard to detect by conventional SAST tools as well as possible 

approaches how such tools could be enhanced through machine learning technologies. Secondly, an online 

survey is conducted, which complements the interviews and helps one obtain a broader overview of the 

topic. Thirdly, the state-of-the-art in recent publications is explored through a systematic in-depth 

literature mapping with respect to ML-SAST. Its results are then discussed in depth, highlighting and 

reviewing promising approaches to this end. It is accompanied by a discussion of security error use cases, 

ML methods, and metrics applicable to SAST. The entire study was carried out over a period of about half a 

year. 

This study's primary purpose is to provide the basis for the future development of a (public domain) ML-

SAST tool. The audience of this study includes but is not limited to software security professionals, 

developers of SAST tools, and researchers interested in software security with a focus on C/C++ code. 
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1.5 Structure 

The remainder of this study is organized as follows. Chapters 2-3 give an overview of the topics artificial 

intelligence (AI), ML, and SAST. After that, in Chapter 4, a brief overview over the historical development 

regarding ML-SAST is provided, highlighting noteworthy milestones in this area of research. The 

subsequent Chapters 5-6 then first document the expert interviews conducted as part of this study and 

thereafter the related online questionnaire. After describing interesting error use cases for C/C++, which 

ML-SAST tools should support, in Chapter 7, qualitative as well as quantitative requirements for the 

application of machine learning techniques for SAST are discussed in Chapter 8. Closely related, the 

following Chapter 9 then delves into the data present in the context of machine learning experiments, 

interchange formats and ontologies that ought to be considered during the development of ML-SAST tools 

in order to facilitate the satisfaction of the aforementioned requirements. Chapter 10 then provides 

extensive documentation of the literature mapping, conducted as part of this study, discussing the 

methodology to this end and the ensuing results. Chapters 11 and 12 describe the most promising and 

mature ML-SAST approaches in detail and aim to provide some guidance concerning a prioritization for the 

development of a concrete ML-based SAST tool. Finally, in Chapter 14, the study concludes with a summary 

and an outlook on further research options. 
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2 Artificial Intelligence and Machine Learning 

This chapter poses as a basic introduction to artificial intelligence (AI) and machine learning (ML), a 

subdomain of the former. In the following, first, the terms will be defined so as to provide the necessary 

context for the remainder of the study. Then the basic principles and technologies, behind these concepts 

will be elaborated on in detail. Here, especially neural networks play a central role, being the predominant 

technology in terms of machine learning based SAST approaches in the literature. 

2.1 Definition of Artificial Intelligence 

The conception of an overarching definition as to what artificial intelligence is, poses a challenging task. 

The BSI bases their definition of the term on that of the High-Level Expert Group on Artificial Intelligence 

(AI-HLEG), as: 

“[...] the technology and scientific discipline that includes several approaches and 

techniques, such as machine learning, machine reasoning and robotics.”[4] 

This study focuses particularly on the subdomain of machine learning, as already suggested by the 

abbreviation ML-SAST.  This, however, immediately prompts the question of what machine learning is. The 

AI-HLEG describes machine learning techniques as follows: 

“These techniques allow an AI system to learn how to solve problems that cannot be 

precisely specified, or whose solution method cannot be described by symbolic reasoning 

rules.”[5] 

This is also the case for ML-SAST. It is not possible to efficiently describe vulnerabilities in the form of 

symbolic reasoning rules. Some vulnerable code patterns may be easier to express in this way than others. 

In general, however, such patterns are very nuanced, and the slightest changes to the code can decide 

between a correctly functioning program or a severe vulnerability. It is here, where the application of 

machine learning for the purpose of static code analysis may be of great potential. As conventional SAST 

tools rely on the manual definition of such rules, an ML-based approach may be able to recognize these 

subtle nuances that human practitioners have either difficulty to describe in a formal manner or recognize 

in the first place. 

The technologies discussed in this study, encompass supervised as well as unsupervised machine learning 

algorithms, which do not rely on explicit formal definitions to solve a problem directly. Instead, these 

algorithms may be used to train some model, based on large sets of datapoints, representative of the 

underlying problem. These datapoints may be present in the form of code sections that may or may not 

contain a vulnerability. In case of supervised learning, the aforementioned datapoints are tuples of the code 

sections and an accompanying label that states whether or not this section is vulnerable. With such a 

dataset, it is then possible to employ machine learning algorithms to iteratively and automatically adjust a 

model that effectively approximates a solution to the problem of identifying vulnerabilities in source code. 

Moreover, an unsupervised algorithm can be employed in cases where again a large dataset of code 

sections exists. This time, however, it is not known whether these sections are vulnerable or not. Here, such 

unsupervised algorithms can be used to automatically find clusters within the dataset in accordance to 

some pattern. Clustering the data in this way, vulnerable code patterns may then become observable in the 

form of outliers. 

This is just a brief introduction to machine learning for the purpose of static code analysis. In the ensuing 

sections of this chapter, the aforementioned machine learning algorithms are elaborated on in more detail. 

On this note, specifically the supervised methods will be thoroughly covered, as a good understanding of 

their working principles is necessary for the chapters following. This is due to the fact that as of today 

supervised ML-SAST approaches pose the technology most often employed in the literature. 
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2.2 Basic Principles of AI Systems 

At the BSI, three essential points of contact between AI and IT security are currently the subject of intensive 

research[4]. 

IT security for AI: How can AI systems be attacked? Which attack scenarios arise using AI and 

what effects do they have? How can AI systems be verifiably protected against AI-specific attacks? 

IT security through AI: How can AI systems improve IT security? Which defense measures can 

be designed more efficiently, which can be newly developed? 

Attacks by AI: What new threats to IT systems do AI methods create in attack tools? Which 

known attacks can AI improve? How can such attacks be recognized and be defended against? 

This study is mainly concerned with the application of AI for security purposes. While attacks by AI are not 

covered, the attacks on AI do indeed pose a threat, albeit a small one, to the security of ML-based SAST 

solutions. In this regard, it would be conceivable, for instance, that an adversarial user may try to trick such 

solution into classifying a severe vulnerability as benign, which then undermines some given security goals. 

These topics are touched upon in Chapters 8 and 12. 

In the following, three principles to which AI systems should adhere and which may be considered essential 

in the context of this study, are being discussed. Completeness is not claimed as there are many others 

noteworthy principles that have been published by the EU, NATO, USA/Whitehouse[6]–[8]. 

Reliability: AI-based systems must be able to operate reliably, securely, and continuously, and not only 

under normal conditions, but also under unexpected circumstances, or when they are attacked. 

Rigorous testing during development and implementation is critical. People should always play a 

pivotal role in making decisions about how and when to use AI systems. 

Privacy: Hosted AI systems that process and possibly store personal information must comply with 

applicable data protection laws. These require transparency in the collection, processing and 

storage of data and provide suitable control mechanisms for consumers so that they can decide 

for themselves how their data is used. AI systems may only use private data in accordance with 

applicable data protection standards and must protect data securely against theft. 

Transparency: AI will more and more affect people's lives. One should provide contextual information 

about how AI systems work so that people can understand AI decisions and recognize possible 

wrong decisions and prejudices more easily. This requirement is covered in detail in Chapter 8. 

The demands on an AI system are high. In the context of this study, reliability is important, while privacy is 

a term that is applicable not only to AI systems, and transparency often is too high of a requirement. Self-

explanatory AI systems are difficult to design. How can a deep neural network that has thousands and 

thousands of trained weight vectors and represents a complex graph-based function as a black box explain 

why it recognizes what and how? Chapter 8 elaborates on these concepts in much more detail. 

2.3 Machine Learning Primer 

Machine learning (ML) is the field of study that gives computers the ability to learn without being explicitly 

programmed. ML is one of the areas in AI that has made a significant progress in the last decade, which, in 

turn, has raised a renewed interest in the application of AI in general. Historically, even before the uprising 

of AI, ML has already been identified as a relevant research area, e.g., by Alan Turing in his seminal paper of 

Computing Machinery and Intelligence published in the journal Mind in 1950[9]. 

According to the High-Level Expert Group on Artificial Intelligence, ML includes neural networks, deep 

learning, decision trees, and many other learning techniques[5]. These techniques allow an AI system to 

learn how to solve problems that cannot be precisely specified, or whose solution method cannot be 

described by symbolic reasoning rules. Examples of such problems are those that have to do with 
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perception capabilities such as speech and language understanding, as well as computer vision or behavior 

prediction. However, machine learning techniques can be used for many more tasks than only perception. 

Machine learning techniques produce a numeric model (that is, a mathematical formula) used to compute 

the decision from the data. 

While computers are very good at solving mathematical problems that can be formally described, they are 

not very good at solving problems that cannot easily be expressed in a formal manner. With machine 

learning, instead of explicitly stating an algorithm to solve a specific problem directly, the machine is 

merely given the means to approximate the solution to a problem itself. In essence, there are three main 

types of machine learning: supervised learning, unsupervised learning, and reinforcement learning. These 

types are discussed in more detail subsequently 

2.3.1 Supervised Learning 

Supervised learning is characterized by the employment of datasets for training and testing. Both of 

which are collections of samples {(xi, yi)}i=1
N , where xiis a is a D-dimensional vector of features and a yia 

corresponding target[10, p. 3]. Such vector x could, for example, contain the color data of an image, whereas 

y could be used to describe the images content, i.e., a label. Essentially these datasets are subsets of the 

domain and their associated elements are from the codomain of the function that is being approximated, 

meaning that with supervised learning there is a known target. 

Given a set of training data, the algorithm tries to optimize the parameters of a model in such a way that it 

closely resembles an unknown function, representative of the relationship between the input samples and 

targets[10, p. 6]. This function may then be used to map previously unseen input data x to a predicted 

output ŷ. When the prediction is a class, also referred to as category, the underlying problem is referred to 

as classification. In other cases, when the prediction is a number, it is called regression. Using the test 

data, it is possible to additionally assess the ability of the model to generalize from the known samples. 

This method of training a model prior to making predictions is referred to as model-based learning. A 

concrete example of such an algorithm would be a support vector machine. Instance-based learning 

algorithms on the other hand do not rely on the prior training of a model, but instead use the dataset itself 

as the model. An example of this would be the k-Nearest-Neighbor algorithm. Here, given an input x, the 

algorithm considers known data points in the vector space that are in close vicinity to x, i.e., its 

neighborhood. It is then inferred that the label seen most often in that neighborhood must also apply to the 

unknown input x[10, p. 13]. 

Representatives for classification algorithms are, for instance, decision trees (DTs), naive Bayes (NB), k-

nearest neighbor (KNN), linear classifier (LC) or support vector machines (SVMs): 

• In DTs nodes are attributes, arcs are labelled with possible answers, and terminal nodes represent 

class labels, in NB the simplest probabilistic belief network is used, 

• in KNN search the k closest entries in a case base use a majority vote for determining the class, 

• LC computes a hyperplane in Euclidean space to separate the classes, 

• SVM is a refinement of such binary classifier with support vectors on the margins that decide on the 

separating hyperplane. Mathematically speaking, a different loss function is applied. 

2.3.2 Unsupervised Learning 

Concerning unsupervised learning, there is a collection of unlabeled feature vectors {xi}i=1
N , without an 

explicit learning target definition. Unsupervised learning may be used, for instance, for clustering, where it 

is the goal to divide the said collection of unlabeled data into clusters that show some sort of similarity. 

Hierarchical Bottom-up and K-means are two examples of such clustering methods. 

• Bottom-up clustering iteratively constructs a similarity tree, called dendrogram, while 



2 Artificial Intelligence and Machine Learning 

14  Federal Office for Information Security 

• k-means is a fast, iterative procedure to compute cluster midpoints, called centroids, minimizing intra- 

and maximizing inter-cluster distance. 

The opposite of clustering would be outlier detection. Here, the target is not to group similar data, but data 

that is different from the rest. Other examples of unsupervised learning comprise association rule learning 

or dimensionality reduction. Broadly speaking, unsupervised learning pursues the goal of deriving 

“interesting structures” from data. Thus, clustering approaches offer the benefit of not requiring the targets 

to be known beforehand, i.e., they do not require labeled training data. In some domains generating such 

training data may not pose much of a difficulty, whereas in other domains this task could be challenging. 

2.3.3 Reinforcement Learning 

In reinforcement learning the training dataset may not be fixed at the time of training, but instead the 

algorithm exists in an environment, the state of which it perceives as a vector of features[10, p. 4]. Not only 

does the algorithm perceive the aforementioned environment, but it also interacts with it by executing 

actions that then result in some reward or punishment. By trying to maximize the reward, the algorithm 

continuously adapts its policy[10, p. 4]. Function approximation, optimization problems and learning in 

multi-agent systems are some of the fields, where reinforcement learning may be applied. Representative 

algorithms are, for instance, value iteration and policy iteration or Monte-Carlo search. 

• Value and policy iteration are deterministic procedures that apply a local update equation in a graph, or 

apply a solver to a linear set of equations[11, pp. 716–719]. 

• Monte-Carlo search is a recent class of randomized algorithms that is based on random rollouts, and a 

mechanism to trade exploitation with exploration[12, pp. 282–293]. 

2.3.4 Neural Networks 

Neural networks are probably the most influential approach in machine learning and according to some 

publications identified in the literature mapping, better suited for SAST applications than other types of 

machine learning approaches, see Chapters 11 and 12. As such, this section provides an in-depth look at the 

underlying principles, by which artificial neural networks operate. 

Neural networks are inspired by Biology. Real neurons have many interconnections, inputs, and outputs, 

and make use of simple thresholds. Artificial neural networks on the other hand, consist of several simple 

nodes that, in reference to their biological counterpart, are sometimes referred to as neurons, as well. 

Additionally, artificial neural networks have weighted edges that connect the individual nodes. A node may 

have several inputs, through which it receives the output of other nodes or direct input from some data 

sample, in case the node is part of the first layer of the network. In addition to the weights of the edges, the 

nodes themselves possess biases. The output of a node depends on the values present at its inputs and an 

activation function, i.e., a function that maps a real valued input to some real valued output. Different 

activation functions have different characteristics and the choice of which one to use is highly task specific. 

Figure 1 depicts an example of such a node with the inputs x1, x2, … , xn  and their associated weights 

w1, w2, … , wn. The weighted sum of all inputs and some bias b is calculated and subsequently transformed 

by an arbitrary activation function f(y). 

Figure 1 Exemplary depiction of a node with the weighted inputs and some activation function 
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A neural network learns through repeated adjustments of these weights and biases, in a process called 

backpropagation. These adjustments can be approximated by means of a cost function and some 

optimization algorithm. In the case of artificial neural networks, most often some form of (stochastic) 

gradient descent is used. The derivative of a function f(x) gives us the slope at the point x, denoted as f’(x). 

Gradients are much like derivatives, but for multi-variable functions. More formally, a functions gradient is 

a vector of partial derivatives, usually denoted as ∇f [10, p. 8]. As mentioned before, it is the goal to adjust 

the weights and biases of the neural network, in accordance with a set of known datapoints i.e., the training 

data. This can be achieved by letting the network make a prediction to some x from the samples given by 

{(xi, yi)}i=1
N , denoted as ŷ. Since the actual value of y is known, it can be calculated by how much the 

prediction ŷ deviates from the expected value y using the cost function. An example of such a cost function 

is the mean squared error or MSE for short, depicted in Equation 1. 

MSE =  
1

n
 ∑(Yi − Ŷi)

2
n

i=1

 

Equation 1 The mean squared error function or MSE for short, where Ŷ is the predicted and Y the actual value. 

To estimate how the weights of the network need adjustment and to reduce the loss given by the cost 

function, the gradient of that cost function is computed. As the gradient shows the direction of the steepest 

ascent for a function, the negative gradient naturally shows the direction of steepest decline. Following the 

direction of steepest decline and adjusting the network’s weights accordingly, it is possible to converge 

towards a local minimum of that function, hence reducing the loss. An exemplary depiction of the gradient 

descent can be seen in Figure 2. 

Figure 2 Exemplary depiction of the gradient descent for some two-dimensional function. 

A neural network can have one or more layers (that is, single-layer and multi-layer neural networks). Each 

layer has one or more nodes. The input layer provides information from the outside world to the network. 

The output layer later transfers information to the outside world. The middle layers are called hidden 

layers because they have no direct connection with the outside world. Neural networks can have zero or 

more hidden layers. In feed-forward networks the information moves in only one direction, forward, from 

the input nodes, through the hidden nodes (if any) and to the output nodes. The nodes of recurrent neural 

networks have feedback loops. Usually, networks are fully meshed in between the layers. In convolutional 

neural networks, the mesh is only between some selected parts of nodes in the layers. In exchange, 

convolutional neural networks are often considered deep, in reference to their many hidden layers. A 

perceptron is the simplest neural network structure. It is a single-layer feed-forward neural network, and 

typically used for binary classification tasks. Portrayed in Figure 3 is a very simple three-layered 

feedforward neural network. Its input is a four-dimensional feature vector, and its output is a binary 

prediction. In-between the input and output layers, is one fully-connected hidden layer. 



2 Artificial Intelligence and Machine Learning 

16  Federal Office for Information Security 

Figure 3 Simplified example of a three-layered artificial neural network. 

2.3.5 Recurrent Neural Networks 

There are many cases in which data may be portrayed as a sequence of individual datapoints. Natural 

language, for instance, is an example of such sequential data. Here, characters form words, words form 

sentences and sentences form complete texts. It is undeniable that the position of the individual elements, 

e.g., words in a sentence, is of great importance. Since natural languages follow some explicit grammar, 

rearranging the words of a sentence may result in a completely different meaning or incomprehensible 

gibberish. Moreover, the meaning of a single word also highly depends on its surrounding words, i.e., its 

context. As this example shows, not only is there information contained in the individual elements of such 

sequential data, but also in the structure itself. 

Simple feed forward neural networks, such as multilayer perceptrons, are well suited for processing static 

data, such as images. As described however, a lot of problems involve dynamic data, which simple feed 

forward architectures fail to adequately address, as they lack the means to consider temporal 

correlations[13]. One popular approach that aims to solve this adds feedback loops to the network, such 

that the output ŷt is not only computed based on the mere input, but also some hidden state ht that is being 

updated based on the previous state ht−1 and some input xt. Figure 4 depicts a single module of a RNN[14, 

p. 2]. This modular depiction is often used to describe reusable units that may occur multiple times within a 

single network. Thus, a neural network may be viewed as a series of modules that themselves comprise one 

or more layers of nodes. 

Figure 4 Simplified depiction of a recurrent neural network as a module, which itself may comprise multiple layers 

of nodes. 

Using RNNs, different types of problems may be addressed. If for each time step t a prediction is made, it is 

possible to solve many-to-many problems, i.e., problems that involve finding some sequence, given 

another sequence. That is, since sequences may be regarded to as a series of discrete time steps as well, that 

may, one by one, be passed to the network as input. Then for each input step, an output can be predicted 

that itself forms sequence of discrete steps in time. It is also possible, however, to solve many-to-one 

problems, for example, sentiment analyses or one-to-many problems like generating a caption, given an 
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image[15]. In an RNN, with each step t, the hidden state ht is computed using a tanh-layer over the 

weighted previous state Wht−1, the weighted input Uxt for matrices U,W and some bias b, thus yielding ht =

 tanh (Wht−1 + Uxt + b). Moreover, the output ŷ at step t is given by the product of the hidden state ht and 

another weight matrix V, plus some other bias c, resulting in ŷt = Vht + c. Figure 5 shows a single module 

of an RNN that has been unrolled over its time steps[14, p. 2], [16, p. 546]. It must be noted that the layers 

of the network itself are not shown, but rather the flow of data over time at the same module. 

Figure 5 Depiction of a recurrent neural network as a chain of modules that has been unrolled over time. 

Recurrent neural networks can be very forgetful, due to the fact that they use a modified version of the 

backpropagation technique, called backpropagation through time. This is necessary as with RNNs not 

only do the models coefficients need to be adjusted over all input samples, but also over all time steps. The 

loss is given by the sum of all losses Lt over all time steps t ∈ T, used for gradient calculation. This gradient 

also needs to be calculated for the weight matrix Wht that contains hidden state ht at time step t. 

Unfortunately, however this involves derivatives 
∂ht

∂ht−1
 , which tend to decrease the gradient for a larger T if 

Wh has eigenvalues |λ|T−1 < 1. This problem is often referred to as the vanishing gradient problem. 

Vice versa, in the case that |λ|T−1 > 1 holds true, the gradient can grow infinitely large. This is known as 

the exploding gradient problem. Both cases have the effect that RNNs cannot be trained over long 

distances[16, pp. 550–554]. 

2.3.6 LSTM Networks 

As laid out before, RNNs suffer from a tendency to lose their effectiveness in tasks involving causalities over 

long sequences. Long Short-Term Memory (LSTM) networks offer a solution to the vanishing gradient 

problem, but do not alleviate the effects of the exploding gradient problem. This type of network was first 

introduced by Hochreiter and Schmidhuber in 1997[16, p. 554], [17]. LSTM networks, belong to the class of 

recurrent neural networks and are thus tailored towards solving sequence prediction problems. This ability 

makes them well suited for complex problem domains like machine translation or speech recognition. As 

such they are not unlike conventional RNNs. The difference is that LSTM networks introduce the concept of 

cell state, denoted as ct at time step t. 

For regular RNNs such module could for instance be a tanh-layer, that computes an output ŷt in accordance 

to some input xt and the previous hidden state ht−1. In the case of LSTM networks there are much more 

complicated modules involved, next to others, that make up for its architecture. Here, a single module 

comprises not just one, but four layers, each of which serving the purpose of manipulating the cell state ct 

in accordance to the previous cell state ct−1, the previous hidden state ht−1 and some input xt. In the 

literature, these layers are often referred to as “gates” that control the flow of information through the 

network. First, the forget gate f, a sigmoid-layer, removes irrelevant information from ht−1 and multiplies it 

with ct−1. Next, the update gate u, first computes a scale factor it through another sigmoid layer and 

secondly a so-called candidate matrix C̃t using a tanh-layer, again in accordance to ht−1 and xt−1. Finally, the 

product itC̃t is added to the result of the forget operation, conducted prior. The last gate in the series, is the 

output gate o, realized by another sigmoid-layer over ht−1 and xt−1. Next, the tanh function is applied to the 

cell state and multiplied with the output of the sigmoid layer, yielding the output ht. I must be highlighted 

that the tanh operation applied to the cell state in the last step is a single operation and not an entire layer 

of individual nodes. It serves the purpose of ensuring that the state takes a value between -1 and 1. 
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Moreover, it is easily visible that this architecture allows for the cell state to pass unhindered between the 

modules, such that it is not subject to the vanishing gradient problem[16, pp. 550–555]. Figure 6 shows the 

structure of such LSTM module in a conceptual manner, depicting the gates discussed above and Equation 2 

shows a comprehensive list of all the operations discussed above[18]. 

Equation 2 A comprehensive list of all “gate”-operations performed within a single LSTM module. It must be noted 

that here, W and U denote the weight matrices for the module’s layers, which have been omitted in the description 

above for better understanding of the operations themselves. 

it = σ(xtUi + ht−1Wi) 

f = σ(x Uf i
t t + ht−1W ) 

ot = σ(xtUo + ht−1Wo) 

C̃t = tanh(xtUg + ht−1Wg)

Ct = ft × Ct−1 + it × C̃t 

ht = tanh(Ct) × ot 

Figure 6 A LSTM module where 𝑐𝑡 denotes the cell state, ℎ𝑡 the hidden state and 𝑥𝑡  the input at time point 𝑡. The 

operations × being pointwise multiplication and + the sum over all inputs. astly 𝜎 and tanh represent the sigmoid 

and hyperbolic tangens activation functions and the letters 𝑓, 𝑢 and 𝑜 mark the conceptual location of the forget, 

update and output gates. 

A concept similar to LSTM networks are Gated Recurrent Unit (GRU) networks. Much like LSTMs, these 

networks also make use of gates to selectively convey information through time. In the broadest sense, GRU 

networks pose an enhancement to conventional LSTMs as they are easier to implement and compute. 

Instead of having three gates, GRU networks only possess an update gate z that decides whether or not to 

update the current hidden state ht−1 with the new state ht and a reset gate r that can selectively ignore the 

previous hidden state ht−1. Moreover, GRU networks abandon the idea of cell state and instead rely on the 

hidden state only, much like the classic RNNs introduced in Section 2.3.5. Figure 7 depicts this simplified 

hidden activation function[19]. 

Figure 7 The hidden activation function of gated recurrent unit networks. 
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2.3.7 Bidirectional Sequence Models 

The conventional versions of the sequence models discussed, i.e., RNN, LSTM and GRU networks all process 

the input in a single direction. Subsequently, such models can also only learn sequential dependencies in 

one single direction. At the example of ML-SAST for instance, a model could learn that the declaration of a 

pointer variable called buffer or buf, is often followed by a call to malloc. Bidirectional models, such as 

BRNN, BLSTM or BGRU networks on the other hand are capable of inferring sequential relationships in 

both, forward and backward direction. Schuster and Paliwal introduced the idea in 1997 with their 

proposal of bidirectional recurrent neural networks, by combining two unidirectional RNNs in a single 

architecture. The authors split the networks into two parts that are connected to the same input layer, but 

independently process the input in opposing directions. Only at the final output layer, the output of both 

sets of nodes is connected. This allows the network to also consider future information from the sequence, 

unavailable to conventional RNNs. According to Schuster and Paliwal this leads to improved predictive 

performance of BRNNs, compared to regular RNNs[20]. 

Figure 8 A simplified depiction of a bidirectional RNN. Sequential dependence information is passed on in both 

directions, forward (FWD) and backward (BWD) and later combined in an output layer (OUT). 

Figure 8 shows the simplified depiction of a bidirectional recurrent neural network, as described. 

Bidirectional architectures are a popular choice for the purpose of ML-SAST, as the literature study in 

Section 10.5 has revealed. Moreover, some evaluation studies on different deep learning architectures for 

ML-SAST, seem to support the notion that bidirectional models offer a better predictive performance than 

their unidirectional counterparts[21]–[23]. 

2.3.8 Graph Neural Networks 

Graph Neural Networks (GNNs) represent trainable, parametric functions over graphs[24]. Conceptually, 

they are more involved, as they allow better correlations over distant features. As an example, aggregate-

combine GNNs with L layers are specified with aggregate functions aggi, combination functions combi and 

a classification function CLS. On an input graph G = (V, E), where V is the set of vertices and E the set of 

edges connecting the vertices, i.e., tuples over V × V, a GNN maintains a state in form of a k-dimensional 

vector, xv ∈  Rk for each vertex v. Computation consists of updating these states throughout L iterations, 

with xv
i  denoting the states after iteration i ∈ N. The computation model corresponds to updates xv

i  (∶=) 

combi (xv
i−1, aggi  xw

i−1 ({{ w ∈ N(v)}})), where N(v) is the set of neighbors for vertex v in G, and {{… }} 

denotes a multiset (i.e., unordered set whose elements are associated with multiplicities). That is, at stage i, 

each vertex v receives the state of its neighbors which are then aggregated, and the result combined with 

the current state xv
i−1 to produce the next state xv

i . The fact that aggi maps multisets of states into real 

vectors means that it does not depend on the source of the received messages. GNNs are used for node or 

graph classification. In the first case, after the final stage, node v is classified into class CLS (xv
(L)

) 

determined by a function CLS: Rk  → {0,1}. In the second case, the CLS function maps the multiset 
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{{xv
(L)

 | v ∈ V}} into a single, scalar output; an operation referred to as a readout. The functions involved in 

the mapping from inputs to outputs can be linear or non-linear, and they are all trainable: in the supervised 

case by minimizing an error function defined using a training set. 

This is merely a very concise explanation as to how this type of neural network operates. Graph neural 

networks will be covered in much more detail in the ensuing Chapters 11 and 12. 

2.4 Other Concepts and Further Reading 

A few highlighted algorithmic concepts to machine learning are worth mentioning and often not well 

understood, or leading to confusion, as there are metric spaces applied in the algorithms not to be mixed 

with metrics for the evaluations of tools, which will be discussed later on. 

Regularization is a general method to avoid overfitting by applying additional constraints to the weight 

vector. A common approach is to make sure the weights are, on average, small in magnitude: this is referred 

to as shrinkage. 

The evaluation of different ML algorithms is highly important. One approach applied to supervised learning 

is 10-fold cross-validation with 90% of training, 10% of test, executed 10 times. One other extreme is the 

Leave-One-Out evaluation. 

In unsupervised learning, there is no training data with predefined classifications that can be used for 

orientation. These can be found, for example, through clustering. In addition to the feature vector, a 

distance measure (a so-called metric) always plays a role. Simple metrics for numerical data is the 

Euclidean distance, derived from the so-called 2-norm, or another 𝒑-norm (e.g., sum total or "infinity" 

norm). In the case of strings, the Levenshtein or editing distance could help, which turns out to be the set 

of editing operations and can be found with dynamic programming. 

Of course, linguistic peculiarities can also be used here (removal of filler words). A frequency analysis in 

texts called bag of words (BOW) can also lead to a measure of distance (often used with spam filters). 

For time series, there are similar distance measures as those of the dynamic time warp (DTW) procedure, 

which is based on the approximate character string search. There are similarities between DTW and the 

Needleman-Wunsch algorithm (global alignment) and the Smith-Waterman algorithm (local alignment). 

Distances between more complex data, e.g., in tree structures or graphs, can also be found using feature 

vectors. 

As soon as a metric space (M, d) with distance measure d in ℝ is available, machine learning processes can 

be used. More precisely: A mapping d: M × M →  ℝ is called a metric on 𝑴 if the following axioms are 

satisfied for any elements x, y and 𝒛 of M: 

1. d(x, y) = 𝟎 if x=y

2. d(x, y) = 𝐝(𝐲, 𝐱) (symmetry) 

3. d(x, y)  ≤ d(x, z) + d(z, y) (triangle inequality) 

Please note that from the axioms follows d(x, y) ≥ 0 for any x, y of M (positive definiteness). 

The aforementioned definition applies to all the distances considered above. For clustering processes, 

inter- and intra-cluster distances are measured and linked to a target value that needs to be optimized in 

order to obtain an at least locally optimal clustering (k-means). Also hierarchically organized 

agglomerative clustering (e.g., dendrograms) or chain-based clustering methods are based on a suitably 

selected distance measure. Later in the course of this study, clustering approaches to ML-SAST are briefly 

described that use distance metrics (see Section 4.1). 

The list of concepts is neither sorted nor complete. The reader is referred to the literature. There are 

several textbooks on machine learning, like Peter Flach. Algorithms that Make Sense of Data. Cambridge, 1. 

Edition (2014) [25], Tom Mitchell: Machine Learning, McGraw Hill, (1997) + New Chapters (Web) [26], Pat 
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Langley: Elements of Machine Learning. Morgan Kaufmann (1995) [27], Shai Shalev-Shwartz, Shai Ben-

David. Understanding Machine Learning. Cambridge (2014) [28], Christopher M. Bishop: Pattern 

Recognition and Machine Learning. Information Science and Statistics, Springer (2006) [29], Richard Sutton, 

Andrew Barto: Reinforcement Learning, MIT (1998) [30], together with recent publications in A/A*-level AI 

conferences (e.g., AAAI, IJCAI, ECML, ICML). 
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3 Static Application Security Testing 

Static Application Security Testing (SAST) is an approach to security testing of software, in which low-level 

programming bugs, such as buffer overflows, simple race conditions, code injection vulnerabilities, and 

cryptographic errors, are detected statically. Chapter 7 describes these various types of errors in detail. 

This means that security checks are performed directly on the (source) program code, as opposed to a 

dynamic analysis, which is carried out when the program is running. 

In the following, information is provided on the technical background of SAST tools. More details on such 

techniques, for example, can be found in Graf’s dissertation[31] and in Chapter 4 of a book on SAST by 

Chess and West[2]. 

 

3.1 SAST Tools 

SAST tools often employ advanced static program analysis and related data structures as their foundation. 

For example, they may use a taint analysis, which tracks the flow from an entry point (source) to the 

vulnerable code (sink). 

The static analysis engine, however, is only one part of modern SAST tools. Furthermore, SAST tools often 

do support more than one programming language, e.g., C/C++, Java, C#, but also (to a certain degree) 

dynamically typed languages, such as JavaScript, PHP, Python or Perl. In addition, SAST tools should 

support specific software frameworks, e.g., Spring, Qt, or Android, as these frameworks have incorporated 

specific programming models, such as the Android component framework. Static analyses should reflect 

the properties of such software frameworks and their programming models. 

Most SAST tools use a rule engine that allows an analyst to define rules for various common classes of 

security bugs like buffer overflows, heap overflows, SQL injections and cryptographic weaknesses. In 

addition, such tools provide a graphical user interface or an input language (e.g., XML, JSON) to define one’s 

own application-specific rules. 

Another feature that SAST tools may support is a visualization of how data flows through the code, e.g., 

from an entry point to the vulnerable code. An analyst can then follow this path and better understand the 

actual problem or whether it is a security problem at all. 

Furthermore, SAST tools serve a didactic purpose by explaining the current problem (including examples) 

in detail. So, a developer who is not familiar with a particular class of vulnerabilities is able to study its 

explanation in detail and compare it with the vulnerable code location. 

SAST tools usually allow a security tester to generate a report on the vulnerabilities found in the current 

project. These reports also contain statistics about the identified (potential) bugs and their severity (e.g., 

critical, high, medium, and low). Hence, SAST tools conduct an implicit risk estimation and rank the findings 

along with these categories. 

Given the inevitability of false positives and negatives, which are explained in Section 3.2and 8.2, SAST 

vendors sometimes offer a hybrid approach by combining SAST tools with dynamic application security 

testing (DAST) functionality. Results obtained by the SAST engine can, for example, be confirmed by the 

DAST functionality. 

Many SAST tools are available, often with foci on different aspects, e.g., programming languages, software 

frameworks, build environments or Cloud-based solutions versus offline tools. A comprehensive overview 

of the SAST market, including tool descriptions and the tools’ capabilities, can be found on the Web site by 

Gartner1. 

 
1 https://www.gartner.com/reviews/market/application-security-testing 
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There are also open-source tools available, which can be adjusted to one’s needs.  One open-source tool that 

supports C is the Clang Static Analyzer, which is based upon the LLVM infrastructure and provides simple 

static analysis like null pointer dereference, insecure usage of C functions (e.g., strcpy, strcat), and 

array-out-of-bounds checking. Another open-source tool supporting C is the Joern tool2. Joern 

implements static analyses based on a specially-tailored graph data structure and provides some ML 

functionality. 

3.2 Background on Static Program Analysis 

In general, static program analyses necessarily produce false positives or false negatives. The theoretical 

background of this observation lies in Rice’s theorem[1]. It states that proving a non-trivial program 

property is, in general, undecidable. This can be shown by transferring the problem to the halting 

problem. Therefore, a general algorithm cannot solve seemingly simple problems like null pointer access 

or array bounds error checking. 

False positives are wrongly reported errors, whereas false negatives are actual errors that the static 

analysis fails to report. The former may overwhelm security analysts who employ static code analysis tools, 

which may finally lead to a low acceptance of the tool and in the worst case the tool not being used at all. 

The latter is problematic because the analysis may overlook important errors, giving the reviewer a false 

sense of security. Consequently, a reasonable trade-off between both error rates is necessary, and today’s 

tools are trying to improve this trade-off. If this trade-off is handled appropriately, static program analysis 

can be very valuable to improve software quality and security. Approaches like ML-SAST are expected to 

contribute to a further improvement of the results produced by SAST tools. 

3.2.1 Compiler Construction Techniques 

SAST builds upon techniques and data structures developed in the fields of compiler construction and 

program analysis over decades. A compiler usually consists of several phases. First, a program is broken 

down into tokens, which correlate with words and punctuation in a natural language. This step is called 

lexical analysis. Thereafter, the syntactic structure of the source code is checked, which is called syntax 

analysis and is done by a parser. Typical code structures to be analyzed are if-statements, while-

statements or assignments. The third step of the compiler pipeline is the semantic analysis, which, for 

example, checks whether variables and functions are used with the correct types, so-called type checking. 

Figure 9 The phases of a compiler. 

As a result of the first three steps, an intermediate representation (IR) of the program code is built. 

Typical IRs are abstract syntax trees (ASTs), stack code (as in the Java bytecode), and static-single 

assignment (SSA)[32]. SSA is a standard IR that many static analysis frameworks, such as Soot[33], 

 
2 https://joern.io/ 
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WALA[34], and LLVM[35], support. In addition, due to the simple structure of SSA instructions, the SSA 

form simplifies control- and dataflow analyses. 

Having translated the source code into an IR, code optimizations, e.g., constant propagation and instruction 

reorder can be conducted, which leads to more efficient binary code. Beyond these code optimizations, 

many other types of static analyses can be carried out on this IR and related graph structures (see Section 

3.2.2 for more information on such graph structures). In the following subsection, some more details on 

such analyses are given as this lays out the foundations of SAST tools as well. 

3.2.2 Typical Internal Data Structures for Static Program Analysis 

As indicated above, for static analysis, the source code is often translated into an intermediate 

representation by means of compiler construction techniques. During the compiler-construction phases or 

directly from the IR, other data structures can be generated, which may support static code analysis. 

One standard data structure are abstract syntax trees (ASTs). In a tree-like fashion, they are usually 

constructed by a parser during the syntax analysis phase and represent program statements, such as for-

loops, if-statements, assignments, and conditions. In this way, ASTs correspond to parse trees but truncate 

non-informative symbols by means of abstraction, e.g., braces and semicolons. An example of an AST is 

depicted in Figure 10. On the left-hand side is a short C program, whereas on the right-hand side is the 

corresponding AST. One can see that syntactic symbols like braces and semicolons are missing; only 

information important for the semantics of the program are represented. 

Figure 10 On the left-hand side, an example program is shown, and on the right-hand side, the corresponding AST is 

presented (figure taken from Yamaguchi et al.[36]). 

Often graph-based data structures are valuable for static analyses. Typical graph structures are control-

flow graphs (CFGs), representing how the control passes through the statements, e.g., by following 

conditional and unconditional jumps. CFGs are usually used within a function or method and hence 

represent intraprocedural control flows. However, inter-procedural variants are possible as well. 

Call graphs (CGs) represent the dependences of method/function calls in a program. Depicted on the left-

hand side of Figure 11, one can see a simple example program with four functions main, f, g, and h. In 

particular, main calls f, f calls g and h calls f. The corresponding context-insensitive call graph is shown 

on the right-hand side, where one can see the call dependencies represented by a directed graph. 



3 Static Application Security Testing 

Federal Office for Information Security 25 

Figure 11 On the left-hand side, an example program is shown, and on the right-hand side, the corresponding 

context-insensitive call graph. 

Often, analyses also need data dependencies, i.e., one calculates which variable definitions flow into which 

variables, fields, arrays, or parameters. Such information can be represented by a data flow graph (DFG). 

A program dependence graph (PDG) is of interest if a static analysis needs both: control and data flow. A 

PDG combines both control flow and data flow information. PDGs only consider intraprocedural control- 

and data flow. If one needs an inter-procedural variant, one can use a system dependence graph (SDG) as 

having been introduced by Horwitz et al. [37]. Figure 12, which has been taken from [38], depicts an 

exemplary SDG (on the left-hand side). The corresponding C code is given on the right-hand side of Figure 

12. Here, two C functions, namely main and add, are defined. The function main calls add with two 

parameters, whereas add returns the result of the addition of its two parameters. The blue edges then 

represent control flow, and the green edges data flow dependencies. 

Figure 12 An exemplary SDG on the left-hand side and its corresponding C program on the right-hand side (figure 

taken from [38]). 

Sometimes it is useful to combine different graphs for program analysis. Yamaguchi et al., for example, 

combine ASTs, CFGs, and PDGs into a joint graph structure, called code property graph (CPG) and perform 

their analyses using graph queries [36]. Chapter 4 elaborates on the origins and usage of CPGs in more 

detail. In addition, the Joern tool, which has been mentioned above, uses the CPG as a key data structure for 

its analyses. 
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3.2.3 Static Analysis Problems 

Having IR and related data structures at hand, specific static analyses can be defined. Usually, these 

analyses use control flow and data flow analyses[39], i.e., they track control and data flows using the 

aforementioned graph-based data structures. Usually, one differentiates between two kinds of analyses: 

intra- and interprocedural analyses. The former is carried out within a function, whereas the latter 

tracks data and control flows along with several functions. Typical examples of static analysis problems 

include the detection of null pointer violations or array out of bounds accesses. 

One important analysis in languages with pointers and references are pointer analyses, which determine 

whether two or more pointers refer to the same location (e.g., on the heap). Therefore, this analysis is also 

often called “alias analysis”. Listing 1 shows a small C program where two pointers p and q point to the 

same location. If one, for instance, changes q->x, then p->x is modified accordingly. Given that a precise 

analysis is not possible, certain simplifications are necessary, accepting the fact that false positives may be 

produced[31]. 

Listing 1 The variables p and q are aliases, and hence changing q->x also changes p->x. 

#include <stdlib.h> 

 

struct point { int x, y; }; 
 

void f() { 
    struct point *p, *q; 
    p = (struct point*) malloc(sizeof(struct point)); 
    p->x = 5; 
    p = q; 
    q->x = 42; 
    /* => p->x == 42 */ 
} 

Another application of data and control flow analysis is forward and backward slicing [40]. Starting from 

a seed statement s, forward slicing calculates those statements that s influences transitively. Backward 

slicing then transitively determines all statements that influence a given seed statement s. Slicing 

algorithms employ SDGs, which contain inter-procedural data and control flows, as proposed by Horwitz et 

al. [37]. Formally, Horwitz et al. define (backward) program slices as follows: 

“A slice of a program with respect to a program point p and variable x consists of all 

statements of the program that might affect the value of x at point p.”[41, p. 1] 

Certainly, static analyses can be devised for specific problems, such as null pointer violations, array bounds 

or use after free errors. Again, one can differentiate between inter- and intra-procedural versions of the 

algorithms, depending on the concrete problem to be solved. 
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4 ML in the Context of SAST 

The application of machine learning for SAST is an emerging field in the discipline of computer science. Its 

roots may be traced back to several key developments, beginning in 2014. This chapter elaborates on some 

of these developments in an attempt to draw a comprehensive timeline. Specific ML-SAST approaches will 

be picked up again in later sections and explained in-depth. 

4.1 Preliminaries 

Research concerning the application of machine learning for SAST can be traced all the way back to two 

publications by Yamaguchi et al. in 2014 and 2015. The first publication discusses a new composite code 

representation that combines abstract syntax trees, CFGs and PDGs into a single heterogeneous structure. 

These so-called code property graphs (CPGs) can efficiently encapsulate code semantics and present a 

well-established building block in the context of ML-SAST[36]. 

Yamaguchi et al. themselves went forth in 2015 and demonstrated the capabilities of their CPGs in a follow-

up paper. Here the graphs are loaded into a graph database where an algorithm would then extract paths 

indicative of a vulnerability[42]. This algorithm rests on the principle of program slicing, as introduced in 

Section 3.2.3. Informally speaking, these slices present a condensed form of the code that has been stripped 

from any semantically superfluous statements. It might be for this very reason that program slicing has 

been widely adopted in the field of ML-SAST. It allows for the efficient extraction of relevant features from 

the code, suitable for model training. In particular, this is important as superfluous data might lead the 

model to infer false causalities from these artefacts[43, p. 3]. 

Another relevant publication that gained notoriety was published in 2016 by Wang et al., who may have 

been the first to leverage deep representation learning, i.e., the employment of deep learning methods for 

the automatic inference of relevant features, in this case, the important semantic constructs from source 

code. The authors use tokens extracted from abstract syntax trees to learn a deep belief network to predict 

code defects. Deep belief networks are a type of neural network with several highly connected layers. 

According to their own evaluation, the approach showed promise and thus seems to have paved the way for 

subsequent research efforts[44]. 

These first attempts have laid the foundation for some important publications in the field of ML-SAST. In 

summary, their contributions were: 1) the proposal of CPGs, a code representation structure capable of 

precisely capturing a program’s semantics; 2) the use of program slicing, a procedure for efficiently 

dissecting source code into semantically coherent segments and 3) showing the potential of deep 

representation-learning for code analysis. 

4.2 Refinements 

One of the most influential works to come out of this general ML-SAST approach is a paper by Li et al., titled 

“VulDeePecker”. The publication appears to be one of the earlier examples that specifically targets the 

detection of vulnerabilities in source code using deep neural networks. For this, the authors employ 

bidirectional long-short-term-memory networks (BLSTM) as the core technology. BLSTM, combined 

with the application of so-called code gadgets, a concept similar to that of code slices, may have led to the 

popularity of this publication[45]. 

The publication of the VulDeePecker paper has caused a high number of derivative works to be released 

that either partially incorporates the methodology employed by Li et al. or use the paper’s results as a 

baseline to measure the improvements of their own approaches[46]–[51]. In addition, the authors of the 

VulDeePecker-paper themselves went on to publish follow-up papers, investigating different facets of their 

approach to improve on. 

The first paper to be released was named “SySeVR” and proposed a new and improved form of code 

gadgets, called syntactic vulnerability candidates (SyVC) and semantic vulnerability candidates 
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(SeVC). SyVCs reflect the syntactic aspects indicative of a vulnerability, e.g., the character * denoting the 

declaration of a pointer, and can be inferred through pattern matching. SeVCs, on the other hand, are 

generated based on the SyVCs by means of program slicing on the Program Dependence Graph 

(PDG)[52]. These ideas were later refined in another paper by the same authors, called “VulDeeLocator”. 

Here the authors enhanced the code representation of syntactic and semantic vulnerability candidates, 

using an intermediate code format and narrowed down the detection granularity to three lines of code[45, 

p. 2]. Yet another follow-up publication by Li et al. aimed at a multinomial classification approach that not 

only allows for the detection of vulnerabilities but is also capable of inferring the kind of vulnerability 

present in the code[53]. Unlike the previously mentioned ideas, it appears as if multinominal classification 

for the detection of vulnerabilities was not pursued any further after that. 

4.3 Current State of the Art 

These publications have kickstarted the research on ML-SAST. Many works following the advent of the 

VulDeePecker paper, however, seem to closely adhere to its established pipeline. There are several 

problems to this approach, however, that, unfortunately, have been disregarded for the most part. At a 

closer inspection, these problems come down to the following three key aspects. 

4.3.1 Datasets 

Unfortunately, up until recently, little attention has been paid to the datasets the models are being trained 

on. As several evaluation studies on popular approaches, such as VulDeePecker, have demonstrated, 

synthetic datasets appear to be unfit for the task. When the authors of these evaluation studies tested the 

different approaches against real-world data, their performance dropped by a large factor across all 

metrics[43, pp. 8–9], [54, p. 9]. More importantly, preprocessing steps, such as code normalization, that is, 

the removal of individual identifiers from the code, as well as the procedures employed for the code slicing, 

may have led to data duplication in the datasets[54]. 

4.3.2 Architectures 

With respect to the neural network architectures utilized in the literature, recurrent type neural networks 

appear to be the ones most favored. Here, especially bidirectional LSTM networks seem to dominate the 

landscape. This may not come as much of a surprise, as the contextual awareness of such networks makes 

them perfectly suited for processing sequential data, which source code may be attributed to as well. 

Nevertheless, there are also problems associated with their use. For instance, the features extracted from 

the source code must be embedded into a shallow data structure for the LSTM networks to be processed. 

These data structures, however, fail to preserve important semantics [55, p. 3]. For this very reason, other 

authors suggest the usage of an entirely different type of neural network, called graph neural network 

(GNN). When training such GNNs, no explicit embedding of the graph structures is needed. Instead, the 

graphs can be fed directly into the model, allowing for a highly efficient mode of representation [56, p. 2]. 

4.3.3 Explainability 

Lastly, another challenge concerning the generalizability of these models appears to arise from the 

difficulty of explaining their inner workings. In the case of the VulDeePecker, the model seems to have 

picked up on artifacts during training, causing the predictions to be made based on false causalities[43, p. 

9]. Notwithstanding, the latest developments in ML-SAST seem to indicate that these problems finally come 

to the fore, as Warnecke et al., for instance, conducted a comprehensive survey carrying the title 

“Evaluating Explanation Methods for Deep Learning in Security”. Here, the authors explore the applicability 

of methods previously used for the explanation of deep learning approaches for image processing in the 

context of information security[57]. 
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4.3.4 Outlook 

As outlined, developments in the research area of ML-SAST have been rapidly evolving. When Yamaguchi et 

al. introduced their novel code property graphs and later a method that automatically infers vulnerability 

patterns from these, they laid the foundation for ML-SAST[36], [42]. Building upon this, first Wang et al., 

closely followed by Li et al., were able to show the potential of utilizing representation learning for the 

detection of software defects and vulnerabilities in source code. As of late new evaluation studies by Arp et 

al. and Chakraborty et al. went on to draw a first résumé, summing up the current state of ML-SAST and 

pointing towards severe shortcomings concerning those previous approaches[36], [54]. As it appears, there 

are three major areas, requiring further research. Firstly, there is a need for more adequate datasets that 

the models can be trained on. Alternatively, clustering approaches, such as that of Yamaguchi et al., may 

circumvent the need for such labeled datasets. Secondly, better embedding procedures capable of 

encapsulating the code’s semantics and models need to be developed. In this regard, the works by Cheng et 

al. and Zhou et al. that relied on the use of graph neural networks, may show some promise[55], [56]. 

Lastly, methods may be explored that aim at making these models behavior explainable. Warnecke et al. 

were the first in that regard to successfully apply such methods in the area of ML-SAST, demonstrating the 

feasibility of such endeavors[57]. 
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5 Expert Interviews 

To obtain a better overview of how SAST tools are used within the process of security assessment of C/C++ 

software in practice, interviews with several experts from industry, government agencies as well as 

academia were conducted. The focus of these interviews was to gain insights into the benefits as well as the 

limitations of current SAST technology for C/C++ in daily usage of security testing. Within the frameworks 

of these expert interviews, typical error use cases that occur in C/C++ code which are hard to detect by 

current commercial SAST tools were queried. The interviews concluded with a discussion of possible ML-

based solutions to these problems. 

In the following, the procedure of conducting the interviews is described. This way, the reader gets an 

impression of the interviews’ process. Secondly some information on the interview partners (e.g., 

concerning job functions, experience, kind of organization they are working for) are presented. The section 

concludes with the results of these interviews, including some conclusions drawn from them. 

5.1 Method 

The interview method is partly based on the procedures developed by Gläser and Laudel[58]. This method 

was applied within the frameworks of another study before, which dealt with the relevance and 

distribution of security patterns in practice[59]. In particular, the concept of anchor questions (leading 

questions) was adopted.  

As a preparation for the interviews, a guideline that covered the following five main topics was designed: 

1. The background of the interviewee concerning the programming languages C/C++,  

2. the used C/C++ versions (e.g., C 99, C 11, or C 17),  

3. SAST tool usage and preferences, 

4. the strengths and weaknesses of SAST tools in general, and 

5. the expected functionality of (future) ML-SAST tools. 

In total, 18 questions were defined for the interview, distributed over the aforementioned five thematic 

areas. The appendix contains the complete translated guideline since the original version was written in 

German. Additionally, the following four anchor questions were defined: 

1. Which C versions currently have a high distribution among developers? 

2. Which SAST tools are well-suited for the analysis of C code? 

3. What requirements are important to you that a ML-based SAST tool should meet (e.g., low false 

positive / negative rate, high performance, explainability)?  

4. Can you give typical cases that are usually hard to find for conventional SAST tools but are at the 

same time important for your work (if possible, please give cases that are as concrete as possible)?  

The purpose of these anchor questions is to guide the conversation back to the initial questions if the 

interview should go in the wrong or an unforeseen direction. These questions as well as the complete 

guideline were sent to the interview partners in advance to give them a feel of what type of information is 

expected from them. The goal of this step is to make the interviewees feel more comfortable concerning the 

expected information and to give them the opportunity to prepare themselves for the interview. 

Based on the guideline and the anchor questions, each interview was conducted as a video conference. The 

Jitsi3 conference system was chosen because it is open source and served the purposes well. A 

teleconference system was not used as it was important to obtain direct feedback through facial 

 
3https://meet.jit.si 
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expressions and provide a familiar environment for the interview partners – a videoconference seemed to 

be a better option to use here. For data protection reasons, the videoconference was not recorded; 

otherwise, some interview partners would have had to request permission from their organizations. 

Moreover, it would then have a required higher data protection standard to store the recordings of the 

interviews. Also, the privacy of the interview partners would have been unnecessarily affected. To 

overcome these limitations, the answers to each question were merely protocolled. A data protection 

declaration was prepared, which was designed with the help of a company data protection officer. This 

declaration was to be confirmed by each interviewee. Each interview was carried out with four members of 

the project team, including the interviewer and a minute keeper. It was also made sure that the interview 

team covered enough expertise regarding the topics SAST, ML, and C/C++. The interview was designed to 

last about an hour. The actual interviews showed that this time estimation was realistic. 

5.2 Interview Partners 

Eight interview partners from different organizations and companies were recruited for the expert 

interviews. In the following, some anonymized information on the interviewees were given to allow a rough 

classification of the interview partner's background and experience: 

Interview partner #1 is responsible for software security in a small or middle-sized enterprise (SME). 

This SME develops security-critical code, with a focus on e-government software, such as eIDs. 

Interview partner #2 works for an IT service provider for the military. He has a strong background in ML 

and experience in C/C++. 

Interview partner #3 also works for the IT service provider for the military. He has experience in C/C++. 

In addition, he has a strong background in reverse engineering and exploit development. 

Interview partner #4 graduated with a PhD in the field of software security and machine learning. 

Currently, he is working for a static program analysis company. 

Interview partner #5 works for a German authority on information security. He has much experience with 

the security of C/C++ code as well as malware detection. 

Interview partner #6 is now a full professor for Cybersecurity. Prior to that position, he was responsible 

for introducing SAST tools for a large international software vendor. 

Interview partner #7 works for a significant security consulting company. He has experience in static 

program analysis with a focus on formal approaches as well as on ML. 

Interview partner #8 answered the guideline digitally, due to time constraints. He is a full professor for 

information security, with a very strong background in employing ML in the field of information 

security for more than 15 years. His answers are incorporated as good as possible in this section. 

However, some questions could not be asked in the survey and thus are missing.  

5.3 Results of the Expert Interviews 

First, participants were asked to state the earliest C/C++ versions that should be supported by a possible 

SAST tool with machine learning support. The interview partner could also report the version that is 

actively used at the corresponding company or institute. The interview partners responded with the 

following answers: 
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5.3.1 Versions of C and C++ Used 

Table 1 Versions of the C and C++ programming languages used by the participants of the interview. 

Participant Comment on the C and C++ versions used 

1 The participant reported that the current C++ standard is used at the company. At the time 

of the interview, this was C++ 17. The participant did not report on a specific version the 

tool should support. 

2 All current C versions are used at the company the participant works for. 

3 The participant reported version C 99. He further elicited that the developed tool should 

run on most Linux systems. 

4 Older versions of the programming languages should be supported, as some security 

problems have already persisted for some time. 

5 The newest standard of the programming language should be supported (C14). From the 

C99 version onwards, the programming language did not change significantly anymore.  

The participant believes that the version is not so critical, as they are backwards 

compatible. 

6 The interview partner considers C90 to be the standard version. The participant suggested 

that older and classical versions should be supported by a SAST tool. 

7 The participant stated that at least C99 should be supported. 

8 The participant stated to only use C99. 

Out of the eight participants one responded on the C++ versions and seven on the C versions. Concerning 

C++, the participant noted that the most current standard of C++ is used at her organization. Regarding a 

specific version, which should be supported by a possible ML-SAST tool, no specific version was mentioned. 

The responses on the C version showed some similarities. The participants reported that older C versions 

should be supported. One participant justified this statement with the fact that security issues have 

persisted for some time. 

5.3.2 Opinions Towards SAST Tools in General 

Table 2 Opinions expressed by the interview partners concerning SAST tools in general. 

Participant General opinions expressed on SAST Tools 

1 
SAST tools have good code smell detection capabilities and give good hints, but they also 

report many false positive errors. 

2 

As C is often used in critical infrastructure projects, SAST tools should be used to exclude 

security problems. The participant further pointed out that SAST tools might have 

difficulties with programming projects that have many dependencies. The results of SAST 

tools should be reasonable. The usage should be highly automated, have a high quality and 

high efficiency. 

3 
SAST tools can support when dealing with high-level programming languages – which have 

a long call graph 

4 

The users of SAST tools can only benefit from such tools if they understand the reasoning 

behind the detected problems. The users should not just use the tool but also be able to 

define rules for the tool to detect problems in the given software context.  

5 
SAST tools can help to enforce rules and coding standards. Such tools also produce many 

false positive errors.  
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Participant General opinions expressed on SAST Tools 

6 

SAST tools can be integrated at an early stage in the development process. They help to 

detect errors in the source code without compiling or running the program. Not much 

expertise is needed to use such tools. To use such tools, the source code needs to be parsed. 

It is therefore of great interest which C standards should be supported. Expert knowledge is 

necessary to evaluate and classify errors as false positives. As these tools are frameworks, 

they need to be configured for personal or team usage and should not be used as an off the 

shelf product. As these tools do not support all programming paradigms, they might 

produce false positives or false negatives. 

7 

SAST tools can help to verify program properties, exclude runtime errors, and many other 

errors. The proof of program properties is difficult. Under- or over-approximation might 

lead to many false positives and false negatives. Configuring such tools is difficult. The 

multiplication of two variables is not decidable. 

8 N/A 

Many of the experts noted that SAST tools show a high number of false-positive errors. This corresponded 

with findings from literature. Some false positives can be explained with the fact that static analysis 

techniques need to make some approximations and simplifications (see Section 3.2.3). The usage of such 

tools might be easy, as they can be easily integrated into a development process, but to interpret the results 

and classify errors as false-positives expert knowledge is needed. To complement this statement some 

experts noted that these tools should be used as a framework. They should not be used as an off the shelf 

product but should be configured depending on the project. 

5.3.3 Input Format for Rules for SAST tools 

Concerning the format of rules for SAST tools, a few responses were given. One participant pointed out that 

rules for the tool Fortify are defined as finite state machines. As these rules represent the basis of business 

they are encrypted. The same participant mentioned that rules for the tool Checkmarx are defined as C# 

source code, which makes them easy to be understood and extended by software developers. A second 

participant mentioned that rules can also be defined in the form of a query language. The tool joern.io uses 

rules that are defined in a Scala-based query language. 

5.3.4 Expectations Towards ML-based SAST Tools and Ideas to this End 

In the following table, expectations and ideas that the interviewees formulated with respect to future ML-

SAST tools are presented: 

Table 3 General ideas and expectations towards ML-based SAST approaches, shared by the participants of the 

expert interviews. 

Participant Expectations and ideas concerning ML-SAST tools 

1 Reduced false positive rates, explanation for detected errors should be presented. 

2 

The participant proposed a combination of supervised and unsupervised learning 

algorithms to train a machine learning model. First, a clustering algorithm should be used 

to group the data. A supervised learner is trained using these classes. The participant 

further suggested that using a reinforcement learner might further improve the 

classification performance. 

3 

The participant suggested learning rules from the source code. Unsupervised learning, 

graph and tree-based approaches might be useful. The participant believes reinforcement 

learning might be purposeful. 
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Participant Expectations and ideas concerning ML-SAST tools 

4 

The participant suggested that collecting enough training data might be difficult. Labelling 

the data might be even more difficult. Furthermore, the training data might depend on the 

context. For example, should there be training data per CVE error class or training data for 

each instance of the CVE error class? For supervised learning, the expenditure to collect 

data might even be higher. For example, to train a supervised learning algorithm, many 

labelled training cases are needed. Contrary to this, it might be easier to write a simple rule 

to detect the problem. 

5 

The participant noted that explainability is very important. The user should be informed 

how the tool decided to rate a certain part of the source code as not safe. Furthermore, the 

participant noted that selecting the right features for a machine learning algorithm is very 

important. It could either be trained on tokens or an abstract syntax tree of the source code. 

Unsupervised learning might be a possible approach. The participant mentioned n-gram 

models, support-vector machines and random forests to be valuable and possible 

approaches for a machine learning supported SAST tool. 

6 

The participant mentioned that many SAST tools already claim to have some sort of 

machine learning functionality. The participant pointed to one SAST tool provider that 

claims to have such functionality. Though the participant also noted that verifying such a 

claim, especially for a SaS provider, is rather difficult. The participant continued with the 

following: “Why learn, if you can do it deterministic”. Nevertheless, he suggested that 

machine learning might help in the following areas: 

Analysis of small code patches 

Analysis of source code with missing context 

Faster analysis 

Learning project-specific patterns 

Detect good Audits 

The participant noted that a machine learning SAST tool might learn new vulnerability fixes 

from GitHub and present these to the user. To do so the tool would need to evaluate the 

commit messages. 

7 

The participant made it clear that if the tool learned rules to distinguish good from bad 

code, humans should understand these rules. Furthermore, such a tool should have a low 

false positive rate. As failure analysis is time-consuming, the number of findings should not 

be too high. The tool should also be efficient and fast. He has a rather critical view of 

machine learning and deep learning because their behavior is hidden in a black box. 

Therefore, the generalization of the results might be difficult. Nevertheless, the participant 

sees great potential in machine learning, especially regarding natural language processing 

(NLP). A question of great concern is how to deal with the 1% of errors that are not 

correctly detected? Success in academia might be easier to achieve than in the industry. The 

participant suspects good results in inductive logic programming and probabilistic logic 

programming. Machine learning might be a good complement but is rather not practical 

and rather used in academia. The participant further mentioned investigating MLP from 

Google, Competition of Software Verification (https://sv-comp.sosy-lab.org/2021/) and 

SMT solver (Satisfiability modulo theories). 

8 N/A 

Some participants of the interview reported that a SAST tool with ML support should have a reduced false-

positive rate compared to current SAST tools. Furthermore, the explainability of the detected error was of 

great concern to some of the interview partners. Some participants mentioned that a ML-SAST tool should 

run faster than a normal SAST tool. One of the experts noted that collecting enough training data as well as 

labelling it for a SAST tool with ML support might be difficult. The expert also stated that it might be easier 

to write a rule to detect an error in contrast to collecting enough training data to learn the error. This 
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statement was supported by another interview partner, who stated: „Why learn, if you can do it 

deterministically.“ 

5.3.5 Easily and Not Easily Detectable Errors 

In the following the interviewees’ comments with respect to common programming errors and the effort to 

detect them are presented: 

Table 4 Types of program errors easily (a) and not easily (b) detectable by means of SAST, as reported by the 

interview partners. Some of the participants did not report on any error use cases. 

Participant Easy to detect errors by SAST tools Hard to detect errors by SAST tools 

1 N/A N/A 

2 N/A N/A 

3 

• Buffer overflows 

• Memory leakage 

• Bad usage of pointers 

• “simple cases” 

• Use after Free 

• Eternal Blue (no call-trace for both) 

• Format strings 

4 

N/A • Dataflow in arrays and structs 

• Dynamic loading of code (missing at 

checktime) 

• Source of user input is hard to detect 

• Dynamic programming languages 

o Creating a call graph is difficult 

5 

N/A • void pointers and object casting in C 

• Concurrency 

• Rules work on functions (intraprocedural) but 

not across multiple functions 

(interprocedural) 

6 

N/A • Pointer arithmetics in C 

o Expensive tools perform better than 

cheap ones 

• Numeric over- or underflows in C 

• High usage of frameworks can hinder SAST 

tools 

7 

N/A • Interesting program parts will be difficult for 

the SAST tool 

o There is always a deviation of a 

problem a SAST tool will not find 

• Client – server communication is difficult for a 

SAST tool 

8 

N/A • Static analysis techniques have problems 

detecting errors that arise from runtime 

behavior 

o Some of these are the following "use 

after free", "deadlocks", "TOCTOU" 

Only one participant reported on the question concerning easy to detect errors. The participant mentioned 

the following cases: buffer overflows, memory leakage, bad usage of pointers and “simple cases”. On the 

other hand, most of the participants were able to present difficult to detect errors. Their opinion towards 

difficult to detect cases overlapped in the following points. Errors that arise from runtime behavior like 

“use after free”, “deadlock”, “TOCTOU”, “Eternal Blue”, and “concurrency” were mentioned to be hard to 

detect by static analysis techniques. Furthermore, errors that arise through the interplay of different 

functions are difficult to detect. To detect such problems an interprocedural analyses needs to be 
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performed. One participant also noted that errors which arise in dynamic programming languages are 

difficult to detect. According to the expert these errors are difficult to detect because it is difficult to create a 

call graph for a dynamic programming language. One participant mentioned that errors which arise 

through void pointers and object casting in C are difficult to detect. The error use case void pointer will be 

explained in more detail in Section 7.1. 

5.3.6 Sources for Error Use Cases 

Table 5 Possible sources for error use cases, reported by the interview partners. Some of the participants did not 

answer this question. 

Participant Reported sources for error use cases 

1 • Search public repositories for Commits that fix CWEs 

2 
• Web scrapping for CVEs 

o Find source code 

3 N/A 

4 N/A 

5 
• International Obfuscated C Code Contest 

• The Underhanded C Contest 

6 

• Obtaining enough data might be challenging 

• Juliet Test Set might be too specific 

• NIST has two benchmark sets available 

• Extract source code from public repositories 

o Search for CVE entries and their fix 

• Generate test data based on error paradigms 

o Testcases are application specific 

7 

• Scientific papers 

• CVE 

• IEEE 

• Scientific conferences 

o Principles of program analysis 

o Computer-Aided Verification (CAV) 

o Association for Computing Machinery (ACM) 

8 N/A 

Several participants noted that web scrapping public repositories for commits, which fix CWEs and CVEs, 

might be a suitable way to obtain error use cases. One participant mentioned that the National Institute of 

Standards and Technology (NIST) provides some test sets. Though the participant also mentioned that the 

Juliet Test Set – which is provided by the NIST – might be too specific to be used as training data. Instead of 

using these test sets the participant recommended to generate test cases based on error paradigms. 

Furthermore, scientific papers and conferences, C coding contests as well as the IEEE were mentioned to be 

used as sources for error use cases. Regarding the question in which format error use cases should be 

documented and persisted two participants mentioned the typical human and machine-readable formats: 

yaml, json and xml. 
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6 Online Questionnaire 

Besides the experts’ opinions in Section 5, the view of the development community towards the topic was 

also retrieved. As they use static application security testing (SAST) tools in their daily work, their 

perspective on the topic is also of great concern. Querying their view was done in hopes to retrieve further 

error use cases, provide a good overview of the opinions of the development community towards SAST 

tools in general and as a way to let the community participate in the development requirements of a SAST 

tool with machine-learning support. Therefore, an online survey was designed and conducted to collect 

their opinions and possible requirements for a SAST tool with machine-learning support. As the survey was 

intended to extend the results from the expert interviews it was based on the questions which were defined 

in Section 5.1. All the questions can be found in the appendix. 

6.1 Platform 

The online survey was hosted on the platform SoSci Survey4. This platform was chosen as it is compliant 

with the general data protection regulation (GDPR) and was also approved by a company data 

protection officer. With the help of a data protection offer, a data protection declaration in the English and 

German language was prepared. To participate in the survey, the participants needed to approve the data 

protection declaration. Otherwise, they could not participate. 

6.2 Participants 

The survey was distributed among several European companies and a research institute. The candidates 

were selected based on their focus of work which deals with C and C++ software development. The 

different targets could be grouped into the following categories: 

• automotive industry 

• electrical industry 

• software development 

• security analysis 

The contacts to these companies as well as research institutes were provided by the authors of this study 

and through the BSI. Besides addressing possible candidates directly, other people were also able to 

participate in the survey. It was openly accessible, and there were no restrictions imposed on the 

participants. 

6.3 Questionnaire 

The questionnaire was based on four anchor questions and the 18 questions defined in Section 5. It was 

designed to be completable within half an hour but could be paused and finished at a later point in time. 

The participants were able to complete the survey either in German or in English. The participants were 

asked to answer the questions as closely as possible. The questions were either yes-no, scale, selection, or 

free questions. At the end of the survey, the participants were also asked if they would be available for a 

personal interview. The complete survey can be found in the appendix. In the following, the four main 

categories of the survey are described. 

General Questions: The questionnaire starts with a part requesting a self-assessment of their experience 

in C/C++ software development and their experience with security in the context of C/C++ 

development. Furthermore, the occupational field and the used C/C++ versions were queried. The 

personal usage, as well as the usage preference of other teams was queried. 

 
4https://www.soscisurvey.de/ 
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SAST tools: In the following section, the participants were asked for their usage of SAST tools for C/C++ as 

well as for other programming languages. The participants were also asked to specify useful SAST 

tools for C/C++ using a selection list and a free text input. The section then completes with 

questions regarding the advantages and problems of SAST tools. Specifically with questions 

asking for error use cases that SAST tools can easily detect and error use cases that a SAST cannot 

easily detect. 

SAST tools and ML: This section starts with asking for their experience regarding machine learning and 

the corresponding subject areas. This is followed by a personal assessment of the value machine 

learning might bring to static code analysis and then asks for specific use-cases of machine 

learning in static code analysis. The participants were also asked if they knew of any SAST tool 

with machine learning functionality. 

Feedback: The questionnaire concluded with a text field for further comments concerning the topic. 

Furthermore, the participants could also express their interest in further contributing to the study 

in an “expert interview”. 

6.4 Results 

Due to the low completion rate of the survey, the results and statements, presented in the following, should 

be taken with caution. Nevertheless, they are presented to illustrate parts of the current opinion and some 

interesting statements from the development community. The focus is on consistency and inconsistency of 

the statements within the survey as well as between the survey and the expert interviews. 

The survey was available from March 2021 until June 2021. There were 527 visits to the survey (including 

accidental double-clicks, as well as clicks from search engines). 59 participants completed the captcha, but 

only 26 participants agreed to the data protection policy. Therefore, only 19 participants completed the 

survey. The results described in the following are based on the participants that completed the survey. 

Since it was not possible to retrieve enough responses, some questions were left out from the analysis. 

These questions queried the personal experience of the participants in the programming language C and 

their experience concerning security of C code. A question asking for the field of application of the 

programming language C was also left out. These questions were formulated to categorize the answers 

according to the reported categories and detect differences within these groups. 

6.4.1 C/C++ Versions 

In the beginning of the survey the participants were asked to rate their experience in C/C++ and their 

experience with security regarding C/C++. Following this self-assessment, the participants were asked to 

rate the usage of different C and C++ versions personally as well as for collaborating teams. The 

participants were able to rate their usage preference for multiple versions as well as for both programming 

languages. Regarding the C version, which is used personally, the participants mostly selected C99, followed 

by C11, while they did not report on C17 at all. For the C version used by other teams, the picture is similar: 

C99 was selected the most. The second most-often selected C version was C11, while C17 was only 

mentioned twice to be used by other collaborating teams, see Figure 13. 

A clear picture of the most used C++ version could not be drawn from the answers to the survey. Figure 14 

shows the usage preference for C++ versions. Older, as well as newer C++ versions, were used in personal 

and in collaborating projects. 
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Figure 13 Usage preference of the different C versions. The used C version in personal projects is shown on the left 

side, while the right side shows the used C version in collaborating teams. 

Figure 14 Usage preference of the different C++ versions. The used C++ version in personal projects is shown on the 

left side, while the right side shows the used C++ version in collaborating teams. 

6.4.2 SAST Tools 

When the participants were asked to report the advantages and disadvantages of SAST tools, they 

responded with the following statements. 

Concerning the advantages of SAST tools, the participants listed the following points. 

• They can scan large codebases systematically. 

• A SAST tool makes the source code more readable and maintainable. It also prevents the usage of 

complex language constructs. 

• SAST tools can be integrated into the development process. 

• They provide valuable hints for the user. 

• Regarding the disadvantages of SAST tools, the participants mentioned the following points. 

• As SAST Tools use approximation, they produce many false positives. 

• Expert knowledge is needed to classify the reported errors. 

• If the users of SAST tools have too little time and knowledge they might discard detected errors and 

warnings. This comfort/ease might lead the users to even further discard detected errors and 

warnings and thus the use of the tool becomes pointless. 

These points support the findings from the expert interviews. Furthermore, one participant stated that 

such tools are not always compatible with the newest IDE or C/C++ version. 
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6.4.3 Input Format for Rules for SAST tools 

The participants responded to the question about the format for rules of SAST tools with similar examples 

as the participants of the expert interviews. Human and machine-readable formats like xml and json as well 

as plain source code were mentioned. Two examples for the use of source code as rules were also given. 

C++ source code can be used to define rules for the tool PreFast. Another participant also mentioned that 

rules can be defined in the form of C# source code for a not named tool. Similarly, to the formulation of 

rules in the form of a query language for the tool joern.io – mentioned by one participant of the expert 

interviews – this was also mentioned to be the case for the tool CodeQL. Concerning the input options of the 

rules the participants mentioned to use command line arguments and the user interface of such tools. 

6.4.4 Error Use Cases 

The participants were asked to illustrate easy and challenging to detect error use cases. The answers 

showed similarities and dissimilarities within the survey as well as to the statements from the expert 

interviews. First, similar statements are illustrated. Buffer overflows were mentioned by two participants 

of the survey as well as one interview partner from the expert interviews to be easily detectable. A buffer 

overflow is an error in which data is written outside the boundary of a buffer. The error use case void 

pointer was mentioned by one survey participant as well as one participant of the expert interviews to be 

difficult to detect by a SAST tool. A void pointer is a pointer with an undetermined data type. This pointer 

needs to be cast to its respective data type. More information on void pointers and buffer overflows can be 

found in Chapter 7. 

Apart from these similar opinions, there were also two notable dissimilarities in the statements. First, two 

survey participants reported that use after free errors should be easily detectable, while a participant from 

the expert interviews classified this error type as difficult to detect for a SAST tool. Use after free errors 

arise from dangling pointers. A dangling pointer is a pointer pointing to a memory location that has been 

released of its original data. If new data is now stored at this memory location and used through the 

pointer, the underlying program receives invalid data, and thus unwanted results might be produced. For a 

more detailed explanation, see Chapter 7. 

Second, another dissimilarity that emerged was the error use case TOCTOU (time of check time of use). A 

time of check time of use error arises in the following way. A program first checks if a user has access to 

write to a certain file. After the check, the program opens the file and writes to it. An attacker might 

interfere by making a symbolic link from a user-controlled file to '/etc/passwd'. If this is precisely timed, 

the attacker might be able to overwrite the system password database and thus provoke a privilege 

escalation. One survey participant classified this to be easily detectable while one participant from the 

expert interviews classified it as difficult to detect. How this discrepancy arises is unclear. TOCTOU errors 

can be grouped in the category concurrency errors. Knowledge about the order of execution is needed, 

which is not present in a static analysis but in a dynamic analysis, to detect concurrency errors. 

Concerning the formats for error use cases the participants reported several different formats. CVEs, CWEs, 

source code snippets and SARIF5 (static analysis interchange format). The responses CVE and CWE seem 

reasonable in response to this question as they both follow a defined scheme and thus could be used as a 

format for error use cases. The answer source code and SARIF on the other hand do not really fit for an 

error use case format. The term source code is very general and therefore is not suited for a general format 

for error use cases. Also, the response SARIF does not fit well as it is an open standard for the output of 

SAST tools to compare results across different tools. The standard was proposed by GrammaTech6 and 

adopted by OASIS7 (Organization for the Advancement of Structured Information Standards). 

 
5 https://docs.oasis-open.org/sarif/sarif/v2.0/sarif-v2.0.html 
6https://blogs.grammatech.com/using-sarif-to-extend-analysis-of-sast-tools 
7https://www.oasis-open.org/ 
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6.4.5 ML and SAST Tools 

In the end of the online survey the participants were asked to provide requirements for a SAST tool with 

machine learning support. The responses coincided with responses that were given in the expert 

interviews. Both sides noted that such a tool should have a high true positive rate while having a low false 

positive rate and low false negative rate. Furthermore, they emphasized on the fact that such a tool should 

be fast (“run almost in real-time”) and efficient to use. Another requirement mentioned in the survey and in 

expert interviews was the ability to detect real-world errors and not just artificial errors. One of the survey 

participants stated that the tool's scope should be clear to everyone using it, and it should be customizable. 

If this is not fulfilled, the tool would be useless. 
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7 Elicitation and Explanation of Error Use Cases with 
Descriptions 

ML SAST tools should provide functionality that goes beyond current SAST technology. One important 

aspect is to elicit error use cases that are often difficult to handle by current SAST tools. In this section, 

some of such error use cases are presented. These use cases have been identified during the interviews, but 

also by means of searching the literature and the documentation of vulnerabilities. In particular, the 

common vulnerabilities and exposures list (CVE) was used, which systematically lists reported 

vulnerabilities of IT products. It was assumed that more recent vulnerabilities (in open-source software) 

could be a good starting point for the envisioned error use cases because otherwise, current SAST tools 

would already have detected them. 

As further possible sources for the identification of error use cases, the SEI CERT C Coding Standard8, 

books on SAST like “Secure Programming with Static Analysis” by Chess and West[2] as well as the 

common weakness enumeration (CWE)9 were considered. The CWE is a hierarchy of common types of 

weaknesses in software and hence gives a taxonomic view of software vulnerabilities. The vulnerabilities 

are organized in a hierarchical order that groups them based on their properties. 

Subsequently, some error uses cases that have been elicited during the study (e.g., expert interviews and an 

online survey as well as the literature review) are briefly described. At the beginning of each problem 

description, a reference to one or more CWE entries is provided in the highlighted boxes shown below. 

Here, each CWE class is referenced by its unique ID as well as that of its base class, denoted in brackets. The 

base classes will be referenced again later in the ensuing chapters. CWE entries are closely related to the 

described error use case. The relationship to CWE entries will also become apparent when the results of the 

literature mapping are discussed since, in several ML-SAST publications, CWE entries are directly 

referenced to describe the problem space, see Chapter 10. 

7.1 void* Pointers 

CWE-704 (CWE-664): Incorrect Type Conversion or Cast 

The software does not correctly convert an object, resource, or structure from one type to a different 

type. 

Pointers play a crucial role in software development with C/C ++. Pointers represent a reference to regions 
in the main memory. Since C/C ++ allows programming that is very close to the hardware and access to 
memory areas can take place unchecked (low-level programming), static code analysis is dependent on 
capturing the context. This topic is not intended to be exhaustively discussed in this context. It is just about 
conveying a basic understanding of how pointers work and what relevance they have in relation to a static 
code analysis supported by machine learning. In the following, a specific problem related to potentially 
unsafe usage of pointers and the problems SAST tool may have detecting such cases is discussed. 

C/C++ allows a developer to define pointers of void* type, i.e., it is valid to declare pointers of an 
undetermined data type, see Listing 2. 

Listing 2 Pointer declaration of undefined type in the C / C ++ programming languages. 

void *void_pointer = <memory address>; 

Void pointers, for example, are often used when memory areas are allocated dynamically with the C-

functions malloc and calloc. Due to the fact that these functions return memory regardless of the type 

of data to be stored, the return value types of malloc and calloc must be of the unspecific type void*. 

For example, the assignment depicted in Listing 3 reserves 1024 bytes dynamically in memory. 

 
8 https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard 
9 https://cwe.mitre.org/ 
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void *x = malloc(1024); 

Listing 3 Memory is allocated using the malloc function, which returns a pointer of undefined type. 

In C, however, it is not possible to directly access this allocated memory. One must first cast the pointer x to 

a specific type before using it, as shown in Listing 4. The same remarks would apply when char values are 

to be stored in dynamically allocated memory. 

Listing 4 The void pointer variable x from Listing 3 is casted into a pointer of the integer type before being assigned 

to y, as mandated by the C programming language. 

int *y = (int *) x; 

y[0] = 1; 

From this discussion, one can see which flexibility C/C++ brings with it and which problems may arise from 

this flexibility for static code analyses. It is difficult for a SAST tool to distinguish between a correct usage 

(as shown above) and a potentially dangerous case; void* references could in principle point to memory of 

any type. 

It should be noted that pointers are handled slightly different in C++. C++ makes available specific 

operators that support correct pointer usage. Furthermore, memory is usually requested in C++ with the 

new operator (rather than malloc()) and must be freed later with the delete operator (rather than 

free() as in C). The problem of using void* pointers, however, exists in both programming languages. 

7.2 Difficulty in Tracking Tainted Data 

CWE-707: Improper Neutralization 

The product does not ensure or incorrectly ensures that structured messages or data are well-

formed and that certain security properties are met before being read from an upstream component 

or sent to a downstream component. 

Often data that are under the control of an attacker – for example, through network or file access – are read 

into the internal data structures of a C program. Such tainted data are difficult to track through the 

program flow to security-critical sinks, such as, strcpy, strcat, memcpy, malloc, copy_from_user, 

or readlink. This taint tracking is particularly difficult if these tainted data are multiply copied into 

different internal structs, which are later processed in the program text through (multiple) dereferencing of 

pointers. 

The example of the Heartbleed bug, which commercial static analyzers could not find at that time, falls 

into this category. In the following, the problems with the static code analysis of such tainted data are 

explained and illustrated with the help of this Heartbleed bug. 

The Heartbleed bug occurred in the OpenSSL software in spring of 2014 (versions 1.0.1 to 1.0.1f). 

OpenSSL provides cryptographic services such as an implementation of the TLS protocol and is widely 

used in many software stacks (often under the hood without developers knowing). Furthermore, the 

Heartbleed bug is discussed in several scientific papers on static code analysis for C/C++ for motivating the 

corresponding approaches[36], [42], [60]. Due to its relevance and the inherent difficulty in detecting it, 

this bug will be discussed in more detail. 

The Heartbleed bug concerned the former heartbeat feature of OpenSSL’s TLS implementation, hence its 

name. The heartbeat feature is quite specific and helps to periodically check with a small chunk of data 

whether the connection between the communication client and the server is still alive. The description of 

the bug relies of that of Green[61]. For receiving the heartbeat message (in form of a record), the following 

data structure is used: 
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Listing 5 Structure used by OpenSSL upon the receival of a heartbeat message. 

typedef struct ssl3_record_st{ 
  /*r */  int type;                 /* type of record */ 
  /*rw*/  unsigned int length;      /* How many bytes available */ 
  /*r */  unsigned int off;         /* read/write offset into 'buf' */ 
  /*rw*/  unsigned char *data;      /* pointer to the record data */ 
  /*rw*/  unsigned char *input;     /* where the decode bytes are */ 
  /*r */  unsigned char *comp;      /* only used with decompression - malloc()ed */ 
  /*r */  unsigned long epoch;      /* epoch number, needed by DTLS1 */ 
  /*r */  unsigned char seq_num[8]; /* sequence number, needed by DTLS1 */ 
} SSL3_RECORD; 

Listing 6 The code section responsible for the Heartbleed bug. The affected lines are highlighted in bold letters. 

int dtls1_process_heartbeat(SSL *s) { 
  unsigned char *p = &s->s3->rrec.data[0], *pl; 
  unsigned short hbtype; 
  unsigned int payload; 
  unsigned int padding = 16; /* Use minimum padding */ 
/* Read type and payload length first */ 
  hbtype = *p++; 
  n2s(p, payload); 
  pl = p; 
 

  // do something with the payload 
  if(s->msg_callback) 
    s->msg_callback(0, s->version, TLS1_RT_HEARTBEAT, 
                        &s->s3->rrec.data[0], s->s3->rrec.length, s, 
                        s->msg_callback_arg); 
 

  if(hbtype == TLS1_HB_REQUEST) { 
    unsigned char *buffer, *bp; 
    int r; 
 

    /* Allocate memory for the response, size is 1 byte message type,  

     * plus 2 bytes payload length, plus payload, plus padding 

     */ 
    buffer = OPENSSL_malloc(1 + 2 + payload + padding); 
    //allocate all that memory without any checks 
    bp = buffer; 
    /* Enter response type, length and copy payload */ 
    *bp++ = TLS1_HB_RESPONSE; 
    s2n(payload, bp); 
    memcpy(bp, pl, payload); 
    bp += payload; 
    /* Random padding */ 
    RAND_pseudo_bytes(bp, padding); 
    r = dtls1_write_bytes(s, TLS1_RT_HEARTBEAT, buffer, 3 + payload + 
                            padding); 
    // send the response back, even the stuff the attacker wasn't supposed 
    // to see 
    if (r >= 0 && s->msg_callback) 
      s->msg_callback(1, s->version, TLS1_RT_HEARTBEAT, 
                        buffer, 3 + payload + padding, 
                        s, s->msg_callback_arg); 
    OPENSSL_free(buffer); 
    if (r tlsext_hb_seq){ 
      dtls1_stop_timer(s); 
      s->tlsext_hb_seq++; 
      s->tlsext_hb_pending = 0; 
    } 
  } 
  return 0; 
} 



7 Elicitation and Explanation of Error Use Cases with Descriptions 

Federal Office for Information Security 45 

A static analysis must recognize that the data entry in struct SSL3_RECORD is under the control of an 

attacker; a manual code review could use the comment /* pointer to the record data */ to 

understand this relation. A static analysis, however, does not have access to this information. 

The data that have been read from the network then flow into the function dtls1_process_heartbeat 

via the pointer s as shown in Listing 6, which presents the code vulnerable to the Heartbleed bug. 

The analysis must then conclude that unsigned char *p = &s->s3->rrec.data[0] uses tainted 

data (considering the double dereference s->s3->rrec.data). On calling the macro n2s(p, 

payload), the length of the data to be replayed in the heartbeat response by the server is stored in the 

variable payload. This variable must then be marked “tainted” by a static analysis tool. Finally, payload 

is used in the following call (critical sink): 

memcpy(bp, pl, payload); 

Then an attacker can control the length of the data that memcpy writes from buffer pl in buffer bp (please 

note that the third parameter of memcpy: 

void *memcpy(void *dest, const void *src, size_t count) 

is the number of the bytes to be copied). Because of this read overflow, an attacker can read sensitive data 

from the server’s main memory, such as TLS master secrets or private keys, and let them send back to her 

via the call: 

s->msg_callback(1, s->version, TLS1_RT_HEARTBEAT, buffer, 

                    3 + payload + padding, s,  

                    s->msg_callback_arg); 

7.3 Integer Overflows Related to Tainted Data 

CWE-190 (CWE-682): Integer Overflow or Wraparound 

The software performs a calculation that can produce an integer overflow or wraparound, when the 
logic assumes that the resulting value will always be larger than the original value. This can introduce 
other weaknesses when the calculation is used for resource management or execution control. 

Integer overflows can be induced by data that are under the control of an attacker (tainted data). The 

following example code, stemming from a paper by Yamaguchi et al., illustrates the problem[36]: 

Listing 7 Exemplary code segment, illustrating an integer overflow vulnerability [36]. 

if (channelp) { 
  /* set signal name (without SIG prefix) */ 
  uint32_t namelen = _libssh2_ntohu32(data + 9 + sizeof("exit-signal")); 
  channelp->exit_signal = LIBSSH2_ALLOC(session, namelen + 1); 
 

  // [...] 
 

  memcpy(channelp->exit_signal, data + 13 + sizeof("exit_signal"), 

namelen); 
  channelp->exit_signal[namelen] = ’\0’; 
} 

Using the function call libssh2_ntohu32() the variable namelen is written and at the same time under 

external control. With the help of the call: 

channelp->exit_signal = LIBSSH2_ALLOC(session, namelen + 1); 

the memory for the variable channel->exit_signal is allocated on the heap, namely, of the size 

namelen + 1 bytes. If an attacker now assigns the largest numerical value to this 32-bit-wide variable 

namelen can hold (from now on referred to as UINT_MAX), then, an integer overflow occurs such that 

namelen + 1 evaluates to the value 0. This means that zero bytes are allocated. At the same time, the 

memcpy() call: 
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memcpy(channelp->exit_signal, data + 13 + sizeof("exit_signal"), namelen); 

copies UINT_MAX bytes into the heap location channelp->exit_signal, which obviously leads to a 

heap memory overflow as only zero bytes have been allocated. It is crucial for this kind of error that 

memory is allocated by an integer variable that is under external control. 

7.4 Array Boundary Errors 

CWE-190 (CWE-664): Improper Restriction of Operations within the Bounds of a Memory Buffer 

The software performs operations on a memory buffer, but it can read from or write to a memory 

location that is outside of the intended boundary of the buffer. 

Array boundary errors occur when accesses take place outside the allocated area of the array. If an 

attacker succeeds in controlling array indices, then it is possible for him to read or write to memory areas 

outside the array, depending on the vulnerable software. 

Listing 8 An out of bounds error in Qualcomm WiFi driver Qcald-2.0. The critical code sections are marked bold. 

bool WDA_TxPacket(void * wma_context, void * tx_frame, eFrameType frmType, 
                  tpPESession psessionEntry) { 
  tp_wma_handle wma_handle = (tp_wma_handle)(wma_context); 
  int32_t is_high_latency; 
  u_int8_t downld_comp_required = 0; 
  tpAniSirGlobal pMac; 
  ol_txrx_vdev_handle txrx_vdev; 
  u_int8_t vdev_id = psessionEntry->smeSessionId; 
 

  if (NULL == wma_handle) { 
    printf (" wma_handle is NULL \n "); 
    return false; 
  } 
  pMac = (tpAniSirGlobal) vos_get_context(VOS_MOD_ID_PE,  
            wma_context->vos_context); 
 

  if(!pMac) return false; 
  if(frmType >= HAL_TXRX_FRM_MAX) return false; 
  if(!((frmType == HAL_TXRX_FRM_802_11_MGMT) || 
       (frmType == HAL_TXRX_FRM_802_11_DATA))) 
    return false; 
  txrx_vdev = wma_handle->inaterfaces[vdev_id].handle; 
  if(!txrx_vdev) return false; 
  if(frmType == HAL_TXRX_FRM_802_11_DATA) { 
      adf_nbuf_t skb = (adf_nbuf_t) tx_frame ; 
    adf_nbuf_t ret = ol_tx_non_std(txrx_vdev, ol_tx_spec_no_free, skb); 
 

    if(ret) { 
      // do something 
    } 
 

    is_high_latency = wdi_out_cfg_is_high_latency( 
                            txrx_vdev->pdev->ctrl_pdev); 
    downld_comp_required = is_high_latency && tx_frm_ota_comp_cb; 
  } 
 

  if(downld_comp_required) { 
    // do something 
  } 
 

  return true; 
} 
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Xiao et al. discuss a typical and more complex array bounds error of the Qualcomm WiFi driver Qcald-2.0, 

which is also installed on Android devices[62] (see Listing 8, with the critical code lines marked bold). 

The function WDA_TxPacket has a fourth parameter tpPESession, which points to session information. 

The session ID, being accessible via psessionEntry->smeSessionId, may be under control of an 

attacker. Consequently, this attacker can also control the index of the array access wma_handle-> 

interfaces[vdev_id]. The variable txrx_vdev, which is subsequently used in the code, may be 

undefined. 

A static analysis must conclude that (1) psessionEntry->smeSessionId is under control of an 

attacker (i.e., it is tainted), (2) no additional security check is performed on this data (“sanitization“) and 

(3) wma_handle->interfaces[vdev_id] is the critical array access. Only conservatively marking 

array accesses is not a solution because then the false-positive rate would become excessively high – a 

useful static analysis must be as precise as possible. 

The problem might become even more complex if integer arithmetic is involved in accessing arrays as also 

discussed in the conducted expert interviews. Here, one of the interviewees gave the following example of 

vulnerable code that is usually hard to detect for static code analyzers: 

Listing 9 Code example comprising an out of bounds memory access vulnerability that according to one of the 

interviewees from the expert interviews in Section 5 is hard to detect using SAST tools. 

void main() { 

   int *s = malloc (300000); 

   if (s != 0) { 

     s[25] = 3; 

     for (int i = 0; i < 600; i++) { 

       s[i*i] = 5; 

     } 

     s[360000] = 10; 

   } 

} 

In this code excerpt, two lines are marked bold that contain array out of bounds errors. The second one 

s[360000] = 10; can in principle be detected using techniques like constant propagation, i.e., to 

calculate constant expressions statically at compile or analysis time. Despite being theoretically feasible, 

some tools seem to have problems even with this code. The second example is hard to identify for static 

code analysis because it involves integer arithmetic, in this case i*i for the array access. Then the analysis 

must be able to conclude that this expression can assume values larger than the array size. This means it 

must calculate the possible values of i*i and in particular its limits. Such analyses are possible in some 

specific case but are in general beyond current static code analysis technology. 

7.5 Null Pointer Access 

CWE-476 (CWE-710): NULL Pointer Dereference 

A NULL pointer dereference occurs when the application dereferences a pointer that it expects to be 

valid, but is NULL, typically causing a crash or exit. 

Listing 10 Exemplary code snippet, depicting a null pointer dereference. 

int cifs_close(struct inode *inode, struct file *file) { 

  cifsFileInfo_put(file->private_data); 

  file->private_data = NULL; 

 

  /* return code from the ->release op is always ignored */ 

  return 0;  

} 
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Null pointer accesses, i.e., the dereferencing of null pointers, are another common class of security holes 

in C/C ++ code. The following vulnerability manifesting in the Linux kernel illustrates this problem, see 

Listing 10[62]. 

In this specific case file->private_data can be null and at the same time might be under control of an 

attacker. The statement cifsFileInfo_put(file->private_data) then uses file-> 

private_data without any null pointer check. 

In contrast, the following example from the same code base is a false positive[62]: 

Listing 11 A similar, but non-vulnerable example showcasing a pointer dereference. 

static int ubifs_dir_release (struct inode *dir, struct file *file){ 

  kfree(file -> private_data);  

  file->private_data = NULL;  

  return 0;  

} 

The program code in Listing 11 looks similar to the erroneous code shown above. The API call kfree() 

itself, however, already comprises null pointer checks. 

7.6 Format String Errors (With Tainted Data) 

CWE-134 (CWE-664): Use of Externally-Controlled Format String 

The software uses a function that accepts a format string as an argument, but the format string 

originates from an external source. 

C functions such as printf, sprintf or vsprintf expect, among other things, a format string as a 

parameter that formats the input according to the format string specification. It is problematic if the format 

string is not transferred as a constant and is at least partially made up of input data. Chess and West give 

the following example (FTP daemon wuftp)[2]: 

Listing 12 A code sample containing a format string vulnerability that may be triggered through tainted data. 

while(fgets(buf, sizeof buf, f) { 

  lreply(200, buf); 

} 

 

 

void lreply(int n, char *fmt, …) { 

  char buf[BUFSIZ]; 

 

  // [...] 

 

  vsnprintf(buf, sizeof buf, fmt, ap); 

} 

The format string fmt used in the statement vsnprintf(buf, sizeof buf, fmt, ap) is assumed 

to be under the control of an attacker. Then she can manipulate memory areas in the context of the call 

stack of vsnprintf with a cleverly crafted definition of the format string and the input to vsnprinf[63]. 

Chess and West propose several rules to define format strings more securely[2]. Basically, format strings 

should be constant. If this is not possible, then one should select from a set of predefined format strings and 

if that again is not possible, then the input for the format string should be checked more thoroughly. 

Concerning this kind of error use case, an ML-based approach could learn benign behavior of format 

strings. 
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7.7 String Termination Errors 

CWE-170 (CWE-707): Improper Null Termination 

The software does not terminate or incorrectly terminates a string or array with a null character or 

equivalent terminator. 

Another class of typical C /C ++ problems are string termination errors. The following example shows the 

problem[2]: 

Listing 13 Example of a string termination vulnerability. 

void badReadlink1(char *path) { 

  char buf[PATH_MAX]; 

  int ret = readlink(path, buf, PATH_MAX); 

  printf(”file is: %s\n”, buf);  

} 

The C function readlink, which returns the actual file name of a symbolic link in the variable buf, does 

not use null termination, i.e., buf is not null-terminated. If it will be used later, e.g., as a parameter of 

strcpy or strcat, a buffer overflow is possible if no additional checks are performed. 

7.8 Missing Security Checks for Critical Operations 

CWE-693: Protection Mechanism Failure 

The product does not use or incorrectly uses a protection mechanism that provides sufficient 

defense against directed attacks against the product. 

Often isolated security checks are missing in the code, which are supposed to safeguard security-critical 

operations. These can be authorization checks, but also conditions under which critical C APIs, such as 

malloc, strcpy and memcpy, may be called. 

The following example (taken from the paper by Yamaguchi et al.) explains the point, see Listing 14 [64]: 

Listing 14 Example of a critical operation that must be guarded by a number of security checks. 

int foo(char *user, char *str, size_t n) { 

  char buf[BUF_SIZE], *ar; 

  size_t len = strlen(str); 

 

  if(!is_privileged(user)) return ERROR; 

  if(len >= BUF_SIZE) return ERROR; 

 

  memcpy(buf, str, len); 

  ar = malloc(n); 

 

  if(!ar) return ERROR; 

 

  return process(ar, buf, len);  

} 

Each of the if conditions that are marked bold represents a security-relevant check. The first one is an 

authorization check, the second one checks the string length needed for the memcpy() call, and the third 

check ensures that no null pointer is used in the succeeding call of the process() function. If one of these 

checks is missing, security problems may arise later in the program. 
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7.9 Unsafe Use of Random Number Generators 

CWE-338 (CWE-330): Use of Cryptographically Weak Pseudo-Random Number Generator (PRNG) 

The product uses a Pseudo-Random Number Generator (PRNG) in a security context, but the PRNG's 

algorithm is not cryptographically strong. 

A typical problem in C code (often e.g., occurring in IoT system software) is the insecure use of random 

number generators for cryptographic operations (e.g., for generating keys, initialization vectors and 

nonces). The following problems can appear when cryptographic randomness is needed: 

• An insecure random number generator is used, such as rand, srand, srand48, drand48, 

lrand48, random, and srandom. 

• The cryptographic random number generator is seeded with too low entropy. 

• Bad entropy sources are employed. 

Static analysis often tends to flag the use of the aforementioned insecure random number generator API 

calls unconditionally. However, there are many situations in which no cryptographically strong 

randomness is needed – e.g., if a user interface element is to be displayed randomly. Many false positives 

are produced by this conservative approach of static analyzers such that the analysis might be too 

imprecise here. 

ML-based approaches could help to learn whether randomness is used in a security-critical context or not. 

In addition, ML could be applied to learn if adequate entropy sources are used. 

7.10 Information Flow Through Uncleared Main Memory Data 
Structures 

CWE-226 (CWE-664): Sensitive Information in Resource Not Removed Before Reuse 

The product releases a resource such as memory or a file so that it can be made available for reuse, 

but it does not clear or "zeroize" the information contained in the resource before the product 

performs a critical state transition or makes the resource available for reuse by other entities. 

Security-critical data, such as encryption keys or credentials, must be cleared from main memory 

when a new value is assigned to such a variable. Otherwise, sensitive information may be leaked to an 

attacker. The following example, taken from a publication by Ahmadi et al.[65] demonstrates this problem, 

see Listing 15: 

Listing 15 Exemplary code section depicting a data structure containing confidential information. By mistake, the 

fields have not been cleared before being assigned a new value. 

// Missing ‘OPENSSL_clear_free’ 

ec−>key = key; 

ec−>keylen = keylen; 

In the OpenSSL library, the array ec−>key is not cleared before the new value key is assigned, i.e., the call 

OPENSSL_clear_free() is missing. Usually, it is not easy to detect such problems because a static 

analysis must find out that those variables are security-critical and contain sensitive information. 

7.11 Insecure Origin of Cryptographic Keys and Initialization Vectors 

CWE-1204 (CWE-664): Generation of Weak Initialization Vector (IV) 

The product uses a cryptographic primitive that uses an Initialization Vector (IV), but the product 

does not generate IVs that are sufficiently unpredictable or unique according to the expected 

cryptographic requirements for that primitive. 
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CWE-321 (CWE-693): Use of Hard-coded Cryptographic Key 

The use of a hard-coded cryptographic key significantly increases the possibility that encrypted data 

may be recovered. 

When encryption is used, the question of the origin of the key or the source of the key material often 

arises. The following code example, taken from the Wiki of the OpenSSL library, demonstrates the 

problem10: 

Listing 16 A code section, containing cryptographic operations that have not been initialized properly as the IV and 

symmetric key are hard coded. 

int main (void) { 
  /* A 256 bit key */ 
  unsigned char *key = (unsigned char *)"01234567890123456789012345678901"; 
  /* A 128 bit IV */ 
  unsigned char *iv = (unsigned char *)"0123456789012345"; 
  /* Message to be encrypted */ 
  unsigned char *plaintext = (unsigned char *)"The quick brown fox jumps 

over the lazy dog"; 
 

  /* 
   * Buffer for ciphertext. Ensure the buffer is long enough for the 

   * ciphertext which may be longer than the plaintext, depending on the 

   * algorithm and mode. 

   */ 
  unsigned char ciphertext[128]; 
  /* Buffer for the decrypted text */ 
  unsigned char decryptedtext[128]; 
  int decryptedtext_len, ciphertext_len; 
 

  /* Encrypt the plaintext */ 
  ciphertext_len = encrypt(plaintext, strlen ((char *)plaintext), key, iv, 

ciphertext); 
  /* Do something useful with the ciphertext here */ 
  printf("Ciphertext is:\n"); 
  BIO_dump_fp (stdout, (const char *)ciphertext, ciphertext_len); 
  /* Decrypt the ciphertext */ 
  decryptedtext_len = decrypt(ciphertext, ciphertext_len, key, iv, 

decryptedtext);  
   

  /* Add a NULL terminator. We are expecting printable text */ 
  decryptedtext[decryptedtext_len] = '\0'; 
  /* Show the decrypted text */ 
  printf("Decrypted text is:\n"); 
  printf("%s\n", decryptedtext); 
 

  return 0; 
} 

The call 

encrypt(plaintext, strlen ((char *)plaintext), key, iv, ciphertext) 

uses a hard-coded symmetric key and initialization vector (IV), see the first two bold lines. Even if this 

case is simple, it is generally difficult for static code analyses to trace back the origins of keys and IVs, 

specifically, if keys and IVs are generated in a different part of the code and a sophisticated inter-procedural 

static analysis is necessary. 

 
10 https://wiki.openssl.org/index.php/EVP_Symmetric_Encryption_and_Decryption 
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7.12 Reuse of Initialization Vectors for Specific Operating Modes of 
Block Ciphers 

CWE-1204 (CWE-664): Generation of Weak Initialization Vector (IV) 

The product uses a cryptographic primitive that uses an Initialization Vector (IV), but the product 

does not generate IVs that are sufficiently unpredictable or unique according to the expected 

cryptographic requirements for that primitive. 

Encryption modes that simulate stream ciphers, such as CTR, GCM, CFB, and OFB, must ensure that the 

initialization vector IV is not used more than once to generate the keystream. In this case, an attacker who 

has the plaintext and the ciphertext could reconstruct the keystream and decrypt further messages[66]. 

A static program analysis would have to reconstruct the IV generation and recognize that the IV is always 

freshly generated. 

7.13 Memory Leaks 

CWE-401 (CWE-664): Missing Release of Memory after Effective Lifetime 

The software does not sufficiently track and release allocated memory after it has been used, which 

slowly consumes remaining memory. 

Memory can be requested (allocated) dynamically at runtime and released again. For this, the functions 

malloc (for a certain number of bytes) or calloc (for an array of elements of a certain size) for allocation 

and free for memory release are available in C. In C ++, however, new and delete are used. 

It is the responsibility of the developer to release the requested memory areas after they have been used. If 

this does not happen, the available memory becomes scarce over time. Unreleased memory is known as a 

memory leak. In extreme cases, this can lead to the failure of the software used or even the entire system 

(out of memory error - OOM). 

How can memory leaks be found? Automatic garbage collection (GC) is available in many languages, and 

there are also libraries for C/C ++. However, this GC can easily be bypassed, and in certain system-related 

areas it even has to be. 

In C++, the use of smart pointers, which has been around since the first half of the 1990s, provides 

protection against memory leaks. Allocated memory is automatically released when there is no one left 

who can access it. Intelligent pointers can also alleviate the problem of dangling pointers as they prevent 

the memory from being released until an object is no longer used. 

In the course of time, various C++ standards have introduced new linguistic constructs with which 

intelligent pointers can be used (std::shared_ptr, std::make_shared, std::unique_ptr, 

std::make_unique), and it is strongly recommended that these are preferred to the keyword new in as 

many situations as possible. The use of new could be found through static code analysis, whereby ML could 

possibly provide support with the evaluation. 

Another approach is to check the source code for formal correctness. When developing complex software, 

this option is certainly more of theoretical nature as it is very time-consuming and requires extensive 

expert knowledge. 

The possibly incorrect manual management of the memory can be determined with suitable tools at 

runtime. With tools like memcheck from Valgrind, it is possible to detect memory leaks in a running 

program, but this results in serious performance losses (typically losses of around 80%). 

In the area of static code analysis, different tools try to address this problem. For example, Cppcheck claims 

to be able to detect memory leaks in program code. In certain situations, static code analysis can have 
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advantages over graphs made up of references and memory areas, e.g., if it can be seen that allocated 

memory areas are never accessed for reading. 

7.14 Dangling Pointers – Use-After-Free 

CWE-825 (CWE-664): Expired Pointer Dereference 

The program dereferences a pointer that contains a location for memory that was previously valid, 

but is no longer valid. 

CWE-416 (CWE-664): Use After Free 

Referencing memory after it has been freed can cause a program to crash, use unexpected values, or 

execute code. 

As already mentioned, manual memory management in C / C ++ also leads to further problems. Pointers 

that have never been initialized or that point to memory that has already been released. The resulting 

behavior is unpredictable. It is possible that when an invalid pointer is accessed in this way, not even a 

runtime error occurs because the memory has not actually been released by the runtime system. However, 

it is also possible that the memory has already been assigned to the same process again, but in a different 

context. If the memory is no longer allocated to the process when it is accessed and a runtime error occurs 

due to a protection violation (access violation), a (user space) program is usually terminated. However, if 

such errors occur in the kernel context, this can affect the operating system. Due to this unpredictability, 

such errors are often not reproducible, and their cause is accordingly difficult to identify. 

Not only do they affect the stability of software and the operating system, but they also lead to security 

gaps, as they can be exploited by attackers. Therefore, there is an entry in the Common Weakness 

Enumeration (CWE), namely CWE-416[67], for the problems of the dangling pointers and the use-after-

free. 

The following examples show a dangling pointer and a use-after-free in the context of a C program and a 

C++ program: 

Listing 17 A section of a C program, demonstrating the problematic nature of dangling pointers. 

int main(void) { 

   int* a; 

   /* allocate memory. */ 

   a = malloc(sizeof(int)); 

   *a = 10; 

   /* … */ 

   free(a); 

   /* … */ 

   *a = 20; 

} 

Listing 18 Another example depicting the access of a dangling pointer. This time in the C++ programming language. 

int main(void) { 

   int *intPointer = new int; 

   *intPointer = 10; 

   /* … */ 

   delete intPointer; 

   /* … */ 

   *intPointer = 20; 

   return 0; 

} 

Here, too, the occurrence of these errors can be detected during runtime with tools such as memcheck from 

Valgrind. Finding it by means of a static code analysis is inherently difficult since the failure to initialize a 
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pointer or the release of allocated memory can be located in the code at a point that is far away from the 

use of this pointer. 

The fact that the value of a pointer can be assigned to another pointer (alias) also makes traceability more 

difficult, see Listing 19: 

Listing 19 Lastly, dangling pointers may be hard to detect, as they may be masked through aliasing. 

int *p, *q; 

p = malloc(sizeof(int)); 

q = p; 

free(p); 

/* From here on p and q are dangling pointers. */ 

/* Every access to q is a Use After Free */ 

As already described, newer C++ standards with the use of smart pointers offer a means of mitigating the 

dangling pointers, since they make it possible to prevent memory release until an object is no longer used. 

A static analysis approach for C++ would therefore be to examine the occurrences of the keyword new 

more closely. 

In a paper from 2020, Kailong Zhu, Yuliang Lu and Hui Huang present a method for identifying security 

gaps caused by use-after-free[68]. However, this method is not applied to source code, but rather to binary 

code. 

7.15 Race Conditions 

CWE-362 (CWE-691): Concurrent Execution using Shared Resource with Improper Synchronization 

The program contains a code sequence that can run concurrently with other code, and the code 

sequence requires temporary, exclusive access to a shared resource, but a timing window exists in 

which the shared resource can be modified by another code sequence that is operating concurrently. 

CWE-366 (CWE-691): Race Condition within a Thread 

If two threads of execution use a resource simultaneously, there exists the possibility that resources 

may be used while invalid, in turn making the state of execution undefined. 

More complex concurrency problems via multithreading or shared memory are difficult to find with 

static program analyzes automatically, since concurrency would have to be modeled. The following code 

example, taken from the description of CWE-366, demonstrates the problem, see Listing 20 [69]: 

Listing 20 A code sample, showcasing the problems associated with concurrency. 

int foo = 0; 
int storenum(int num) { 
  static int counter = 0; 
  counter++; 
  if (num > foo) foo = num; 
  return foo;  
} 

The static int variable counter is modified here without any lock. In a multi-threading application this 

value would then be non-deterministic. A contrived static program analysis would have to model this kind 

of multi-threading, which is difficult to do. Graf introduces in his dissertation such an approach for Java[31]. 

7.16 Application-Specific Errors 

CWE-670 (CWE-691): Always-Incorrect Control Flow Implementation 

The code contains a control flow path that does not reflect the algorithm that the path is intended to 

implement, leading to incorrect behavior any time this path is navigated. 
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Logical errors are usually difficult to detect through static program analysis. An example of such a logical 

flaw is the known ShellShock vulnerability in the Bash shell (CVE-2014-6271). 

A largely unknown Bash feature is used here, in which function definitions are also allowed in environment 

variables (for the shell). These function definitions can then be exported from Bash to a Bash child process. 

The function definitions are initially only parsed and not executed. 

If one considers the following Bash function definition (anonymous function without name) in the 

environment variable testbug as shown in Listing 21 

Listing 21 Example shell script that triggers the so-called ShellShock vulnerability in affected versions of the Bash 

shell (CVE-2014-6271). 

testbug = () { :;}; echo VULNERABLE 

then the Bash shell first parses the definition () { :;}. At the same time, the subsequent Bash command 

echo VULNERABLE is executed. A remote attacker managing to infiltrate the environment variable, e.g., 

on a web server, may gain the ability to execute arbitrary commands or possibly even control over the 

server entirely. 

The fix of the aforementioned problem includes adding the following if statement in the corresponding 

function parse_and_execute: 

if((flags & SEVAL_FUNCDEF) && command->type != cm_function_def)... 

Listing 22 The fix in the C code of the Bash shell, for the so-called ShellShock vulnerability, depicted in Listing 21. 

This fix avoids that parsing of functions (flags & SEVAL_FUNCDEF) and executing commands 

(command->type != cm_function_def) are performed at the same time – this had led to the 

vulnerability mentioned above. Static analyses can hardly detect such application-specific security issues as 

this would require an advanced analysis to understand the application logic. 

7.17 Pointer Casts to Types with Stricter Alignment 

CWE-843 (CWE-664): Access of Resource Using Incompatible Type 

The program allocates or initializes a resource such as a pointer, object, or variable using one type, 

but it later accesses that resource using a type that is incompatible with the original type. 

The casting of pointers, either explicitly or via a void pointer, in pointers of a data type with a stricter 

alignment leads to undefined behavior according to the C-standard ISO-9899: 2011. Depending on the 

architecture, access to a memory area via such a pointer can lead to program crashes or loss of information. 

The following example illustrates the problem[70], see Listing 23: 

Listing 23 A code example, highlighting the problem of the potential loss of data, when a pointer is being casted into 

a datatype with stricter alignment. 

#include <assert.h> 

void func(void) { 
  char c = 'x'; 
  int *ip = (int *)&c; /* This can lose information */ 
  char *cp = (char *)ip; 
  /* Will fail on some conforming implementations */ 
  assert(cp == &c);  
} 
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8 Evaluation Criteria for ML-SAST Approaches 

As can be inferred from the expert interviews and from the online questionnaire in Chapters 5 and 6, 

evaluating the suitability of the individual solutions for ML-SAST involves two dimensions. Concerning the 

qualitative dimension, a criterion that was often named by the experts as well as the users was the ability to 

be able to explain why the tools predicted a given code section as vulnerable. In contrast to that, there is the 

quantitative dimension. Here one criterion frequently stated was that the tools should offer a low number of 

false alerts. Whereas the latter criterion may be easily expressed in numbers, the former cannot be 

expressed that way. It is possible, however, to address such qualitative attributes through principles. 

Based on the findings from the expert interviews and the online questionnaire, as well as the literature on 

the topic, this chapter explores different means for the evaluation of machine learning-based SAST 

solutions. As this study aims to provide a sound basis in the possible preparation of a concrete SAST tool 

based on ML technologies, it is important to investigate such evaluation devices, in order to provide the 

necessary guidance. 

8.1 Qualitative Criteria 

The interviews and the questionnaire in Chapters 5 and 6 have resulted in a number of qualitative criteria 

concerning ML-SAST solutions, deemed highly important by users and experts alike. Picking up on these 

demands, this section aims to unite and structure the individual statements by the experts and users, 

consulting the Ethics Guidelines For Trustworthy AI, provided by the Independent High-Level Expert Group 

(HLEG) on Artificial Intelligence of the European Commission[8]. 

8.1.1 Transparency 

The HLEG uses transparency as an umbrella term that comprises the three aspects of explainability, 

traceability and communication. 

Explainability refers to the ability to trace back and understand the process of how the model derived its 

prediction from a given input. Furthermore, the HLEG also states that the explainability not only 

involves these technical aspects, but also the human decisions involved. This, however, is out of 

the scope of this study so that whenever explainability is mentioned hereafter, it is purely 

referring to the aforementioned technical aspects. Examples where the decisions made by a model 

cannot be traced back are sometimes referred to as black-box AI[5], [8]. Emerging from a funding 

opportunity report by the DARPA, there also often are inherit tensions between the predictive 

performance of models and their explainability[71]. Due to the high complexity of such models, it 

is practically impossible to derive explanations over the entirety of the input space. For much 

more simple systems, however, it is possible to do so[72]. The criterion of explainability was 

mentioned multiple times by the users and in particular by the experts during the interviews and 

the online questionnaire. This may not come as much of a surprise since both groups also 

emphasized over- and underestimation of SAST tools as a major detriment, limiting their 

usefulness. Then, the situation is aggravated by the opaqueness of the tools. Not knowing as to 

why the tool detected a vulnerability, makes it hard for users tell real vulnerabilities apart from 

false alerts. If the tool then also shows a tendency to overestimate the likelihood of vulnerabilities, 

the users may be inclined to underestimate the likelihood of vulnerabilities, due to fatigue. 

Subsequently, real vulnerabilities may be accidentally dismissed as false alerts, directly affecting 

the security. The aspect of explainability and partial remedies to this end will be discussed in 

much more detail in the ensuing Chapters 11 and 12. 

Traceability, according to the HLEG, refers to everything in terms of data that influences the decisions the 

models make and directly benefits the explainability. This involves, for instance, the datasets used 

for training and the accompanying processes, or the algorithms employed to this end. These 

aspects must be well documented to enable post-mortem analysis in cases where the model 
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fails[8]. This was also mentioned by the users and experts, albeit often not directly. Regarding that 

matter one of the users stated the requirement: “That the developers can actually give a real 

explanation [sic] for how it works […]”. This highlights the importance of open-source software in 

the context of ML-SAST. However, such information is usually regarded as intellectual property by 

the developers of the tools and a highly reproducibility. 

Communication, while not entirely unimportant, is certainly not as significant in the context of ML-SAST, 

as explainability and traceability. This requirement demands that users must be informed of the 

fact that they interact with AI and not in fact a human agent. Furthermore and more importantly, 

the limitations and capabilities of the system must be clearly communicated to the user[8]. This 

requirement was also discussed during the questionnaire by one of the participants. Providing 

this kind of information is important for two reasons. First, if the users of ML-SAST solutions are 

not informed about their limitations and capabilities, they may not be able to determine usage 

scenarios, where the application of such tools is appropriate. This may result in frustration and a 

low acceptance of such tools. Secondly, if the users are unable to correctly assess the limitations of 

the ML-SAST tools, then they may overestimate their capabilities, which may directly impact 

security. 

8.1.2 Other Requirements 

Aside from the requirements outlined by the European HLEG on AI, there are also other qualitative metrics 

frequently discussed in the literature. 

Interpretability is often times referred to suggest that interpretability is the degree to which an observer 

can understand the cause of a decision[73]. It is sometimes used in reference to a stronger 

requirement than explainability. Whereas explainable models, or rather their predictions, may be 

explained using post-hoc methods, later discussed in Section 11.3, interpretable models 

themselves suffice for explaining its output[74]. There are few examples of algorithms that satisfy 

this definition. Examples comprise decision trees or sparse linear models for instance[75]. 

Robustness commonly refers to a model’s sensitivity towards small input changes that have drastic effects 

on the output and is often times difficult to determine as machine learning models are largely 

defined by their parameters, i.e., the weights and biases that are subject to an optimization 

algorithm. As a result of this, the characteristics of the model cannot be understood in its entirety, 

thus leaving the possibility of perturbations leading to unexpected predictions. In the context of 

ML-SAST, an adversarial user could intentionally try to leverage such perturbations in order to 

compromise the ability of a ML-based SAST tool to correctly detect vulnerabilities. For example, a 

vulnerability could be hidden from the tool through small syntactic changes, which do not affect 

the semantics however. An often-cited example by Goodfellow et al. from the domain of ML-based 

image recognition, illustrates the example. By adding miniscule amounts of noise to the input of a 

neural network-based image classifier, the authors were able to trick the model into 

misclassifying the image with very high confidence. 

As can be seen in Figure 15, the input image originally depicts a panda that, although with low confidence, 

was correctly assessed as such by the model. After the addition of carefully selected perturbations, 

however, the model classified the image as depicting a gibbon, with very high confidence[76]. 
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Figure 15 The addition of small perturbations to the input of an image classifier led to a gross misclassification. 

8.2 Quantitative Criteria 

As discussed, aside from the qualitative requirements, there are also quantitative criteria by which 

individual ML-based SAST approaches may be evaluated and compared. Among these, especially the 

predictive performance of the solutions is of interest, as it shows how good it is at detecting vulnerabilities. 

One of the most important aspects in terms of these criteria are metrics, used to determine the predictive 

performance of a machine learning model. They are usually derived from four core metrics, depicted in 

Table 6. At the example of ML-SAST, a binary classifier model may accept some arbitrary code samples as 

its input and based on these, makes a prediction on whether the sample belongs to the negative or positive 

class, i.e., the sample does not or does contain a vulnerable code pattern. Realistically, such model is not 

perfect and does not always come to the correct conclusion. If the model misclassifies a negative (benign) 

sample as positive (vulnerable) it is referred to as a false positive. Vice versa, when the model fails to 

detect an actually positive (vulnerable) sample, classifying it as negative (benign), it is referred to as a false 

negative. Consequently, the cases where the model correctly predicts a negative (benign) or a positive 

(vulnerable) as such, it is called a true negative or respectively a true positive. Extended to not only 

individual cases but a sequence of predictions over multiple samples, it is possible to calculate the 

corresponding rates at which a certain event occurs. 

Table 6 Terminology used in confusion matrices to express the possible scenarios. 

Type Description Type Description 

Positive Number of real positive 

cases in data 

Negative Number of real negative 

cases in data 

True Positive Correctly predicted 

positive samples 

True Negative Correctly predicted 

negative samples 

False Positive Falsely predicted positive 

samples (type I error or 

underestimation) 

False Negative Falsely predicted negative 

samples (type II error or 

overestimation) 

At the example of false positives, the rate at which the model makes this type of misclassification is 

determined by the ratio of the number of negative samples predicted as positive versus the total number of 

negative samples and referred to as the false positive rate (FPR). Analogous to this, the false negative 

rate (FNR) is determined by the ratio of positive samples erroneously classified as negative versus the total 

number of positive samples. The same principle holds true for the true negative rate (TNR) and the true 

positive rate (TPR), defined by the ratio of samples predicted negative and the number of actually 

negative samples and the number of positive predictions versus the number of actually positive samples, 

respectively. A concise and commonly used representation of these relations is the so-called confusion 

matrix, depicted in Figure 16. 
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Figure 16 Graphical depiction of a confusion matrix. 

Based on these four basic metrics other, more complex metrics may be derived that emphasize on different 

aspects. The choice of which is highly dependent on the intended application and the characteristics of the 

underlying problem. As for ML-SAST, a variety of metrics are consistently employed to quantify the 

predictive performance. Some are better suited for this task than others. One of the key characteristics in 

regard to SAST is the presence of a high level of class imbalance. By default, most of the source code in 

real-world applications is benign, with only a fraction posing a threat to security. In this light, some of the 

metrics commonly applied are not fit for this task, as they exhibit a tendency to cover bad performance. The 

remainder of this section elaborates on the most commonly used metrics in the literature concerning ML-

SAST and their appropriateness to this end. 

Accuracy, is defined as the ratio of correct predictions versus all predictions. As can be easily seen, due to 

the high number of benign code samples, a model that only ever classifies code as safe would still 

yield very high accuracy. Vice versa, the error rate equally does not properly reflect the 

characteristics of the underlying problem and should thus be avoided [78, p. 512]. Formally 

speaking the accuracy is defined as: 

ACC =  
TP + TN

TP + TN + FP + FN
 

Precision, sometimes referred to as the positive predictive value (PPV), is another metric that is 

commonly used to assess the performance of ML-based SAST approaches. Arp et al. state that 

precision is a better-suited metric for tasks with high class-imbalance[43, p. 12]. The precision, 

however, only considers the system’s ability to predict true positive samples and as such could 

be considered biased. Mathematically the precision is defined as: 

PPV =  
TP

TP + FP
 

Markedness, is an unbiased alternative to the precision that does not ignore the number of true 

vulnerabilities left undetected, as it also takes the number of false negatives into account[77, p. 

512]. The false negatives may be considered an important criterion when evaluating ML-based 

SAST approach and has also been mentioned during the interviews and the questionnaire. 

MKN =  
TP

TP + FP
+ 

TN

TN + FN
− 1 

Recall, is another term for the aforementioned TPR and poses a metric that has also been recommended by 

Arp et al. in order to assess the performance of ML-SAST approaches[43, p. 12]. It may be 

considered the counterpart to precision, used to determine the model’s ability to correctly detect 

true positives. 

TPR =  
TP

TP + FN
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Informedness, is the pendant to the markedness. Similarly, to the markedness that considers the false 

negatives unlike the precision metric, the informedness also considers false positives that the 

recall does not. According to Antunes et al., this metric should be preferred over the arguably 

more popular F-measure[77, p. 512]. Unlike the recall metric it is thus unbiased. The 

informedness is defined as: 

INF =  
TP

TP + FN
+ 

TN

TN + FP
− 1 

F-Measure, often also referred to as F-score for F1-score, is the harmonic mean of precision and recall. It is 

used particularly often in the literature on ML-SAST, but not necessarily the best choice. This is 

due to the fact that it penalizes those cases where precision and recall are far apart from each 

other. Given two models that show a similar TP, TN and FN, but differ vastly in FP, their F-scores 

would be very similar[77, p. 512]. In situations where false negatives matter however, as is 

arguably the case for ML-SAST, the metrics fails to provide sufficient means for distinguishing the 

predictive performance of the models in this regard. The F-measure is defined as: 

F1 = 2 ⋅  
PPV ⋅ TPR

PPV + TPR
 

Matthews correlation coefficient (MCC), is considered to be the metric of choice for evaluating ML-SAST 

approaches as it is an unbiased representation of the correlation between the predicted classes 

and the actual classes[43], [54], [78]. It is defined as the geometric mean of markedness and 

informedness, introduced before[77]. 

TP ⋅ TN − FP ⋅ FN

√(TP + FP) ⋅ (TP + FN) ⋅ (TN + FP) ⋅ (FN + FN)
 

ROC curves, is the abbreviation of receiver operating characteristic curves and as the name suggests, 

originate from signal processing. It is not a metric by itself, but rather the plot of the FPR and TPR 

under a varying classification threshold [78]. A perfect ROC curve would be equivalent to f(x) = 1, 

whereas one equivalent to f(x) = 0 would be a classifier that constantly predicts the wrong class. 

The worst case would be a curve defined by f(x) = x, equivalent to randomly picking classes. Such 

classifier would have no predictive capabilities at all. ROC curves may be useful in the context of 

ML-SAST, but only in the presence of adequate baselines[43, p. 12], [77, p. 508]. 

Figure 17 An exemplary depiction of a roc curve where the curves labeled “good”, “inverted” and “random” are 

representative of a good classifier, one that constantly predicts wrong and one with no discriminative capabilities at 

all. 

Area under Curve, refers to the area under the ROC curve and is thus representative of the discriminative 

performance of the classifier across all thresholds. It produces a single value between 1, a perfect 

classifier and 0, an inverted classifier, i.e., a classifier always making the wrong prediction. 
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Calculation of this metric is associated with high computational cost[79]. Depending on the 

application, this may be considered undesirable. 

Despite some of the metrics mentioned being inappropriate in the context of ML-SAST, they should still be 

considered for evaluation tasks, as the F-measure may be considered the de facto standard across this field 

of research, see Chapter 10. 

8.3 Other Criteria 

The expert interviews as well as the survey in Chapters 5 and 6 have both shown that most of the experts 

and users were mainly concerned with the predictive performance. Here, specifically a low FPR and a high 

TPR were expressed as essential. For the sake of completeness, the computational complexity as a criterion 

to determine suitable algorithms for ML-SAST should not be left out. In that regard, some of the 

participants stated that to them a fast-performing solution would be indeed important. It must be also 

noted however, from the data gathered during the interviews and the questionnaire, it is unclear how the 

participants weigh these criteria. One of the participants stated on that matter that a ML-based SAST 

solution must be fast and potentially work in real time. 

Arguably, this criterion is already implicitly provided, as the application of machine learning techniques 

should not pose a limitation in that regard. On the contrary, in some cases where there exists an algorithmic 

solution to a problem, but at a high computational cost, ML-based approaches can sufficiently approximate 

a solution at significantly reduced complexity. Rizi et al. for instance, were able to efficiently predict 

shortest paths in graphs in linear time, by employing machine learning techniques[80]. 

As for now, this criterion should be assigned a lower priority since a slower, but therefore transparent 

solution with adequate predictive performance ought to be considered preferable, especially for a 

prototypical solution.  

On a related note, one of the participants of the survey remarked that an ML-based SAST approach must be 

well integrated into an integrated development environment. This criterion indeed touches upon the topic 

of computational complexity, as the model would likely have to constantly assess the code for vulnerable 

code patterns in the background. Another participant also expressed that it should be possible to run such 

solution offline, i.e., the model must be stored locally, not on a remote machine. Again, these criteria are 

much more related to architectural considerations of a solution that is ready for productive use and not a 

prototypical implementation that this study aims to provide a basis for. 
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9 Data in ML-Experiments: Types, Formats and 
Schemata 

Beyond the background that this study aims to provide a sound basis for the prototypical development of 

ML-based SAST tools, the evaluation of different approaches through experiments depicts another 

important topic. During development, when searching for suitable algorithms or the best settings for the 

hyper parameters of a model, several alternatives may be investigated. These kinds of experiments require 

and generate data. It is thus important to organize these data not only to draw the right conclusions in 

terms of finding the best-performing solution, but also for the sake of documenting the process. As 

elaborated in Chapter 8, the requirement of traceability involves all data that accrues in the lifecycle of an 

ML-based SAST solution. 

This section delves into this topic, discussing the different kinds of data potentially present during the 

development lifecycle of an ML-SAST approach. This involves benchmarks and the ground truth, 

experiment tracking, data formats and general ontologies to this end. 

9.1 Benchmarks 

Juliet is a collection of security test cases that exists for different programming languages, such as C#, Java, 

and C/C++. Its most recent issue is labelled 1.3 to remain consistent with the test suites for the C, C++ and 

Java programming languages. 

The OWASP benchmark for security automation is a free and open test suite designed to evaluate the 

speed, coverage, and accuracy of automated software vulnerability detection tools and services. Without 

measuring these tools, it is difficult to understand their strengths and weaknesses and compare them to 

each other. Each version of the OWASP benchmark contains thousands of test cases that are fully runnable 

and exploitable, each of which maps to the appropriate CWE number for that vulnerability. 

Code samples from real-world applications are another essential factor in benchmarking SAST approaches. 

Synthetic datasets used for benchmarking are oftentimes overly simplistic. For rule-based SAST solutions, 

this may not pose much of a problem; however, in the case of machine learning-based approaches that rely 

on representation learning, it is important to assert their ability to infer generalizable patterns. 

Furthermore, the simplistic examples found in synthetic datasets do not adequately represent the 

complexity of real-world vulnerabilities that may stretch across large distances. Potential approaches may 

thus be capable of detecting errors in synthetic data, where distances are short but fail to infer correlations 

over long distances in real-world data. 

Several datasets are available that provide labeled samples from a variety of open-source projects that 

contain actual vulnerabilities that have accumulated during the software's lifetime. Chakraborty et al. 

proposed a dataset named ReVeal. The dataset comprises code samples mined from issue trackers of 

Debian Linux and the Chrome web browser. The authors provide the code samples in the form of the 

human-readable JSON file format. In addition to this, the authors also made a dataset available that consists 

of code samples from the QEMU and FFMpeg projects, known as the Devign dataset and equally in the 

form of a JSON file. The reveal dataset consists of 18,169 functions, of which 9.16% are vulnerable. The 

Devign dataset comprises a total of 22,361 samples, with 45.02% being vulnerable. The samples cannot be 

compiled using conventional compilers in both cases, as they are incomplete[81]. They can, however, be 

parsed by the Joern tool, for instance, which generates code property graphs and appears to be a popular 

choice in the landscape of ML-based SAST approaches[82], [83]. Lastly, there is another dataset, proposed 

by Kim et al., named Draper VDisc. The set comprises 1,27 million functions, mined from various open-

source projects from GitHub. The labels for the set have been generated using an ensemble of conventional 

SAST tools so that a high amount of label noise is to be expected. The dataset is stored in the binary HDF5-

format[84]. Russel et al. describe the inception of the dataset in a separate paper[46]. 
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9.2 Type, Format and Metrics 

The choice of the right metric plays an important role and is highly dependent on the application at hand. 

The metrics available for the evaluation of machine learning models were extensively discussed in Chapter 

11. For the sake of brevity, they will thus not be further elaborated on in this section. 

The results of the benchmarks should be stored in a human-readable but also machine-processible format. 

Possible options would be the JSON or YAML file formats as they allow for both and are easily 

exchangeable. Furthermore, these file formats are well integrated into the Python programming language, 

which is frequently employed in machine learning as there are various libraries available for this task[85]–

[87]. 

In addition, the possibility to track results and possibly persist models and their parameters should be 

facilitated. MLflow is a free and open-source framework that constitutes an integrated solution to these 

problems. The platform allows tracking several metrics across a series of benchmark runs. These runs may 

then be aggregated into experiments. Moreover, artifacts such as models and training data may be 

persisted and shared between project contributors. Series of runs may also be exported as a simple comma-

separated list and thus be easily converted into any desired format[88]. 

9.2.1 Name, Version and Description of Dataset 

As datasets may grow large very quickly, they should be treated separately from benchmarks. Moreover, as 

there may be other uses for such data and to adhere to the terminology of MLflow, benchmarks should 

more generally be referred to as experiments. To render both types of data discernible, they must be 

denoted as either of type experiment or dataset by means of a designated datatype field. 

Each dataset or experiment should be identifiable through a unique and readable name, e.g., Draper VDisc. 

Additionally, different versions of the same dataset may exist or the continuation of a previous experiment, 

necessitating an additional version number. Lastly, a field should be reserved for an optional user-defined 

description of the data. In addition to these fields, a hash may be generated over the version and name of 

the data defined prior to be easily distinguishable by machines. 

9.2.2 Dataset Scheme 

In the case of supervised learning, training and benchmarking datasets should be virtually 

indistinguishable, as they both form lists of labeled code samples. Consequently, there are no special 

considerations as to the purpose of the data that need to be made. These datasets are essentially lists of 

tuples, each of which consists of an input value and a target value. 

Some important meta information for each dataset needs to be conveyed in some way, mandating a 

designated meta field, pointing to a dictionary of such information. Input values may take a variety of 

formats, e.g., representations of graph structures, code snippets or intermediate representations of such. 

The storage format should consider this fact using a type descriptor, denoting the type of the input values. 

In the case of binary data, the input values must be base64-encoded, which must also be signified using a 

designated field. 

The type of the targets may also vary, depending on the application at hand. For example, in the case of 

binary classification, Boolean values should suffice. However, in the case of a multinomial classification 

problem, any other datatype may represent each individual class, e.g., CWE error classes. The type of 

classification problem should thus be denoted in another field. 

Other fields that should be included are the maximum length of the samples, the total number of samples, 

and the number of positive samples. These fields are binding, meaning that they must hold true over the 

entirety of the dataset. Lastly, the dataset itself, a list of tuples with a length of two, is indicated by a field 

named “data”. 
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Listing 24 Proposal of a JSON schema for machine learning datasets in the context of SAST. 

{ 

    "datatype": "dataset", 

    "name": STR, 

    "version": STR, 

    "description": STR, 

    "meta": { 

        "inputFormat": STR, 

        "targetFormat": "bool"|"multi", 

        "base64": BOOL, 

        "numSamples": INT, 

        "trueSamples": INT, 

        "maxLen": INT 

    }, 

    "data": { 

        [x0, y0], 

        [x1, y1], 

        [x2, y2], 

           ... 

        [xn, ym], 

    } 

} 

9.2.3 Experiment Scheme 

Listing 25 Proposal of a JSON schema for machine learning experiments in the domain of static application security 

testing. 

{ 

    "datatype": "experiment", 

    "name": STR, 

    "version": STR, 

    "description": STR, 

    "meta": { 

        "dataset": STR, 

        "model": STR, 

        "params": [ 

            STR, 

            ... 

            STR 

        ], 

        "metrics": [ 

            STR, 

            ... 

            STR 

        ], 

    }, 

    "runs": [{ 

        "name": STR, 

        "params": [p0, p1, p2, ..., pn], 

        "results": [m0, m1, m2, ..., mn] 

    }] 

} 

The scheme of experiments follows that of the datasets. First, the “datatype” field is indicated as type 

“experiment”, followed by the experiment's name, version, and user-defined description, as before for the 

datasets. The “meta” field, however, holds entirely different information. Here the dataset and model used 

for the experiment are referenced by its unique identifier and the hash value, respectively. In addition, a set 

of model parameters may be enumerated in an ordered list by the key of “params”. Equally, the metrics 

used for the experiment must be contained in an ordered list by the key of “metrics”. Lastly, the individual 

runs that comprise each experiment are contained in the field runs, an ordered list. Each run carries a 

name, the values of the parameters set for the run and the results for each metric. Both the parameters and 
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the results must follow the order indicated by the “params” field of the meta-information. If some metric 

was skipped during a run, the field must be set to “none” or some other value, indicating its absence. It may 

not be left out, i.e., shortening the list. 

9.2.4 Model Persistence and Tracking 

The versioning and persisting of the machine learning models may be realized through MLflow. 

Nevertheless, the need to export and share models between different contributors or users of the models 

may exist. Most libraries for the Python programming language are capable of handling files of the 

hierarchical HDF5-format. Another format frequently used for the persistence of machine learning 

models is the PKL-file format. 

MLflow offers support for a multitude of different file storage backends to host projects as well as the 

various iterations of the individual models. This may, however, require additional infrastructure. 

9.3 Ontologies for Machine Learning 

Aside from task-specific schemata, recent efforts have been to encapsulate the lifecycle of various machine-

learning applications in higher-order ontologies. These approaches are much more generalizable and 

provide high levels of exchangeability and reproducibility. As such, they may be favorable over application-

specific schemata. However, the research on these ontologies is still in its infancy, and none of the proposed 

solutions has been widely adopted yet. Nevertheless, for the sake of completeness, the existence of the 

efforts in the research field of machine learning should at least be made a note of. An example for such 

ontologies would be, for instance, the so-called MEX vocabulary, a lightweight ontology comprised of 402 

unique classes. The MEX vocabulary extends the PROV ontology of the world wide web consortium 

(W3C) for data provenance. The authors plan the integration of the OpenML11 platform as well as other 

tools, such as Weka12[89]. Similar efforts are Exposé, OntoDM-core and DMOP, the latter two stemming 

from the data mining rather than the machine learning domain. The W3C itself has recently started work on 

the so-called ML-Schema, a schema meant to align the aforementioned ontologies in a lightweight 

schema[90]. 

 
11 https://www.openml.org/ 
12 https://www.cs.waikato.ac.nz/ml/weka/ 
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10 Approaches to Conducting a Literature Mapping for 
ML-SAST 

The systematic identification of highly relevant literature in the field of ML-SAST and the ensuing extraction 

of the used techniques require the screening of a large body of publications. It has been decided to conduct 

a systematic mapping study to facilitate this endeavor in combination with the aptly named snowball 

sampling method. Systematic mapping studies, as proposed by Petersen et al. are comprised of the five 

individual steps listed below: 

1. Definition of research questions 

2. Search for relevant literature 

3. Revision of the literature 

4. Creation of a classification scheme 

5. Data extraction and synthesis 

Petersen et al. perform the second step by manually searching scientific databases only[91, pp. 2–3]. 

Another iterative approach, however, has been proposed by Wohlin. Here, starting from a predefined set of 

publications, the lists of references of the individual publications are screened for further titles that might 

be of interest. This is done by applying a fixed set of inclusion rules that must be defined in advance. As this 

method addresses past publications from the standpoint of the one being reviewed, it is referred to as 

backward snowballing. Complementarily, forward snowballing considers those publications that refer 

to the one being reviewed[92, p. 3]. After the whole set of literature has been reviewed this way, exclusion 

rules are applied to eliminate any unwanted publications. Those remaining form the basis for the next 

snowball sampling round. The process is repeated several times until no more new publications can be 

identified this way. 

10.1 Research Questions 

The definition of research questions (RQ) poses the first step in the process of conducting a systematic 

mapping study[91]. The research questions for this study should reflect the research goals: 1) the 

identification of relevant literature in the field of ML-SAST and 2) the extraction of the technologies being 

referred to. This is important as guidance for the planning of the next steps. In total, four research 

questions have been defined. 

One important aspect in that regard is the fact that the field of ML-SAST is a conglomerate that unites three 

different academic disciplines: machine learning, software engineering and information security. RQ1 aims 

to reflect this circumstance. So, to better comprehend the context of the publications, it is necessary to 

obtain an understanding of the problems discussed in the literature. In this case, the problems are the 

different kinds of vulnerabilities and, closely related, the programming languages addressed in the 

publications, see RQ2. In consideration of the second goal, to identify relevant technologies from the 

literature, RQ3 was defined. Lastly, RQ4 concerns itself with the question to what degree the authors 

evaluate their findings. 

Research Question 1: To what part is each of the scientific communities mentioned involved in ML-SAST? 

Research Question 2: What problems are being addressed in the literature? Which are the programming 

languages being targeted in the publications? 

Research Question 3: What technologies and approaches are employed in the literature to solve the 

problems mentioned? 

Research Question 4: In what regard are past findings taken into consideration? What metrics are utilized 

for the evaluations? 
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10.2 Initial Search 

As previously discussed, it is necessary to define an initial set of publications as a basis for the snowball 

sampling process. One way to accomplish this is to search scientific databases for relevant literature, as 

suggested by Wohlin[92, p. 3]. For this, it is necessary to, first of all, define search queries (SQ) that 

encompass all possible research areas. This way, it is ensured that no independent publication clusters are 

missed[92, p. 3]. 

To achieve this, it was decided to formulate two search queries that put different emphasis on the research 

areas of information security and software engineering. A query that particularly targets machine 

learning was omitted since the application of ML techniques were deemed a basic prerequisite. As such, it 

was incorporated in both search queries. SQ1 aims to reflect the academic discipline of information 

security. Preliminary searches, however, have shown that the results were often heavily diluted by 

publications discussing the detection of malware. To mitigate this circumstance, it was thus decided to 

exclude all literature mentioning malware using the Boolean NOT operator, which every literature database 

queried offered support for. SQ2 intended to represent the research area of software engineering more 

closely. It could be observed that the terms defect prediction and fault prediction seemed to be deeply 

rooted in the software engineering community through initial test searches. As it could be argued that a 

vulnerability is always preceded by a fault of some sort, these terms have been included in the query. The 

final queries are listed below: 

Search Query 1: "vulnerability" AND "learning" AND "code analysis" NOT "malware" 

Search Query 2: "machine learning" AND ("defect prediction" OR "fault prediction") AND ("program 

analysis" OR "static analysis") 

With the search queries defined, five scientific databases have been searched in total: ACM-DL, DBLP, IEEE 

Xplore, Springer Link and Elsevier Science Direct. While the first three are more discipline-specific, Springer 

Link and Elsevier Science Direct are more general databases. This choice was made to gain more diverse 

results from the searches. Moreover, the search has been limited to works published between 2014 and 

2021. This was done to narrow down the search area since initial test searches brought forward no 

relevant publications prior to 2014. From these results, individual publications were chosen for a more 

detailed inspection and filtered by application of a minimal set of inclusion criteria (IN) listed below: 

Inclusion Criterion 1: The publication must explicitly refer to machine learning in the context of either 

static application security testing or defect prediction. 

Inclusion Criterion 2: The publication must be written in the English language. 

Inclusion Criterion 3: The publication must have been published between 2014 and 2021. 

Then, the resulting publication selection was filtered further by applying exclusion criteria (EX) and by 

discussion within the project team. In addition, when there was doubt about the suitability of an individual 

publication, experts have been surveyed for their opinion. So as to support the exclusion process, the 

following list of criteria was derived, depicted below: 

Exclusion Criterion 1: The publication poses primary or secondary literature that discusses the 

application of machine learning with respect to the problem of static code analysis. 

Exclusion Criterion 2: The static code analysis should be performed with the goal of detecting security 

vulnerabilities or, at the very least, faults that may lead to such. 

Exclusion Criterion 3: The analysis should be performed based on program source code, not program 

binaries. 

Exclusion Criterion 4: The publication must be peer-reviewed. Exemptions may apply if the publication is 

frequently cited in the literature. 
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Exclusion Criterion 5: For practical reasons, the publication must be publicly available or accessible 

through a publisher that the University of Bremen is subscribed to. 

Literature that did not meet the requirements stated by the aforementioned exclusion criteria were 

excluded from the selection. The approach yielded a set of 16 publications, to which two were added by 

recommendation of the experts. The complete list of the literature included may be viewed in the appendix. 

The subsequent results for each query are shown below: 

Table 7 Iteration of all scientific database searched using queries SQ1 and SQ2, as well as the number of the 

corresponding results unfiltered, filtered by inclusion IN and exclusion criteria EX. 

SQ Database Unfiltered By IN By EX 

1 ACM-DL 144 9 5 

1 DBLP 3 3 1 

1 IEEE Xplore 5 2 1 

1 Science Direct 277 6 0 

1 Scopus 3 1 0 

1 Springer Link 416 9 3 

1 Total 848 30 10 

2 ACM-DL 83 17 6 

2 Scopus 0 0 0 

2 IEEE Xplore 0 0 0 

2 Science Direct 70 7 0 

2 Scopus 3 0 0 

2 Springer Link 95 3 0 

2 Total 252 27 6 

10.3 Iteration Steps 

As specified, the snowball sampling method is an iterative process that stretches over several rounds. 

Starting with an initial set of publications, each round yields another set of publications that forms the basis 

for the next round. The process is repeated until no more new literature can be found. As hard 

dependencies only exist between rounds, but not within these, the process may be parallelized. For this, at 

the beginning of each round, the set of publications was split across six collaborators, each of whom 

inspected her share for suitable literature and applied the inclusion criteria. Afterwards, the exclusion 

criteria were applied to remove any undesirable literature from the set. In addition, all collaborators came 

together to discuss the current’s round results, stating their opinion with respect to the acceptance of each 

individual publication. Final decisions were reached by means of a majority vote. In total, four rounds were 

executed in this fashion, the number of publications yielded within each of those is depicted in the table 

below: 

Table 8 List depicting the individual iteration steps of the snowball sampling procedure. For each step, the resulting 

number of findings is reported after filtration by the inclusion IN and exclusion criteria EX. 

Round By IN By Ex 

0 57 19 

1 85 15 

2 62 21 

3 25 13 

4 4 4 

10.4 Data Extraction 

Petersen et al. conducted the data extraction by using a classification scheme, which is generated with 

the help of a keywording procedure. For this step, the abstract of each publication is screened for relevant 
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keywords that reflect the individual research contribution[91, p. 5]. Three collaborators were entrusted 

with this task, each sighting every publication recovered during the snowball sampling phase, at least once. 

Thereafter, the collaborators discussed their results and made decisions whether each respective keyword 

ought to be included in the scheme or not. Whenever reaching an absolute agreement was not possible, the 

decision was made by a majority vote. Taking the research questions taken into consideration, all resulting 

keywords were grouped into a total of 13 categories. Below, summaries for each of these categories may be 

viewed: 

Asset: Whether or not the publication provides assets such as models or datasets. 

Balancing: Measures taken to mitigate the effects of class imbalance. This problem occurs when a model is 

trained based on a dataset consisting of highly imbalanced classes. The result may be that the 

model would be biased in favor of the dominating class[93, pp. 167–168]. 

Baseline: If the authors’ considered previous publications in their evaluations to draw a comparison in 

regard to their own results. 

Community: The academic discipline the publication may be attributed to. If not directly derivable from 

the place of publication, e.g., venue, journal, etc., the authors’ profiles and personal bibliographies 

were taken into consideration as well. 

ANN: Artificial neural networks mentioned in the literature. These were treated separately from other 

machine learning techniques, as they were reported in a particularly high number and variety 

across the publications. 

Code Partitioning: The strategies used to break up the source code into smaller chunks, suitable for 

processing by the machine learning models. 

Embedding: The kind of embedding chosen to transform the source code chunks into a format, digestible 

by the machine learning models. 

Classification: Whether the proposed solution performs binary or multinomial classification. 

Programming Language: The programming languages targeted by the approach described in the 

publication. 

Learning Mechanism: The type of machine learning employed as in supervised, unsupervised 

reinforcement learning. 

Metrics: The metrics which were used to measure the performance of the approach during the evaluation 

of the outlined solution. 

ML Technique: References to all other machine learning technologies that cannot be ascribed to the class 

of artificial neural networks. 

Problem: The nature of the problems discussed in the literature by means of CWE-Classes, a hierarchical 

enumeration of security-critical software faults[85], [94]. If possible, all mentions of such classes 

were traced back to their base class. The aim was to prevent fragmentation as much as possible, 

so that comparisons could be drawn during evaluation of the results. 

10.5 Summary of the Most Important Results 

The snowball sampling process yielded a total of 72 highly relevant publications regarding ML-SAST. Of 

those. Fifty-four were classified as solution papers and eleven as evaluation papers. The remaining eight 

papers were considered surveys. As such surveys do not generate any new data, since they discuss the 

results of previous works, they were excluded from the data synthesis. However, some of the solution and 

evaluation papers provided assets (N=24) in the form of models (N=16) and datasets (N=16). Furthermore, 

a growing trend regarding the number of papers published every year could be observed, highlighting the 

increasing relevancy of ML-SAST. Figure 18 depicts this as a bar graph. Due to the fact that the publication 
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dates of the inquired literature ranged between January the first 2014 and July the first 2021, the average 

monthly publications have been derived for each year. This allowed for the inclusion of the not yet finished 

year of 2021 in the trend. 

Figure 18 The normalized mean of monthly publications on ML-SAST as present in the set of sighted literature. A 

growing trend is visible, signifying the increasing academic interest in ML-based SAST. 

Regarding RQ1, all the 54 solutions, as well as eleven evaluation papers, were categorized by the scientific 

community, the publication may most likely be attributed to. It was determined that most of the papers 

could either be accredited to the information security (N=42) or the software engineering community 

(N=37), while the machine learning community appears to represent a significantly smaller fraction 

(N=20). The remaining papers could not be attributed to any of the three communities. Figure 19 depicts 

these proportions in percentages. 

Figure 19 A high percentage of publications could be attributed to the scientific communities of information security 

and software engineering. 

Answering RQ2 was not as straightforward. Here two aspects needed to be considered. Firstly, the question 

of what programming languages are being targeted in the literature sighted needed answering. Secondly, 

the problems discussed in the literature must be extracted. The latter turned out to be somewhat more 

challenging since not all publications reverted to the usage of CWE numbers to describe different classes of 

problems. Instead, in many publications, these problems were circumscribed in an informal manner. 

Nonetheless, these descriptions were precise enough to be traced back to CWE classes with high confidence 

in most cases. Mentions of the term buffer overflow, for instance, could be easily accredited to the class 

CWE-121. Continuing with this example, all CWE classes were reduced to their so-called pillar class. For 

CWE-121, the parent class is CWE-787, which in turn is the child of CWE-119, which again is the child of 

CWE-118, a child of the final pillar class CWE-664 that encompasses all errors that underlie some sort of 

failure to control a resource through its lifetime[95]. A detailed description on the Common Weakness 

Enumeration (CWE) can be found in Chapter 7. 
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Figure 20 The number of references to the different types of software defects in the literature sighted. As can be 

seen, there are large fluctuations in number, depending on the programming language. 

This way, all publications were sighted and CWE pillar classes extracted. It was found that the classes of 

failures covered in the literature appear to correlate with the programming languages targeted. In the case 

of publications whose approaches aimed at the programming languages C and C++ (N=42), errors that can 

be attributed to the class of CWE-664 were prevalent (N=24). This may not come as a surprise as both 

languages require the manual management of memory. CWE-707 was also often mentioned in conjunction 

with these programming languages (N=13). This class encompasses all errors associated with the improper 

validation of input[96]. Figure 20 depicts the number of times the different error classes were mentioned in 
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the literature by mapping CWE number and programming language. The programming languages PHP 

(N=9) and Java (N=8) were discussed in the literature, albeit to a much lower degree. Interestingly the 

distribution of error classes these approaches aimed at discovering differed from that observed in C and 

C++. In the case of PHP, the leading class was CWE-707 (N=6), which is reasonable as PHP is a 

programming language predominantly used in web development. Here, the application of proper 

neutralization procedures may be considered crucial as adversarial user input is to be expected. For Java, 

again, CWE-707 was the class most often named (N=4), closely followed by CWE-703, CWE-664 and CWE-

284 (N=3). 

In terms of RQ3, multiple aspects were explored to determine which technologies the different approaches 

employed. First were the methods used to dissect the code into smaller segments, which are suitable for 

learning the models. Here, the practice of code slicing and generating code gadgets were predominant 

(N=22). According to the definition given by Li et al., code gadgets are semantically coherent segments of 

source code in terms of data or control dependence[45, p. 4]. They are thus similar to the concept of code 

slices introduced in Section 4.1. In some publications, the terms code gadget and code slice are used 

interchangeably. However, rendering a clear distinction is difficult. Another large share of publications did 

not rely on any elaborate strategy at all and either used function definitions as natural delimiters (N=14) or 

simply just split the code at arbitrary points (N=8). 

Also counted was the number of times different kinds of code representations were mentioned. Tokens 

(N=18), abstract syntax trees (N=17), control flow graphs (N=8), program dependence graphs, and code 

property graphs (N=6) were most often referred to in the literature. It must be noted that these numbers 

merely reflect the total count each representation was mentioned in the literature. A single approach, 

however, may name several representations as they may be used in conjunction. Such would be the case for 

composite code representations, akin to code property graphs, for instance. Concerning the methods 

utilized to embed the features, Word2Vec was the single one most often mentioned (N=20). Most papers, 

however, do not mention a particular technique (N=14) or any at all (N=13). 

Figure 21 Regarding the different forms of code representation used in the literature, simple token or AST-based 

approaches are frequently chosen. 

While there were publications that used more simple classification methods, such as random forest (N=10) 

or logistic regression (N=9), most approaches referred to some sort of artificial neural network. Within this 

class, bidirectional long-short-term-memory networks (BLSTM) dominated the landscape (N=19), followed 

by conventional long-short-term-memory networks (LSTM) (N=14). This may be due to the fact that this 
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type of neural network, in particular, is well equipped for processing sequential data due to its contextual 

awareness[97, p. 8]. Unsurprisingly, the related gated recurrent unit type (GRU) neural networks were 

also mentioned in comparatively high numbers (N=6) alongside their bidirectional counterparts (BGRU) 

(N=8). Lastly, a substantial number of papers also appeared to rely on convolutional neural networks 

(CNN) (N=11) for the classification of benign and vulnerable code samples. The different types of artificial 

neural networks employed in the literature are covered in 2. Figure 22 depicts this visually as a bar graph. 

Figure 22 Concerning the types of artificial neural networks employed in the literature, bidirectional LSTMs are the 

most popular choice. 

Finally, the datasets and associated processing steps were analyzed. As it turned out, most publications 

appear to incorporate real-world data from open-source software projects in one way or another (N=32). 

Another large number relied on more synthetic data from the SARD project (N=24). Strategies to counter 

the class imbalance within these datasets were seldomly mentioned. If so, SMOTE seemed to be the method 

of choice (N=3)[98]. 

To answer RQ4, it was found that when it comes to evaluating their own approaches, most publications 

used previous works to determine their own performance (N=38). Regarding the metrics used, it could be 

inferred that the F1-score appears to be most popular among the publications sighted (N=42). The second 

most one referred to was precision (N=40), followed by the false positive rate (N=35), recall (N=27), 

accuracy and the false negative rate (N=25), as well as the true positive rate (N=19).  Surprisingly, the 

receiver-operator-curve (N=7) and the associated area under curve (N=9) were seldomly found within this 

mapping study. Figure 23 shows a bar graph of the number of times different evaluation metrics were 

applied. As can be seen, there seems to exist a discrepancy between the best practices discussed in Chapter 

8 and the actual practices. While The F-measure, precision and recall are not the worst choices, accuracy 

could be considered inappropriate due to the likely high class imbalance, often present in ML-SAST related 

datasets, see Section 8.2 for further details. 



10 Approaches to Conducting a Literature Mapping for ML-SAST 

74  Federal Office for Information Security 

Figure 23 The number of times different metrics were mentioned in the literature sighted. 
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11 Detailed Description of Most Appropriate Methods 
for ML-SAST 

The consideration of methods most appropriate for ML-SAST encompasses several key aspects, at the 

center of which are the machine learning algorithms. As the mapping study conducted prior seems to 

suggest, supervised learning appears to be prevalent in the research area of ML-SAST, see Section 10.5. For 

this reason, training data becomes a vital aspect that must be considered as well. Lastly, there must also be 

means to evaluate the trained models to determine their performance. Concerning this matter, the works 

by Arp et al. and Chakraborty et al. suggest that simply measuring the performance of the models in raw 

numbers may not be enough to satisfy this aspect. The authors found out that a deep understanding of the 

models at hand is crucial to assess their true performance[54], [57]. This section elaborates on the points 

mentioned and expounds on the most promising approaches to this end. 

11.1 Training Data 

With respect to the training data, several problems arise that need to be considered. First of all, a source of 

adequate training data must be sought out, a non-trivial task. At the time of writing, little attention has been 

paid to the training data in the literature regarding ML-SAST. As a result, the datasets used were oftentimes 

insufficient and led the models to infer false causalities by learning from artefacts present in these 

datasets[43]. Moreover, the data samples used are often not in line with real-world data as they are too 

synthetic. Models trained on such synthetic samples may perform poorly when confronted with real-world 

data. 

Using real-world data for training purposes, however, suffers from its own demerits. Here, the challenge 

lies in the labeling of this previously unknown data. Doing so by the employment of human experts is most 

likely far too laborious to be feasible and using conventional SAST-Tools introduces a large number of 

samples, falsely labeled vulnerable. Some others tried to leverage data extracted from publicly available 

GitHub13 repositories, inferring the labels from the commit messages, with varying success[46], [56]. In any 

way, the utilization of real-world data in the context of ML-SAST always seems to entail a high risk of false 

labeling, leading to a skewed ground truth. 

Summarizing the outset, neither synthetic nor real-world data appear to be a promising option. When it 

comes to label noise, however, there are at least methods to mitigate the associated consequences. A 

decrease in classification performance is just one of such potential consequences, as stated by a survey on 

the topic conducted by Frenay et al. in 2014[99, p. 850]. The same survey concluded that there are different 

approaches to mitigate the impact of label noise: I) choosing algorithms that are more robust pertaining 

label noise, II) filtering out falsely labeled samples during preprocessing, and III) choosing an algorithm 

that actively considers label noise[99, p. 851]. Regarding algorithms that anticipate label noise, Patrini et al. 

came forward with a robust loss function, specifically aimed at deep neural networks. According to the 

evaluation conducted by the authors, their method shows a significant increase in stability when faced with 

noisy data in comparison to a simple cross entropy loss function as a baseline[100, pp. 6–8]. 

Another aspect that must be considered in the discussion of using real-world data in the domain of ML-

SAST is class imbalance. Since the proportion of vulnerable code versus benign code samples is naturally 

skewed towards the latter, classifiers trained on such datasets tend to be biased towards the dominating 

class. Fortunately, this problem appears to be well understood, and there are known methods that offer 

some relief. One of such methods that have already been employed in the context of ML-SAST is the 

Synthetic Minority Oversampling Technique (SMOTE). Referring to this, a study by Lie et al. that has been 

identified during the mapping study described in Section 10.5 explored a novel fuzzy oversampling method 

 
13 https://github.com/ 
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explicitly at the example of ML-SAST. According to the authors of this study, this approach showed 

promising results, outperforming SMOTE[101, pp. 1336–1337]. 

In conclusion, it was shown that a dataset comprised of real-world data appears to be better suited for ML-

SAST if label noise is actively considered. Another factor that may contribute to the impaired performance 

of the models might be a class imbalance. Here several well-studied methods are available to combat the 

effects of class imbalance that should be considered for model training. 

11.2 Models 

As was revealed by the mapping study, RNN type neural networks seem to be the most popular choice for 

ML-SAST in the literature. This circumstance might be explained by the fact that these kinds of neural 

networks are well suited for processing sequential data, such as source code[97, p. 8]. The problem with 

this approach is, however that while the raw source code indeed is a flat sequence of tokens, semantic 

interdependencies may better be expressed through graph-like data structures. In the case of recurrent 

type neural networks, these data structures must first be flattened again before being fed to the model. This 

may possibly lead to a loss of information[54, p. 11], [102, p. 729]. As far as more conventional kinds of 

neural networks are concerned, recurrent type neural networks appear to perform slightly better when 

compared to convolutional neural networks as several evaluation studies suggest[22, p. 31], [97, p. 8]. 

One such evaluation study, conducted by Zheng et al., also compared neural networks’ performance against 

more conventional machine learning algorithms. The authors compared convolutional neural networks, 

BLSTM networks and gated recurrent unit networks against random forests, k-nearest neighbor, 

support vector machines, gradient boosting decision trees and simple logistic regression. They found 

that neural networks generally perform better, measuring an average increase of 18.78% in F1-score, 

8.41% in precision and 24.71% in recall[22, pp. 30–33]. 

There are examples, however, that employ an entirely different kind of neural network, called graph 

neural networks (GNN). This type of network does not require the input data to be converted into a low-

dimensional vector space to be processed. Instead, the network actively considers the information provided 

by the graph structure itself[102, p. 1]. Graph neural networks operate on the principle of neighborhood 

aggregation. The idea was originally proposed in a paper by Gori et al. In 2005.  

Graph neural networks act by assignment of labels and states to the graph's nodes and edges. These states 

are defined by a transition function fw that considers the label of the node itself as well as the states and 

labels of its direct neighbors. Moreover, each node’s output may be computed by solving an additional 

output function gw. Through Banach's fixed point theorem, it is guaranteed that if fw is designed in a way 

that the composition of all of its instances Fw presents a contraction mapping, then there exists a unique 

solution to that function with respect to the state of the graph. Hence, fw and gw form a parametric function 

pw(G, n) that given a graph G and one of its nodes n computes the output of that node. The underlying 

machine learning task lies in the iterative adjustment of the weights w that affect fw and gw so that the 

functions approximate a given set of training samples. Gori et al. achieved this by minimization of a 

quadratic loss function.  

Furthermore, Banach's theorem also states that if Fw is a contraction mapping, then it will converge 

exponentially fast towards a fix point for any initial state. Graph neural networks solve this by replacement 

of the graph’s nodes with units that calculate fw. On activation, these units will compute the next state of 

the node based on its previous state. When a stable fix point has been reached, the weights are adjusted by 

a gradient descent strategy in accordance to that point. This is repeated until an arbitrary stopping 

criterion has been reached[102, pp. 730–731]. This way, with each iteration step, a unit learns more about 

its surrounding neighbors, influencing its state. It must be noted, however, that this description is a heavily 

simplified summary and, in addition, based on the earliest paper by Gori et al., which has later been 

refined[103]. Based on this simple version of GNNs, a plethora of derivative works exist that either improve 

on some of its aspects or adapt the model to some other type of neural network, such as graph 
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convolutional neural networks. Zhou et al. have compiled a comprehensive survey, including a vast list of 

different GNN architectures[104]. 

Cheng et al.[55] as well as Zhou et al.[56] state to have successfully deployed GNNs for the detection of 

vulnerabilities, reporting a significantly increased F1-score in comparison to a 3-layer BLSTM network and 

a CNN[56, p. 8]. 

The approach by Zhou et al. relies on a gated recurrent unit type graph neural network (GGNN) and code 

property graphs to detect vulnerable code on a function level granularity[56, p. 3]. The authors report 

trouble, however, extracting the CPGs from some of the function’s source code. To facilitate a more efficient 

graph embedding, the authors use edges denoting last read and last write relations instead of the full data 

flow graph[56, p. 6]. Moreover, the natural sequence of code is preserved by providing additional edges 

between adjacent tokens of the AST[56, p. 5]. 

The output of the GGNN is then run through a novel convolutional layer that comprises multiple one-

dimensional convolutional layers and maxpooling layers[56, p. 5]. A model was trained using manually 

annotated functions from four different open-source software projects. Each dataset was randomly shuffled 

and then split, using 75% of the samples for training and the remaining 25% for evaluation purposes. The 

authors evaluated their approach against three traditional SAST-Solutions as well as a simple CNN and a 

three-layered BLSTM with and without an attention mechanism. On average, the authors report a relative 

increase of 10.51% in accuracy and a relative gain of 8.68% concerning the F1-score across all datasets 

when compared to the baseline methods. 

Alas, the authors fail to report the distribution of vulnerable and benign samples in the dataset. Without 

this information, it is unclear how dependable the numbers of the reported accuracy are. Moreover, the 

authors used samples from the same software projects for their evaluation. Therefore, it is unclear how 

robust their results truly are. The model could, for instance, have overfitted, thus performing well on the 

present datasets only[56, p. 5]. 

The other more recent approach proposed by Cheng et al. is more complex than that by Zhou et al., as it also 

considers interprocedural vulnerabilities. For this, first, the PDG is generated from the interprocedural 

control flow graph and value flow graph (also known as data flow graph or DFG, see Section 3.2.2) of the 

given source code. Then, system API calls and arithmetic operators are chosen as so-called points of interest. 

Originating from these, subgraphs of the PDG called XFGs are extracted through forward and backward 

slicing[55, pp. 7–8]. Like the approach proposed by Zhou et al., the natural code token sequences are used 

as features as well. Cheng et al. generate Doc2Vec embeddings from the normalized source code of each 

XFG extracted[55, pp. 8–10]. As slicing and the normalization of code can lead to sample duplications, the 

authors took measures to remove such samples prior to training[54], [55, p. 10]. 

The authors evaluated three different types of graph neural networks: Graph convolutional networks 

(GCN), graph attention networks (GAT) and higher-order graph neural networks (k-GNN)[55, p. 5]. Each 

graph convolutional layer is followed by a pooling layer. Based on the output of all pooling layers, a global 

average and maxpooling operation is performed. The results are then aggregated before being fed to a 

multi-layered perceptron for the final task of binary classification[55, pp. 10–13]. Model training was 

performed based on the SARD dataset, as well as two real-world open-source software projects: Lua and 

Redis. The latter datasets were manually labeled in the same manner that Zhou et al. already employed. The 

authors consider an XFG vulnerable if it contains at least one statement of the code that was annotated as 

vulnerable. 

For the evaluation, the authors extracted a total of 409,262 benign XFGs as well as 156,195 vulnerable XFGs 

from the SARD dataset. In addition, 2,848 benign and 1,323 vulnerable XFGs were extracted from the real 

world open-source software projects[55, pp. 13–16]. The training was performed using 10-fold cross-

validation, based on randomly selected samples from 80% of the combined dataset. The remaining 20% 

were used for the detection phase[55, pp. 17–18]. According to the authors, k-GNNs performed best on 

average, with superior performance in accuracy, false positive rate, false negative rate, true positive rate, 
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precision, F1 score, AUC, informedness and markedness. Only in terms of runtime, the k-GNNs fell short, 

taking the last place when compared to the GCNs and GATs[55, pp. 18–20]. 

The approach was then evaluated against four conventional SAST tools: Flawfinder, RATS, Clang Static 

Analyzer and Infer, using the reserved 20% of the samples extracted from the SARD dataset, outperforming 

each by a large margin[55, pp. 20–21]. When compared to three other ML-based SAST approaches: Token-

based, VGDetector and VulDeePecker, according to the authors, their approach again outperformed all 

others across all metrics[55, p. 38]. 

Taking a closer look at the architecture proposed by Gori et al., it quickly becomes evident that one of its 

downsides is the expensive mechanism by which the states are propagated across the network. This 

severely limits the scalability of GNNs, making them unsuitable for large program graphs. To overcome this 

problem, Wang et al. proposed further improvements to GNNs called graph interval neural networks 

(GINN). These GINNS are specifically designed for the purpose of handling graph representations of 

programs. Combined with their novel code representation of hierarchical intervals, based on control flow 

graphs, the authors claim that this solution exhibits a higher precision even across large networks[105, pp. 

2–3]. 

In summary, graph neural networks seem to be a promising technology with respect to ML-SAST. They 

appear to be better suited to learn from the rich semantics that graph-like program representations offer 

when compared to other types of neural networks. 

11.3 Explainability 

According to the evaluation studies conducted by Arp et al. and Chakraborty et al., the inference of false 

causalities due to the models picking up on irrelevant features during training appears to be an 

underestimated problem in the literature[43, pp. 8–9], [54, p. 11]. In such cases, the models learned to 

recognize patterns that loosely correlated with the problem at hand, a circumstance that might not be 

recognized by a purely quantitative evaluation of the model using some select metrics. Ideally, measures to 

prevent the model from learning such false causalities should be taken in advance. However, even if the 

utmost care is taken, it is impossible to tell for certain if the model has inferred false causalities. Several 

techniques exist that aim at mitigating these problems by finding explanations for the model’s behavior. 

More precisely, given a specific input, these methods try to determine to what degree the individual 

features of that input influenced the model's prediction[57, p. 3]. 

A tangible example of this may be found in the domain of computer vision. Here, it is imaginable that a 

simple convolutional neural network could be trained to classify images by their content. Shown below in 

Figure 24 is an image of a speckled horse that was fed to a VGG16 classifier, trained on a subset of the COCO 

train2017 dataset[106], [107]. Interestingly the model misclassified the image as showing a dalmatian. To 

a practitioner trying to understand what led to this misclassification, methods such as layer-wise 

relevance propagation (LRP) can help gather a high-level understanding of the model and its underlying 

mechanics. The method can generate a heatmap that can be laid over the image, highlighting the most 

relevant pixels for the prediction the model made. The output has been generated using a simple 

implementation of the LRP algorithm, provided by Montavon, a contributor to the original LRP paper in 

2015[108], [109]. As can be seen, the model appears to have put most of its attention on the lower speckles 

and the legs, highlighted in red. The outline marked in blue, on the other hand, had a negative impact on the 

predicted class. Although finding definitive answers as to why the model has mistaken the horse for a 

dalmatian is not possible, it could be argued that the speckles presumably led the model to its prediction. 

With that knowledge, attempts could be made, for instance, to adjust the training dataset in a way so that 

future predictions will be more accurate[109, p. 194]. 
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Figure 24 Shown on the left is the image of a horse, that was erroneously classified as portraying a dalmatian by a 

VGG16 network. The image on the right depicts the heatmap obtained by applying the LRP method to the model and 

input. 

Given a prediction f(x) for the input x in ℝx, Layer-wise relevance propagation works on the principle of 

relevance scores ℝd that are propagated through the network in opposite direction. For this, the 

contribution of each individual node in a layer l to the activation of each node in the follow-up layer l + 1 is 

computed, relative to that of all other nodes in l [108, p. 194]. Applied to the whole network, LRP is a 

decomposition of the prediction f(x) into a sum of terms, so that the equation below holds true. Here ℝd is 

defined over the input x of dimension V [109, pp. 2–3]. 

f(x) ≈ ∑ Rd

v

d=1

 

The process terminates at the network’s input layer, where in the case of computer vision, the final 

relevance scores may be mapped to a corresponding color space[108, p. 195], [109, p. 46]. 

The same problem can be easily applied to ML-SAST as well. Here, the images are replaced by code samples 

and instead of wondering what pixels have had the highest relevance with respect to f(x), the question, 

relies on the tokens most relevant. The same way a heatmap can be applied to a given input image, it is then 

possible to highlight the tokens according to their relevance score. This is possible as the LRP method has 

been adopted to a variety of different neural network architectures, such as multilayer perceptron 

networks, convolutional neural networks as well as LSTM networks, commonly employed in the 

context of ML-SAST[57, p. 3]. 

Warnecke et al. were the first to explore the application of methods such as LRP in the context of 

information security[57, p. 1]. The authors conducted a conclusive evaluation, analyzing six different 

explanation methods concerning their eligibility in the context of security. Generally, there are two 

distinguishable types of techniques: Black-box and white-box methods, i.e., those that do not assume 

knowledge about the model and its parameters and those that do[57, p. 3]. Regarding the more general 

evaluation criteria, the authors analyzed the methods’ descriptive accuracy and descriptive sparsity. In 

basic terms, the methods ability to highlight the relevant and only the relevant code tokens for a 

prediction[57, pp. 8–9]. 

In terms of the more security-related metrics, completeness, stability, efficiency and robustness were 

measured. A method that is complete allows computing meaningful relevance scores for all inputs 𝑥 and its 

according prediction f(x). Moreover, a stable explanation method always delivers the same results for each 

run on the same inputs. The efficiency refers to the computational complexity of the method, and finally, the 

robustness describes the methods sensitivity to adversarial perturbations[57, pp. 9–11]. 

Concerning the methods analyzed, the authors chose three black-box methods for analysis: LIME, LEMNA, 

and SHAP. Additionally, the authors also evaluated three white-box methods: gradients, integrated 

gradients (IG) and LRP. The results were that white-box methods are generally far superior to black-box 

techniques. Of the latter, however, LIME offered the best performance. When it comes to white-box 

methods, LRP showed the most promising results, although the overall difference between those methods 
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appears to be rather minute. The evaluation has shown that LRP offers the second-best accuracy and 

sparsity while being complete, efficient, and stable across different runs. None of the methods tested was 

robust against adversarial perturbations. However, a property most likely neglectable in the context of ML-

SAST as no adversarial input is to be expected[57, p. 11], [97]. Shown below, in Figure 25, is a code segment 

that has been used as input for a classification model. Using integrated gradients, a heatmap has been 

generated to visualize which of the input features influenced the prediction. Warm colors present a strong 

influence on the predicted class. Cold colors present features that excerpted a negative impact for the 

predicted class[57, p. 6]. 

Figure 25 A code segment highlighted using integrated gradients. Orange colored tokens express a high 

contribution to this segment being predicted vulnerable. Blue colored tokens contradict this classification. 

Unfortunately, it is not possible to apply these methods in a straightforward fashion to Graph type neural 

networks, as their architecture is fundamentally different from that of the networks previously described. 

The main difference lies in the fact that not just the node’s labels carry meaning but also the way in which 

nodes and edges interconnect, i.e., the graph's topology. In fact, such a graph could have completely 

unlabeled nodes and edges and still present a meaningful data structure[74, p. 2]. When looking for 

explanations to a specific prediction f(x) for an input x, this kind of information should also be considered 

as well, hence why methods such as layer-wise relevance propagation fail. 

Despite not having received the same level of attention as more conventional types of neural networks 

regarding explanation methods, in the recent past, several such techniques have been introduced for GNNs 

as well. Contrary to the conventional architectures, however, there does not appear to be a catch-all 

solution for graph neural networks such as is LRP for the conventional architectures. This, at least, is what 

Yuan et al. found when they conducted a taxonomic survey exploring different types of explanation 

methods for GNNs. Furthermore, the authors argue that the choice of technique is highly dependent on the 

number of variables. 

There are two categories of techniques: Instance level explanation methods and model level explanation 

methods. Instance level methods deliver model explanations for a specific input, while the latter provides 

input-independent explanations. Whereas instance-level explanation methods seem to be well explored, 

model level methods appear to have only just emerged. In fact, the survey only analyzed one of such 

techniques, named XGNN. Concerning instance-level explanation methods, there are four general concepts 

that need to be differentiated[74, p. 3]. 

Gradient methods use backpropagation to calculate the gradient of a given prediction f(x) and its 

corresponding input 𝑥. Likewise, the related feature-based techniques rely on the interpolation of hidden 

features onto the input space. 

Perturbation methods work for a given prediction f(x) by continuously masking out features of the 

corresponding input x, resulting in the altered input x’. In theory, if important features are being retained, 

then no significant changes between f(x) and the prediction based on the altered input f(x’) should be 

observable[74, p. 4]. 

Surrogate methods try to approximate the original model by means of a simpler model that can be 

explained more easily. With graph neural networks, such approximations are not possible, as the 

topological information is of discrete nature. In other words, an edge either connects two nodes or it does 

not, but there exist no possible in-between states. Nevertheless, attempts have been made to explain GNNs 

using surrogate models[74, p. 6]. 
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Decomposition methods, to which the previously introduced LRP method can be attributed, work by 

decomposing the model into a sum of terms. Here each term represents the relevance score of a specific 

input dimension. Fulfilling this conservational property is not trivial in the case of GNNs, as these scores 

would have to be distributed with respect to the graph's topology[74, pp. 7–8]. 

These methods all come with their own merits and deficiencies. While gradient-based methods that Yuan et 

al. explored are simple, they do not account for the information contained the graphs topology. Instead, 

they merely consider the labels of the edges and nodes for the task. The perturbation-based methods 

described by Yuan et al. do consider such information but are mostly involve learning procedures. On the 

one hand, methods based on learning appear to be better at capturing the relationships between the 

predictions and their inputs, according to Yuan et al. On the other hand, these may be less trustworthy if 

such procedures involve another black box that needs explaining. In this regard, all the surrogate methods 

described by Yuan et al. rely on learning that involves a black box. The decomposition-based methods do 

not rely on learning, but in most cases, do not account for the topology specific information encapsulated by 

GNNs. Only GNN-LRP does so, however, at the cost of computational complexity. Lastly, the one and only 

instance level method described by Yuan et al. called XGNN also involves black box-based learning but 

poses the only technique capable of delivering general explanations for a model[74, pp. 8–9]. 

The survey also included a framework to evaluate the different methods by means of fidelity, stability, 

sparsity, and accuracy. While the latter metrics are as previously described, fidelity measures the methods 

ability to identify input features that are important to the model. 

Finally, it must be noted that Ganz et al. have conducted a comprehensive evaluation, published towards 

the end of this study, which explores different explanation methods for GNN-based SAST approaches. 

Consequently, it could not be taken into consideration at the time of writing. The authors evaluated a 

variety of graph-agnostic methods, such as LRP and integrated gradients. As for the GNN-specific 

methods GNNExplainer, PGExplainer and Graph-LRP were assessed, based on their descriptive accuracy, 

structural robustness, constrastivity as well as graph sparsity. The evaluation was carried out based on 

three different GNN-based SAST approaches from other publications, comprising Devign, ReVeal and 

BGNN4VD[54], [56], [110]. The findings of the authors appear to be in line with the results from other 

publications, already discussed. Ganz et al. report a significantly better performance of the graph-agnostic 

methods in terms of descriptive accuracy, robustness, stability and efficiency, whereas the graph-specific 

approaches only achieve a vastly better sparsity and moderately better contrastivity, when compared[111]. 

These findings suggest that unlike is the case with more conventional architectures, e.g., convolutional or 

recurrent neural networks, there appears to be no catch-all solution concerning suitable explanation 

methods for graph neural networks. In respect thereof, Ganz et al. state: 

“We find that all explanation methods have shortcomings in at least two criteria and 

therefore hope to foster research for new explanation methods.”[111, pp. 11–12]. 

In addition, the authors remark that many explanation methods seem to focus on unimportant features, but 

achieve a large descriptive accuracy, which leads the authors to believe that the models have picked up on 

spurious correlations and in fact did not learn to identify vulnerabilities[111, p. 10]. 
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12 Prioritization of Models for this Approach and 
Outlook on Further Work 

As the previous sections have highlighted, there are multiple options regarding the models suitable for ML-

SAST. Each of these models come with their own merits and demerits, rendering the conception of a strictly 

ordered prioritization a challenging task. In addition to this, such prioritization is highly dependent on the 

research goals aimed at. Yet another difficulty arises from the circumstance that the comparison of the 

different models presented in the literature is a non-trivial task, as there is no common baseline between 

these. In addition to that, poorly chosen metrics may belie the fact that some individual models exhibit 

insufficient generalizability [54, p. 10], [57, pp. 3–12]. Aside from that, it must also be noted that the 

predictive performance of any model is not merely the result of the architecture itself, but also highly 

influenced by the data it has been trained on. Albeit not unimportant, the choice of architecture should 

therefore be regarded to as one of many puzzle pieces in the overall picture. Equally, if not more important, 

are also the quality and the preprocessing of the training data. 

This chapter, however, is not meant to discuss the latter of such matters. Instead, suitable options in terms 

of machine learning algorithms for ML-SAST shall be determined in the following sections. Five different 

possibilities for future research on ML-SAST were identified, which will be elaborated on in this section, 

highlighting their merits as well as demerits regarding different research goals. Finally, a conclusion is 

drawn as to which approaches should be prioritized and which direction appears to be promising regarding 

further research. 

12.1 Graph Neural Networks 

Graph neural networks, introduced in Section 11.2, are a rather new approach in machine learning, which 

shows promising results across a variety of research disciplines. If the goal is strictly defined to be 

outperforming other approaches in some metrics, then graph neural networks could be argued to be the 

contender most suitable for this task. In comparison to other architectures, this type of network may offer 

the benefit of considering the data, comprised in the topology of the numerous graph-like representations 

of source code, to a higher degree[112, p. 13]. According to some studies on ML-SAST that incorporate 

graph neural networks in their solutions, this results in an overall better performance in contrast to other 

architectures, such as LSTM networks and conventional SAST approaches[54, p. 14], [55, p. 25], [56, p. 8]. 

Due to the fact that the availability of literature on graph neural networks for SAST is sparse, the results in 

this area of research should be considered with some distrust. It could, however, be argued that this 

sparsity leaves room for further improvements, not present in more traditional ML-SAST approaches, 

where only incremental advancements are likely. Of the few studies identified to this end that rely on graph 

neural networks, the architectures used include: recurrent-, gated- and convolutional graph neural 

networks[54]–[56], [113]. Wu et al. have generated a comprehensive survey on a variety of graph neural 

network architectures. One of such architectures, which appears to have been previously ignored in the 

literature, are so-called spatial-temporal networks, capable of inferring knowledge from spatial as well as 

temporal correlations[114]. With respect to the success of recurrent neural networks for ML-SAST, which 

work on the basis of a similar premise, this architecture may be worthwhile investigating further. 

Yet another downside of graph neural networks is their lack of explainability. To this end, there are no 

known methods capable of delivering the same degree of model explanations for graph neural networks, as 

is the case for recurrent neural networks[74, p. 1]. As shown in two independent evaluation studies by Arp 

et al. and Chakraborty et al., being able to deduce some explanations for the model’s behavior is critical, as 

the lack thereof may lead to significant deviations between the expected and the actual behavior of the 

models[43, p. 3], [54, p. 2]. 

In conclusion, graph neural networks appear to offer some benefits over other models in regards to ML-

SAST, albeit at the cost of explainability. As an emerging field of research, it is possible that this architecture 
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still offers room for more significant advances than other architectures, like recurrent neural networks. 

However, choosing this approach over a more established one poses a certain risk as the research has not 

been very advanced yet and given the small body of literature available, it is difficult to assert the true 

potential of graph neural networks for ML-SAST with definitive certainty. 

12.2 Conventional Neural Networks 

The literature mapping described in Chapter 10 revealed that there is a strong bias towards recurrent 

neural networks for ML-SAST. This may not be very surprising as source code may be viewed as a sequence 

of tokens so that such sequence models are an evident choice. Moreover, a lot of approaches seem to rely on 

preprocessing steps that generate various kinds of tree- or graph-like structures from the source code in 

combination with some sort of slicing mechanism to train the models on. In this study, these types of 

approaches are referred to as conventional strategies for ML-SAST due to their high frequency in the 

literature. 

As some evaluation studies have pointed out, there are several areas in which more traditional approaches, 

which rely on recurrent neural networks and some form of composite code representation, could be 

improved. One of the more difficult challenges in ML-SAST, however, is still the lack of sufficient training 

data. Chakraborty et al. reported drastic performance increases when retraining existing models from 

other literature on their own dataset[54, p. 9]. Moreover, Liu et al. introduced a novel fuzzy oversampling 

technique for class rebalancing. The authors tested their approach against other rebalancing methods for 

ML-SAST, reporting improvements across several metrics[101, p. 1337]. Another aspect of improving on 

might also be the active consideration of label noise. Real-world data, i.e., code segments derived from 

actual software projects that are annotated as either vulnerable or benign, is oftentimes plagued by a high 

level of mislabeled samples[43, p. 3]. Patrini et al. have conducted a comprehensive evaluation on factors 

helpful in alleviating some of the negative effects of noisy data[100]. Regarding the code samples, another 

aspect worthwhile considering is their form of representation. The evaluations conducted by Zhen et al. as 

well as Chakraborty et al. seem to suggest that the Semantic Vulnerability Candidates, introduced by Li et 

al., are a capable form of representation[52], [54, p. 9], [115, p. 652]. Other factors that may show an impact 

on performance include the choice of the deep learning algorithm, the overall architecture of the model 

and other hyper parameters. 

It must be noted that this enumeration of aspects is inchoate and does not reflect the situation to its full 

extent. It is merely meant to exemplify the areas in which an improvement on the more established 

approaches may still be feasible. In summary, despite the comparatively long time in the context of ML-

SAST, in which research on conventional approaches using recurrent neural networks has been conducted, 

there may still be room for incremental improvements in some selected areas. 

12.3 Clustering Approaches 

Clustering presents another approach to ML-SAST that appears to have received less attention than binary 

classification. Instead of learning a classification model based on a set of labeled data samples used to 

recognize the patterns it has been trained on, clustering identifies groups of data that show similarity. This 

approach may be considered interesting for the reason that when asked how machine learning could be 

employed for SAST, three out of seven experts voiced unsupervised learning as a viable option during the 

interviews described in Chapter 5. One of the experts with a strong background in AI, went on to describe a 

method not unlike the one presented by Ahmadi et al. The interviewee stated that it might be possible to 

use a clustering algorithm to first group the data, before a model could be learned in a supervised fashion, 

based on these clusters 

Considering these opinions, gathered during the interview, the question arises as to why clustering-based 

approaches are underrepresented in comparison to the ones relying on binary classification. It could be 

argued that due to the high influence that the VulDeePecker approach has excerpted on the community, 

other possibilities may not have been taken into consideration. It may also be the case that given the task of 
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telling vulnerable from benign code binary classification is the much more obvious approach to solving this 

problem. 

Whilst the use of recurrent neural networks for ML-SAST appears to be the most popular choice, according 

to the data gathered throughout the literature mapping in Chapter 10, there are, aside from graph neural 

networks, other very different and noteworthy approaches. Despite being potentially underrepresented in 

the previous sections of this study, these approaches are not necessarily inferior in comparison to other 

approaches. One approach that stands out from the rest is called FICS and was proposed by Ahmadi et al. in 

2021[65]. Unlike the other approaches that commonly rely on model-based machine learning techniques, 

i.e., techniques involving a pre-trained model, Ahmadi et al. use an instance-based clustering method that 

solely relies on the code base to be analyzed. For this purpose, the authors first extract intraprocedural data 

dependency graphs. Then a two-step clustering approach is employed that first attempts to find similar 

constructs within the graphs extracted prior. The clustering algorithm used is DBSCAN, which does not 

require the number of classes to be known beforehand[65, p. 9]. In the second clustering step, graph 

embeddings are constructed within the clusters, using the graph2vec algorithm and the distances between 

the embeddings are measured. Variances in these distances may be indicative of a vulnerability and thus 

reported to the user, who may then verify the validity of these warnings. The authors report plausible, 

albeit moderate, improvements over conventional SAST solutions, including APISan, LRSan and Crix. 

Specifically in terms of the rate of true positive findings, a noticeable increase in performance can be 

seen[65, p. 12]. 

One of the more apparent drawbacks of this approach is the fact that it only works intraprocedurally, unlike 

some of the competing solutions. There may also be chances for improvement through the usage of other, 

possibly more suitable, clustering algorithms. This makes the approach of Ahmadi et al. an interesting 

contender for further research. 

Another, albeit early, ML-SAST clustering approach stems from Yamaguchi et al.[42]. It builds upon 

CPGs[36] and uses interprocedural static analysis to extract code artefacts similar to slices. Then it 

attempts to cluster sources (e.g., attacker-controlled entry points) with respect to given sinks (e.g., 

parameters of memcpy or malloc). The clustering is based on the so-called Jaro distance metric that is 

particularly well suited for short strings[42]. Distance metrics are introduced in Chapter 2. The approach 

also tries to automatically infer sanitization rules for the considered sinks, i.e., rules that are required for 

the safe usage of a sink’s arguments. As a result of this clustering task, the technique allows one to infer 

graph traversals, which in essence are queries on the CPG. On applying such queries, taint-style 

vulnerabilities can be detected as demonstrated by several use cases (including the Heartbleed 

vulnerability)[42]. Although it is an earlier ML-SAST approach, employing clustering seems to be still 

promising and could be implemented, for example, based on the analysis infrastructure made available by 

the Joern tool. As rule definition is a common, but often tedious task in the context of SAST tools, rule 

inference appears to be helpful when using SAST tools and finally may relieve security analysts from the 

burden of rule definition. Furthermore, the inferred rules are largely comprehensible, which makes them 

valuable for security analysts (cf. the explainability problems related to techniques based on neural 

networks). In addition, the results of the expert interview support to also consider clustering-based 

approaches (see Chapter 5). 

Lastly, Fischer et al. proposed an approach that employs clustering to learn pattern embeddings that 

encode similarity information[116, p. 346]. The authors’ motivation stems from the notion that developers 

often reuse code samples from Stack Overflow14, a platform where users discuss programming-related 

questions. This platform may be considered unreliable, as it does not guarantee the correctness in terms of 

the code samples provided there as answers. Reusing such insecure samples in production code can lead to 

serious vulnerabilities. However, Fischer et al. also found that while there are insecure samples, in 99.37% 

of the cases the same platform also hosts the secure implementation of the same sample[116, p. 339]. The 

paper describes a ML-based solution that provides users of the Stack Overflow platform with information 

 
14 https://stackoverflow.com/ 
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about the correctness of the code samples and in case they are shown an insecure implementation, nudges 

them towards a post that provides a correct implementation. 

The difficulty lies in the fact that in many cases the code samples provided on the platform are incomplete 

and cannot be compiled with a regular compiler. Instead, partial compiling methods must be employed, 

introducing ambiguities, such that samples despite depicting the same usage-pattern, lead to different 

PDGs. The resulting features are referred to as unsound, or respectively, sound in case they are completed 

by the authors. In order to alleviate this problem, the authors learn similar pattern embeddings that are 

independent from the surrounding program by employing a so-called Siamese neural network. This 

network is capable of learning code pattern representations that preserve the similarity properties. For this 

task, the network is trained using pairs of sound and unsound samples of the same code in an unsupervised 

fashion. These pairs are generated from open-source projects found on GitHub15, first generating a set of 

sound methods with a regular compiler, then based on the same methods, generating the unsound set 

through partial compiling. Subsequently, transfer-learning is applied to train the network to distinguish 

between secure and unsecure samples and their usage-pattern, in a supervised fashion[116, p. 346], using 

manually annotated samples from Stack Overflow. 

12.4 Reinforcement Learning 

As can be seen, supervised learning appears to be the leading technology in ML-SAST.  The reasons as to 

why that might be the case can only be conjectured about. Given the fact, however, that Ahmadi et al. were 

able to demonstrate the feasibility of unsupervised approaches to the problem, the question arises, 

whether reinforcement learning could also be used for this purpose. This idea has also been proposed by 

one of the interviewees in Chapter 5. Given the problems associated with the lack of sufficient training data, 

as described in Section 11.1, this approach could pose an interesting option to overcome these challenges. It 

could be conceivable that such an approach could be realized as a service that hosts a central model. 

Developers could use this service to examine their source code for vulnerabilities. Once the model has 

made its predictions, the developers would then review these and could themselves label the predictions as 

either correct or false, generating new training data for the model. This way, their expert knowledge could 

be leveraged to continuously improve the model, which in turn would benefit the developers. 

Despite this approach appearing to be good in theory, there are certain obstacles that need to be taken into 

consideration. First of all, and rather evidently, there would have to exist some central model that could be 

accessed by all developers. This would require some platform to host the model, which generates running 

costs. Secondly, there are security-related issues that need to be addressed as well. As this central model 

processes the source code of all developers, their information will be persisted in the model in some mostly 

unpredictable manner.  Under certain circumstances, it may then be possible for an adversarial user with 

malicious intents to extract this data from the model, gaining confidential information[117, p. 308]. Chen et 

al. proposed an attack on deep reinforcement learning models that, according to him, is capable of stealing 

models with great accuracy and fidelity[117, p. 318]. However, not only would the confidentiality of the 

data be at risk, an adversarial user could also deliberately falsely annotated training samples, so as to 

coerce the model into ignoring certain vulnerability patterns. The latter of these problems may be 

mitigated by some peer-reviewing process, which on the other hand, would make the service cumbersome 

to use and could lead to a drastically decreased acceptance by developers. Another solution could be to 

measure the distance between the training samples provided by the developers. Then, only the samples 

provided by different users that lie in close proximity to each other and share the same label could be used 

to train the model. It is, however, unclear if this approach would be feasible, as it may require a high 

number of users and vulnerability patterns, occurring rather seldomly, could possibly be ignored. 

 
15 https://github.com/ 
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12.5 Ensembles of Approaches 

One last option that ought to be discussed is the combination of multiple approaches discussed so far. 

Instead of attempting to improve on a single solution, there may be benefits in leveraging the capabilities of 

several approaches at once. Drawing comparisons between the different approaches proposed in the 

literature is a non-trivial task, as their characteristics can drastically differ. However, it may be a possible to 

turn this detriment into an advantage if some of the rather dissimilar approaches are combined into an 

ensemble. 

For example, Ahmadi et al. and Yamaguchi et al., both described the applicability of clustering algorithms 

for ML-based SAST.  One of the key strengths of these approaches is the fact, that they learn from the 

software that is being analyzed. In contrast to the supervised models that are learned on external program 

samples, unsupervised models may thus be much better at detecting intrinsic defects, such as API misuse. 

However, the same mechanism might as well be considered their biggest drawback. If the software that is 

being analyzed simply does not contain enough samples of some program behavior (or any of such samples 

at all), the approaches described by Ahmadi et al. and Yamaguchi et al. would likely not be able to pick up 

on them [42, p. 809], [65, p. 2037]. Vice versa, any supervised method may not be very good at detecting 

the aforementioned kinds of intrinsic defects, as they would not have been trained on them. 

This example highlights the potential that ensemble solutions might hold. As these approaches are likely to 

detect very different vulnerability patterns, it would be difficult to prioritize one over the other. Their 

aptness would be highly dependent on the task at hand. Whereas the unsupervised approaches appear to 

be highly adaptable and therefore capable of detecting more intrinsic defects, supervised techniques may 

be better at discovering more general types of defects. By combining both solutions, it may be possible to 

leverage the benefits of both while simultaneously compensating for each of their demerits. Such endeavor 

would require the careful selection of some of the approaches identified during the literature mapping in 

Chapter 10, based on their unique strengths and weaknesses. Using a standardized benchmarking 

framework that would need to be conceived prior, different ensembles could be systematically compared 

and the most suitable elected. 

12.6 Conclusion of the Prioritization 

In summary, there is no best approach to be chosen for further research. Which of the various solutions 

discussed in this literature study is most capable, remains a question highly dependent on the task it is 

intended for and most of all the requirements imposed. 

Graph neural networks show promising results in raw detection performance, as their ability to consider 

the information contained in the various graph-like forms of program representation appears to be highly 

beneficial for the purpose of ML-SAST[54, pp. 9–13], [55, p. 25], [56, p. 8]. This advantage, however, comes 

at its own demerit, as the methods for finding explanations for the predictions made by graph neural 

networks are still not on par with those of the more conventional neural network architectures, such as 

recurrent or convolutional networks, see Section 11.3 [74, p. 13]. Moreover, as the idea of employing graph 

neural networks for the purpose of ML-SAST is a rather novel one, there is a lack of literature available on 

that topic. Consequently, it is difficult to reason about the validity of such few results, as there is no strong 

consensus regarding the aptness of employing graph neural networks for ML-SAST. It must thus be noted 

that further research in this direction also entails an increased risk of yielding underwhelming results. 

Another direction of attempting to improve on some of the more conventional approaches, which rely on 

some recurrent type of neural network, comes with the benefit of being thoroughly documented in the 

literature. It is thus possible to resort to a large body of readily available knowledge, including some 

valuable evaluation studies which investigated the influence of various factors on the performance of 

different ML-SAST approaches as well as common pitfalls[21]–[23], [43], [54], [97], [114], [115], [118]. 

Moreover, the research on explanation methods for the more traditional architectures of neural networks is 
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very advanced, allowing for precise per-prediction explanations. It is, however, necessary to highlight the 

circumstance that any possible improvement on these approaches would likely be of incremental nature. 

Lastly, going entirely different routes might also pose an option. In view of the approaches by Ahmadi et al. 

and Yamaguchi et al., there may lie possibilities in the continuation of their ideas[42], [65]. Both 

publications offer some very concrete connecting factors for further research in the discussion of their 

respective limitations. Additionally, and possibly most promising, it may also be possible to achieve further 

improvements through combing several approaches into an ensemble. This way, for instance, the high 

adaptability and the capability of unsupervised approaches to detect more intrinsic defects, could be 

combined with supervised approaches, which may be better at detecting the more general types of 

software defects.  

As a final conclusion on which method to prioritize, it could be argued that the expert interviews in Chapter 

5, as well as the literature identified, showed that explainability is an important requirement for SAST. As 

such, it would be a logical conclusion to dissuade from using graph neural networks to this end. Thus, the 

following options remain: 

1. Conventional ML-SAST approaches that rely on recurrent neural networks may be improved on, see 

Section 12.2. 

2. Clustering approaches, similar to those of Ahmadi et al. and Yamaguchi et al., could be continued, as 

they show potential, but have been largely neglected in the ML-SAST community[42], [65]. 

3. Combinations of any of these methods, i.e., ensembles of different approaches with different 

strengths. 
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13 Prototypical Implementation of a ML-SAST Tool 

As an extension, the insights gained throughout the literature study ultimately culminated in the creation of 

an ML-based SAST tool. It is planned by the BSI to publish the tool under the MIT license, such that it can be 

obtained by anyone interested. This chapter comprises a preliminary discussion of the underlying 

problems of applying machine learning to SAST, the ideas behind this prototype, and its conception. 

Although some mitigations to the aforementioned difficulties could be achieved, it may be preempted that 

the application of machine learning techniques to the problem of SAST, remains challenging. It appears as 

though there is a gap between the issues described in the literature and the actual issues faced in reality. 

The following sections cover these challenges in detail and the solutions worked out. Furthermore, the 

development process of the prototype and its evaluation will be described as well. 

13.1 Presuppositions and underlying problems 

Starting at the very foundation of ML-based SAST, as has been discussed in chapters 12 and 14, several 

categories of machine learning algorithms may be used to this end: Supervised, unsupervised and 

reinforcement learning. In these chapters, one of the key points established, was that supervised ML-SAST 

approaches pose a challenging endeavor due to their requirement of labeled training data. As of writing this 

document, existing datasets of this sort could be considered inadequate, as they tend to be either too 

artificial or suffer from great amounts of label noise. Section 11.1 elaborates on problems associated with 

training data and in extension, supervised ML-SAST approaches in general. Furthermore, due to a lack of 

literature on reinforcement learning based SAST techniques, this branch of machine learning was not 

explored during the development of the prototype, hence it will not be discussed here. Lastly, clustering 

methods were also considered during the development of the prototype and in fact, several options were 

explored to this end. This was due to the aforementioned problems, associated with supervised methods 

that do not apply to clustering methods, as they do not require labeled training data. Unfortunately, they 

too suffer from issues that will be discussed in the following sections. Aside from this, more general 

problems that do not pertain to either approach in particular, will be discussed here as well. Due to the 

pitfalls that are associated with supervised methods and in particular their requirement of labeled training 

data, the problems associated with clustering methods will be discussed here first. 

13.1.1 Unsupervised Methods 

Unsupervised methods may come with the benefit that they do not require such training datasets, since 

they merely partition the data into clusters. In the case of ML-SAST, this may be, for instance, the separation 

of source code segments into benign and vulnerable clusters. As has been elucidated in the literature study, 

it was found that the vast majority of ML-SAST approaches made use of supervised learning and not 

clustering algorithms, raising the question as to why the latter appears to be such an unpopular choice 

within the community. It is impossible to pinpoint the exact reason for why this might be, but despite the 

numerous shortcomings of supervised approaches, it may be the case that interpreting the results of 

clustering algorithms poses a difficult problem. Based on the observations made during the development of 

the prototype, the following may be considered a factor in this context as well. 

The basic working principle of clustering methods is, that they partition data on the premise of observable 

patterns, as long as they occur in sufficient frequency. This alone is not helpful, however, when trying to tell 

vulnerable code apart from benign code. Therefore, it is necessary to further process the results of the 

clustering algorithms, for instance, by applying additional heuristics. One of such heuristics may be broken 

down to the assumption that anything that is observed many times must be benign and important. Applied 

to a program’s behavioral patterns, one can see how this approach could be used to model wanted behavior 

within a program: If some behavior can be observed repeatedly it is likely correct and also likely to be 

important. Both, the approach by Ahmadi et al. and Yamaguchi et al. rely on this idea to some degree [42], 

[65]. Attempts at using this technique during the experimentation phase were to no avail, unfortunately, as 
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it was impossible to yield satisfactory results. It appears that the patterns that were extracted from various 

graph program representations could not be observed in adequate number to reliably deduce rules. It must 

be added that this problem may also be attributed at least partially to the particular types of graphs used or 

a lack of suitable embedding methods for graphs in general. The following sections will shed more light on 

these issues in particular. Especially for the embedding methods, however, it is unclear how far the latter 

issue is solvable. 

Regardless of these challenges, on a more general note, it may be added that unsupervised approaches 

showcase a tendency to shift workload from model training to the interpretation of the results. 

Furthermore, unsupervised approaches may only be able to reason based on what is there, due to the fact 

that they use the software project to be analyzed to generate the model. This has the benefit, that API 

specific defects could be potentially detected with greater success but dangerous patterns where benign 

counterparts are not available in sufficient frequency or available at all will not be picked up on by the tool. 

This is not a problem, but rather a property of unsupervised approaches that practitioners should be aware 

of and that should be made clear to the final users of ML-based SAST tools. Supervised methods, on the 

other hand, may fail to recognize the intrinsic problems that are specific to some software as they would 

have to be explicitly trained with samples representative of these problems. This way, the types of bugs 

each of the types of ML-based SAST approaches may recognize, could be considered to be mostly disjoint 

sets. As for the prototyped described in the following chapters, it is attempted to strike some balance 

between both worlds, by using a supervised approach that relies on highly adaptable models and a 

feedback loop. This solution offers the benefit of being able to be trained on arbitrary samples from other 

software projects, but also being able to be quickly adapted to intrinsic problems, based on prior findings. 

The prototype will be explained in detail in Chapter 13.2. 

13.1.2 Embeddings 

As indicated in the previous section 13.1.1, embeddings play a vital role in machine learning and therefore 

also in the domain of ML-based SAST. It is difficult to find a unanimous definition of the term in the context 

of machine learning. Informally speaking, embedding methods aim to map some input data into a possibly 

low dimensional vector space, while preserving the structure of the input data to the largest degree 

possible. That is, at least for the information that is important for the learning algorithms. 

Except for, maybe, graph neural networks, the embedding of program segments is a challenging task that 

appears to be largely overlooked in the literature. As the quantitative evaluation of the literature study has 

shown in Section 10.5, many of the ML-SAST approaches appear to rely on the embedding of simple code 

tokens. In its most simple form, this idea is a very natural approach to the problem at hand, i.e., generating 

real-valued vectors from the source code. Since the code already has the structure of a one-dimensional 

vector of tokens, it must only be mapped onto some numerical representation. To this end, a plethora of 

techniques, such as the well-known word2vec method, are readily available. This practice suffers from two 

major drawbacks, unfortunately. First, since the models may easily pick up on delimiters and other special 

characters, they are likely to learn coincidental correlations [43]. This can be corrected to some degree. 

Secondly, this form of program representation does not adequately reflect on the intricate dependencies 

that are found within a program. As a result, the underlying defects may not be appropriately represented 

by the embedded code segment. 

Alternatively, it is possible to use well-established static analysis techniques, to first generate graphs from 

the source code that are able to represent these different relationships within a program. This approach is 

much more robust, since statements that may not be adjacent in the code, but are still connected by data or 

control flow, may be effectively mapped into a vector space in close proximity to each other. Some better-

known examples of these forms of program representation are the Program Dependence Graph (PDG) or 

the System Dependence Graph (SDG) [37], [119]. Section 3.2.2 elaborates on these data structures in more 

detail. It may seem that this technique is undoubtably the better choice, but unfortunately there are also 

drawbacks associated with this method. In contrast to the much more naive token-based approaches, here 

the input data for the embedding methods are not already present in the form of one-dimensional lists of 



13 Prototypical Implementation of a ML-SAST Tool 

90  Federal Office for Information Security 

tokens. Instead, these program representations are graphs, which are much harder to map onto real-valued 

vectors. Except for graph neural networks, introduced in Chapter 12.1, all other machine learning 

techniques, whether they are supervised or unsupervised, require this form of input. Graph neural 

networks could be therefore considered better suited in that regard. Unfortunately, they are also entirely 

opaque and their interpretation remains a challenging task [74], [111].  

While there are methods for the embedding of graphs, they are scarce and suffer from some severe issues. 

Firstly, it appears that a lot of the methods either attempt to embed the graphs topology or the data 

associated with each node, but rarely both. For program representation graphs, both types of data are 

important, as will be explained later in this section. One exception that does take the topology, as well as 

the data contained within the nodes into account, is the Graph2Vec method. During the development of the 

prototype, attempts were made to employ this method for ML-SAST. To this end, the Bourne Again Shell 

(BASH) in version 5.1, was compiled into the LLVM intermediate code representation (LLVM-IR). Then, 

using the Static Value Flow (SVF) tool, the interprocedural control flow graph (ICFG) was built for the 

BASH. SVF is a powerful framework for static code analysis tasks. It comprises numerous advanced points-

to analysis algorithms and is capable of generating a variety of graph program representations. Finally, for 

each procedure in the program, the subgraph was extracted and embedded using the aforementioned 

Graph2Vec method. It was hoped, that when clustering the embedded functions, they would form separable 

clusters in the vector space. Alas, this was not the case and even structurally similar functions would 

frequently fall into entirely different clusters. Using the T-Distributed Stochastic Neighbor Embedding (t-

SNE) dimensionality reduction method was applied to plot the thus embedded procedures, depicted in 

Figure 26. Each datapoint shown represents a single procedure.  

Figure 26: ICFGs of all procedures of the Bourne Again Shell, embedded using the Graph2Vec method and plotted 

using the t-SNE dimensionality reduction technique. 

As can be seen in this plot, the different procedures are hardly separable. Despite the fact that different 

parametrization of the t-SNE dimensionality reduction method may lead to drastically different results, 

using the DB-SCAN as well as an agglomerative clustering algorithm, the apprehension that the Graph2Vec 

method is possibly unsuitable for this usage scenario was only strengthened. In another attempt, the LLVM-

IR of the BASH was used to first generate graphs by linking dependent instructions over their operands and 

results. This graph was, again, embedded using the Graph2Vec method, but this time the used feature, was 

the OP-code associated with each instruction. The resulting t-SNE plot drew a very similar picture: The 

individual function being hardly separable in clusters, see Figure 27. It is unclear what exactly caused this 

poor performance. It may be the case that the extraction of entire functions was simply too large, drowning 

any potential patterns in noise. This choice, however, was motivated by the publication of Ahmadi et al. 

who reported success, embedding entire procedures in a similar fashion [65]. Furthermore, the extraction 
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of entire functions is very amenable, since the information of which instruction belongs to which procedure 

is readily available and does not require complex traversals of the graph. The extraction of all paths 

between some source and some sink for taint style analyses, would have been very complex, for instance. 

Usually, taint-style analyses only attempt to answer whether there is any single path between two points in 

the graph, which, for example, can be accomplished using Dijkstra’s shortest path algorithm. For a 

clustering approach, however, this would not suffice, as it is necessary to extract all paths between two 

points in a graph to find common patterns within them. This problem is computationally very hard and the 

process to do so, simply took too long to be feasible in the experiments. 

Figure 27: Each procedure of the BASH, embedded again, but this time using the LLVM-IR OP-codes as features, 

embedded using Graph2Vec and plotted using the t-SNE method. 

These examples highlight the fact that embedding complex graphs into a metric vector space is not an easy 

task. As mentioned earlier, the number of appropriate methods to this end is small and may be considered 

one of the most challenging problems in the context of ML-SAST. Such embedding methods are very 

important, due to the fact that most of the available machine learning techniques require these graphs to be 

mapped into a metric space first. This is necessary in order to make distances measurable, see Section 2.4. 

For comprehensiveness’ sake, it must be mentioned that graph neural networks may be considered in 

exception in this sense. This type of neural network is capable of learning from the graph’s topology 

directly, but at the price of not being explainable at all, see Section 11.3. For program representation 

graphs, this task is especially hard. Not only must the embedding method pay respect to the topology of the 

graphs, the graphs are often of heterogeneous nature, which means that their nodes and edges have 

different types. The different types correspond to different semantics. For instance, when considering the 

ICFG alone, there are nodes to express procedure calls, procedure returns, points in the program where the 

control flow diverges or merges and simple instructions, i.e., instructions that do not directly affect the 

control flow. This information must not be neglected, as it is very valuable in the detection of software 

defects. In addition, these nodes also may hold even more information that may be beneficial in this regard. 

A call or return node, for example, may be annotated with the name of the calling procedure or, vice versa, a 

function call node with the name of the callee. Other, simple instruction nodes may also hold the type of 

instruction as additional information. Figure 28 depicts such an ICFG, with the corresponding C-code listed 

in Figure 29. 

It must be noted that the graph shown does not directly correspond to the source code. This is because the 

graph was generated using the SVF-tool, which is based on the LLVM compiler infrastructure project, hence 

using the LLVM intermediate code representation. The SVF-tool will be explained in greater detail in 

Sections 13.1.3 and 13.2.2. As can be seen, even a simple piece of code may lead to a comparatively large 
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ICFG. A large contributing factor to this is of course the fact that the graph was generated using the LLVM-

IR and not the source code directly. There are few alternatives with respect to the analysis software 

available that is capable of generating such program representation graphs. This issue will be further 

elaborated on in Section 13.1.3. Not only are such graphs large and complex, but they also often contain 

additional information in their nodes and edges, such as the type of node. 

Figure 28: The ICFG of a very simple program, listed below in Figure 29. Note that the ICFG is generated from the 

LLVM bit code of the C-code. 

Figure 29: The C-code that corresponds to the ICFG above in Figure 28. 

int main(int argc, char const *argv[]) 

{ 

    if (argc < 2) { 

        printf("argc < 2"); 

    } else { 

        printf("argc >= 2"); 

        if (argc > 3) { 

            printf("argc > 3"); 

            return 1; 

        } 

    } 

    return 0; 

} 

As can be seen, program representation graphs often hold an abundance of data that should not be 

neglected. At the same time, this data, including the graphs’ topology itself, must be mapped into a vector 

space with very limited dimensionality. Instead of using more complex embedding methods, another way to 

mitigate these challenges is to model the problems to be analyzed in such a way that the graph traversals 

necessary yield very simple data structures instead of complex graphs. This can be achieved when limiting 
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oneself to paths only, where neither the incoming, nor the outgoing degree of each node exceeds one. Then, 

these paths may be mapped into a metric space by, e.g., assigning each of the different types of nodes a 

numeric value and constructing a vector, where each dimension corresponds to a single node in order of 

traversal. 

On a more theoretical level, the problem of embedding graphs into a metric vector space may be attributed 

to the specific properties of graphs. It is likely that the difficulties observed when embedding graphs are the 

result of the graph isomorphism problem, i.e., whether two graphs are the same. This problem is believed 

to belong to the class of NP-intermediate problems [120]. It is therefore unlikely that there is an amenable 

way of assigning graphs a canonical representation in a metric space, as this would essentially solve the 

graph isomorphism problem. Hence, only approximations to this problem can exist. Some work by 

disassembling the graph into graphlets first before generating hashes over these graphlets [121].  

In summary, it is hard to pinpoint the exact reasons for as to why the results yielded using the Graph2Vec 

algorithm were so underwhelming. It is not the intent to say that the Graph2Vec method, and possibly other 

graph embeddings, are generally unfit. There are many factors that could have led to these results. The 

algorithm could have possibly not been parametrized correctly, or the extraction of the entire procedures 

could have been a bad choice for the subgraphs to be embedded. Furthermore, it must also be made clear 

that although plenty of attempts were made to use the Graph2Vec embedding method, no systematic 

experiments were conducted, which could strengthen these assumptions. This was due to the fact that the 

idea of embedding complex subgraphs was abandoned early on, hence rendering the application of graph 

embedding methods unnecessary. 

On a different note, the embedding of graph program representations may be a particularly challenging 

subfield of the already challenging field of graph embeddings. This may be due to the possibly repetitive 

nature of these graphs, as they are always a very condensed form of the program at hand and the patterns 

therein may be too similar in many cases. This may lead to closely adjacent points in the space. 

Furthermore, differences between a benign and a vulnerable procedure often only ever impact a handful of 

nodes or edges in these graphs, making them virtually indistinguishable in their embedded form. This is 

unsurprising as these graph representations were never created with machine learning applications in 

mind, leaving this task up for further research. Graphs offer many benefits for conventional static analysis 

approaches, in particular the possibility to express many problems as simple reachability problems. For the 

particular use case of ML-SAST, however, it may be argued that other data structures may be better suited. 

13.1.3 Lack of Software 

Another unforeseen obstacle was the lack of static analysis tools that are being developed under an open-

source license. As already elaborated in Section 13.1.2, the use of well-established static analysis methods 

precursory to the actual application of machine learning techniques may offer some benefits. Firstly, a 

Points-To-Analysis (PTA) is necessary, in order to estimate the memory objects a pointer variable may 

point to at any time during program execution. This information is not only important in terms of data flow, 

but also for the control flow of a program, since function pointers that are often being used in call back 

patterns, could otherwise not be resolved. This, in turn, would mean that every consecutive application of 

machine learning algorithms would rely on imprecise data, possibly altering its predictive performance 

negatively. Aside from a PTA, the generation of program representations that reflect program particular 

semantics, such as the control flow or the data flow, may also be helpful in increasing the conciseness of the 

input of the machine learning algorithms, as mentioned earlier. 

While a multitude of commercial solutions for this exact task exist, free and open-source implementations 

are scarce, at least for the C and C++ programming languages. During the development of the prototype, 

three different tools have been evaluated: Joern, DG and SVF. Beginning with Joern, the tool uses Code 

Property Graphs (CPGs) at its core, which are essentially an amalgamation of the CFG and the PDG, which 

are connected over the program's abstract syntax tree (AST) [36]. When tested, the Joern tool stood out 

positively by offering a comprehensive interface for querying the graph and for its speed. Another point 
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where the tool stood out positively, is its capability to parse incomplete program code. This reason allows 

for a much larger number of datasets to be used, where the complete source code is not available, but 

merely smaller excerpts. On the downside, it must be noted that the tool does not employ a points-to 

analysis, which rendered the tool unsuitable for the development of the prototype. It must be remarked in 

this context that when asked about the presence of a points-to analysis, one of the authors mentioned this 

feature being slowly introduced at the moment16. Once Joern supports this feature, however, attempts 

could be made to incorporate the tool into the prototype. 

Another tool that was closely inspected was the DG-Tool. Originally developed as part of a master’s thesis, 

the tool is meant to create program slices of LLVM-IR code, to be used as part of the Symbiotic verification 

tool [122]. To this end, DG does perform a simple Andersen’s PTA and generates so-called Dependence 

Graphs (DGs). These graphs are an incomplete form of the well-established SDGs. This circumstance, the 

fact that the tool is not able to process C++ code and finally stability issues led to the abandonment of DG 

after some testing. 

Finally, the SVF tool was examined for its suitability. It is also based on LLVM-IR code and offers a number 

of very precise and fast PTA algorithms to be chosen from and has the ability to generate several types of 

program representations, such as the Call Graph with points-to information (PTACG), the Interprocedural 

Control Flow Graph (ICFG) and lastly the Value Flow Graphs (VFGs) or Sparse Value Flow Graphs (SVFGs). 

The graphs depict the flow of values throughout the program, i.e., it mostly contains the relationships 

between statements that define some variable. Moreover, SVFGs only consider those statements that are 

either directly or indirectly reachable from a memory allocation site, making them very concise [123]. This 

has benefits, but also drawbacks, as this conciseness makes SVFGs arguably less intuitive than SDGs that 

adhere more closely to the original syntax of the program itself. Another contributing factor to this may be 

the fact that SVF also works on the basis of LLVM-IR code. This, although being very reasonable from a 

developer's standpoint, adds another layer of abstraction. Finally, unlike the other tools mentioned, SVF is 

published under the GPLv3 license, which may be problematic for developers who want to incorporate the 

tool into their software without having to publish their source code. 

Finally, another suitable tool that unfortunately could not be tested due to a lack of awareness thereof, is 

Phasar17. Similarly to SVF, Phasar is built around the LLVM-Compiler Infrastructure and like the former 

allows for complex dataflow problems to be solved. Unlike SVF, the tool is licensed under the MIT license, 

which may be beneficial for some developers as mentioned before [124]. Again, it may be possible to 

incorporate the tool into the prototype in the future. 

As can be seen, the choices are limited in terms of static analysis software that comprises the needed 

functionality. All options that could be made out came with some drawback, limiting their use. Although the 

algorithms necessary to create program slices from SDGs have been thoroughly described by Horwitz et al. 

since the early nineties, it appears that their implementation is very difficult [37]. This trait may also be 

traced all the way back to the high complexity of the C and C++ programming languages themselves. Based 

on these considerations, it was decided that the best suited tool for the implementation of the prototype 

would be the SVF framework, see Section 13.2.3. As the SVF framework was the most mature solution, the 

limitation of being published under the GPLv3 license was deemed to be an acceptable drawback. 

13.1.4 Summary 

In summary, it was revealed that despite the downsides of supervised machine learning algorithms in the 

context of ML-based SAST, the application of clustering methods to this end, appears to remain challenging. 

Moreover, the embedding of arbitrary subgraphs is a challenging task. At least under circumstances 

present, it was not possible to find a suitable configuration that would yield sufficiently separable 

embeddings in the vector space. This problem may affect program representation more than graphs 

present in other domains. This may be due to the fact that these kinds of graphs tend to be repetitive but 

 
16 https://github.com/joernio/joern/issues/1128 
17 https://github.com/secure-software-engineering/phasar 
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also very complex at the same time. Software defects also often only impact very few nodes, complicating 

matters even further. The development of suitable forms of graph embeddings for SAST may be considered 

a key element to allow for advancements to be made. This task, however, is up for further research. 

Moreover, finding appropriate analysis tools that would allow for the generation of such program 

representation graphs was equally not without difficulties. Free, open-source tools that combine a sound 

PTA with adequate program representations and slicing capabilities are rare for the C and C++ 

programming languages. To this end, it appears that the best solution currently available is the SVF tool 

[125]. In contrast to the former problem, this is may not be a basic research question, as the necessary 

algorithms are known. It would still require extensive resources to develop such a tool, which may explain 

why there are so few available. 

Finally, as has been explained in the previous Chapter 11.1 of the literature study, appropriate training data 

appears to be virtually non-existent at the time of writing. The datasets available are either too synthetic or 

suffer from label noise, which in turn yields models that generalize very poorly. 

13.2 Development of the Prototype 

As has been elaborated, there are three challenging factors that complicate the development of a machine 

learning based SAST tool: A lack of suitable graph embedding methods, a lack of appropriate training data 

and finally a lack of sound, free and open-source analysis tools. The latter of these problems could be 

addressed to some satisfactory extent by the usage of the SVF tool, hence this problem will not be discussed 

any further in this section. 

13.2.1 Basic Approach 

In Section 11.1 the lack of suitable training datasets was already discussed in detail. In order to make use of 

supervised machine learning models, however, the availability of these is indispensable. In summary, 

training datasets may fall into one of two categories: Synthetic datasets, i.e., those that are purposefully 

crafted by hand and datasets from real vulnerabilities extracted from various software projects. Whereas 

the models that were trained on synthetic datasets appear to generalize poorly due to the simplistic nature 

of the samples therein, the models trained on real-world data seem to generalize poorly as well [43], [54]. 

The possible reasons for this are more complex and possible causes include label noise and class imbalance. 

Another factor may also be a lack of context as these datasets tend to only extract the individual procedure 

that is affected by the vulnerability. Even for human experts it may then be impossible to determine 

whether the sample shown is vulnerable or not, because crucial information is missing. The ReVeal dataset, 

introduced by Chakraborty et al., is a real dataset that contains defective functions and their repaired 

counterparts from various software projects [81]. The example shown in Figure 30 was taken from this 

dataset and highlights the aforementioned problem. The procedure was taken from the QEMU project and 

contains a serious flaw. Figure 31 depicts the same procedure, but this time after fixes have been applied. 

Without additional information, however, it is almost impossible to tell the samples apart, since the defect 

appears to be very specific to the APIs of QEMU. 

Figure 30: A vulnerable sample taken from the ReVeal Dataset. 

static void cpu_request_exit(void* opaque, intirq, intlevel) { 

    CPUMIPSState* env = cpu_single_env; 

    if (env && level){ 

        cpu_exit(CPU(mips_env_get_cpu(env))); 

    }    

} 

Tracing the changes between both samples back to commit that introduced the fix, another problem 

becomes visible: Label noise. As the authors explain, they have used the Debian security tracker to extract 

the samples, likely in an automated fashion. This way it appears that the samples shown here are not 
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representative of an actual defect, but instead are part of some larger code refactoring effort 18.  Therefore, 

the Code in Figure 30, may not be vulnerable to begin with, thus posing a prime example for the kind of 

label noise one might find in realistic datasets. 

Figure 31: The fixed sample of the same procedure depicted in Figure 30. 

static void cpu_request_exit(void* opaque, intirq, intlevel) { 

    CPUState* cpu = current_cpu; 

    if (cpu && level) { 

        cpu_exit(cpu); 

    } 

} 

In defense of the ReVeal dataset it must be noted, however, that this is just one example and as such does 

not allow for a comprehensive judgement to be made about the quality of this dataset. Doing so was never 

the intended purpose of this example, as it merely serves for the elucidation of these otherwise abstract 

problems. A systematic evaluation of the ReVeal dataset against the background of the aforementioned 

issues, would be a matter for future research. 

It may also be the case that the samples extracted from real software projects alone, are too few and too 

heterogeneous. Simply training a supervised machine learning model on samples extracted from real-world 

software leans heavily on the idea that among all of these very different samples few, unified and 

discernible patterns exist that allow for the discrimination between benign and vulnerable code. While 

disproving the existence of such patterns is likely as difficult, if not impossible, as it is to prove their 

existence, evaluations of existing ML-SAST models may provide some insights. Firstly, when confronted 

with other datasets than the original test datasets, it appears that the models perform drastically worse 

across all metrics [81]. Thus, if there were such general patterns, the datasets either failed to contain these 

patterns or the methods applied must have failed. As said, these are vague cogitations for now and further 

research is necessary to uncover the intricate relationships between the training data and the 

generalizability of machine learning models in the context of ML-based SAST. 

As a consequence from this observation, one might be tempted to opt for unsupervised machine learning 

methods instead. At first glance, this seems like a good alternative as this method does not require labeled 

training data. Some of the approaches that came to light during the literature study in Section 10, did 

indeed rely on clustering instead of a supervised method. Unfortunately, clustering based approaches come 

with their very own set of demerits, as elaborated in Section 13.1.1. In summary, these approaches apply 

heuristics based on the idea that the software under analysis contains repetitive patterns, e.g., the 

application of sanitization functions between similar sources and sinks. Then, if such repetitive patterns 

can be observed multiple times, they are likely important and correct. Based on this, the rest of the code can 

then be checked for compliance with these observations. If, for instance, there is a dataflow between the 

same source and sink functions, where in most cases there would be a call to a sanitization function, it is 

likely that in this instance there should be one too. This approach may be better, in a sense that it does not 

rely on general vulnerability patterns that must hold true across all possible software projects, but instead 

learns from the project under analysis alone. At the same time, however, this comes with the drawback that 

the tool must be able to make a sufficient amount of observations to recognize a pattern as potentially 

important and correct. Therefore, more general patterns that the source code may not contain to the 

necessary degree remain unrecognized. 

Finally, both approaches offer limited possibilities for users to make adaptations to the models, since 

retraining supervised models, such as deep neural networks, is difficult and requires a great amount of 

training samples. Unsupervised methods may be in a slightly better position, but still offer no 

comprehensive way of manipulating the model at hand. 

The ability to customize a SAST tool to specific requirements is considered to be very important, which was 

also reflected during the expert interviews conducted in Section 5 [2, p. 40]. There, multiple interviewees 

 
18 https://git.qemu.org/?p=qemu.git;a=commit;h=4917cf44326a1bda2fd7f27303aff7a25ad86518 
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agreed that the possibility to define a custom rule set, is crucial. One of the experts stated in this context 

that SAST tools “must not be viewed as off-the-shelf products, but rather as frameworks, which need to be 

adjusted to personal requirements”. Another interviewee also remarked that their team would select rules 

from a predefined set on a per project basis, again highlighting the importance of adjustable models. 

Another reason why adaptable models may be considered crucial in the development of ML-based SAST 

solutions, is the lack of suitable training datasets. This matter could be considered a chicken-or-egg type 

problem, since there cannot be models that generalize well without adequate datasets and vice versa, if 

there is no interest in ML-based SAST approaches, no effort will be spent on improving these datasets. 

Adaptable models may arguably mitigate this problem to some degree, since although the models may not 

be ideal during their rollout, they can be improved during their lifetime. This effect might be additionally 

reinforced, if feedback loops are employed that allow the users to retrain their model, based on previous 

and validated findings. Finally, another benefit that comes with the use of adaptable models, could be the 

usability of such approach. The example-driven nature may offer some benefits to the rule-based operation 

of other SAST solutions. One of the interviewees remarked on the subject that finding bugs using self-

defined rules is difficult, which may be attributed to the high complexity of static analyses and the expert 

knowledge that is required for this reason. Using adaptable models within an ML-based SAST tool, does not 

require rules to be defined. Instead, it is sufficient for a user to provide a sample of unwanted behavior, or 

likewise, wanted behavior. Keeping these ideas in mind, for the development of the prototype the following 

considerations were made: 

1. The tool should be able to reason on the basis of more general patterns that may be found across 

software projects. This ability is likely more prevalent in supervised models. 

2. On the other hand, the tool should also be able to consider project-specific defects as well, a trait 

commonly found in unsupervised ML-SAST approaches, as mentioned in Section 13.1.1.  

3. Linked to the latter attribute, is the ability to customize the tool to such needs, as reflected in 

literature and during the expert interviews. 

Starting at the very basis, the prototype is designed in such a way that it is easily extensible. To this end, the 

prototype was largely implemented in the Python programming language, which according to the TIOBE19 

and the PYPL20 index ranks top of the most popular programming languages in 2022, thus attaining a large 

user base. Furthermore, the Python programming language benefits from a large selection of machine 

learning libraries, such as the renowned SciKit-Learn21 and the TensorFlow22 libraries. 

The extensibility and the framework character, mentioned during the interviews, was also considered in 

the prototype's architecture. The tool is organized in a clear and easily comprehensible pipeline structure 

that is composed of multiple phases. Each phase inherits from the same base class and must simply 

implement a single method that serves as the entry point. Phases may also be configured to require another 

phase to be run prior to its own executing. The prototype keeps track of the order of execution and ensures 

that all of these invariants are met. This allows users of the tool to write their own phases and experiment 

with different program representations, as well as machine learning algorithms. 

The prototype is designed around the idea that a project is a simple directory, which serves as the main 

interface between the different phases, each of which may place files with the analysis results in the 

directory. There, consecutive phases can read the results and continue with their analysis. Initially, a 

project is defined by three items that the users must provide: 

 
19 https://www.tiobe.com/tiobe-index/ 
20 https://pypl.github.io/PYPL.html 
21 https://scikit-learn.org/stable/ 
22 https://www.tensorflow.org/ 
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1. The source code that the user wishes to analyze, preferably within a direct subdirectory of the 

project directory. 

2. A BASH script that handles all steps necessary, to compile the source code into a format that the 

first phase of the analysis requires. Along with the BASH script, a C/C++ entrypoint file needs to 

be provided which calls all APIs defined by the source code. 

3. A configuration file in the YAML file format that specifies the analysis phases to be executed and 

their order, as well as the phase-specific parameters necessary. 

With this defined, the prototype reads the project directory and wraps it into as a single class that stores 

the context, e.g., the analysis phases run or the phase-specific configuration. Afterwards, it executes the 

phases in order of their definition. Finally, when the last phase has finished its execution, the results may be 

presented to the user via an external front end. Since the prototype itself merely poses a framework, it does 

not dictate a specific output format, as the requirements to such are highly dependent on the analysis at 

hand. Figure 32 illustrates the basic working principle of the prototype. As can be seen, the software project 

to be analyzed is made up of the source code itself, the build script and a configuration file in the YAML-

format. The prototype, controls the execution of the three phases called: Graph Generation, Path Extraction 

and the final Analysis. Finally, the result may be viewed and used to make adaptations to the models using a 

frontend, which is an external component, described in Section 13.2.6. 

Figure 32: The basic working principle of the prototype. 

13.2.2 Demonstration Pipeline 

As elaborated before, the prototype is organized in individual phases. So as to demonstrate the capabilities 

of the prototype, a pipeline was devised that aims to detect control-flow related vulnerabilities. The choice 

to focus on the control flow was made, as it covers a lot of vulnerabilities, e.g., missing return value checks 

(CWE-252, CWE-690), NULL pointer dereferences (CWE-476) and if relying on the interprocedural control 

flow, also defects related to taint style problems that are reflected in the order of procedure calls. 

Furthermore, the control flow can be extracted from a program in a comparatively fast manner. Whereas 

building complex program representations, such as the aforementioned SDG or SVFG requires a 

considerable amount of computation time, extracting the control flow does so to a far lesser degree, being 

merely a perquisite for both representations. When comparing the different representations during some 

explorative tests that were conducted early into the implementation of the demonstration pipeline, it 

appeared that the interprocedural control flow seems to strike an excellent balance in terms of complexity 

and informative value. This balance may be responsible of allowing models to be efficiently learned on this 
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type of program representation. Due to time constraints, it was not possible to evaluate these factors in a 

systematic fashion, leaving this task up for further research. 

The interprocedural control flow graph (ICFG), on which the demonstration pipeline relies, comprises all 

control-flow related statements, including procedure calls and returns. In order to achieve precise results, 

the control flow cannot be extracted immediately from the program. Instead, it is necessary to conduct a 

PTA prior in order to resolve all possible function pointers. Function pointers are often found in C and C++ 

software, as they are extensively used in programming patterns that rely on call-back functions. As outlined 

in Section 13.1.3, finding suitable analysis tools that comprise a sound PTA are scarce. The SVF library was 

the only one that offered the necessary capabilities. In addition, SVF is able to generate multiple different 

kinds of program representations that could also be used if desired. These representations comprise the 

PTACG, VFG, SVFG and through an addition made while experimenting, a top-level dependency graph 

(TLDG) that is built from the LLVM-IR opcode. This graph links all statements in the code over their 

operands and return values. 

13.2.3 Graph Generation Phase 

The graph generation phase is the first in the pipeline depicted in Figure 32. It is a wrapper for the 

aforementioned SVF library, used to perform the PTA on the source code and to translate the program code 

into different graph representations. SVF works on the basis of LLVM bit code, an intermediate code 

representation that the LLVM compiler infrastructure uses to implement optimization passes that are run 

during compilation. This format is considered to be a partial form of static single assignment code, since it 

only covers top-level, but not address-taken variables [126]. The Clang compiler, which is built as a 

frontend upon the LLVM compiler infrastructure, emits this format and together with the tool “llvm-link”, a 

linker for LLVM bit code, forms a complete compiler-framework. To avoid that practitioners of the 

demonstration pipeline have to resort to manually translating and linking the source code, the WLLVM 

compiler wrapper23 is used, which automates this process. The below Figure 33 shows this process in detail 

and corresponds to the equally named ”graph generation” element in the previous Figure 32. 

Figure 33: A schematic overview of the graph generation process. 

While being a good choice from a technical perspective, SVF has the downside that the tool is very complex 

and the internal graph structures are only exposed through a C++ API for querying. Taking the statements 

from the interviews into account, where it was criticized that it was hard to detect bugs using self-defined 

rules, having to resort to a C++ API may be considered too complicated for most users. This is due to the 

fact that with C++ being a compiled language, single queries would have to be compiled before being 

executed. Debugging queries would likely be also rather demanding and the library alone would offer no 

way of persisting graphs for later use as they reside in main memory. To alleviate this, it was decided to 

make use of the Neo4J graph database in form of an intermediate phase. The Neo4J graph database allows 

the stored data to be queried as a graph traversals and is therefore optimal for this use-case scenario. The 

 
23 https://github.com/travitch/whole-program-llvm 



13 Prototypical Implementation of a ML-SAST Tool 

100  Federal Office for Information Security 

Neo4J database in particular uses the Cypher query language for property graphs, which is comprehensible 

and does not require to be compiled first [127]. Furthermore, the Neo4J database itself is very extensible 

and allows for the development of user defined plugins in the Java programming language. Besides this, 

extensive libraries are readily available, which add useful features to the database, making the extraction of 

subgraphs for the later analysis very comfortable. Lastly, in contrast to the pure C++ API, the Neo4J 

database allows the graphs to be viewed through a client. This allows for queries to be easily developed and 

debugged before deployment and has the additional bonus of helping users visualize and understand the 

program they are analyzing. In order to be able to load the different graph representations generated by 

SVF into the Neo4J graph database, it is necessary to first export these into a compatible format. 

Conveniently, Neo4J allows for bulk imports to be made from simple CSV formatted files. Thus, using the 

SVF library, a simple wrapper tool was devised that allows the user to generate the aforementioned 

program representation graphs, supported by SVF. The graphs are then written to their respective CSV 

files, depicted as the Graph element in the above Figure 33. 

Finally, the entire compilation process using the WLLVM tool, the graph generation using SVF and the 

export into CSV-formatted files that are readable by the Neo4J graph database are wrapped as a single 

Docker container. Docker is the name of a virtualization software that runs on the operating system level, 

meaning that while sharing the same kernel, all applications running in different containers are otherwise 

isolated from each other [128]. Not only does this help bundle the required software in a portable way, but 

it also means that every software project is being built and analyzed in a fresh and controlled environment. 

Since every software project has specific requirements as to the steps necessary for building the software 

or relies on external libraries that must be installed prior to its compilation, users are obliged to provide a 

shell script that takes care of these steps. To this end, the users have access to the container by means of a 

single BASH script, which can be freely customized. This script is called every time the container is 

executed by the prototype. Further, SVF-specific settings are exposed through the aforementioned YAML-

file and are passed to SVF as command line arguments. 

13.2.4 Path Extraction Phase 

As explained in Section 13.2.3, the C++ API made available by the SVF tool alone was insufficient, which is 

why the program representation graphs generated prior are loaded into a Neo4J graph database. Similar to 

the step before, this graph database makes it easy to dissect the graph into smaller components that can 

then be processed by ensuing ML-based analysis phases. Similar to the graph generation phase that was 

encapsulated into as single docker container, this phase is also executed within such container. The 

corresponding docker image is made readily available by the Neo4j project and takes care of the otherwise 

complicated configuration of the database service, hence this section focuses on the additional plugins used 

and the extracted data structures during this phase instead. The below Figure 34 depicts this phase visually 

and corresponds to the equally named Path Extraction element in the previous Figure 32. As can be seen, 

the phase begins with the output from the last phase, by importing the generated graphs into the database. 

Figure 34: A schematic overview of the path extraction phase of the prototype. 
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Since the program graphs have special traits, it was decided that it would be best to collect common utility 

functions and queries into a single plugin for the Neo4j database. Neo4j offers a comprehensible API that 

allows for the development of such plugins in the Java programming language. The functions that are 

defined there are then callable from within normal Cypher queries [129]. Aside from some convenience 

functions, e.g., one that returns a list of all procedures within the graphs, this opportunity was mostly used 

to make further changes to the graphs after the generation phase. Most importantly, a function was created 

that adds additional edges between all corresponding nodes between the different graphs. This means that 

one can easily switch between graphs within a single query and is not confined to using a single graph only 

when extracting subgraphs from the database. 

As explained in Section 13.1.2, it is extremely difficult to embed complex graph structures into a vector 

space and the available methods to this end are scarce. The only applicable method found, during first 

attempts, was the Graph2Vec method, which in this particular case, performed underwhelming. One could 

argue that GNNs do not suffer from this limitation, as they are learned directly on the graphs. For the 

demonstration pipeline discussed here, it was decided against the use of this type of neural network, due to 

the distinct lack of explanation methods available today, see 11.3. If one were to move away from the idea 

of embedding complex subgraphs and instead rely on simple paths, this problem can be circumvented 

entirely. Although the embedding of complex subgraphs still remains an important topic, finding an 

appropriate solution was simply not within reach in the time frame of this project. It generally appears that 

a lot of research is necessary in this regard, if a satisfactory solution can be devised at all. As for the 

demonstration pipeline, it was thus decided to discard the idea of embedding complex subgraphs entirely 

and instead embed single paths from the ICFG instead. To do so, all procedures that are contained within 

the ICFG are found. From there on, all unique paths reaching from the entry to the exit node of the 

procedure, are explored and the nodes visited along the way are extracted in the order of traversal. Figure 

35 lists the Cypher query that is executed to this end, corresponding to the element called “Query” in the 

above Figure 34. 

Figure 35: The Cypher query that is used to extract all paths within the ICFG for each procedure. 

CALL mlsast.util.listProcedures()                                        

    YIELD str AS f                                                       

                                                                         

WITH f                                                                   

MATCH (n:FunEntryICFGNode {func_name: f})                                

                                                                         

WITH f, n                                                                

MATCH (m:FunExitICFGNode {func_name: f})                                 

                                                                         

WITH f, n, collect(m) AS exits                                           

CALL apoc.path.expandConfig(n, {                                         

    relationshipFilter: "icfg>",                                         

    terminatorNodes: exits,                                              

    uniqueness: "NODE_LEVEL",                                            

    maxLevel: 75                                                         

})                                                                       

                                                                         

YIELD path                                                               

RETURN f, path; 

As can be seen, using the aforementioned MLSAST-plugin for the Neo4j database, a list of all procedures 

within the database is acquired. Then for each procedure, the entry and exit nodes are found and the 

“expandConfig”-function is called to extract all unique paths between these nodes. This function is part of 

the APOC-library, which the Neo4j provides. It extends the database with useful functions, such as this one. 

The “expandConfig”-function allows for the expansion of paths and offers fine-grained configuration 

options. In this instance, the path expansion is configured to follow ICFG-type edges only in the forward 

direction, where for each path yielded, the nodes are guaranteed to be unique on the same level, meaning 

that loops are effectively prevented from being extracted. The maximum depth of these traversals has been 
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limited to 75 nodes, as anything larger would be likely too intense computationally wise. The path 

extraction method described here, is also shown in Figure 36. The graph denoted with the number I depicts 

the full ICFG of a procedure. Following this approach, there are three unique ways by which the graph can 

be traversed from the entry to the exit node, the first being demonstrated in graph II. 

Figure 36: A simplified example of the path extraction method. The ICFG denoted with the number I is the full graph, 

II shows one out of three possible traversals from the entry to the exit node. 

The nodes traversed on this path are drawn using solid lines, whereas the nodes that do not lie on this path 

are drawn using dashed lines. Moving on, there are two other ways, by which the entry node is connected 

to the exit node. Figure 37 depicts these paths in graphs III and IV. It must also be noted that the ICFG is a 

directed graph, hence in this example there are only three ways to traverse the graph from the entry node 

to the exit node. Therefore, loops are not possible in this simplified example. In general, however, loops are 

possible also in directed graphs. As for the prototype, the expandConfig-function was parametrized to not 

unroll loops, but instead to only traverse them once. This was done to keep the extracted paths as short as 

possible. 
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Figure 37: The other possible paths, by which the graph depicted in Figure 36 may be traversed. 

Since the demonstration pipeline is solely based on the ICFG, the database queries devised to dissect the 

graph into smaller components are specific to this graph and the problems that are detectable using this 

type of program representation. Not only can the SVF-library generate the ICFG of a program, it is also 

capable of generating the SVFG, which captures the dataflow of a program and is thus ideal for the detection 

of taint-style vulnerabilities. Here too, paths could be extracted, however, this time between calls to a 

source and a sink function. It would also be conceivable to use the PTACG that SVF can generate in order to 

find other types of bugs that manifest themselves in the order of procedure calls. This is just to offer a 

glimpse into the types of analyses that the prototype could likely be extended with under manageable 

effort. This is up to further research, as due to time constraints, all energy was focused on this one 

demonstration pipeline only. 

13.2.5 Detection Phase 

Coming back to the initial premise that a SAST tool must be extensible and configurable, the detection 

phase does not pose an exception. In the field of machine learning this is difficult, as models that have been 

trained once are fixed. While adaptations are possible, they require a large number of additional training 

samples and retraining them is not easily accessible to end users. To allow for this to be possible and in 

order to strike a sensible compromise between the merits and the demerits of supervised and 

unsupervised approaches, the solution described in Sections 13.2.5.1 and 13.2.5.2 was devised. As before 

this section picks up where the previous phase from Section Section 13.2.4 has left off. It uses the paths that 

were previously extracted from the ICFG and compares them against known defective paths from the Juliet 

test suite. Figure provides an overview over this process. 

Figure 38: General overview of the Analysis phase. 

13.2.5.1 Basic Working Principles 

First of all, all supervised approaches, known from the literature study, were deemed far too limited in 

terms of adaptability, see also Section 13.2.1. Although unsupervised approaches appeared to be better in 

terms of adaptability, they were far from ideal either. This kind of approach also suffers from the drawback 

that it only considers project-intrinsic bugs. Both approaches may be combined, however, if instead using a 

randomly initialized clustering algorithm, the algorithm would be initialized from a known ground truth. 

This idea is based on the observations that the ICFG paths extracted in the prior analysis phase, see Section 

13.2.4, demonstrate a crucial property: When comparing paths extracted from a vulnerable implementation 

against those from the benign implementation of functionally similar code, they are often discernible. This 

may be reflected in the number of nodes of the affected path, the type or opcode of these nodes and finally 

the order of nodes (by type or opcode). For example, in case of some missing NULL-pointer check w.r.t. the 

return values of a procedure, the resulting path would be shorter and lack important instructions. Figure 39 

shows two implementations that highlight this behavior. Both pieces of code make a call to the library 
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function “malloc()” in order to allocate heap memory for a single character value. As per manual, if the 

allocation fails, the “malloc()” function returns a NULL-pointer. Performing a NULL-pointer check after each 

call is thus paramount, since the omission could potentially lead to memory being read or written at the 

invalid address of 0, causing a segmentation fault to be triggered. The implementation to the left, does 

perform a NULL-pointer check, hence showcasing the correct practice. The one to the right does not and 

may thus cause the program to crash, if “malloc()” returns with a NULL-pointer. 

Figure 39: Two implementations of semantically similar behavior. The code on the left is the benign implementation 

as it performs a NULL-pointer check after calling malloc(). The implementation of the right does not and thus might 

cause a segmentation fault. 

// Benign implementation            // Defective Implementation 

int main(void)                      int main(void) 
{                                   { 
    char* buf =                         char* buf = 
        malloc(sizeof(char));               malloc(sizeof(char));                         
    if (buf != NULL) {                  *buf = 'a'; 
        *buf = 'a';                     return 0; 
        return 0;                   } 
    }                                       
                                            

    return 1;                            
}                                           

Using SVF and extracting the individual paths for each function, as described in Sections 13.2.3 and 13.2.4, 

the following ICFG paths may be obtained for both implementations. Figure 40 shows these paths, where 

path I is the correct implementation and path II is the defective implementation from the examples in 

Figure 39. It must be noted that these ICFG paths are somewhat simplified, as simple instruction nodes 

have been omitted for the sake of brevity. Also notice that the additional edge in path I, directly connecting 

nodes 3 and n-1, would not be present in actuality, since all nodes on a path have an ingoing and outgoing 

degree of 1. It has merely been added to this example to highlight the fact that for the correct 

implementation multiple paths in the control flow exist. 

Path I starts with the ENTRY node to the function and then immediately performs the call to malloc, 

depicted by nodes 1 and 2. Then the control flow diverges in node 3, in accordance to line 6 in Figure 39, 

depending on whether the pointer variable “buf” points to NULL or not. This is represented by the dashed 

place holder node, which comprises several simple instruction nodes that do not excerpt any direct 

influence on the control flow. Then, in node n-1, the paths merge again and the function exits in node n. 

Path II follows the same behavior up until node 3. Since this is the only path that connects the entry and the 

exit node within this function, there are neither SPLIT nor MERGE nodes present. Instead, other simple 

instructions follow, illustrated again by a dashed place holder node, marked [3 … n-2]. This circumstance 

renders these paths highly discernible, by length and by type. Section 13.1.2 and 13.2.3 already elaborated 

on the difficulties of embedding entire subgraphs, which is why the extraction and analysis of paths was 

chosen instead for this demonstration pipeline. Still, so as to allow for machine learning techniques to be 

applicable, it is necessary to embed these paths into a metric vector space. Figure 41 exemplifies the 

method employed to this end. 
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Figure 40: Two simplified ICFG paths that were extracted from semantically similar procedures. Path I shows the 

benign implementation, path II the defective one. 

Figure 41: The steps employed in order to embed the individual ICFG paths into a latent vector space. 

Starting with an ICFG path, marked as I in the illustration, the first step employed is the mapping of the 

nodes onto a set of real-valued numbers with respect to their opcode in step II. Then, since paths are likely 

to excerpt different lengths over all paths extracted from the program, they must be padded to fit the length 

of the longest path, see step III. Finally, the last step comprises the normalization of the paths onto values 

between 0.0 and 1.0, visible in step IV. This was shown to be beneficial in terms of discernibility. It is then 

possible to understand these paths as real-valued vectors if each index within these paths is assigned a 

fixed dimension in a vector with the dimensionality of the longest path, marked as V. 
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13.2.5.2 Model Generation 

Using the aforementioned methods to process a number of benign and vulnerable program paths, a vector 

space is spanned, where each path is a point in that space, giving rise to the possibility of applying machine 

learning techniques. To this end, a method was devised that allows for quick and explicit adaptations to be 

made to the models. This method will be will be elaborated in this section. Figure 42 provides an overview 

of the entire process, for reference purposes. 

Figure 42: Schematic overview of the model generation process, which is part of the detection phase, depicted in the 

previous Figure 38. 

Firstly, in order to generate models, it is necessary to have a ground truth, where it is known beforehand, 

which parts of the code are defective and which are benign. Since datasets based on real software projects 

may suffer from label noise issues, it was decided to use the Juliet test suite. This dataset has the drawback 

of being synthetic, thus not being entirely representative of real vulnerabilities found in actual code. 

Nevertheless, it may be argued that due to the high adaptability of the approach implemented in this 

prototype, this circumstance poses less of a negative impact than a skewed ground truth. More realistic 

datasets, generated from real software projects, may suffer from this detriment, due to the fact that the 

class of benign samples is usually taken from real software projects as well. This is done under the 

assumption that if no vulnerability is known for a given code sample, then it must be safe. In reality, 

however, it is likely that the samples yielded this way, possibly contain a number of unknown 

vulnerabilities, yet to be discovered. Hence, label noise is introduced, which may pose a negative impact on 

the model’s predictive performance. As for the prototype, the models can be adapted quickly, so that it is 

possible to use prior findings of the prototype to refine the models to better fit real-world vulnerabilities. 

Another benefit of the Juliet test suite lies in the fact that it can be compiled with standard compilers, such 

as the Clang compiler, as each individual testcase forms a self-contained program. This is a key 

requirement, in order to be able to make use of the SVF-tool for the generation of the ICFG, as elaborated in 

Section 13.2.3. Otherwise, it would have been necessary to resort to the Joern tool, which is able to process 

incomplete code, thanks to its fuzzy parsing capabilities. Its downside, however, is the lack of any option to 

perform a points-to analysis, as stated in Section 13.1.3. Finally, the modularity of the Juliet test suite has 

one last merit: As it is neatly divided into individual CWE classes, i.e., types of vulnerabilities, the Juliet test 

suite allows for the generation of not one, but several models that represent each of the CWE classes. Thus, 

the code can be tested against each model, or therefore CWE-class, in a separate fashion. The models that 

achieved the highest score could then be used to determine the most likely type of defect present in the 

code, providing the user with some more refined information. In the following, the basic principles by 

which the models are generated and used to detect defective code, are explained in detail. Furthermore, the 

observations that influenced the design of the prototype, will be elaborated. 

In order to generate the models from the Juliet test suite, every CWE-class is processed individually. Using 

the test cases from the CWE-690 class as an example, firstly, the aforementioned extraction and embedding 

technique are applied. This is depicted as the Paths from Juliet element in the above Figure 42. Then the 
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resulting datapoints are divided into train and test splits of equal sizes. Continuing with the training set for 

the time being, it can be observed that the paths form some loose clusters, as is visible in Figure 43. Here 

each datapoint represents a single path in the vector space, where green paths are benign and red paths are 

defective. 

Figure 43: Benign (blue) and defective (yellow) paths of the CWE-690 type samples from the Juliet test suite. 

Embedded using the explained methods and reduced in dimensionality using the UMAP-method. 

It must also be noted that the actual dimensionality of these paths is naturally much higher. So as to make 

the basic working principles observable, the Uniform Manifold Approximation and Projection for 

Dimension Reduction (UMAP) method has been applied to the paths [130]. All subsequent operations 

shown, were applied on top of the reduced paths, hence the example is not entirely representative of the 

actual affairs in terms of scale or clusters, but it serves well for elucidation purposes. Although Figure 43 

depicts both, benign and defective paths within the same vector space, the prototype only ever uses one out 

of both within a single model. This is because it could be observed that mixing benign and defective paths, 

or therefore even paths from different CWE-classes, would only lead to the models being confused. Thus, 

the following examples only focus on the defective paths of the Juliet test suite’s CWE-690 type samples, 

visible in Figure 44. 
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Figure 44: The same paths from before, but the benign ones have been removed as the prototype only considers one 

type of behavior at once. 

As mentioned earlier, it can be observed that the paths form some clusters within the vector space, despite 

being from the same CWE-class and only focusing on the defective paths. This is because the test cases are 

not necessarily entirely homogeneous within themselves. So as to further isolate specific behaviors, it was 

shown to be highly beneficial to first use a clustering algorithm, to further disintegrate the paths into 

individual behaviors. To this end, the K-Means algorithm was used and the area under the curve (AUC) was 

measured under a varying parametrization for the algorithm across all cases. This way, using a value k=8 

was determined to be the best parametrization in this example, leading to good results in terms of the 

average AUC across all cases. Values higher than 13 only showed diminishing results and in few cases even 

worse results than for a lower K-value. Furthermore, it was feared that while showing improvements when 

tested against the Juliet test suite, increasing the number of clusters too much, would come at a loss of 

generalizability, i.e., lead to an overfitting effect. Alternatively, an agglomerative clustering algorithm might 

be used as well. During experimentation, there were no differences noticeable between both algorithms. 

Figure 45 depicts the clustered paths from before, where each cluster was highlighted with a different 

color.  
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Figure 45: The defective paths of the CWE-690 class of the Juliet test suite, clustered using the K-Means algorithm 

parameterized with a K of 8. 

Each of the clusters is now indicative of some specific variation of the defective behavior, defined by the 

paths from the Juliet test suites samples of the CWE-class 690. This trait can be used in the ensuing steps, if 

the geometric centers are formed for each cluster. They can be comprehended as the essence of some 

specific behavior. Thus, these geometric centers, also called centroids, are the first of two parts that the 

models are comprised of. The idea is that new and unknown paths - from the software that is being 

analyzed - may be compared against the clusters to determine if they are defective. Paths that are closer in 

the vector space to the defective centroids are more likely to be defective than those further away. Figure 

46 shows the geometric centers of the defective paths, found in the Juliet test suite’s CWE-690 class test 

cases. This step is depicted as the Generate Centroids element in the previous Figure 42. 



13 Prototypical Implementation of a ML-SAST Tool 

110  Federal Office for Information Security 

Figure 46: The geometric centers of the clusters depicted in Figure 45. 

So far there are only centroids that are representative of some behavior. In order to come to a decision for 

each path analyzed, whether it is likely to be defective or not, there needs to be some threshold, beyond 

which a path would be considered benign, i.e., a safe distance. Of course, it would be a possibility to choose 

this value arbitrarily, but this is difficult to get right. Therefore, a technique was devised that adjusts this 

threshold parameter for each model automatically. However, since some practitioners may wish to make 

manual adjustments, the prototype allows for the threshold to be moved by a user defined offset.  The 

problem of finding an ideal threshold was modeled as an optimization problem where the test split from 

earlier is employed and the distance between every path from the set to each of the centroids is calculated. 

It can be observed that benign paths on average showcase a higher distance to a defective centroid than a 

defective one to a defective centroid. Vice versa, a defective path, on average, has a higher distance a benign 

centroid than a benign path. In most cases, there is some overlap, unfortunately, meaning that benign and 

defective paths are equally far away from the centroids in some instances. In the case of the defective 

centroids, choosing a small threshold would then result in a decreased number of false positives, but an 

increased number of false negatives as well. A large threshold, on the other hand, would lead to the 

opposite and result in a high number of false positives, but therefore a decreased number of false negatives. 

The question now is: At what point is the model’s predictive performance the highest? This point can be 

approximated by the computation of the Receiver Operating Characteristic (ROC). The ROC plots a 

classifier’s true positive rate (TPR) against its false positive rate (FPR) while increasing the threshold, in 

this case the radius around the centroids. At each increase, the TPR and FPR are taken and its geometric 

mean is calculated, given by √(TPR ∙ (1 − FPR)). The optimal threshold is reached, when the geometric 

mean reaches its maximum. Figure 47 visualizes these circumstances. Depicted left is the histogram that 

plots the distances of all benign and defective paths from the test split against the defective centroids 

generated from the training split. The x-axis spans the minimum and maximum distance measured over all 

paths, whereas the y-axis depicts the number of observed paths at these distances. The blue paths are the 

defective paths, closer to the centroids, the orange ones are the benign paths that are further away. The 

grey area marks the overlap discussed before. This example exhibits a mediocre discernibility. To the right 

of the histogram, is the corresponding ROC curve that is used to determine the best threshold. In this 

example, a threshold of 1.9 would be considered ideal. 
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Figure 47: The histogram on the left depicts the distances measured between the paths in the test split and the 

defective centroids for the CWE-class 690. Seen on the right, is the associated ROC curve, where the labeled 

datapoints correspond to the threshold for this ROC. 

Finally, with these thresholds at hand, the model is complete and can be used to predict the probability of 

new and unknown paths from the software under analysis, as shown in Figure 48. Here the same, defective 

centroids of the CWE-class 690 are depicted as before, together with their optimal thresholds, marked by 

the red circles around them. For each new path, the distance is now measured and it is determined if they 

lie within the threshold of the centroids. Paths that do are marked as red diagonal crosses and are more 

likely to show some kind of defect and are reported to the user. Those that lie outside the thresholds are 

less likely to be defective and are represented by the green crosses in the figure. The entire procedure 

described is repeated for every CWE-class of the Juliet test suite, yielding an individual model in each case. 
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Figure 48: The position of unknown paths is observed in the vector space alongside the centroids and their 

thresholds. The red circles mark the aforementioned thresholds. Whereas saltires mark the potentially defective 

paths that fall within the thresholds, Greek crosses mark those that lie outside and are considered safe.  

As mentioned, using separate models for each individual case, i.e., single CWE classes, appears to offer the 

additional advantage of providing more detailed information about the type of defect present. Whereas a 

binary classification model that was trained on the entirety of all possible defects is only capable of 

classifying code as either benign or vulnerable, testing the same code against a number of fine-grained 

models offers a much more refined result. Although being common practice with conventional SAST tools, 

most of the machine learning-based approaches that were brought to the fore during the literature study in 

Section 10, did not have the capability to discern between multiple types of vulnerabilities. It could be 

systematically determined that the different models that were created for each specific case generally 

showcase lower internal than external distances, thus validating the approach. To this end, the ICFGs were 

generated for every single test case within the Juliet test suite and the paths extracted as usual. The 

resulting paths were first partitioned by their CWE class and then partitioned for a second time, into benign 

and defective paths. Following this, for each CWE, paths were randomly sampled and assigned to equally 

sized sets of benign and defective test and training data sets, i.e., a total of four sets. Then, for both, the 

benign and defective training data sets, centroids were generated and both test datasets were reserved for 

later use. 

Next, a baseline was established by measuring the average pairwise Euclidean distance, between every 

benign centroid and every benign path of the same CWE and every defective centroid and defective path of 

the same CWE. This way, for each CWE an average internal distance was computed for the benign and the 

defective paths. The assumption was now that if the same experiment was repeated, but this time 

comparing the centroids with paths from other CWE classes, the average distance would be higher relative 

to the baseline. Therefore, again for each CWE the centroids were taken, but instead of using the paths from 

the test data set of the same CWE, paths from all other CWE classes were randomly sampled. The total 

number of paths that were sampled, matched the number of paths of the original (internal) test dataset. 

Again, this was done for the benign and the defective paths separately. Figure 49 depicts the results of these 

experiments. As can be seen, there is a noticeable difference in terms of the average distance. To exclude 
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the possibility that these results were produced by pure chance, the experiments were repeated a total of 

eight times. 

Figure 49: Average Distances between centroids and paths for each CWE class in the Juliet test suite. 

Compared were benign centroids against benign paths from the same class (BIN), benign centroids against 

benign paths from other classes (BEX), vulnerable centroids against vulnerable paths from the same class 

(VIN) and finally, vulnerable centroids against vulnerable paths from other classes (VEX). As can be clearly 

seen, there are discernible distances between BEX and BIN, as well as VEX and VIN, suggesting a practicality 

of this approach. It must be noted that this plot does not allow for conclusions to be drawn in terms of 

overlap. On average, it appears that the distances between vulnerable paths and centroids from different 

defect classes excerpt greater distances than their benign counterparts. However, it must be stressed that 

this also largely depends on the individual case. 

Ultimately, it is also necessary to store the models in some way. Computationally wise, the calculation of the 

geometric centers is neglectable. Meanwhile, as was established in Section 13.2.1, the adaptability of the 

models is an important asset. For these reasons, it was thus decided that it would be best, to persist the 

models in terms of lists of paths, i.e., real-valued vectors. This allows changes to the models to be made by 

simply appending new paths to these lists. Vice versa, unwanted paths can be easily removed from the 

models if necessary. The models were then persisted as simple text files in the comma separated values 

(CSV) format. Processing the entirety of the Juliet test suite resulted in a very large model. Using the built in 

ZIP file library of the Python programming language, it was possible, however, to compress the file at a 

ratio of about 95%. 

While the specific implementation of this demonstration pipeline focuses solely on the ICFG, it is possible to 

use other data structures as well, with manageable effort. In this situation, all that is necessary is to 

configure the SVF-phase accordingly and to adapt the queries to the desired graph. Next, a model would 

have to be built using the same query, for instance, by using the Juliet test suite for training data and finally, 

it might be necessary to make small adaptations to the last, distance-phase in the pipeline. Aside from the 

ICFG, SVF has the ability to generate SVFGs and Call Graphs. Further additions that were incorporated into 

the tool also allow for the extraction of the LLVM-IR code in graph form. None of these structures have been 

elaborated in depth, such that further research is necessary in order to evaluate their adequacy for ML-

based SAST. Furthermore, as elaborated in Section 13.2, the prototype was designed in a framework-like 

fashion that allows for individual analysis phases to be exchangeable. This allows for the graph-generation 

step to also be exchanged entirely for some other tool that emits graphs. This way the prototype could also 

target other programming languages, such as the Java programming language. 

13.2.6 Front End 

As elaborated, one of the key strengths of this demonstration pipeline is its high degree of adaptability. This 

choice was made early on during the development process, as the lack of suitable training datasets for 

supervised machine learning approaches was deemed a critical and, as for today, not entirely remediable 
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issue. Therefore, as a mitigation strategy, a feedback-loop was devised that, together with the high 

adaptability of the approach, would allow for the model to be improved upon using past findings. This 

feedback-loop is part of the demonstration pipeline’s front end. As mentioned in Chapter 13.2.5.2, the 

models of the demonstration pipeline are simple lists of ICFG paths that are indicative of some underlying 

problem. The representation of these paths in a metric vector space is done one the fly, each time the 

prototype is run. Therefore, making amendments to these models is conceivably simple, as all that has to be 

done is appending new paths from new findings to this list. Figure 50 provides an overview of the steps 

involved in this process. 

Figure 50: Schematic overview of the frontend. 

The front end achieves this by not only presenting the results of the analysis, but also allowing the users to 

select individual findings (depicted by the Filtered Paths element in the above Figure 50) and the models 

that they wish to make the amendments to. Each finding of the demonstration pipeline is presented as a 

page, where the affected path is shown to the left. However, since the paths are internally represented as 

simple lists of ICFG nodes, they first have to be translated back into its program code representation. This 

process is rather straightforward, since the programs under analysis are compiled with the debug flag 

enabled and the source locations yielded this way, are stored in each and every intraprocedural ICFG node. 

Then, mapping the nodes back to their program code representation is as easy as retrieving this 

information for every node and loading the respective lines of code from the original source files. Since 

single lines alone are not very lucid by themselves, a delta is used that not only retrieves the affected line, 

but also a user-defined number of lines before and after. Moreover, as the ICFG is used, the paths extracted 

may cover multiple procedures, meaning that the context may switch repeatedly. So as to allow the users to 

keep track of which procedure they are viewing, every time the context changes, i.e., by means of a call or 

return node, the name of the current procedure is added to the source code in the form of a comment. 

Another design choice with respect to the front end was that instead of reporting possible defects in terms 

of absolute findings, for each model the code was checked against, the distance to the centroid is expressed 

as a percentage. That percentage is to be read as the degree to which the finding corresponds to one of the 

models, i.e., in this case CWE classes. Not only does this allow users to prioritize and categorize findings, it 

is also a deliberate step away from viewing the problem of detecting defects in source code as a binary-

decision problem. This takes advantage of the inherit principles by which the prototype detects defects and 

may help to reduce user fatigue due to the inevitable presence of false positives. If users are faced with a 

high number of false positive findings, they might dismiss all further findings after a while, as they may not 

see any use in the tool. If, however, reports are made in terms of the degree to which their code fulfills the 

characteristics of some defect class, the users may be more inclined to actually investigate the cause of this 

overlap. Figure 51 depicts a screenshot of the demonstration pipeline’s front end. The defect correctly 

detected here, is a buffer overflow in the MiniUPnP24 software, which was filed under the CVE entry: CVE-

 
24 http://miniupnp.free.fr/ 
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2015-603125. On the left-hand side, the affected source code is visible. The ICFG paths that triggered the 

finding is marked on by the line numbers, highlighted in red. On the right-hand side, the defect 

characteristics for each model the code was checked against, are listed in descending order. Listed are only 

those models, where the affected path triggered an alarm by falling below one of the model’s threshold. As 

can be seen, the CWE-class 122 was correctly reported as the most plausible type of error. This is not 

always the case, however, such that users should always investigate the code from the angle of every 

possible flaw reported. 

Figure 51: A screenshot of the prototype's front end. 

If a user finds that a defect that was reported by the prototype is indeed a true positive finding, they may 

select the respective models to which they wish to append the affected path through the defect 

characteristics display on the right-hand side. The controls of the frontend are shown below the code. They 

allow the users in addition to step through the list of findings, hide false positives and save the changes to 

the model. Finally, it must be noted that the user interface was heavily zoomed in for this screenshot, so as 

to improve the readability. 

13.3 Evaluation 

Evaluating the prototype, i.e., the demonstration pipeline, was done in two different experiments. Firstly, 

the Juliet Test Suite was used, in order to determine the prototype's predictive performance in terms of the 

full confusion matrix that was introduced in Section 8.2. This is possible since the Juliet test suite is of 

synthetic nature, meaning that each test case therein was carefully crafted, such that it is safe to assume 

that a case labeled benign is indeed benign. For datasets that were created from real-world software 

projects, this property does not necessarily hold true, as elaborated in Section 11.1. It may be possible to 

determine sections of vulnerable code within a software project, but determining that a section is safe, on 

the other hand, is not easily possible, at least not without considerable amounts of effort. Therefore, using 

real-world data, only two dimensions of the confusion matrix may be considered: True positives and false 

negatives. Using the Juliet test suite alone, however, has the drawback that due to its synthetic nature, the 

test cases may not reflect real vulnerabilities to the full extent. In addition, the Juliet test suite was used for 

the creation of the models employed within the demonstration pipeline, hence evaluations performed on 

this ground truth alone may mask the overfitting problems. To mitigate some of these effects, it was 

therefore decided that in addition to the evaluation based on the Juliet test suite, another evaluation should 

 
25 https://nvd.nist.gov/vuln/detail/CVE-2015-6031 
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be conducted that is based on real-world data. However, due to the aforementioned limitations, only true 

positives and false negatives would be tracked. To this end, four different software projects were used: The 

LibTiff26 library, a software library for handling image files in the “Tagged Image File Format” (TIFF), 

OpenJPEG27, another library used to process images, but this time in the “Joint Photographic Expert Group” 

(JPEG) file format, MiniUPnP, an implementation of both, a client and a server, of the “Universal Plug and 

Play” (UPnP) protocol and finally the ZLib28 software library comprising a number of data compression 

algorithms. All of the software projects are written in either the C or C++ programming language and 

should cover various types of software defects. In the ensuing sections, the experiments conducted on this 

basis will be dubbed as oracle tests, due to their characteristic of only allowing for yes- and no-answers on 

whether the prototype found a known vulnerability or not. 

13.3.1 Juliet Test Suite Experiments 

As has been elaborated during the introduction of this section, the Juliet test suite offers the benefit that it is 

known with certainty whether or not a particular test case is, indeed, benign. Therefore, the complete 

confusion matrix can be determined, which allows for more complex and expressive metrics to be 

calculated on the basis of these results. These metrics are not created equally and some that are often found 

in the literature are ill-applied and do not reflect the predictive performance of some tools to an adequate 

degree. A very obvious metric of this category would be the ratio between the correctly classified samples 

𝑇𝑃 + 𝑇𝑁 and the total samples 𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁. This metric is referred to as the accuracy. Especially in 

the domain of SAST it should be avoided, however, as in cases of highly imbalanced classes, e.g., the natural 

distribution of vulnerable versus benign code samples, it tends to be overly optimistic in favor of the 

dominating class [131]. Nonetheless, this metric is often cited in other literature w.r.t. ML-SAST, hence it 

was decided to include it in the evaluation. Aside from the accuracy, the also very popular, but less 

problematic, precision, recall and F1-Score have been calculated during the evaluation. Section 8 covers the 

topic of metrics in much greater detail. 

Since the Juliet test suite has also been used in the generation of the models used, it cannot be simply 

employed for the evaluation as is. This is due to the fact that using the same data a classifier was trained on, 

would not yield trustworthy and realistic results. Instead, the dataset must be split into a training and a test 

dataset, where particular caution must be exercised to not mix samples between the sets. Moreover, so as 

to avoid the possibility that the results yielded can be attributed to the particular split, the K-fold cross 

validation method is used. In this instance, 𝐾 = 10 was chosen, as it can be considered common practice. 

With this method, the dataset is not split into two sets for training and testing, but ten. Then, one of the sets 

is reserved for testing, while the others are used for training. This is repeated ten times, where for each 

iteration another test set is chosen. The most evident method of doing so would likely be to simply process 

the entire test suite at once, leaving just the extracted ICFG paths and then making the split. This would be 

problematic though, as some of the paths in the test and training set could then originate from the same 

function, skewing the results of the experiment. Consequently, it is necessary to perform the splits at the 

very bottom of the pipeline, i.e., in the test suite itself. This is rather uncomplicated, fortunately, since the 

Juliet test suite is already organized in individual test cases, where there are no dependencies between 

them. That is, for each CWE class there is a directory in the test suite that contains a varying number of C or 

C++ files. These files are mostly self-contained and pose a single test case. The process of generating the 

datasets was thus designed as follows: 

For each CWE class and each file therein, i.e., a test case, the entry points were collected and stored in list, 

which was then shuffled. Then, the list was split into ten equally sized sets and new main-procedures were 

generated that would call the entry points from these sets. The main procedure meant for testing would be 

comprised of a single fold, whereas the one for training would be generated from the remaining nine folds. 

This was done for all ten possible folds. Each main procedure resides in its own file, such that in a 

 
26 http://www.libtiff.org/ 
27 https://www.openjpeg.org/ 
28 https://www.zlib.net/ 
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consecutive step, Makefiles could be generated that emit a single binary for each, the training and the test 

dataset. Figure 52 shows the procedure schematically. 

Figure 52: Schema of the procedure applied for the ten-fold cross validation using the Juliet test suite. 

Here, beginning from the top, for each CWE class (I) the test cases are divided into equally sized chunks (II) 

and the splits are then formed by using nine of the ten chunks for the training and one for the test set, 

before being rotated (indicated by the hatched lines below). Then, on the example of the first split, the two 

main-procedures are created and the associated Makefile for each split (III). Afterwards the process 

continues as per usual and the Makefiles are used to compile and extract the LLVM-IR bit code from the 

train and test binaries. Then, the ICFGs are generated using SVF and finally the paths extracted by means of 

the Neo4j Database. The compilation and analysis of the Juliet test suite alone is by itself already a 

computationally exhausting task. Due to the fact that the ten-fold cross validation method multiplies this 

problem by a factor of ten, it took five days on an Intel E5-2690 V4 CPU with fourteen cores clocked at 2.60 

GHz. It must be noted, however, that this process could have indeed been massively accelerated, had the 

task been parallelized more aggressively. 

With the metrics and procedures described that are used in order to evaluate the prototype’s predictive 

performance, the other aspect that is left to define is the method of grading the results. This problem is 

more involved than it may appear at first glance. This is due to the way that the prototype reports its 

findings. Originally the Juliet test suite was designed with conventional SAST tool in mind that report 
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defective code on the level of lines and even columns. The prototype devised here, is only capable of 

analyzing paths in the interprocedural control flow, meaning that reports are made on a per-path basis. In 

the worst-case scenario, where each node on a path corresponds to an instruction in the LLVM-IR 

representation, a single path could span up to 75 nodes, as determined by the database query that is used, 

see 13.2.4. The actual number of lines is much smaller in reality, however, as a single line of code in the C or 

C++ programming languages usually corresponds to several instructions in its LLVM-IR representation. 

Furthermore, the maximum path length of 75 nodes is likely to be seldomly reached. Still the reports made 

by the prototype can and often do span multiple lines, therefore being incompatible with the manifest 

provided by the Juliet test suite. To alleviate this problem, it was thus decided that reports would be graded 

as is described in the following. Since the Juliet test suite uses a predictable pattern by which the 

procedures are named that pose the entry point for each test case, it is possible to tell benign from defective 

cases by this information alone. Furthermore, it is then possible to tell benign from defective paths, as they 

are extracted starting at these entry points. Using this information, it is possible to grade the results of the 

prototype on the same granularity, where for each path that the test suite reported as defective was 

considered a true positive (TP) if it was extracted from a defective procedure. If the path was extracted 

from an indeed benign procedure, the finding was booked as a false positive (FP). Vice versa, if the 

prototype failed to reported a path that was extracted from a defective procedure as such, the finding was 

deemed a false negative and finally, if the path was extracted from a benign procedure and also reported as 

benign, the finding was classified as a true negative (TN). Table 9 summarizes the rules applied for all four 

dimensions of the confusion matrix in a more concise fashion. 

Table 9: The rules applied in order to determine the prototype’s predictive performance in terms of TP, FP, FN and 

TN, i.e., the complete confusion matrix. 

Dimension Description 

TP 
A true positive was counted when the prototype reported an ICFG path that was extracted 

from a defective procedure. 

FP 
A finding was deemed a false positive, if the path analyzed was extracted from a benign 

procedure, but classified as defective by the prototype.  

FN 
A false negative was counted, if the tool did not pick up on a defect that is known to be 

extracted from a defective procedure. 

TN 
A true negative was attributed for every other path that the prototype did not report that 

was extracted from a benign procedure. 

With the principles of the grading and the tenfold cross validation method laid out, one last thing to be 

discussed are the testcases themselves. Due to the high number of cases in the Juliet test suite and time 

restrictions it was not possible to test the prototype against every single case. Analyzing the entire Juliet 

test suite alone, already poses a computationally challenging, albeit manageable effort. The tenfold cross 

validation multiplies this effort by a factor of ten, however, which is out of scope for the time being. Hence, a 

selection of various defect classes was chosen, in hopes to paint a comprehensive picture of the prototype’s 

predictive performance. The defects chosen range from more abstract types of errors, such as absolute path 

traversal vulnerabilities (CWE-36), command injection and format string vulnerabilities (CWE-78, CWE-

134), buffer related defects (CWE-121 – CWE-127), numeric defects (CWE-190 – CWE-197), zero-division 

problems (CWE-369), resource mishandling issues (CWE-400 – CWE-590 and CWE-789) and unchecked 

return value defects (CWE-690). As for the metrics calculated from the results, the recall, precision, F1-

score and the accuracy were chosen. The final results as well as the entirety of the CWE-classes the 

prototype was tested against are shown in Table 10. Furthermore, Figure 53 depicts the same results 

visually, by means of a bar plot. 
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Table 10: Results of the internal tenfold cross validation against select classes of the Juliet Test Suite. 

CWE Recall Precision F1 Score Accuracy 

36 0.816 0.766 0.790 0.686 

78 0.260 0.912 0.405 0.272 

121 0.393 0.778 0.522 0.483 

122 0.345 0.789 0.480 0.426 

124 0.374 0.810 0.512 0.431 

126 0.430 0.860 0.573 0.468 

127 0.434 0.797 0.562 0.466 

134 0.468 0.979 0.633 0.483 

190 0.741 0.965 0.838 0.752 

191 0.736 0.965 0.835 0.748 

194 0.332 0.602 0.428 0.402 

195 0.375 0.604 0.463 0.390 

197 0.236 0.654 0.347 0.292 

369 0.781 1.000 0.877 0.783 

400 0.632 0.978 0.768 0.646 

401 0.953 0.994 0.973 0.955 

415 0.831 0.958 0.890 0.881 

590 0.567 0.788 0.659 0.596 

690 0.855 0.905 0.879 0.895 

789 0.666 0.997 0.794 0.661 

Figure 53: Categorical bar plot of results from the internal tenfold cross validation against select classes from the 

Juliet test suite. 

As can be seen, the results of the evaluation vary greatly across the different types of software defects 

encountered within the Juliet test suite. While some types of defects appear to be detectable quite well, 

others are seemingly very hard for the prototype to pick up on. In particular, the numeric and buffer related 

issues are apparently challenging in that regard. Interestingly, however, out of the numeric type errors, the 
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classes CWE-190 and CWE-191 stand with comparatively high scores across all metrics. This may, however, 

be explainable by the fact that these classes pertain to integer over- and underflow related defects, which, 

in contrast to the classes CWE194 – CWE-197, may be better reflected in the control flow. The better 

performing classes, which mainly comprise all starting at CWE-369 onwards, are also likely to be highly 

control flow related and thus, picked up by the prototype with ease. 

13.3.2 Oracle Tests 

As elaborated, the oracle tests were performed to gain insights into the real-world performance of the 

prototype and its demonstration pipeline. For this, a dataset by Fan et al. was used. The authors of the 

dataset crawled several open-source software projects’ commit histories in order to determine commits 

that likely introduced some bug fix for a security related issue. The dataset also included references to the 

respective Common Vulnerabilities and Exposures (CVE) entries, as well as the according CWE class for the 

bugs [132]. From this dataset, a total of 50 different test cases across 44 different commits and four 

different software projects were selected, spanning 13 different CWE classes listed below in Table 11. 

In order to conduct the analysis for each defect, a shell script was executed that cloned the software project, 

checked out the commit prior to the fix and ran the prototype on the source code in that version. For each 

defect, a report was generated by the prototype that contained paths, which were similar to paths of known 

defects. A Python script then filtered the reported paths for those that matched the filename and the line 

present in the defect. The findings for each defect were manually confirmed afterwards. This was 

necessary, as the findings might have been random, e.g., the prototype might have reported the correct 

location, but the detected defect characteristics would not match the underlying problem. If, for instance, 

the prototype reported a potential buffer overflow, but the actual underlying problem was a missing null-

check, the report was dismissed as a false positive. 

As elaborated in Section 13.2.5, either the opcode of the LLVM-IR instruction or the node’s type may be 

used as embeddable features. For the oracle test, the former option was chosen, as the other academic tool 

that the prototype would be compared against, relied on this representation as well. The model, used to 

find similar defect characteristics, was initialized as outlined in 13.2.5.2, by randomly sampling 50% of 

paths extracted from the Juliet test suite to generate the Centroids and the other 50% to determine the 

optimal thresholds. Naturally, these had to be built from the same features, i.e., the opcodes. For each defect 

class, eight centroids were initialized on the defective paths. The scaling of the threshold to detect 

vulnerable paths was not altered and all paths that fell below the thresholds were added to the reports.  

Out of all known defects of the oracle test cases, the prototype detected two. The prototype labelled them as 

being similar to characteristics of vulnerable paths from the defect class CWE 122. The commit messages 

belonging to the commits that fixed the vulnerabilities marked them as fixes for buffer-overflows. 

Combined with the manual inspection of the detected paths, these two defects were labelled as true 

positives. Furthermore, the prototype generated reports for seven out of the 44 known defects, which after 

manual inspection were labelled as false positives. They were labelled as such, because the defect classes 

that were reported did not match the defect mentioned in the git commit message or the defect which was 

estimated from inspection of the source code. Table 11, summarizes the findings of the prototype for the 

oracle tests. As mentioned before, two defects were correctly detected by the prototype (+). Due to the 

other seven findings not matching the correct defect characteristics, they were simply labelled as not found 

(-). The remaining defects were not detected and consequently booked as not found (-) as well. 

To better understand how the prototype’s performance compares to other academic as well as commercial 

tools, the same evaluation was conducted again, but this time using the FICS, as well as several commercial 

tools. FICS is an academic approach that was published by Ahmadi et al. under the Apache 2.0 License. The 

tool is a proof of concept and implements a technique, described in their 2021 paper “Finding Bugs Using 

Your Own Code”. It employs clustering algorithms to find inconsistencies within the same codebase. To this 

end, the tool employs a two-step clustering technique based on the strongly-connected-components 

algorithm [133]. In the first step, clusters of code constructs are built that show some similarity. Then, 
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within these clusters, smaller irregularities are detected, using a second, more precise clustering method. 

This way, functionally similar constructs are supposed to be found that are inconsistent in some detail. The 

idea is that such inconsistencies may be indicative of a software defect that could then be presented to an 

expert for further inspection [65]. As mentioned, aside from the FICS tool, several conventional SAST tools 

have been tested as well that are sold commercially. These tools must not be disclosed, however, due to 

their terms of use. 

While FICS failed to analyze MiniUPnP entirely, it was at the same time able to detect three defects in the 

OpenJPEG software project that the prototype did not detect. The commercial tools, in contrast, failed to 

detect any of the defects. Table 11 shows the results of the oracle test in a concise fashion below. 

Table 11: The results of the prototype, FICS as well as several commercial SAST tools on several defects is displayed. 

The columns F, P and C denote the respective tools: FICS, the prototype and the commercial tools, where each row 

shows whether the tool successfully discovered the vulnerability present in the previous commit (+) or not (-) or did 

not report anything at all (o). Note that the commercial tools have been aggregated into one single column, as 

neither of them detected any defect in the dataset. 

CWE Software 

Project 

Commit Hash F P C 

CWE-119 miniupnp 79cca974a4c2ab1199786732a67ff6d898051b78 o + - 

CWE-388 miniupnp 140ee8d2204b383279f854802b27bdb41c1d5d1a o - - 

CWE-125 miniupnp b238cade9a173c6f751a34acf8ccff838a62aa47 o - - 

CWE-119 miniupnp 7aeb624b44f86d335841242ff427433190e7168a o - - 

CWE-476 miniupnp cb8a02af7a5677cf608e86d57ab04241cf34e24f o - - 

CWE-119 libtiff ce6841d9e41d621ba23cf18b190ee6a23b2cc833 - - - 

CWE-787 libtiff 5ad9d8016fbb60109302d558f7edb2cb2a3bb8e3 - - - 

CWE-125 libtiff ae9365db1b271b62b35ce018eac8799b1d5e8a53 - - - 

CWE-119 libtiff 3ca657a8793dd011bf869695d72ad31c779c3cc1 - + - 

CWE-119 libtiff b18012dae552f85dcc5c57d3bf4e997a15b1cc1c - - - 

CWE-119 libtiff 5c080298d59efa53264d7248bbe3a04660db6ef7 - - - 

CWE-119 libtiff 9657bbe3cdce4aaa90e07d50c1c70ae52da0ba6a - - - 

CWE-125 libtiff 9a72a69e035ee70ff5c41541c8c61cd97990d018 - - - 

CWE-125 libtiff 1044b43637fa7f70fb19b93593777b78bd20da86 - - - 

CWE-191 libtiff 5397a417e61258c69209904e652a1f409ec3b9df - - - 

CWE-369 libtiff 43bc256d8ae44b92d2734a3c5bc73957a4d7c1ec - - - 

CWE-369 libtiff 438274f938e046d33cb0e1230b41da32ffe223e1 - - - 

CWE-189 libtiff c7153361a4041260719b340f73f2f76 - - - 

CWE-190 libtiff 787c0ee906430b772f33ca50b97b8b5ca070faec - - - 

CWE-787 libtiff 391e77fcd217e78b2c51342ac3ddb7100ecacdd2 - - - 

CWE-369 libtiff 3c5eb8b1be544e41d2c336191bc4936300ad7543 - - - 

CWE-119 libtiff 6a984bf7905c6621281588431f384e79d11a2e33 - - - 

CWE-125 openjpeg c16bc057ba3f125051c9966cf1f5b68a05681de4 - - - 

CWE-119 openjpeg e078172b1c3f98d2219c37076b238fb759c751ea - - - 

CWE-416 openjpeg 940100c28ae28931722290794889cf84a92c5f6f - - - 

CWE-787 openjpeg dcac91b8c72f743bda7dbfa9032356bc8110098a + - - 

CWE-119 openjpeg afb308b9ccbe129608c9205cf3bb39bbefad90b9 + - - 

CWE-787 openjpeg e5285319229a5d77bf316bb0d3a6cbd3cb8666d9 - - - 

CWE-787 openjpeg 2cd30c2b06ce332dede81cccad8b334cde997281 - - - 

CWE-119 openjpeg baf0c1ad4572daa89caa3b12985bdd93530f0dd7 - - - 

CWE-369 openjpeg d27ccf01c68a31ad62b33d2dc1ba2bb1eeaafe7b - - - 

CWE-119 openjpeg 397f62c0a838e15d667ef50e27d5d011d2c79c04 - - - 

CWE-119 openjpeg 162f6199c0cd3ec1c6c6dc65e41b2faab92b2d91 - - - 
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CWE Software 

Project 

Commit Hash F P C 

CWE-125 openjpeg 15f081c89650dccee4aa4ae66f614c3fdb268767 + - - 

CWE-400 openjpeg 8ee335227bbcaf1614124046aa25e53d67b11ec3 - - - 

CWE-190 openjpeg c58df149900df862806d0e892859b41115875845 - - - 

CWE-20 openjpeg c277159986c80142180fbe5efb256bbf3bdf3edc - - - 

CWE-369 openjpeg c5bd64ea146162967c29bd2af0cbb845ba3eaaaf - - - 

CWE-190 openjpeg 5d00b719f4b93b1445e6fb4c766b9a9883c57949 - - - 

CWE-125 openjpeg ef01f18dfc6780b776d0674ed3e7415c6ef54d24 - - - 

CWE-189 zlib d1d577490c15a0c6862473d7576352a9f18ef811 - - - 

CWE-189 zlib e54e1299404101a5a9d0cf5e45512b543967f958 - - - 

CWE-189 zlib 9aaec95e82117c1cb0f9624264c3618fc380cecb - - - 

CWE-189 zlib 6a043145ca6e9c55184013841a67b2fef87e44c0 - - - 

In light of these results, it is necessary to discuss the limitations of this evaluation, especially with respect 

to the commercial tools. Firstly, these tools were run, using their default configuration and rulesets. This is 

good in a sense that it allows for some neutrality, since manual configuration efforts might introduce some 

bias in favor of one or the other tool. However, another reason also is that the configuration of these tools is 

not trivial, due to the high complexity of them. It is very well possible that a trained practitioner, who is 

familiar with these commercial tools, would have gotten much better results in this test. Secondly, the 

dataset used for the oracle test was generated from existing open-source software projects that have been 

under development for decades in some cases. During this time, these software projects have been 

potentially forked and hosted at different sites, such that their past is not easily traceable. Hence, it is not 

known if and what kind of SAST tools their code base has been subjected to prior to the oracle test. This 

could likely be the case, which means that the defects, present in this dataset, are the ones that are 

extremely hard to detect for conventional SAST tools. For one thing, this means that the evaluation puts the 

commercial tool at an unfair disadvantage. At the same time, however, this would show the benefit of ML-

based SAST tools, which is not that they are necessarily better than existing solutions, but instead being 

potentially capable of detecting different defects that the conventional tools failed to detect. Hence, ML-

based SAST tools could make up for a valuable addition to the toolbox of existing SAST solutions. 

In this context, it is also worthwhile to take a closer look at the FICS tool in comparison to the prototype. As 

can be seen, this approach was able to detect three defects from a different software project that the 

prototype did not detect. Vice versa, the prototype unveiled two defects that FICS did not detect. This may 

also highlight that since both tools work entirely different from each other, FICS detects project intrinsic 

defects, whereas the prototype detects more general defects, it could be beneficial to use both combined. 

Furthermore, it must be stressed that the prototype, so far, only relies on the artificial Juliet test suite as a 

dataset for the model generation. Incorporating paths from real-world projects into the existing model, for 

example through the feedback loop that comes with the prototype, might help to increase its performance 

on the defects in the oracle tests. Moreover, with better datasets, gathered using the built-in feedback loop, 

the prototype’s performance may be increased further. Lastly, for now the prototype only uses the ICFG 

alone, in order to detect software defects. This data structure lends itself to the detection of control-flow-

based issues, such as missing return value checks. Using other data structures, such as the SVFG, it may be 

possible to detect other types of defects as well that are better modeled using the data flow. Problems that, 

for example, manifest in the data flow could likely be modeled better using this data structure. Lastly the 

used embedding, a basic mapping of the OP-code onto numerical values, might have been too simple to 

form a generalized representation of the underlying defects.  
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13.4 Limitations and Threats to Validity 

Beginning with the presuppositions from the literature study, it has already been known that the 

application of machine learning techniques in the research area of SAST is associated with some difficulties. 

To date it seems that a lot of these difficulties remain hard to overcome. Namely, these comprise a) a lack of 

suitable training and therefore also evaluation datasets, and b) data structures that are adequate for the 

task or methods that would allow to faithfully embed graphs into a vector space. In this section, these 

limitations will be explored and their impact on the validity of this, and possibly also in extension to other 

ML-SAST approaches, discussed. 

Training- as well as test-datasets are an important factor in the learning and evaluation phases of ML-based 

SAST tools. As was the case for this very prototype, the lack of such datasets meant that the efficacy of the 

approach could only be determined up until a certain point. As elaborated, there are two different types of 

datasets available: Synthetic sets that were manually crafted and real-world datasets that comprise 

samples from actual software projects. Beginning with the latter, the absence of knowledge about the true 

negatives is most difficult in this context. While it is easy to prove that some program is defective, as 

showing the existence of only one single defect in that program is necessary to do so, it is much harder to 

prove that a program is free from defects. In that case, it is necessary to prove that over the entirety of all 

possible input combinations, the program performs in accordance with its specification. Realistically, this 

feat is practically impossible, as already stated by Rice’s theorem [1]. This is why during the oracle test in 

Section 13.3.2, no attempts were made to measure the true negatives and false positives. To do so, one 

would have to validate that except for the defect in question, the rest of the software under analysis is free 

from defects. This, of course, is impossible. 

Due to this circumstance, it is hard to determine the actual practicality of this approach in realistic 

scenarios. Synthetic datasets, on the other hand, are not ideal either. The Juliet test suite, used for the 

statistical evaluation in Section 13.3.1, does offer the benefit of being synthetic in nature. This means that it 

is safe to assume that all code labeled benign, is indeed, most likely benign. Hence, using this dataset, it is 

possible to also make statements about the false negative and true positive dimensions of the confusion 

matrix. On the other hand, this also means that the samples contained in it are potentially less realistic and 

may not represent real software defects to their full extent. Moreover, the Juliet test suite was not only used 

for the evaluation of the prototype, but also for the training of its models. While great care was taken to 

prevent data snooping by mixing train and test samples using tenfold cross validation, the data between the 

train and test sets may ultimately still be rather similar. This may hold particularly true for the Juliet test 

suite, due to its homogeneous and repetitive nature. The results of this evaluation therefore show that the 

described approach appears to be intrinsically valid, being able to distinguish between different program 

behaviors with respect to the control flow. The significance of these results in terms of real-world 

predictive performance, on the other hand, might be compromised. 

When considering the aspect of model training in particular, these circumstances may have a negative 

impact on the generalizability of the models. Whereas in many cases ill-chosen sample sizes are to blame 

for this overfitting of models, in the case of the prototype and in extension other ML-based SAST 

approaches, different reasons might exist to blame. The idea of overfitting often implies that there are 

indeed some general patterns in the data, which the model failed to pick up on. Considering programs the 

question arises if there even is such thing as a general defect pattern that some model could pick up on. 

Arguably, computer programs are fundamentally different than the types of data that are found in other 

research areas that employ machine learning techniques. Being very complex in nature, alterations in 

program behavior may be very subtle and nuanced. The same code that is considered benign in one part of 

a program, may pose a dangerous defect in another part of the same program. Then, the difference between 

both parts lies solely in their context, something that is easily missed depending on the window the 

program is observed through. Unfortunately, this window is very small for machine learning algorithms. 

This circumstance is further exacerbated by the fact that although being an amenable data structure in the 
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context of conventional static analysis, when paired with machine learning, graphs are very difficult to 

embed into a vector space. 

These properties of computer programs may give rise to a very low signal-to-noise ratio when attempting 

to separate benign from defective code. It remains to be seen whether this signal-to-noise ratio can be 

improved in the future or if there even are general patterns that underlie some concrete examples of 

software defects. Proving or disproving the existence of these general patterns, however, will remain a 

tough endeavor, if even possible. As a starting point, a key requirement for this would be to improve the 

available datasets. The prototype aims to contribute to this answer in so far as it heavily lends itself to the 

idea of easily and rapidly retrainable models, in hopes to accelerate this development. As for now, solving 

these problems on a basic level may not be possible. 

On a more technical level, there are some other limitations pertaining to the extraction mechanism used to 

gather the ICFGs paths. Firstly, due to the nature of this mechanism of extracting every unique path within a 

procedure, from the entry node to the exit node, the total number of paths that need to be traversed may 

grow exponentially in the worst-case scenario. This would be the case if the procedure under analysis is 

solely comprised of branch instructions. Since the maximum depth of the path traversals is limited to 75 

nodes, a total of 273 distinct paths would have to be traversed (the entry and exit nodes need not be 

counted). This would render the approach impractical, however, this being an extreme edge case, it is 

unlikely that this kind of scenario would be encountered in real world applications. During all tests 

conducted on real software projects, including those listed in Section 13.3.2, no such problems could be 

observed. 

Another limitation regarding the extraction method is that there might be some small chance of introducing 

label noise. As explained above, the maximum depth the extracted paths may reach is limited to 75 nodes. If 

the defect happens beyond this point, it would not be part of the extracted path. Hence a path that is labeled 

as defective might actually be benign in such scenario. The model used here that was built upon the Juliet 

test suite, only ever reached 75 nodes in about one percent of all cases and even then, it is not certain that 

the defect happens outside of these paths. Another scenario where paths may wrongfully be labeled as 

defective, could occur when some defect does not interact with a particular execution path at all. It is 

unknown to what degree this circumstance excerpts an influence on the predictive performance of the 

model. The intrinsic evaluation in Section 13.3.1 seems to suggest that the model is very well capable of 

discerning between defective and benign paths. However, some filtering mechanism that isolates the 

defective behavior to a better degree, might be able to improve the predictive performance further.  

Finally, the approach chosen is very simplistic in nature to allow for rapid retraining of the models. Not only 

for this reason, but also for the explainability of the models, this is favorable. On the downside of this, 

however, is the fact that other more complex models, such as neural networks, may offer a drastically 

improved predictive performance when compared to this approach. It might be argued in defense of the 

prototype that the data used is more important than the choice of machine learning algorithm. If the data is 

useless, so is the model trained on this basis. 
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13.5 Summary and Discussion 

This chapter covered the implementation of an ML-based SAST approach, describing the development 

process and specifically the challenges encountered. Based on the interviews described in chapters 5 and 6 

and the literature studied in Chapter 10, it was determined that instead of solely focusing on the predictive 

performance, other and in particular more fundamental aspects require attention more urgently. Due to the 

statements made during the expert interviews, a lack of suitable test- and training datasets, as well as 

concerns regarding the overall generalizability of ML-based SAST, it was decided that the adaptability of the 

models used, is the area that the attention should lie on. Therefore, a light-weight analysis was 

implemented that focuses on control-flow-based software defects and that can be quickly adapted to new 

training data, once available. The contributions of this approach are hence the following: 

Firstly, due to the ability to rapidly retrain the models, the users are enabled to configure the tool to the 

specific needs of each individual software project. Not only may this mitigate the effects of poorly 

generalizing models due to unsuitable training datasets, but it also offers benefits in terms of the tool’s 

usability. Whereas conventional SAST tools require users to write their own rulesets for the adjustment of 

the tool to their specific needs, the approach outlined here is purely example based. This means that users 

do not need to define explicit rules, but mere examples of the wanted or unwanted program behavior 

suffice to make the necessary adaptations. Moreover, it is hoped that due to these properties, this approach 

may help to generate more suitable datasets in the future.   

With respect to the literature studied it must also be noted that there appears to be a gap between the 

actual current state of the art and the methods described there. In particular, it seems that the fundamental 

difficulties in embedding programs into a vector space and the lack of suitable training and test datasets to 

the end of model learning are underrepresented in the literature. Furthermore, the extraction of program 

data, significant for the detection of vulnerabilities, remains equally an important, yet often overlooked, 

factor in that regard. Due to the small size of input data the machine learning algorithms can process at a 

time, this is particularly difficult, but important for the models to generalize well from concrete software 

defects. Due to the aforementioned limitations in training and test data, it is hard to quantify these 

correlations, unfortunately. In order for ML-based SAST approaches to succeed, solving these fundamental 

challenges is detrimental. 

On an even more basic level, one could also raise the question whether there even is such a thing as general 

defect patterns that underly concrete software defects. In the literature, this basic prerequisite is often 

times simply assumed, i.e., there are some common patterns that multiple vulnerabilities share that are 

invisible to the human observer. Conveying this sentiment may be considered dangerous, however, as it 

suggests a false sense of completeness regarding ML-based SAST approaches. Users of such tools may then 

overestimate their capabilities, being lulled into a false sense of security. Ultimately, it is impossible to give 

a definitive answer to the question of their existence, but assuming some intermediate scenario, where 

some limited form of generalizability is provided, it may be better to set realistic expectations in terms of 

ML-bases SAST tools. As is the case with conventional SAST, it may be as important for ML-SAST to adapt to 

the specific characteristics of different software projects instead of attempting to provide a silver bullet that 

is meant to work across all of them. In some cases, where it is possible to generalize from specific behavior, 

models may of course be provided, but their limitations should be made transparent to the user. These 

aspects should be the topic of further research, to allow for a better assessment of the applicability of ML-

based SAST in realistic scenarios. 

Given these circumstances, it may also be possible to argue that it is not the models which require 

adjustment, but instead the general expectations towards machine learning based SAST approaches. 

Lowered expectations in terms of the generalizability of such do not equate to a complete disregard of their 

applicability. When extending the application of ML to static analysis techniques in general, similar 



13 Prototypical Implementation of a ML-SAST Tool 

126  Federal Office for Information Security 

approaches would possibly do well in the field of clone detection, which in itself could also be used in the 

context of SAST. 

The generalizability of the approach chosen for the prototype is also tightly linked to the data structures 

used for the analysis. This subject is hard to evaluate systematically, since there are many variables to be 

considered and each of these may have a drastic influence on the overall performance of the approach. First 

of all, a program representation must be chosen. In this case, the ICFG appeared to offer an adequate signal-

to-noise ratio that allowed for distinguishable patterns between defective and benign code to become 

visible in the data, i.e., the Juliet test suite. Aside from the ICFG that was used, it is certainly possible to use 

other program representations for the analysis. Another interesting choice in that regard would be the call 

graph of the programs, which could not be experimented with, due to a limited time budget. After the 

graphs have been built, they must be decomposed into units, which are processable by machine learning 

algorithms. As for the prototype, single paths were chosen, due to problems regarding methods to embed 

more complex graphs. Then there is also the question of what data to embed, as there are multiple options 

available, even in the case of the comparatively simple ICFG. Other program representations, such as the 

SDG or SVFG, comprise even more and in particular more complex data, e.g., points-to-sets that contain 

references to abstract objects in memory. The prototype simply uses the node types from the ICFG, as they 

appeared to offer a good signal-to-noise ratio in the experiments, due to their small alphabet of only six 

different types, when also marking split and merge points in the paths. As can be seen, the signal-to-noise 

ratio of the extracted data is pivotal to successfully achieving models that generalize well. At this point in 

time, this remains a challenging task, since choosing data that is too specific appears to lead to the models 

failing to represent the underlying patterns adequately. If the data is too generic, on the other hand, the 

models may not be able to effectively distinguish between defective and benign behavior, leading to a high 

rate of false positives. 

Using synthetic datasets, in return, such as the Juliet test suite appears to suffer from the detriment of not 

being very realistic and hence skewing the models in a way that they do not generalize very well. The 

prototype described here aims to mitigate this effect to some degree, by allowing for the models to be 

quickly adapted to other code bases and possibly more realistic samples, should these eventually become 

available. This is a trait that common supervised approaches do not share with the prototype, as they 

require laborious retraining procedures. Ultimately, clustering approaches may pose a more elegant 

approach to ML-SAST in general, not requiring labeled datasets at all. As elaborated earlier in this chapter, 

this indeed was the original approach the experimentation started with. However, during that time it 

became evident that this approach, while offering the benefit of not requiring labeled training data, 

ultimately suffers from other disadvantages.  
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14 Conclusion 

This study comprehensively outlined recent developments in regards to the application of machine 

learning techniques for static application security testing (ML-SAST). Furthermore, based on the results of 

the literature study, a prototype has been developed under a free and open-source license. The process and 

the thereby gathered experiences have been described in detail in Chapter 13. As for the literature study, 

three different sources of information have been tapped, to gather insight into the requirements demanded 

by actual practitioners as well as the current state of research regarding ML-SAST: 

1. Interviews with software security experts were conducted, in order to gather their opinions 

and expectations towards ML-based SAST approaches and SAST in general. 

2. The opinions of SAST-tool users concerning the application of machine learning for static 

application security testing were inquired through an online questionnaire. 

3. Following the guidelines suggested by Petersen et al., a systematic mapping study, employing 

the snowball-sampling method recommended by Wohlin was conducted[91], [92]. 

The latter of the three contributions yielded a total of 72 highly relevant publications on the topic of ML-

SAST. Moreover, these findings were thoroughly discussed by means of extensive quantitative as well as 

qualitative analysis, elucidating promising approaches in the research area of ML-SAST and highlighting the 

challenges yet to be solved. 

Based on the techniques and problems described in the literature, the prototype that has been devised 

employs supervised, as well as clustering methods to distinguish between defective and benign code. Aside 

from the properties and challenges already known from the literature study, the development of this 

prototype helped us uncover further problems. Therefore, as a way of mitigating some of the uncovered 

problems, the following provisions have been made: Firstly, since no suitable embedding method for the 

interprocedural control flow graph could be made out during the development, the prototype uses a novel 

technique that uses individual execution paths in order to map the program code into a metric space. When 

evaluated using the Juliet test suite, it could be shown that this kind of representation lead to clearly 

discernible program behavior in the vector space. Furthermore, the lack of suitable training data was 

addressed by incorporating a feedback loop into the prototype, which allows users to refine models on the 

basis of previous findings. This was made possible due to the lightweight and adaptable nature of this 

approach and its models. The resulting tool is planned to be released to the public under an open-source 

license.  

In summary, ML-SAST appears to be an emerging field of research with an ever-increasing relevance as 

reflected in the expert interviews as well as the literature identified during the course of this study. As of 

today, there still remain unanswered questions, subject to further research.  

14.1 Further Research 

As this study has revealed, there are still gaps in the area of ML-SAST that highlight the potential for further 

research. These mainly comprise a lack of suitable training data for supervised approaches, embedding 

methods for complex program graph representations and finally, a lack of free and open-source 

frameworks for static analyses. The prototype, devised in this study, aims so mitigate these problems to 

some degree, but still further research is necessary in these areas as outlined in the following section. 

Starting with the training data sets, most of those available tend to be either insufficiently realistic or suffer 

from a skewed ground truth. The impact of this assumption is twofold, since such data sets are not only 

essential for training, but also for evaluation purposes. Firstly, the synthetic datasets, such as the Juliet test 

suite, are likely not very realistic and may not depict the true complexity of real software defects to the 

fullest degree. Realistic data sets on the other hand, may suffer from a skewed ground truth and in addition, 

a lack of context. The prototype devised in this document aims to mitigate some of the associated problems, 
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by introducing a feedback loop that allows for the reintroduction of previous findings into the models. 

Ideally, however, this problem should be tackled at the root. Aside from the training itself, such datasets are 

also necessary for the evaluation of the models. While it was shown that the prototype has the capability of 

effectively distinguishing between different program behaviors, the evaluation to this end was mostly 

conducted on test data from the same dataset the models were initially trained on. This does ensure 

intrinsic validity; however, the external validity could only be established to a limited degree, due to the 

lack of sound and realistic evaluation data sets, see Section 13.3.2. As it stands, this problem seems to be 

rarely discussed in the literature. Unfortunately, the creation of sound and realistic data sets for the 

training of ML-SAST approaches is an extremely challenging task. Thus, it may only be addressed through 

extensive community effort and the potential help of commercial vendors of static analysis tools. The latter, 

in particular, may offer access to much more insightful data than bug trackers or version control systems of 

open-source software can provide.  In order for ML-SAST to succeed in the future, these problems require 

urgent discussion. 

On a more basic level, early on during the development of the prototype it was also shown that there are 

few free and open-source tools being developed for the static analysis of programs, written in the C or C++ 

programming languages. These tools are important, as they are required for determining the data and 

control dependencies within a program and for points-to analyses. Especially noticeable in that regard was 

a lack of suitable code slicers for these programming languages. Any additions to the repertoire of tools or 

the continued development and improvement of existing tools are thus a welcome development. In general, 

it seems that a lot of the publications yielded during the literature study appear to neglect conventional 

methods that the static analysis has to offer. Instead, it looks as if the focus lies entirely on the use of more 

capable machine learning algorithms in a lot of cases. However, the surrounding circumstances may be 

slightly more complex than apparent at first glance: One of the more popular tools in the research area of 

ML-SAST, appears to be the Joern tool, often used in the preprocessing of the source code. It is only now 

that the authors of the tool, seem to address the development of a points-to analysis for the tool, which in 

turn means that all previous ML-SAST approaches using Joern, do not perform such analysis at all29. 

Further research is needed in order to determine the impact that not providing machine learning 

algorithms with this kind of information during training has on the resulting models. Depending on the 

outcome, appropriate measures should be taken. 

Further down the pipeline, it was also discovered that graph embedding methods are equally scarce and, at 

least in the context of ML-SAST, unsuitable for now. As elaborated in Section 13.1.2 and Section 13.2.4, 

program graph representations are complex heterogeneous graphs that pose a challenge to the already 

rather limited graph embedding methods. Most of these methods either pertain to the topology of the 

graphs alone or the content of the nodes, but seldomly both. Therefore, future research might attend to 

either improving these methods in general or at least adapting these methods to be better suited for 

program graph representations. Alternatively, the energy might also be focused on finding alternative 

program representations that are better suited for ML-based SAST applications. 

As for the prototype in particular, it was found that most problems are best modeled by using the unwanted 

behavior, i.e., known defective ICFG paths, and searching for similar patterns in previously unseen code. 

The problem can also be inverted, however, if the centroids are formed from benign paths, where a higher 

distance is considered to be unfavorable. In a few isolated cases, better results were yielded this way. In 

those cases, the common ground appeared to be the fact that the vulnerable code showed a higher degree 

of similarity than the benign code. Thus, it is easier to define the bad behavior as it forms tighter clusters in 

the vector space. Ultimately, it is recommended to use the defective centroids, to model the unwanted 

behavior, but users of the prototype are invited to experiment with both approaches. In what scenarios 

each of the approaches is appropriate, is a topic for further research. In that context it was also found that 

mixing paths from different defect classes to generate the centroids from, lead to decreased predictive 

performance, as mentioned in Section 13.2.5.2. This could be caused by paths from different classes of 

 
29 https://github.com/joernio/joern/pull/1249 



14 Conclusion 

Federal Office for Information Security 129 

defects, being widely scattered in the vector space. Hence, they are hard to cluster and the resulting 

centroids may not be very representative of the underlying problems. The exact circumstances and 

possibles remedies were not explored during this study, due to time constraints. It may be worthwhile to 

focus further research efforts on this, as understanding this circumstance may lead to other improvements, 

with respect to this method. 

Additionally, one direction in which the research could be continued is the extension of the tool in terms of 

other programming languages. At least for the Java programming language a version of the Juliet test suite 

exists and, in fact, a much broader selection of suitable analysis tools, to generate the necessary program 

graphs with. With respect to the graphs, it would be also interesting to see how other types of program 

graph representations could be employed to model other types of vulnerabilities. Even with SVF as the 

basis of the prototype, the possibilities that the available SVFG and PTACG open up, are yet to be explored. 

Using the SVFG, for instance, it would be possible to model defects that manifest in the flow of data, rather 

than control. The PTACG, on the other hand, could potentially allow for defects to be modelled more 

explicitly that are caused by procedures being called in the wrong order or not being called at all. However, 

the ICFG already includes the PTACG implicitly, so that it would be recommendable to start with the SVFG 

in terms of further research opportunities. Furthermore, it needs to be established yet, what kinds of 

defects exactly are well detectable using the approach outlined in this document. Future research may 

attempt to further define these boundaries and to find applications in which the approach could be 

combined with other existing SAST approaches, to find a beneficial symbiosis. 

Finally, on a larger scale, it may then also be necessary to determine in general, what kinds of problems ML-

based SAST approaches are good at detecting. Such insights may be helpful in differentiating ML-SAST from 

conventional SAST and find suitable application scenarios for this technology. Another question in this 

context is also, what kind of ML-algorithms are even suitable for ML-SAST. It may then also be worth 

investigating, what kind of impact the choice of algorithm has on the resulting model’s predictive 

performance, in contrast to the soundness of the training data or the associated static analysis techniques 

applied during the preprocessing phase. Current trends seem to suggest that graph neural networks are 

gaining popularity. However, this type of neural network is held back by a lack of adequate explanation 

methods [111]. If there existed better explanation methods for graph neural networks, they would be more 

widely adopted for the task of ML-based SAST. Using graph neural networks for ML-based SAST would 

additionally come with the benefit that no explicit graph embedding methods are necessary, which would 

circumvent the problems that pertain to the embedding of program graphs.  

14.2 Outlook 

As outlined, there are still a lot of connecting points for further research in the area of ML-based SAST 

approaches. While the application of machine learning methods to the problem of SAST is likely not going 

to refute the undecidability of a program’s semantics, it may be very well capable of finding solutions for 

individual instances [1]. Therefore, machine learning for SAST poses an interesting field of research, 

however, there are still a lot of problems that the community should address. With respect to this, key 

findings of this study include: 

1. A distinct lack of adequate datasets, that hinder the development of more capable models. 

2. Graph representations of programs remain difficult to embed in a vector space, calling for research of 

more suitable embedding methods. 

3. Free and open-source tools for static analysis purposes are scarce but as important for this emerging 

field of research to prosper. 

4. Graph neural networks seem to offer increased predictive performance in comparison to other 

supervised learning methods, but are held back by their immature explanation methods. 

Generally, there have been a multitude of different approaches to ML-SAST, most of which with a high focus 

on improving on some selected metrics. Comparisons, however, still remain difficult due to the lack of 
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suitable datasets as a common baseline. In light of this observation, the creation of adequate datasets for 

the sake of training, testing and comparing different approaches should be considered paramount. 

Moreover, while there indeed appears to be room for further improvements on raw vulnerability detection 

performance, a topic largely overshadowed by this is the usability of machine learning-based SAST 

approaches. This aspect, however, should not be disregarded. The interviews with experts, as well as the 

extensive search for literature on ML-SAST, have shown that practitioners regard to SAST tools as generally 

useful, but that it would be necessary to define project-specific detection rules. The definition of such rules, 

may pose a challenge to some, which is where possibly the greatest opportunity for ML-based SAST lies. 

Being an example-driven approach, users are not obliged to conceive their own rules, but merely need to be 

able to tell benign from defective program code apart. 
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15 Appendix 

15.1 Glossary 

Term Description 

2-norm The 2-norm, also called Euclidian norm, is the length or 

magnitude of a vector. 

Abstract Syntax Tree (AST) A tree-like data structure that is usually build during compiling 

source code and which store information on statements, 

variables, etc. of a program. It can be used for certain static 

program analyses. 

Accuracy Is a metric used to determine the predictive performance of a 

classifier. It is defined as Acc =
TP+TN

TP+FP+TN+FN
 and thus only 

weighs in the correct predictions made. This limits the metric’s 

expressiveness in situations of high class imbalance, such as is 

often the case in SAST applications. See also See also True 

Positive Rate (TPR), True Negative Rate (TNR), False Positive 

Rate (FNR), False Negative Rate (FNR) and Confusion Matrix. 

Anchor Questions Questions that are used in interviews, to guide the 

conversation back to the main topic. 

Area Under the Curve (AUC) The area under the curve refers to the area enclosed by the 

receiver operator curve (ROC) and is indicative of a classifiers 

discriminative power. A perfect classifier scores an AUC of 1, 

whereas in theory the worst-case scenario would be a classifier 

that scores an AUC of 0, i.e., always predicting the wrong class. 

A Classifier scoring 0.5 as it’s AUC would practically even 

worse however as it’s discriminative performance would be on 

par with randomly guessing. 

Array Boundary Errors Refer to a type of software defect where a memory outside of 

the area defined by an array data structure is accessed.  

Automatic Garbage Collection (GC) A method employed by some programming languages for the 

automatic management of memory. Such implementations for 

instance track the number of references to any object in 

memory and marks them for deletion once that counter 

reaches zero. 

Backward Snowballing A scientific method used in systematic literature studies to 

identify further, unknown literature by examination of the 

works referenced in known literature on some topic. The 

method was first introduced by Claes Wohlin [92]. See also 

forward snowballing and snowball sampling. 

Bag of Words (BOW) A representation method used in machine learning to generate 

features from text. The occurrence of each word - from a 

common vocabulary - in a text is counted, producing a 

numerical vector for each text. This vector can then be used in 

machine learning. 

Transforming the sentence “I like ice-cream" would produce 

the vector: [1, 1, 1, 0] while transforming the sentence “I like 

pizza” would result in vector: [1, 1, 0, 1] 
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Term Description 

Banach's Fixed Point Theorem Is a fixed-point theorem that guarantees the existence, 

uniqueness and of a fixed point for a given function. It can be 

used to show the convergence of a fixed-point iteration. In case 

of GNNs it is used to prove the existence of a solution wrt. the 

state of the network. 

Bidirectional Gated Recurrent Unit 

(BGRU) 

The bidirectional version of gated recurrent unit type neural 

networks, see Gated Recurrent Unit (GRU). 

Black-Box Explanation Method A method for the explanation of predictions made by machine 

learning models. Unlike its counterpart, the white-box 

explanation method, such methods require no knowledge 

about any parameters of the network. Explanations are only 

inferred by observation of changes in the output of a model 

caused by careful alterations of some input. See LEMNA, SHAP, 

Explanation Method, Explainable AI (XAI) and White-Box 

Explanation Method. 

Buffer Overflow A type of software defect that occurs when data is written 

beyond the boundaries of the allocated area in memory. Buffer 

overflows are a common cause of software vulnerabilities and 

may be used as an entry point for the execution of malicious 

code by an attacker. 

Call Graph (CG) A graph data structure that stores the call dependencies of 

functions/methods of a program. It is, for example, used for 

certain static program analyses. 

Chain-based Clustering Methods Discovery of clusters with arbitrary shape. The prominent 

clustering algorithm DBSCAN by Ester Kriegel, Sander and Xu is 

an example of such density-based notion of clusters with one 

parameter for the user to determine an appropriate value 

[134]. 

Class Imbalance Is a term used in the context of machine learning to describe 

the circumstance when there exists a class within the data that 

dominates all others in number by a large margin. 

Clustering A fundamental approach to machine learning that aims to 

group unlabeled data in clusters, by inferring hidden patterns.  

COCO train2017 dataset A large dataset of annotated images for the purpose of training 

machine learning models. See: https://cocodataset.org/ 

Code Property Graph (CPG) A graph-based representation of source code, first introduced 

by Yamaguchi et al. in 2014 [36]. It combines abstract syntax 

trees, control flow and program dependence graphs in a 

singular data structure. 

Common Vulnerabilities and Exposures 

List (CVE) 

A public tracking system for known vulnerabilities in software. 

vulnerabilities submitted are classified and rated according to 

their type and severity. See CWE. 

Common Weakness Enumeration (CWE) A taxonomic view of software vulnerabilities that is constantly 

revised. The vulnerabilities are organized in a hierarchical 

order that groups them based on their properties.  
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Term Description 

Communication Refers to a a qualitative requirement for applications involving 

artificial intelligence that defines rules as to how the users of 

such techniques are informed about their limitations, 

capabilities and even the fact they are interacting with AI, e.g., 

AI may not pretend to be a human agent. See also 

Transparency, Explainibility and Traceability. 

Concurrency problems A class of software vulnerabilities that relates to defects caused 

by the concurrent execution of program logic, for instance by 

conflicting accesses to a shared data structure. 

Confidence A measure used in machine learning to quantify the certainty of 

a prediction from a machine learning model. 

Confusion Matrix A form of representing the four basic metrics TPR, TNR, FPR 

and FNR in a matrix. See also True Positive Rate (TPR), True 

Negative Rate (TNR), False Positive Rate (FNR) and False 

Negative Rate (FNR). 

Control Flow Graph A data structure used by static program analyses that 

represents the control flow of the program (i.e., execution 

order of the statements). 

Convolutional Neural Network (CNN) A family of neural networks that lends its name from the 

convolution layers present. These layers work by moving a 

kernel over the input, which detects important features and 

generates an activation map for the consecutive layers. 

Convolution layers are often followed by some pooling layer, to 

down sample their output. At the end of such networks there is 

usually a number of fully connected layers. 

Correlation Matrix Is a 2D table to show the pairwise correlations of features and 

is used, e.g., in Kalman filters. In singular value decomposition 

it also allows to rank features and cut off the ones less 

influential. 

Cross-Validation Describes a technique often employed during model training so 

as to assess its generalizability and select the best performing 

settings for a model. A popular choice is 𝑘-fold cross-validation. 

Here the dataset is evenly split into 𝑘 partitions. Then 𝑘 − 1 

partitions are used for training, the last is reserved for testing. 

This way all possible permutations are exhausted. 

Dangling Pointers Describe pointer variables that refer to areas in memory that 

have already been released and possibly reallocated in a 

different context. Accessing these locations in memory leads to 

undefined program behavior and may entail serious security 

implications. See also Use-After-Free. 

Data Provenance Data provenance refers to all meta data, i.e., artefacts that 

accrue during the creation process of the data itself. In terms of 

machine learning this may refer to the datasets used during 

model training, but also the information on how these datasets 

were conceived. Data provenance is an integral part in 

supporting the requirement of traceability and ultimately 

transparency. 
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Term Description 

Decomposition Methods Are methods employed to infer post-hoc explanations for the 

predictions of machine learning models that cannot be 

otherwise interpreted. In order to determine important 

features of a models input, its output is traced back to the input 

layer by decomposing the model. Deep taylor decomposition is 

a rather bold example of such methods. 

Deep Belief Networks Are a type of highly connected deep neural network 

architecture, introduced by Hinton et al.  

Deep Representation Learning The application of deep learning techniques for the automatic 

inference of relevant features in data samples. 

Defect Prediction Refers to the act of predicting the likelihood of defects in 

software, based for instance on code metrics or more complex 

analysis of the control or data flow of a program. 

Descriptive Accuracy Is a concept used in the context of explanation methods for 

machine learning models. It refers to the accuracy of the 

explanations yielded by such methods, e.g., in the domain of 

ML-SAST it may be of interest to gain insight into what tokens 

of the code supplied to the model had a high impact on the 

predicted class.  Then, the accuracy would be the number of 

tokens whose impact has been correctly assessed divided by 

the total number of tokens in the sample [57]. See Accuracy, 

Confusion Matrix and Explanation Methods. 

Descriptive Sparsity Is a concept used in the context of explanation methods for 

machine learning models. It measures how sparse the 

explanations given by such methods are, e.g., in case of ML-

SAST it is desirable to know which tokens had an impact on the 

predicted class and only those that had an impact. An 

explanation method that fails to discriminate between tokens 

with a low or a high influence, would be considered of low 

descriptive sparsity and is thus of little use to the practitioner 

[57]. See also Graph Sparsity. 

Devign Dataset Refers to the dataset used during training of the ML-SAST 

approach proposed by Zhou et al., named Devign [56]. The 

dataset is partially available to the public, with the remainder 

seemingly withheld by the authors for unknown reasons. 

Distance Measure A measure to summarize the similarity or dissimilarity of two 

objects. 

Doc2Vec Describes a learning based method for the generation of 

numerical embeddings of text documents. 

Draper V-Disc A dataset for Ml-SAST applications, consisting of samples 

mined from GitHub repositories that was labeled using 

conventional SAST tools [46], [84]. 

Dynamic Application Security Testing 

(DAST) 

A technique complimentary to Static Application Security 

Testing (SAST) that needs a running instance of the program 

under analysis. 

Dynamic Time Warp An algorithm to measure similarities between temporal 

sequences which may vary in speed. 
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Term Description 

Editing Distance The number of operations required to transform a given 

sequence into another sequence, e.g., the editing distance 

between “time” and “lime” could be considered as requiring a 

single replacement of the letter “t” with “l”. The distance 

between “time” and “thames” would comprise two insertions 

and one deletion, resulting in a distance of three, by the same 

metric. 

Error Use Case Source code examples that cannot be detected with the help of 

SAST tools. 

Explainability Is a criterion referring to the possibility to give explanations, as 

to how the decisions made by artificial intelligence came to be. 

Many so-called black-box models do not offer that possibility 

and their decisions are thus opaque to the practitioners using 

them. 

Explainable Artificial Intelligence (XAI)  Refers to approaches to artificial intelligence that are 

explainable. See Explainability. 

False Negative Rate (FNR) The False Negative Rate is one of the basic metrics for 

evaluating the predictive performance of machine learning 

models that can be found in the confusion matrix. It is the 

number of samples predicted as negative despite being in 

actuality positive. 

False Positive Rate (FPR) The False Positive Rate is one of the basic metrics for 

evaluating the predictive performance of machine learning 

models. It is found in the confusion matrix and represents the 

number of samples predicted as positive despite being in 

actuality negative. 

Fault Prediction The act of predicting the likelihood of defects occurring in a 

given software unit. To this end metrics, pattern matching or as 

this study aims to explore machine learning techniques may be 

employed. 

F-Measure Also referred to as F-Score or F1-Score, is a more complex 

metric often used for the evaluation of classifiers. It is defined 

as the harmonic mean of precision and recall: F1 =
TP

TP+0.5(FP+FN)
  

Format String Refer to character string templates that comprise place holder 

variables to be dynamically filled in during execution and can 

be found in many different programming languages, e.g., C or 

C++. Format strings may be the cause of software 

vulnerabilities if for instance user input is not properly 

validated, allowing adversarial users to inject unexpected place 

holder variables that when evaluated lead to undefined 

behavior. 

Forward Snowballing A method used in systematic literature mappings to identify 

previously unknown literature by studying works that refer to 

literature, already known. The technique was first introduced 

by Claes Wohlin [92]. 
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Term Description 

Gated Recurrent Unit (GRU) Refers to the hidden activation function used in GRU type 

neural networks. They may be considered an advanced form of 

LSTM networks in a sense that they use fewer gates and 

abandon the concept of cell state, making them easier to 

implement and train. 

General Data Protection Regulation 

(GDPR) 

Is a regulation in the EU for data protection and privacy. One of 

its main intentions is the protection of personal data. 

Gradient Descent (stochastic) Refers to a technique that is used for finding local minima of a 

function, based on the function’s gradient. It is applied to the 

loss function during the training phase of neural networks, to 

find out how to adjust the networks parameters, so as to 

minimize the loss. See also: Loss Function, Backpropagation and 

Neural Network. 

Graph Classification Refers to the classification of whole graphs according to some 

scheme, as opposed to node classification that is only concerned 

with the classification of individual vertices. See node 

classification. 

Graph Neural Networks (GNN) Are a type of neural network that are specifically tailored 

towards processing graph-like data. Graph neural networks 

adapt to the topology of the input data, thus efficiently 

incorporating the information contained therein. 

Graph Sparsity A metric used to assess the capability of explanation methods 

for graph neural networks, to clearly distinguish between 

relevant and irrelevant nodes for a given prediction [111]. See 

also Descriptive Sparsity. 

Heartbleed Bug A serious vulnerability in the OpenSSL library that affected the 

so-called heartbeat extension of the TLS and DTLS 

implementations. It is filed under CVE-2014-160 and allowed 

remote attackers to access unintended locations in main 

memory, thus allowing the extraction of possibly confidential 

information. 

HDF5-Format A hierarchical file format for storing large quantities of 

scientific data that is also commonly used in the context of 

machine learning, e.g., for the interchange of training and test 

datasets.  

Hyper Parameters Are parameters that are not adjusted by the algorithm, but 

rather set prior during conception. Hyper parameters may for 

instance refer to the dimensions of the layers, the number of 

total layers or the batch size during training of a supervised 

deep neural network.  

Informedness Is a metric used for the evaluation of binary classifiers and 

given by IFN =
TP

TP+FP
−

FP

TN+FN
 , with TP, TN being the number 

of samples correctly predicted as either positive or negative 

and FP, FN being the number of erroneously predicted as either 

positive or negative. For some applications this metric is 

arguably more expressive than simpler ones, e.g., Accuracy. It 

considers both positive and negative samples, important when 

the population of samples exhibits high class imbalance. See 

also Markedness and Confusion Matrix. 
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Term Description 

Initialization Vector (IV) A cryptographic primitive that refers to a nonce value required 

by some ciphers such as for initialization purposes. In case of 

the Advanced Encryption Standard (AES) in its (256-Bit) 

Counter Block Chaining (CBC) mode for instance, a suitable IV 

would be a 256-Bit long random value that forms the first 

cipher text input of the chain. 

Integer Over- / Underflows  Are a type of software defect that occurs when a integer is 

incremented or decremented beyond the minimum or 

maximum value it can hold. A 32-Bit integer for instance, may 

not be incremented beyond 4294967296 or decremented 

below 0 before rolling over. An attacker with the ability to 

cause an over- or underflow may exploit this behavior to access 

unintended areas of memory. 

Integrated- / Gradients Is a white-box algorithm for explaining predictions made by 

MLPs, CNNs and RNNs. The simple gradients-based method so-

called saliency maps, given by ri =  
∂y

∂xi
, i.e., how much 𝑦 

changes wrt. some xi. It was first introduced by Simonyan et al. 

and later revised by Sundararajan et al. [57]. See also White-

Box Methods, Black-Box Methods and LRP. 

Interpretability Is a concept that is sometimes used interchangeably with 

explainability. However, in some works of literature a 

distinction is made, where interpretability is a higher criterion. 

It postulates that the model itself is already able to provide 

explanations, so that no additional methods to this end are 

required. Decision trees are often attributed to the class of 

interpretable AI. See also Explainability and Explainable AI. 

Interprocedural Static Analysis A static program analysis that considers several functions 

along a call path. 

Intraprocedural Static Analysis A static program analysis that only considers one function or 

method (cf. Interprocedural Static Analysis). 

Json File Format A human- as well as machine-readable data exchange format. 

See also YAML File Format.  

Juliet A dataset comprising synthetic examples of software defects 

for benchmarking purposes, maintained by the National 

Institute of Standards and Technology. 

Kalman Filtering Probabilistic method for robots to increase the certainty via 

iterative update on state variables due to observation. Often 

linear models are used to represent noise in the actions and 

perception, but for extended filters non-linear functions can 

also be used.  

Kernel Trick Is a technique used for the separation of data samples in 

kernel-based machine learning algorithms. Data that cannot be 

efficiently separated in a low dimensional vector space, may 

become distinguishable in higher dimensional spaces. A 

popular example based on this method, are support vector 

machines (SVM). 

K-Means An algorithm to partition a set of observations into k groups. It 

tries to minimize the sum of squared distances of each 

datapoint to its respective group center. 
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Term Description 

K-Nearest Neighbor A classification algorithm which classifies each datapoint 

according to its k nearest neighbors. 

Layer-Wise Relevance Propagation (LRP)  Is a white-box explanation method for a variety of artificial 

neural network models. Given a prediction ŷ for some input 

vector x, this method backpropagates the state of the output 

layer through the network, such that the relevance score at the 

input layer can be calculated, i.e., the influence of each 

individual dimension of x excerpted on ŷ. Furthermore, the LRP 

method preserves the conservation property for each layer of 

the network [135]. See also Explanation Methods, White-Box 

Explanation Methods, Integrated- / Gradients. 

Leave-One-Out Evaluation Is the extreme case for X-fold cross valuation with a training vs. 

test set ratio X:1. 

LEMNA A black-box explanation method proposed by Guo et al. 

intended to be used for security related applications. It is based 

on a mixed regression model, i.e., it calculates the weighted 

sum of 𝐾 linear models to approximate an unknown model 

[57]. 

Levenshtein Distance A type of distance metric that is used to measure the editing 

distance between two sequences based on the operations: 

Insert, delete and replace. 

LIME A perturbation-based black-box explanation method that aims 

to approximate an unknown decision function FN(x), x ∈  ℝn by 

randomly zeroing-out parts of x. The resulting vector x̃ is then 

used to make a prediction FN(x̃) = ŷ, so as to approximate the 

local Neighborhood of the function at point FN(x). The decision 

boundary is approximated using a weighted linear regression 

model [57]. See also SHAP and Black-Box Explanation Methods. 

Logical Errors This term refers to a certain kind of software security flaw that 

manifest in the security  

Logistic Regression The disadvantage of isotonic regression is that it creates a 

lookup table for converting scores into estimated probabilities. 

An alternative is to use a parametric model. The most common 

model is called univariate logistic regression. 

Loss Function Also referred to as cost or error function is a mathematical 

function used in the learning process of neural networks and 

similar machine learning techniques. The function associates a 

cost to a prediction made by the model, usually by means of 

measuring the distance between the prediction and the actual 

target. 

Malware Adversarial software showcasing malicious behavior. 

Markedness Is a metric used for the evaluation of binary classifiers and 

given by 
TP

TP+FP
−

FP

TN+FN
 

Matthews Correlation Coefficient (MCC) A complex evaluation metric used to assess the predictive 

performance of machine learning models for binary 

classification tasks. Unlike many other metrics, the MMC 

remains sound even in the face of severe class imbalance, such 

as is often the case with machine learning-based approaches to 

SAST. 
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Term Description 

Memory Leak A type of software defect common in programming languages 

that require manual memory management. If memory is 

allocated but erroneously never again released during program 

execution, the process or even operating system may run out of 

memory. 

MEX Vocabulary Is the name of a lightweight schema for machine learning 

experiments that is based on the W3Cs PROV Ontology [89]. 

See also PROV-O and W3C. 

Multilayer Perceptron (MLP) One of the earlier and simpler types of deep neural networks. 

Multilayer perceptrons are comprised of at least three layers of 

fully connected nodes and thus commonly considered a “deep” 

architecture, as some of the layers are not directly observable.  

Needleman-Wunsch  Is an multiple sequence alignment algorithm used for 

approximate string matching. The main difference to the 

Smith-Waterman algorithm (see below) is that negative scoring 

matrix cells are set to zero, which renders the (thus positively 

scoring) local alignments visible. 

Negative Predictive Value (NPV) A metric used in the assessment of the predictive performance 

in classification tasks, see Recall. 

Node Classification Refers to the task of predicting the affiliation of a graph’s nodes 

to some class. See also Graph classification. 

Null Pointer Access Describes a type of software defect that occurs in the C and C++ 

programming languages, when a pointer to the invalid memory 

address 0x0 is dereferenced. Other programming languages 

have similar concepts, but may differ in their implementation, 

e.g. None in Python 3 is a special instance of the None-class. 

Overfitting The concept overfitting means that a model is fit too good on 

its training data. Thus leading to a good performance on the 

training data while having a bad performance on unseen data. 

OpenSSL Software Refers to a cryptographic library and software suite that hosts 

a large variety of algorithm and protocol implementations for 

securing data transmissions over computer networks, such as 

the commonly used Transport Layer Security Protocol (TLS). 

Over- / Under-Sampling Refers to a technique used in the context of machine learning, 

so as to combat class imbalance in datasets. While under-

sampling refers to the removal of data samples from the 

dominating class, over-sampling aims to restore an equilibrium 

by (artificially) increasing the number of data samples in the 

minority class. A popular example is the Synthetic Minority 

Over-sampling Technique (SMOTE). 

OWASP Is the commonly used abbreviation to refer the non-profit 

organization “Open Web Application Security Project”. The 

organization aims to improve software security [136] 

Perturbation Methods Are a family of black box explanation methods that aim to infer 

information about the local neighborhood of an unknown 

prediction function at a given point through careful 

manipulation of the input vector and measurement of the effect 

it has on the prediction. 
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Term Description 

PKL File Format A file format that is used for the serialization of objects in the 

Python programming language. It can be commonly found in 

the context of machine learning applications, as it is used to 

preserve models, datasets and other related artifacts. 

P-Norm A vector norm belonging to the family of p-norms if ||x||p = 

(∑i=1..n |x|p)(1/p), for any p > 0. Prominent are the (p=1)-norm 

||x||1 = |x1| + |x2| + … + |xn|, the (p=2)-norm or Euclidean norm 

||x||2 = sqrt(|x1|2 + … + |xn|2) and the (p=∞) norm ||x||∞= 

maxi=1..n|xi|. 

Positive Predictive Value (PPV) A metric used for evaluation purposes in classification tasks, 

see Precision. 

Precision In some cases also referred to as “Positive Predictive Value” 

(PPV), is a metric often used in the assessment of the predictive 

performance of classifiers and the counterpart to the Recall 

metric (NPV). It can be directly calculated from the confusion 

matrix and is defined as PPV =
TP

TP+FP
 where TP is the number 

of samples correctly predicted as belonging to the positive 

class and F𝑃 the number of samples erroneously predicted as 

belonging to the positive class. See also Recall, NPV and 

Confusion Matrix. 

PROV Ontology Is an ontology developed by the W3C that implements the 

PROV data model for data provenance, i.e., metadata relating to 

artifacts that arise from the creation of the original data. 

Random Forests A selection of decisions trees used in an ensemble to predict 

the classification outcome. 

Rebalancing Methods Are methods for the restoration of an equilibrium in 

imbalanced datasets. See Class Imbalance and Over- / Under-

Sampling. 

Recall Sometimes called “Negative Predictive Value” (NPV) is the 

counterpart to the Precision metric (PPV). It is used for the 

assessment of the predictive performance of classifiers and 

given by 𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
 where 𝑇𝑁 is the number of samples 

correctly predicted negative and 𝐹𝑁, the number of samples 

wrongfully predicted negative. See also Precision, PPV and 

Confusion Matrix. 

Receiver Operating Characteristic (ROC) 

Curve 

A type of plot used to characterize a classifiers ability to 

discriminate between classes, where TPR and FPR are plotted 

against each other, while shifting the discrimination threshold 

Reinforcement Learning Unlike supervised or unsupervised learning, where there exists 

a distinct training and deployment phase, reinforcement 

learning poses a machine learning paradigm were models are 

continuously trained. See also True Positive Rate, False Positive 

Rate and Area Under the Curve. 

Reliability High-stakes decision-making in areas like healthcare, finance 

and governance requires accountability for decisions and for 

how data is used in making decisions. Reliability in machine 

learning unifies questions of model stability, fairness and 

explanation. 
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Term Description 

ReVeal A set of training data for the purpose of learning ML-SAST 

approaches. It contains a large number of real-world code 

samples in the C and C++ programming language, labeled as 

benign or vulnerable. It was curated by Chakraborty et al. and 

first introduced in their 2021 evaluation study on deep 

learning-based vulnerability detection approaches [137]. 

Robustness A criterion to determine the robustness of explanation 

methods for machine learning models against perturbations, 

see  

Rule-based SAST Solutions Are approaches to static analysis security testing using a fixed 

set of rules, representative of generalized patterns of 

vulnerable source code. The source code is evaluated against 

these rules, subsequent pattern matches may indicate the 

presence of a software vulnerability. 

SARD Project  The Software Assurance Reference Dataset (SARD) Project 

hosts a large repository of vulnerable code examples in a 

multitude of different programming languages. 

SEI CERT C Coding Standard A security-oriented coding standard for a variety of 

programming languages, such as C and C++ that is continuously 

revised by the Carnegie Mellon University’s Software 

Engineering Institute. 

Sensitivity A basic metric found in the confusion matrix used for the 

evaluation of classifiers, see True Positive Rate. 

SHAP A perturbation based black-box explanation method proposed 

by Lundberg and Lee. It is based on the LIME method, but uses 

the so-called SHAP kernel as it’s weighting function [57]. See 

also LIME and Black-Box Explanation Method. 

Slicing Mechanism A term first coined by Mark Weiser in 1981, originally referring 

to the act of human practitioners, syntactically abstracting 

from a program by reducing it to a minimal form while 

preserving the semantics [138]. It has nowadays come to 

mainly represent the automatic process of (automatically) 

extracting parts of a program at point p that comprises all 

statements that exercise some influence on a variable x at p, 

following the definition of Horwitz et al. from 1988 [37]. 

Smart Pointers Smart pointers are used in many popular programming 

languages such as C++. These are special pointers that have 

additional functions and properties compared to simple 

pointer variables. To avoid accidentally releasing memory 

areas that are still referenced, reference-counting pointers are 

used. The smart pointer contains a counter variable that is 

incremented each time the pointer is copied. The memory is 

only released when the counter reaches the value 0. 

Smith-Waterman Approximate string-matching algorithm based on dynamic 

programming used in multiple sequence alignment. Relates to 

computing the edit distance. 
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Term Description 

SMOTE Is the abbreviation of commonly used for the Synthetic 

Minority Over-sampling Technique, a method to artificially 

increase the number of samples belonging to the minority class 

in imbalanced datasets [98]. The method is meant to combat 

the negative effects of highly imbalanced training data machine 

learning models. See also Over- / Undersampling.   

Snowball Sampling Method Is a method for finding additional and previously unkown 

literature to some given topic based on a number of known 

works, first introduced by Claes Wohlin [92]. See Backward 

Snowball Sampling and Forward Snowball Sampling. 

Specificity A basic metric found in the confusion matrix used for the 

evaluation of classifiers, see True Negative Rate. 

Stability Is a criterion used in the context of explanation methods that 

are non-deterministic, to retain the same explanations across 

multiple runs, given the same input [111]. 

Static Application Security Testing (SAST) A class of security testing tools usually working on the source 

code of the software under analysis. SAST is an important part 

of a Security Development Lifecycle. 

Static Program Analysis Program code is analyzed statically, mostly on the source-code 

level in contrast to dynamic analyses where the application 

under test has to be running. 

Stream Ciphers Describes ciphers that, in contrast to their block-wise 

counterparts, encrypt and respectively decrypt continuous 

streams of data. 

String Termination Errors Is a kind of software defect that may be present in programs, 

written in the C or C++ programming languages. Here strings 

are terminated by a null character. Such errors occur for 

instance if the presence of this character is not accounted for 

when determining the length of a string or reading in data in 

expectance of such null character, which may result in a buffer 

overflow. See Buffer Overflow. 

Structural Robustness Refers to the robustness of an explanation method to retain the 

same explanation, even when the input is perturbated. Ideally 

slight alterations of the input of such methods should except 

little effect on the explanation yielded [111]. 

Supervised Learning Process A paradigm of machine learning algorithms, where there exists 

a distinct training and deployment phase in a model’s lifecycle 

and training is accomplished by using labeled data samples, i.e., 

samples representative of the underlying problem and their 

associated labels, to be predicted. 

Support Vector Machines Refers to a supervised machine learning technique that aims to 

separate classes by construction of a hyperplane. Separation is 

achieved by constructing the hyperplane in a way that 

maximizes the distance between the plane and the nearest 

datapoints. As in most cases a linear separation is not possible 

in the original vector space, it must be lifted into a higher 

dimensional space using a kernel function, commonly referred 

to as the “kernel-trick”. 
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Term Description 

Surrogate Methods Refer to a class of black-box explanation methods that aim to 

mimic the behavior of an unknown und unexplainable machine 

learning model, by training another machine learning model 

that is explainable. See also Explainability, Explainable AI and 

Black-Box Explanation Methods. 

Symmetric Key A secret that is used in symmetric key ciphers for the 

encryption as well as decryption of data. Unlike its asymmetric 

counterpart, where there exist two separate keys for these 

tasks, with symmetric encryption both the sending and the 

receiving party of an encrypted message need to share the 

same key. 

Systematic Mapping Study A study of scientific literature that follows a systematic 

approach, so as to scope an academic research field. 

System Dependence Graph (SDG) Similar to program dependence graphs, system dependence 

graphs are a form of code representation that combines control 

and dataflow in a single graph. While the former encapsulates 

intraprocedural relationships, system dependence graphs work 

on an interprocedural level. See also Interprocedural Program 

Analysis, Intraprocedural Program Analysis, Program 

Dependence Graph (PDG). 

Tainted Data Data that is controlled externally (e.g., by an attacker) and 

flows into certain program points. If tainted data reaches 

vulnerable code locations, often attacks are possible. 

Test and Training Set Are datasets containing a number of labeled samples that are 

used to train and evaluate supervised machine learning 

models. First the model is learned using the training set. Then 

the test set is used evaluate the performance of the model 

using different metrics. See also Confusion Matrix, Supervised 

Learning, etc. 

Text Regular Expression Matching The act of searching for substrings in text, by employment of 

regular grammars. For SAST is must be noted that these types 

of expressions, (usually) cannot encapsulate the full semantics 

of the programming languages they are trying to analyze, as 

they are weaker. Unlike these programming languages, the 

question whether a particular word lies within a given 

language is decidable however for regular expressions. 

Traceability Is a qualitative requirement regarding machine learning 

applications. It refers to the ability to trace back the origins of 

the data as well as meta data leading to the output of the 

model. See also Data Provencance and Transparency. 

Transparency Is a basic requirement concerning machine learning 

applications. It comprises explainability, traceability and 

communication. See also Explainability, Traceability, 

Communication and Data Provenance. 

Transport Layer Security (TLS) A protocol for cryptographically securing TCP connections so 

as to ensure the basic security goals of maintaining 

confidentiality and integrity of the data transmitted. In its 

current version 1.3, the protocol is standardized in the IETF 

Standard: RFC 8446. 
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Term Description 

True Negative Rate One of the four basic metrics of the confusion matrix, also 

known as “Specificity” used in the evaluation of the predictive 

performance of classifiers. It is defined by the number of 

samples correctly predicted as negative. See also True Positive 

Rate, False Positive Rate, False Negative Rate, Sensitivity, 

Specificity and Confusion Matrix. 

True Positive Rate One of the four basic metrics of the confusion matrix, 

sometimes also referred to as “Sensitivity”, used in the 

evaluation of the predictive performance of classifiers. It is 

defined by the number of samples correctly predicted as 

positive. See also True Negative Rate, False Positive Rate, False 

Negative Rate, Sensitivity, Specificity and Confusion Matrix. 

Use-after-free Refers to a type of software defect that occurs when a pointer 

variable references an area in memory that has already been 

freed and has been possibly reallocated in a different context. 

Dereference of such pointer variables leads to undefined 

program behavior. See also Dangling Pointers. 

Value Flow Graph (VFG) A synonym of the term Data Flow Graph (DFG). See also Data 

Flow Graph. 

Void Pointers Pointer variables that, at least conceptually, have no datatype 

declared. 

White-Box Explanation Method Are a family of explanation methods used to gain insights into 

the prediction process of otherwise opaque machine learning 

models. This kind of explanation requires all (hyper-) 

parameters of the model to be known, unlike their black-box 

counterparts. See also, Explainable AI (XAI), Explanation 

Methods, LRP, Integrated- / Gradients and Black-Box 

Explanation Method. 

World Wide Web Consortium (W3C) A consortium for the standardization and maintenance of web 

technologies. 

XFG Subgraphs, i.e., slices, of the program dependence graph. A 

term solely used in the DeepWukong paper by Cheng et al. [55]. 

See also Program Slicing and Program Dependence Graph 

(PDG). 

YAML file format Is a human- and machine-readable interchange format. See also 

JSON File Format. 

15.2 Results of the Literature Mapping 

Listed here are the results of the snowball sampling, executed during the course of the literature Mapping, 

described in Chapter 10. The base set consists of 19 publications, while the first round yielded 15, the 

second round 15, the third round 21 and finally the fourth round a mere 4 results. In total, 72 publications 

have been sighted, which includes those from the base set. 
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15.3 Guideline for the interviews with the experts 

Listed are the questions which were defined for the expert interviews. The questions were in German as the 

interview partners were German. A translation of the question to English is also provided. 

Question 

No. 

Question in German Question in English 

1 
Welche Erfahrungen haben Sie mit den 

Themen C und Security von C-Code? 

What experience do you have with C and 

security of C code? 

2 
In welchem Umfeld setzen Sie die 

Programmiersprache C ein? 

In which context do you use the programming 

language C? 

3 

Welche C-Versionen setzen Sie in Ihren 

Projekten ein?  

Auswahlmöglichkeiten: C99, C11, C17, andere 

Which C versions do you use in your projects?  

Selection options: C99, C11, C17, other 

4 

C-Versionen in anderen Entwicklerteams? 

Auswahlmöglichkeiten C99, C11, C17, andere 

Which C version do other software 

development teams in your organization use? 

Selection options: C99, C11, C17, other 

5 
Nutzen Sie statische Programmanalyse-

Werkzeuge (SAST Tools)? 

Do you use static software analysis tools (SAST 

tools)? 

6 
Wenn ja, welche? Für welche Sprachen? If so, which tools? For what programming 

languages? 

7 
Welche Tools sind besonders gut für C 

geeignet? 

Which tools are especially well equipped for 

the C programming language? 

8 
Welche Tools sind besonders gut für C++ 

geeignet? 

Which tools are especially well equipped for 

the C++ programming language? 

9 Welche Vorteile bieten SAST Tools? What advantages do SAST tools offer? 
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Question 

No. 

Question in German Question in English 

10 Welche Probleme treten dabei auf? What problems do these tools suffer from? 

11 
Beim Einsatz SAST-Tools: Schreiben Sie eigene 

Regeln hierfür? 

If SAST tools are employed: Do you define 

custom rules to this end? 

12 

Welche Formate bzw. Eingabemöglichkeiten 

von Regeln kennen Sie (z.B. XML, User 

Interface)? 

What formats, respectively what options 

regarding the input of rules do you know of 

(e.g., XML, user interface)? 

13 Welche Fälle werden meist gut detektiert? What types of errors are usually well detected? 

14 

Kennen Sie bzw. können Sie sich konkrete Fälle 

(im C-Code) vorstellen, die nicht durch 

statische Werkzeuge detektiert werden bzw. 

im Gesamtrauschen untergehen (sog. Fehler-

Use Cases)?  Bitte nennen Sie konkrete 

Beispiele! (Dies kann auch im Nachgang mit 

Kolleginnen und Kollegen passieren.) 

Can you think of any concrete examples (of C-

code) that cannot be detected using SAST tools 

and are overshadowed by background noise 

(so-called error use cases), respectively? If so, 

please state these examples! (This may also be 

done after the interview with the help of 

colleagues.) 

15 

Kennen Sie ggf. Quellen (z.B. Testrepositories, 

Publikationen), in denen solche Fehler-Use-

Cases dokumentiert sind? 

Do you know of any sources (e.g., repositories 

of test data, publications) that document such 

error use cases? 

16 
In welchem Format liegen solche Fehler-Uses-

Cases? 

In what format are such error use cases 

present? 

17 

Welche Anforderungen haben Sie an ein Tool, 

das z.B. Regeln mittels ML lernen kann? 

What are your requirements concerning a tool 

that, for instance, infers rules using machine 

learning techniques? 

18 

Kennen Sie bereits (kommerzielle) statische 

Analysetools oder wissenschaftliche 

Prototypen, die eine solche Funktionalität 

aufweisen? 

Do you know of any (commercial) static 

analysis tools or scientific prototypes that 

exhibit such functionality? 
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