% Federal Office
for Information Security

Documentation and Analysis of
the Linux Random Number
Generator

Version: 3.6

Document history

Version Date Editor Description

2.0 2018-03-21 Stephan Miiller Covering kernel 4.15
Re-running all tests of chapters 6 and following on
4.15

2.1 2018-04-11 Stephan Miiller Updating the test results for the reboot tests on bare
metal with 50,000 reboot cycles

2.2 2018-04-11 Stephan Miiller Covering kernel 4.16

2.3 2018-06-18 Stephan Miiller Covering kernel 4.17

2.4 2018-08-24 Stephan Miiller Covering kernel 4.18

2.5 2018-11-12 Stephan Miiller Covering kernel 4.19
Updated seeding process ChaCha20 DRNG
documented

2.6 2019-01-11 Stephan Miiller Covering kernel 4.20

3.0 2019-04-05 Stephan Miiller Covering kernel 5.0
Re-running all tests of chapters 6 and following on
5.0

3.1 2019-04-12 Stephan Miiller Adding results of reboot-tests for 5.0

3.2 2019-05-17 Stephan Miiller Addressing comments from BSI
Covering kernel 5.1

3.3 2019-08-13 Stephan Miiller Covering kernel 5.2

34 2019-09-26 Stephan Miiller Covering kernel 5.3

3.5 2019-12-13 Stephan Miiller Covering kernel 5.4

3.6 2020-04-07 Stephan Miiller Covering kernel 5.5

Federal Office for Information Security
Post Box 20 03 63
D-53133 Bonn
Internet: https://www.bsi.bund.de

© Federal Office for Information Security 2020

Document history

:@sec=

This analysis was prepared for BSI by atsec information security GmbH.

Federal Office for Information Security 3

Federal Office for Information Security

Table of Contents

Table of Contents

DOCUMENT NISTOTYooomieeverreveieseceeesesesee s ssse s sss s sases s s sss b s bbbt b e s s e 2
1 INETOAUCTION.c...oo ettt st ss s sss s ss s s s s s s s s e s sttt 13
1.1 AUTNOTS. ..ottt ase s bas s ba s e e bR A bR A bR e bR et a s e et s 14
1.2 COPYTIGNE ...ttt ssssae s ssssse s ssss s ssss s bs s e RA s R RS ARt R RS R AR bRt et 14
1.3 B I RELEIEIICE. ..ottt bssss e sssss b s s bas s bbb S essbe bbb b s b e s bbb senn b 14
2 Architecture of Non-Deterministic Random Number Generators (NDRNGS).........cccccccccuemeemnercreemeemnnsccereenes 15
21 TOITIIITIOLOEY ...vvvursnrrvereessnrsssnssssssssssmsssssssssnsssssanss 15
2.2 GENETAL ATCRITECTUT ..ot sas s sas s sasse s sas s sas s s s s bs s s b s bs b a st bs st ss s bmss s 17
3 Design of the Linux-RNG .20
3.1 HiStOriCal BACKGTOUI. ..o eeveeseeseeseseseesssssssssesssssssssssssssssssssesssssssssesssssssasesssssssasssessssssasnesssssssasenssaneees 20
3.2 LINUX-RING ATCRITECEUT ...ttt ssaesssa s b sssesssasesssssssss s bas s sbaesssss s bbb bas s bas bbb e tanen 20
321 LINUX-RNG INtEINAl DESIGN....u..ooveeereveeeseereeeseseeesssseee s sassesssssssssssssssssssssesssssssssssssesssssssssssssesssssssessasssassssssens 21
3.3 Deterministic Random Number Generators (DRINGS).....oeerreeeorseeeseeessseesesseesesssesseesssssesesessssssesessenns 23
331 Entropy Pools w23
332 ChACRa20 DRING....oeeeeeeeeeeeetteeee et ssases s s ssss s sssasessssass s ssas s ssss s ssssessssss s sase s ssasesssss s s s s e san 33
34 Interfaces t0 LINUX-RING ...t evees et ssesssassssessssssesssasss s ssssssasssssasssssesssassssssssssaessras s assansasen 37
341 Character Device Files .37
3.4.2 SYSLEIN Cll....ooooreeeeeriieese e ssises s sessessssssesssess s sss s ssss s s s bs eSS s R SRS bR bbb et 41
343 I KEINIEL INEEITACES...u..eveereeeeeeeeeeeesereee st ssaeesessesess s ssasessssss s sas s s ssae s s s saess s s s sase s ssaes s e san 41
344 JDTOC FILES....oooetee ettt ssss s ssssss s sss e s b s bR s e RS RS bR ARt a0 42
3.5 Entropy Sources 43
3.5.1 Timer State Maintenance for Entropy Sources .43
3.52 ENETODY COlLOCHIOMN. ettt ssese s ssssesssssesesssssss s ssssesssssss s sase s ssa s s s s s sttt 45
3.6 ENETOPY ESTIMAION. .ecriiverecieeererisesesiesesssisessssessessassssssssssssssesssssssssssssessssssnasssssnsssnes 57
3.6.1 Storing of “Superfluous” Entropy .59
3.7 Generic Architecture and LINUX-RING ... ssess e ssasss s ssasss s ssssss s sass s sasssssas 60
3.8 Use of the Linux-RNG .62
3.9 Hardware-based Random Number Generators 63
391 CPU Hardware Random NUMDET GEINETALOTS...........o..eevvveerereeeerreeesesessssesssssssssssssssssssssssssssssssssssssassssssassanns 63
3.9.2 Hardware Random Number Generator FIameWOTK..........rioereeneneinnsssessseesssesessssesssssesssessssssssassenns 65
3.10 Support Functions for Other KEIrnel PATts.........o..reinriisnesssisessssesesssiesssssssssessssssesssssssesssssssssssssssssssssssssses 67
311 Time Line of ENtrOPY REQUITEIMIEIES........covvvvverreeerreeesesssessessesssesssessssssssssessssssnssss 68
3111 IT1SEALLATION TIITIC coveeereeeeeee e eeeeseeeeseeeeessseesesessseseeses s ses e eseeasesemesesesesesesesesesesesesesesesessesessesesasessssssaseanesaseaneen 68
3.11.2 First Reboot After Installation 69
3.113 Regular Usage ..69
3.12 Security Domain Protecting the Linux-RNG .70
4 Conducted Analyses of the LINUX-RNG........ccvvrininnisesnsennceeeesssessssssssssssssssssssssssssessssssssssssssssssssssssssssssssssseees 71
41 Attacks of Gutterman et al. AN itS REIEVATICE.ooovvvverereevreeeerceenseeeees s ssessssssssesssssssessssssesssssssssssssenes 71
411 DeENial Of SEIVICE ATTACKS.cvueieveeeeteeeeteseseeee sttt sbsesssssesssassssssess s sssses s bbb s ba s s bbb s sas o 71
412 USE Of DISKIESS SYSTEIMIS......oveeumrrrveeesssnreessssssnsses 71
413 ENhanced BaCKWATA SECTECY........ccoumrirrresinssesesssmssssssssssssassssssssssssnssens 72
42 Lacharme’s Analysis .72
421 Linux-RNG Without Input to the Entropy Pools 72
422 ATEACKS ON ThE INPUL.ecuunneeeeeeeceeeeeeseeeeesvsasaee e ssssssssses e sssssssssssss s ssssssssssss s ssssssssmssss s sss s et sane 72
Federal Office for Information Security 7

Table of Contents

423 Assessment of the ENtropy EStimMatioN.. ... sseseessssssessssssssssssssssssssessssssssensees 72
43 Conclusions from [LRSV12] and [GPROG............ccorveererrnreersssensesssssnssssssssssnssssssssssssssssssssssnsssssssssssssssssssnssssasessanns 72
5 Coverage of BSI Requirements NTG.1 and DRG.3........coerconeienennesssessessesssssssessssessssssssessssssssssssnssssssssssssssssnnes 74
5.1 JAEV/TANIAOINL: NT G Lo esessss e ssssssssssssssss s sssssssesssssssms s sssssas s ssssss s ssssmsssssssssmsesssessns 74
51.1 INT G T Tt bbb R bR bbb R R R bR bR bbb bbb a bt nns 75
51.2 INTG.T 2ttt sa st s bbb RS R Rt a bR bRt st m bt a s sm bt ens 75
513 INTIGL L3ttt bbbt bbb e b b a A a A a A b A baee bbb bbb an sttt enen 76
514 INT G Tttt R AR AR sb R a bbb m bt m bt 78
5.1.5 INT G L5ttt bbbt et ba A b a A a s b a A bR e bbb e bbb a bbb enen 79
5.1.6 INTGLLBcooereeereeesesetse sttt bsse s b s s s S ssbe bbb e SRR b e bbb s st ase s bt n s 79
517 NTG.1 Properties on Different ENVITONIMENTS........ccooovvomrevvnmrerensnnsiiesnssssissssssssssssssssssssssssssssesssssssssssssensses 81
5.2 ChaCha20 DRING: DRG.3..... et ssaeesssssseessssssessssssssssssssesssssssessssssssssssasesssssssssssssesssssssessssanssssssssssasssasssans 81
52.1 DIRG.3 Lottt st sse s b as bbb a b e b a S AR e a AR a AR et a b 81
522 DRG.3.2uceeeesee s esesss s ssssm s sssss s se AR SRR R ARt 82
523 DIRGL3.3 sttt bs st a b e bR AR R AR AR bR AR A A a bR e bbb en 83
524 DRG.3 oo sessss s ssssssssssssssssssasssssssssessssssss s sssse s ss s AR AR AR SRR AR ARt RA 0 83
5.2.5 DIRGL3 .5ttt sttt e bt e bR AR A AR AR AR AR A b et a e bt en 83
6 TeSt SETIES: RAW ENETODY .t siesssssssssssssssssssssessssssssssssssssessssssssssssssssessssssssssesssssassssssssssesssssessssssssssesssssessssssssens 85
6.1 ANALYZEA NOISE SOUTCE DATa.........coooveeeeieeeeneeseeesssssssssiessesssnesssssssassssans 85
6.1.1 INEEITUPE NOISE SOUTCE....o.eveeeeveeeeteeeteeeetee s sseee st b ssses s bas s s sa e s ba s s ba bbb sse b s bbb s s banras 85
6.1.2 Block Device Noise Source .86
6.1.3 HID NOISE SOUICE......ooereveerreressessssessssissessssssssssssssssssssssessssssssssssssassssssssssssssssssssessssssnsssssssesssssssssssssssssssnasssssnsssnsssnsses 86
6.2 Min-Entropy as Per SPBO0-00B...........ccoorureeerreeaersesssssesssssssssssssssssssessssssssssssssssssssssssssssssasssssssssssssssssssssassssessssssses 87
6.2.1 Interrupt Noise Source Min-Entropy EStIMAtes......ccoovcomrvvcnnrrieonmnresisnsssisnsssees 88
6.2.2 Block Device Noise Source Min-Entropy Estimates ...90
6.2.3 HID Noise Source Min-ENtropy EStIMALtes.......ccooovucrivecrmriinnrssisnssssessnsssnss 91
6.2.4 Conclusion Of SP00-90B MEASUTEIMENLS...........ccrreeeessmrresssnssses 93
6.3 Entropy During Early Boot .94
6.3.1 Early Boot Entropy Testing in a Virtual ENVITONMENT...........ccovvvenereevsenrereeeeseesseesssesesssseseesssssessssssessssesses 95
6.3.2 Early Boot Entropy Testing on Native Hardware ...101
6.3.3 Conclusions of Early Boot ENtropy MeaSUreIMENts..............cooveueerevesmsesveesessaensssssessssssssssssessesssssssnsssnns 109
7 Test Series: State Transition Function of DRNG 111
7.1 Properties of the LESR POIYNIOMIIALS........ccooovucierrcieinreeiseesesesesssseeesssisesssssssssssssesssssssssssssessssssssssssssssssssssssssssssanssanns 111
7.2 Standalone Operation of State Transition Functions 113
7.2.1 LFSR State Transition FUNCHION. ...ttt ssee s ssss s ssss s sass s sasssesssessesaens 114
7.2.2 ChaCha20 State Transition .. 117
7.3 AIS 20/31 Test Procedure A for Entropy Pools 119
7.3.1 IMIPUL_P OO oeeeeceeeeeeeeeseeeseseeeeesssssesssesssssessssssssssessssssssssesssssssss s sssssss s s ssas s s ssas s sssass s sssamsensssssannssanssasees 120
7.3.2 DIOCKINIE POOLccunieieteeesretveees st ssessesssssssssessssssssssssssssssss s s sss s s sss s RS s s Rs s ba bbbt 120
8 Test Series: DRING OULPUL FUNCHIONIS ...t isssnssassans 121
8.1 OULPUL Of DIOCKINIZ POOL....ooeeeeeeeeeereeeteeeeeeeeseeseeseessssssseesssssssssssssssssssssssssssasesesssssssssessssssassssssssssssssssssssanssssssasessaees 122
8.2 Output of ChaCha20 DRNG 122
8.3 Conclusion of the Output Function Testing 122
9 New Developments in LINUX-RING.....cooccricrmriirnnisisnssssiesssessssssssssssssssssssessssssssssnsssnsses 123
9.1 LINUX KETTIEL 4.10.....ooeereeeeeesseteesesvees e ssesessssssesssssssssssssssssssssssssssss st ssssessssas s ssss s b s sbas s s s s b s basbassens 123
9.1.1 Changes to the LINUX-RNG IMPlementation........ocerceemeseeeiisseessssssssesssssssssesssssssssssssesssnseses 123
9.1.2 Changes to Invocation of Entropy Gathering Functions .124

8 Bundesamt fiir Sicherheit in der Informationstechnik

Table of Contents

9.1.3

9.2

921
9.2.2
923

9.3

931
9.3.2
9.3.3

9.4

94.1
9.4.2
94.3

9.5

9.5.1
9.5.2
9.5.3

9.6

9.6.1
9.6.2
9.6.3

9.7

9.7.1
9.7.2
9.7.3

9.8

9.8.1
9.8.2
9.8.3

9.9

991
9.9.2
9.9.3

9.10

9.10.1
9.10.2
9.10.3

9.11

9111
9.11.2
9.11.3

9.12

9.12.1
9.12.2
9.12.3

9.13

9.13.1
9.13.2
9.13.3

9.14

Definition and Use of new Interfaces

Linux Kernel 4.11

Changes to the Linux-RNG Implementation

Changes to Invocation of Entropy Gathering Functions
Definition and Use of new Interfaces

Linux Kernel 4.12

Changes to the Linux-RNG Implementation

Changes to Invocation of Entropy Gathering Functions
Definition and Use of new Interfaces

Linux Kernel 4.13

Changes to the Linux-RNG Implementation

Changes to Invocation of Entropy Gathering Functions
Definition and Use of new Interfaces

Linux Kernel 4.14

Changes to the Linux-RNG Implementation

Changes to Invocation of Entropy Gathering Functions

Definition and Use of new Interfaces
Linux Kernel 4.15

Changes to the Linux-RNG Implementation

Changes to Invocation of Entropy Gathering Functions

Definition and Use of new Interfaces
Linux Kernel 4.16

Changes to the Linux-RNG Implementation

Changes to Invocation of Entropy Gathering Functions
Definition and Use of new Interfaces

Linux Kernel 4.17

Changes to the Linux-RNG Implementation

Changes to Invocation of Entropy Gathering Functions
Definition and Use of new Interfaces

Linux Kernel 4.18

Changes to the Linux-RNG Implementation

Changes to Invocation of Entropy Gathering Functions
Definition and Use of new Interfaces

Linux Kernel 4.19

Changes to the Linux-RNG Implementation

Changes to Invocation of Entropy Gathering Functions
Definition and Use of new Interfaces

Linux Kernel 4.20

Changes to the Linux-RNG Implementation

Changes to Invocation of Entropy Gathering Functions
Definition and Use of new Interfaces

Linux Kernel 5.0

Changes to the Linux-RNG Implementation

Changes to Invocation of Entropy Gathering Functions
Definition and Use of new Interfaces

Linux Kernel 5.1

Changes to the Linux-RNG Implementation

Changes to Invocation of Entropy Gathering Functions
Definition and Use of new Interfaces

Linux Kernel 5.2

Federal Office for Information Security

Table of Contents

9.14.1 Changes to the LinuX-RNG ImMplementation.......oirrivnnesssisenessisssessesssssssessssssssssssssessssssssssnsssssens 143
9.14.2 Changes to Invocation of Entropy Gathering Functions . 144
9.14.3 Definition and Use of new Interfaces ..144
9.15 Linux Kernel 5.3 .144
9.15.1 Changes to the LinuX-RNG ImMplementation.......cccoirivnnsesisessssesssessesssssesessssssssssssssessssssssssnsssssens 145
9.15.2 Changes to Invocation of Entropy Gathering Functions ..145
9.153 Definition and Use of new Interfaces .. 145
9.16 Linux Kernel 5.4 . 146
9.16.1 Changes to the Linux-RNG ImMplementation......cccorivnsesinssssesssessesssssesessssssssssssssessssssssssssssens 146
9.16.2 Changes to Invocation of Entropy Gathering Functions ..147
9.16.3 Definition and Use of new Interfaces ..147
9.17 Linux Kernel 5.5 .148
9.17.1 Changes to the Linux-RNG ImMplementation......ccooeiinrssessssessssssssssssesssssssssssssssssssssssssssssssens 148
9.17.2 Changes to Invocation of Entropy Gathering Functions ..148
9.17.3 Definition and Use of new Interfaces ..149
Appendix A: Testing Aspects and IMPleMENTATION...........coorrvverreseesnssses 150
EQTLY BOOE TSt .uuuuunrvvvieieensessiiseessssissssessssssesssessnssssnnns 150
SystemTap Test Approach . 151
Test Execution .153
Appendix B: Test Results 0n LiNUX KEINEL 4.9......oovrieonreirnneiissssssesssnnss 154
Min-Entropy as per SP800-90B 154
ENtropy DUTING EATLY BOOT......iereeeerceesseeessesisesssesssssssssssssssssssssssssssssssssssssesssnesens 159
AIS 20/31 Test Procedure A for Entropy Pools 169
ITIPUL_POOL..ooeeeeeeeeevtee sttt ssas s ssss s sss s s s s sas R AR s as SR A bR as bRt et 170
DIOCKITIZ POOL...ooeeeveereeteeriries i ssssssssssssssssssssessssssessssssssssssss s sssss s s s e s s S sss s s eSS RS s S snss bbb es 170
Appendix C: Test Results 0n LiNUX KEITIEL 4.15.........ooreveeeeeeeeeneeeeees s sssssessssssesssssssssssssesssss s sassssnns 171
Listing of Used HardwWare and SOFtWATE........ccoo...comrvvonmrevemreseesmssssesssssssssssssssssssssssssssssssssssssessssssssssssssssssssssssssnss 171
Min-Entropy as per SP800-90B 171
ENtropy DUTING EATLY BOOK.......creeereeesseeensestssssesssnssens 178
AIS 20/31 Test Procedure A for Entropy Pools 193
REfETENICE D OCUMEINITATION. ... rreeeeerseereeeeesseeeeceees e sesesss s essssse s sesssss e sssss s ssss s s s s e s s ss s sss s e 195
Keywords and Abbreviations .. 196
Figures
Figure 1: Non-deterministic random number generator architecture .18
Figure 2: Relationship of entropy pools, ChaCha20-DRNG and entropy sources 22
Figure 3: Update of pool value for input_pool 28
Figure 4: Entropy estimator integer Vallle COMVEISION.corwwurreveessssesesssessessssessssssssssssssssesssssssssssssessssssssssssssssssansssnssens 29
Figure 5: ChaCha20 DRNG state and State tranSitioN. . rceiisssssessssssssssssssssssssesssnness 34
Figure 6: Processing of interrupts by fast_pools and connection to input_pool........oeeonnrereenmsrssesseneenes 47
Figure 7: Linux-RNG interface for hardware RNG AIIVETS.......oooreceeeeeemmnenereeeeessemmsssssssseeessnns 54
Figure 8: Linux-RNG architecture comared with the generic architecture .61
Figure 9: Flow of random numbers in a PowerVM environment ...66
Figure 10: Flow of random numbers in @ POWerKVM eNVIIONMENT..........conrreeremnreeeeemenseesesssssseessssssessesesssssssssssesas 67
Figure 11: Relationship between Linux-RNG processing and attacker-known and unknown data......cccoo......... 77
Figure 12: Entropy Estimate per Block Device Event Applied by LINUX-RNG......cccoooocommmrercrmmrerrenmnnrrssnnssressesssesessennes 91

10 Bundesamt fiir Sicherheit in der Informationstechnik

Table of Contents

Figure 13: Entropy Estimate per HID Event Applied by Linux-RNG

Figure 14: Histogram of Time Deltas for First and Second Interrupt in a Virtual Environment........cccccoueevceenn.
Figure 15: Histogram of Time Deltas for First and Second Interrupt in a Native Environment............cc.........
Figure 16: Histogram of Time Deltas for Second and Third Interrupt in a Native Environment...........cccccc.....

Figure 17: Entropy Estimate per Block Device Event Applied by Linux-RNG
Figure 18: Entropy Estimate per HID Event Applied by Linux-RNG

Figure 19: Histogram of Time Deltas for First and Second Interrupt in a Virtual Environment...........cccooc..c....
Figure 20: Histogram of Time Deltas for First and Second Interrupt in a Native Environment..........cccccouecuene.

Figure 21: Entropy Estimate per Block Device Event Applied by Linux-RNG
Figure 22: Entropy Estimate per HID Event Applied by Linux-RNG
Figure 23: Histogram of Time Deltas for First and Second Interrupt in a Virtual Environment....

Figure 24: Histogram of Time Deltas for First and Second Interrupt in a Native Environment..........ccccccuecuene.

Tables

Table 1: Terminology .17
Table 2: Interrupts: SP800-90B Min-Entropy Measurements - Worst Case .89
Table 3: Interrupts: SP800-90B Min-Entropy Measurements - Normal Use Case.......c.....coumrveermrreesmmreesnsssnssessesnsenns 89
Table 4: Block Devices: SP800-90B Min-ENtropy MeaSUTEIMENLS..............ccoowvuvrmereremssssesesssssssssssssssssessssssssessssssssssessssnees 90
Table 5: HID: SP800-90B Min-Entropy Measurements 92
Table 6: Interrupts: Early Boot SP800-90B Min-Entropy Measurements in Virtual Environment..................... 100
Table 7: Interrupts: Early Boot SP800-90B Min-Entropy Measurements on Native Hardware............ccoourvvenn..n. 107
Table 8: Interrupts: SP800-90B min-entropy Measurements - WOTrSt CaSe..........ccoowvuorrevnmeresvenessenessssssessssssessennees 155
Table 9: Interrupts: SP800-90B Min-Entropy Measurements - Normal Use Case......c....coumrrecrmmrrrermmresemmrssesssseneens 155
Table 10: Block Devices: SP800-90B Min-ENtropy MeaSUTEIMENLES.ccowwcuurrvveerrsvssresssesesssssssssssssessssssessssssessenssenss 156
Table 11: HID: SP800-90B Min-Entropy Measurements 158
Table 12: Interrupts: Early Boot SP800-90B Min-Entropy Measurements in Virtual Environment.................. 163

Table 13: Interrupts: Early Boot SP800-90B Min-Entropy Measurements on Native Hardware
Table 14: Interrupts: SP800-90B Min-Entropy Measurements - Worst Case

Table 15: Interrupts: SP800-90B Min-Entropy Measurements - Normal Use Case..........ccwcrmrreeonmmreerseerneensssnseens

Table 16: Block Devices: SP800-90B Min-Entropy Measurements
Table 17: HID: SP800-90B Min-Entropy Measurements

Table 18: Interrupts: Early Boot SP800-90B Min-Entropy Measurements in Virtual Environment.................. 184
Table 19: Interrupts: Early Boot SP800-90B Min-Entropy Measurements on Native Hardware.........c...ccoocun..... 191

Federal Office for Information Security 11

Introduction 1

1 Introduction

The evaluation of the suitability and quality of cryptographic mechanisms is tasked to the BSI (Bundesamt
fur Sicherheit in der Informationstechnik — Federal Office for Information Security) in Germany. The BSI
therefore initiated this study of the Linux Random Number Generator (Linux-RNG). Linux is used not only
in numerous server and desktop systems but also in mobile IT devices, covering sensitive areas in
enterprises as well as in government. Good random numbers are a prerequisite for the secure processing of
data in governmental as well as enterprise and end user systems.

The Linux operating system kernel offers via the device files /dev/random and /dev/urandom access to its
random number generator for user space applications. In addition, the Linux-RNG offers in-kernel
interfaces to allow other Linux kernel components to obtain random numbers. The functionality, properties
and usage of the Linux-RNG are subject to assessment in this document. This assessment covers the
collection of entropy and discussion of the noise sources, the post-processing of the collected true random
data and the generation of random numbers that are provided to the calling applications or in-kernel
service functions.

One focal point of this study in addition to the assessment of the algorithmic part of the Linux-RNG is the
estimation of the entropy of the raw data that is provided to the Linux-RNG by the noise sources. The goal
of the assessment is to determine whether the Linux-RNG is able to provide 100 bits, the threshold defined
by [TR021021], of entropy early after a system boot.

The entire implementation of the Linux-RNG is explained in detail to allow a full understanding of the flow
of information, starting at the point where the entropy is gathered up to the point where random numbers
are returned to either in-kernel or user space callers. Each of the noise sources providing entropy to the
Linux-RNG is described, detailing why the obtained data is unpredictable. The design description is
complemented with functional verification and statistical tests covering the different noise sources and all
stages of data processing. The primary goal is to analyze whether the entropy obtained from the noise
sources is appropriately collected, compressed, processed without losing entropy, and delivered to the caller.

Besides the presentation of the Linux-RNG design, this study is intended to demonstrate that the design of
the Linux-RNG complies with the NTG.1 requirements for RNGs specified by AIS 20/31 [AIS2031] and that
they are fully met by /dev/random. Also, the study will provide the rationale why /dev/urandom and its in-
kernel equivalent of the get_random_bytes function complies with the DRG.3 requirements defined by AIS
20/31 [AIS2031]. AIS 20/31 is a specification issued by the German BSI to design and analyze deterministic as
well as non-deterministic random number generators. This document provides support for an analysis of
RNGs by defining different classes of RNGs where NTG.1 specifies requirements for “non-physical true
random number generators” and DRG.3 specifies requirements for “deterministic random number
generators”.

The tests conducted for this study are fully explained to the extent that users can re-create these tests.
Further, the tests are documented with a rationale for why the respective test is appropriate to observe the
intended behavior of the Linux-RNG. For each test, the obtained results are discussed with a conclusion as
to whether the observed behavior supports the generation and maintenance of entropy. The source code of
the tests are made available to the BSI to allow fellow-researchers to verify the testing and its conclusions.

The tests are all performed on an Intel x86 hardware system, as well as a virtual machine executed on Intel
x86, using the virtualization extension of VT-x. The majority of all tests are applicable to other architectures
as the code implementing the Linux-RNG is independent of the hardware architecture. The one exception is
the assessment of the noise sources, which is only applicable to the tested architecture because the majority
of the entropy is derived using a high-resolution time stamp. Albeit all major hardware architectures
including ARM, MIPS, IBM System Z, POWER, and Sparc have high-resolution timers used by the Linux-
RNG, about one half of all hardware architectures supported by Linux do not provide such a high-resolution
timer. Even if an architecture provides a high-resolution timer, the resolution may still vary and thus the
amount of entropy derived from this timer.

Federal Office for Information Security 13

1 Introduction
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

The entropy is derived from events triggered by hardware devices. The number and type of devices vary
greatly between architectures. Thus, the amount of entropy available to the Linux-RNG varies too. However,
the quality of the entropy and the amount of entropy per device event is very consistent for one hardware
architecture. Therefore, the test results obtained on one particular Intel x86 hardware system can be applied
to other Intel x86 hardware systems.

Based on the design and test results, recommendations about using the Linux-RNG are given to allow
vendors an appropriate employment of the Linux-RNG into their systems.

1.1 Authors

Stephan Miiller, atsec information security GmbH

1.2 Copyright
The study including all its parts are copyrighted by the BSI-Federal Office for Information Security. Any use

outside the limits defined by the copyright law without approval by the BSI is not permitted and punishable.
This covers reproduction, translation, micro filming, and storing and processing in electronic systems.

1.3 BSI-Reference

BSI Title: Analysis of the Linux Random Number Generator

BSI Project Number: 449

14 Federal Office for Information Security

Architecture of Non-Deterministic Random Number Generators (NDRNGs) 2
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

2 Architecture of Non-Deterministic Random
Number Generators (NDRNGs)

The analysis of the Linux-RNG shall answer the question whether it is a complete standalone NDRNG that
has no further dependencies on other software. To draw such conclusions, this section describes a general
architectural model for NDRNGs. During the design description of the Linux-RNG, it will be compared to
the general architectural model to understand whether all components of a NDRNG are present within the
Linux-RNG.

2.1 Terminology

Before starting with the technical aspects of RNGs, the terminology used in the subsequent sections and
chapters is defined.

Term Definition

ChaCha20 DRNG |The ChaCha20 deterministic random number generator (DRNG) referred to in this
document is conceptually similar to an entropy pool: a memory segment holds true
random data. The cryptographic function of ChaCha20 is used as a state-transition
function as well as an output function. The ChaCha20 implementation is derived from
[RFC7539] sections 2.1 to 2.3 where the random number is the key stream generated by
the ChaCha20 block operation.

Conditioning Conditioning is the process where input data is processed such that the resulting data
will not allow an observer to derive the original input data. In addition, conditioning is
also the process to reduce statistical weaknesses exhibited in the raw data stream. Such
conditioning operations can be performed using cryptographic or non-cryptographic
operations. An example for cryptographic conditioning is the application of a hash. A
linear feedback shift register (LFSR) is an example for a non-cryptographic
conditioning operation.

Deterministic A deterministic random number generator is an algorithm for generating sequences of
Random Number |data with properties approximating those of random numbers. The output of a DRNG
Generator is determined by its initial seed data. When initialized with the same seed, it will
(DRNGQG) produce the same sequence of data.

See also “Random Number Generator”.

Entropy Pool The term entropy pool in this document refers to a memory area holding true random
data which is processed with a deterministic input and state-transition function based
on an LFSR. The output function of an entropy pool is based on the SHA-1 hash.
Considering the state-transition and output function, the processing of the data
maintained by an entropy pool is fully deterministic in nature.

Human Interface |The term human interface device collectively refers to all hardware devices that a
Devices (HID) human user can use to interact with a computer, such as a keyboard, a mouse, a tablet
and similar.

Jiffies The Linux kernel maintains a monotonically increasing counter called Jiffies. This
counter is incremented by one at a fixed time interval. This time interval is specified
during compile time of the kernel. The default on Intel x86 platforms is 1000 Hz, i.e. the
Jiffies counter is incremented once every millisecond. Other common values are 100
Hz and 250 Hz.

Most Significant | The processing of a bit-stream may operate only on a subset of it. To reference the

Federal Office for Information Security 15

2 Architecture of Non-Deterministic Random Number Generators (NDRNGs)

Documented Linux Kernel Version: 5.5

Fully tested Linux Kernel Version: 5.0

Term Definition
Bits (MSB) location of that subset, the term “most significant bits” refers to the left-most bits of the
bit-stream. They are called most significant bits as they denominate large integer
numbers when viewing the bit-stream as an integer.
See also Least Significant Bits.
Least Significant | The processing of a bit-stream may operate only on a subset of it. To reference the
Bits (LSB) location of that subset, the term “least significant bits” refers to the right-most bits of

the bit-stream. They are called least significant bits as they denominate small integer
numbers when viewing the bit-stream as an integer.
See also Most Significant Bits.

Linear Feedback
Shift Register
(LFSR)

A linear feedback shift register is a special case of a shift register where the input data is
a linear function of the previous state of the LFSR. This implies that an LFSR is a
circular application of a shift register.

All LFSRs discussed in this document use the linear function of XOR to combine parts
of the previous state with input data. The LFSRs discussed in this study are all
Fibonacci LFSR where the parts of the previous state that are selected are based on taps
defined by a a polynomial.

Linux Random
Number
Generator (Linux-
RNG)

The Linux Random Number Generator is the software component in the Linux kernel
that implements the logic to provide random numbers via the /dev/random and /dev/
urandom device files to user space. In addition, the Linux-RNG provides random
numbers to in-kernel users via the get random bytes application programming
interface (API). The Linux-RNG is completely implemented in the Linux kernel source
code file drivers/char/random.c.

Noise Source

A noise source provides true random data. In case of the Linux-RNG, a noise source is
the software component that monitors hardware events to derive entropy from these
events.

Non-
deterministic
Random Number
Generator

A non-deterministic random number generator generates a sequence of data that
cannot be predicted better than using random chance.

Non-Uniform
Memory Access
(NUMA)

Hardware systems with a large number of CPUs may not place all CPUs on one
motherboard, but use several individual motherboards with CPUs which communicate
with a high-speed interconnect. Each individual motherboard is called a node. Access
to memory present on the same motherboard as the requesting CPU (i.e. “NUMA-node
local access”) is faster than CPUs requesting access to memory on a different NUMA-
node.

Random Number
Generator (RNG)

See also “Non-deterministic Random Number Generator”.

SHA-1

SHA-1, short for Secure Hash Algorithm, is a cryptographic one-way function where an
input bit stream of arbitrary length is turned into an output bit string of 160 bits. SHA-
1 exhibits various cryptographic properties to convert arbitrary input data to output
data that has white noise characteristics.

True Random
Data

True Random Data is a data stream of arbitrary size that is believed to contain entropy.
The amount of entropy contained in the true random data is not defined.

16

Federal Office for Information Security

Architecture of Non-Deterministic Random Number Generators (NDRNGs) 2

Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5
Term Definition
White Noise' White noise is defined as noise having a power spectral density that is essentially

independent from frequency.
A discrete signal with a sequence of serially uncorrelated samples having zero mean
and finite variance is defined as white noise.

Table 1: Terminology

2.2 General Architecture

NDRNGs can be found in many different forms, including:

* RNGs and noise sources designed for the sole purpose of providing entropy bits. Such noise sources can
be found on physical devices like smart cards, special circuitry, hardware security modules (HSMs), etc.

* RNGs and noise sources that observe the behavior of events of regular hardware. These would include
observing the timing of events obtained from human interface devices (HID) (e.g. mouse movements or
typing on a keyboard), block devices (e.g. spinning hard disks) or interrupts.

* Noise sources that include a RNG utilizing capabilities of the CPU, including timer-based noise sources,
CPU instructions using hardware noise sources like RDRAND on Intel processors (see [[INTELDRNG]), etc.

[rrespective of the nature of the non-deterministic random number generator, all follow a general design
pattern outlined in figure 1. This illustration has close relationships to [SP800-90B], chapter 2, regarding the
noise source and [SP800-90C], section 5.1, for the interlink between a noise source and a DRNG. In addition,
this figure also relates to the description of a noise source given in [AIS2031] with the difference that the
health tests are not as pronounced in figure 1.

The document [SP800-90B] covers the design requirements as well as quantitative assessments of noise
sources. The description is complemented by [SP800-90C] outlining principles on the architecture of
NDRNGs where one or more noise sources are combined with deterministic post-processing to deliver
cryptographically strong random numbers. Both documents are provided by the US governmental body,
NIST.

The document [AIS2031] is similar in nature to the aforementioned documents by outlining the architecture
of noise sources, their combination with deterministic post-processing logic to deliver cryptographically
strong random numbers, and the discussion of how such constructs are assessed. [AIS2031] is published and
mandated by the German governmental body, BSL.

1 This definition is taken from ISO 389-3:2016.

Federal Office for Information Security 17

2 Architecture of Non-Deterministic Random Number Generators (NDRNGs)
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

Cryptographic
Usage

Conditioning! = DRNG

Digitization

Health
Test J

Recording
X .

Unpredictable —"
Phenomenon -~

.
- , Y |
e r 4

Moise Source
Non-Deterministic Random Number Generaior
Figure 1: Non-deterministic random
number generator architecture

Figure 1 shows the entire logic flow for generating random numbers. The origin of any random number is
the noise source marked as a dark gray field in figure 1. The output of a noise source is fed into a DRNG
which generates the output for cryptographic use cases. In some systems, a conditioner is applied to the
output of the noise source where the output of the conditioner is then used as input for a DRNG. The
assembly of the noise source and the DRNG, possibly supported by a conditioner, is a non-deterministic
random number generator. Figure 1 denotes it with a light gray box.

It is possible, and even often seen in real-life environments that multiple DRNGs are chained. Such a chain
of DNRGs is fed by the noise source or conditioned noise source data. For example, user space cryptographic
daemons using the OpenSSL cryptographic library obtain seed from /dev/urandom and its deterministic
component to seed the OpenSSL’s SSLeay MD deterministic random number generator.

The architecture of a non-deterministic random number generator together with its noise source as shown
in figure 1 contains the following major parts:

* A phenomenon is measured that exhibits an unpredictable or partially unpredictable pattern to the
observer. It is key to understand that the unpredictability always relates to the observer and may vary
depending on the type and skills of the observer - i.e. the unpredictability and therefore the resulting
entropy is relative to the observer. For a lot of noise sources, the observed phenomenon may be
completely deterministic if all parameters are known that affect the phenomenon. Such noise sources
depend on the fact that one or more of these parameters cannot be predicted by an observer with the
required accuracy. This unpredictable phenomenon can either be:

* aphysical phenomenon that is unpredictable in nature, such as thermal noise or shot noise,
metastability in bi-stable circuits, or even radioactive decay?; or

2 Albeit radioactive decay is a good example of an unpredictable physical phenomenon with a proven physical
theory behind it, the author is well aware that radioactive decay is highly impractical in normal computing
environments. Therefore, it shall serve as an example for discussion only.

18 Federal Office for Information Security

Architecture of Non-Deterministic Random Number Generators (NDRNGs) 2
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

* anunpredictable phenomenon triggered by the interaction between the computer hardware and its
environment (for example, human interaction, or the receipt of interrupts triggered from external
devices recording some externally triggered events would fall into this category).

* Arecording logic is required that is capable of measuring the events generated by the unpredictable
phenomenon. The recording logic does not necessarily need to store the measured data.

» Using the recorded events, the digitization logic turns the recorded data into a digital data stream which
is then provided to either a post-processing conditioner or directly into a DRNG. The use of a DRNG at
this stage is not intended to stretch the entropy over a large amount of output, but its purpose is the
same as the conditioner discussed in the following. Commonly only one of the mentioned mechanisms
is used to post-process the data from a noise source. Albeit it may be possible to use the output of the
digitization logic directly as input into cryptographic use cases, such a course of action is commonly
disregarded. Conditioners or DRNGs will counter statistical anomalies in temporary or even permanent
skews of recorded events. The conditioner as well as the DRNG perform an operation to transform the
recorded data into white noise where the operation does not reduce the collected entropy. As already
mentioned, the key value of those components is to increase the entropy per bit by performing a
compression by using XOR. In addition, the conditioner may be used to hide skews in the raw data by
applying a Von-Neumann unbias operation or using a LFSR.

* For noise sources, it is commonly suggested - and it is required for noise sources to be accepted by BSI
according to the requirements set forth in [AIS2031] - to employ some form of health check to guard
against total breakdown of the event recording or the operation of the measured phenomenon.
Naturally, the health check cannot detect changes in the entropy rate delivered by the recording logic,
for example, due to aging or negative influences from the environment. However, small statistical tests
tailored to the entropy source can detect non-tolerable defects in the stochastic behavior of the noise
source in a reasonable time window. An example of such a test is the Chi-Squared test.

* TFinally, the output of the noise source is fed into a cryptographically secure DRNG that uses
cryptographic primitives to generate data following a white noise pattern. The following variations may
be visible in that last stage for different implementations:

e The DRNG produces only data when an equal amount of true random data from the noise source is
injected into the DRNG.

* The DRNG generates output even when not reseeded by the noise source for a period of time. When
sufficient entropy is collected by the noise source, the DRNG is reseeded again.

With the general architecture description in mind, the Linux-RNG design is described in the following
chapter.

Federal Office for Information Security 19

3 Design of the Linux-RNG
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

3 Design of the Linux-RNG

3.1 Historical Background

The initial implementation of the Linux-RNG is provided by Theodore Ts'o 1994. The design of the Linux-
RNG that is still visible today is based on the US export restrictions on cryptography that were in place at
that time.

Theodore Ts'o explained in a response ([T06]) to the work from Gutterman et al. ((GPRO6]) that due to the US
export restrictions enforced back then, the use of encryption mechanisms were discarded in favor of using
the SHA-1 hash function. Also, the Linux-RNG was constructed so that in case of a break of the collision
resistance of SHA-1 the Linux-RNG would not be compromised.

With the introduction of the ChaCha20 stream cipher to generate random numbers in the Linux kernel
version 4.8, a departure from the long-standing design concept of using SHA-1 is evident.

3.2 Linux-RNG Architecture

The Linux-RNG is a pseudo-random number generator that uses hardware events detected by the Linux
kernel as noise sources. A brief characterization of the operation of the Linux-RNG is provided in the
following description.

The Linux-RNG is constructed of different entropy pools. The purpose of the entropy pool called input_pool
is to collect, and compress, and thus accumulate the entropy provided by the different noise sources. With
the entropy pool called blocking_pool, random numbers for the user-space interface of /dev/random are
generated. The ChaCha20 DRNG is maintained to produce random numbers for the user space interface of /
dev/urandom and the in-kernel application programming interface (API) of get random bytes.

The term “entropy pool” in this document refers to a memory area holding true random data which is
processed with a deterministic input and state-transition function based on an LFSR. The output function of
an entropy pool is based on the SHA-1 hash. Considering the state-transition and output function, the
processing of the data maintained by an entropy pool is fully deterministic in nature.

The reference to a ChaCha20 DRNG in this document is conceptually similar to an entropy pool: a memory
area holds true random data. The cryptographic function of ChaCha20 is used as a state-transition function
as well as an output function. The ChaCha20 implementation is derived from [RFC7539], sections 2.1 to 2.3,
where the random number is the key stream generated by the ChaCha20 block operation.

The Linux-RNG operation can be characterized as follows. After the occurrence of a hardware event, such as
an interrupt, the event is awarded an entropy estimation by the Linux-RNG. The event time and the event
value are mixed into the primary entropy pool that has a default size of 4096 bits. This primary entropy pool
is called input_pool.

Upon request, this primary entropy pool feeds a secondary entropy pool called the blocking_pool or a
DRNG based on the ChaCha20 stream cipher.

The man page random(4) discusses the two device files allowing the Linux-RNG to be accessed from user
space:

* /dev/random - this file provides access to the blocking_pool
e /dev/urandom - this file provides access to the ChaCha20 DRNG

The difference between both files are explained in random(4) by referencing the blocking versus non-
blocking behavior of both files. The concept of /dev/random is that it delivers only as many random bits as

20 Federal Office for Information Security

Design of the Linux-RNG 3
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

it has entropy in its entropy pool. As soon as the entropy is considered drained, the Linux kernel will put the
calling process to sleep until entropy is added back into the blocking_pool. In contrast, the ChaCha20 DRNG
will always produce random numbers. It acts as a DRNG that is regularly seeded with the available entropy.

In addition, the Linux kernel offers the get random system call documented by its respective man page
which provides access to the Linux-RNG as follows:

* When invoking get random where the flag field is zero, the system call accesses the ChaCha20 DRNG
identically to /dev/urandom with one exception: whereas /dev/urandom always returns random data,
getrandom blocks the caller until the ChaCha20 DRNG has been seeded initially with 128 bits of
entropy. After reaching that threshold of 128 bits of entropy once, get random will operate non-
blocking for the lifetime of the system.

* Wheninvoking getrandom with a flag of GRND RANDOW, it provides accesses to the blocking_pool
and behaves exactly like the /dev/random device file.

When generating data from either the input_pool or the blocking pool, the entire entropy content is hashed
using SHA-1. Therefore, the SHA-1 hash operation is the output function used for both entropy pools. The
calculated SHA-1 hash value is “folded” in half by XORing the 80 least significant bits with the 80 most
significant bits of the SHA-1 hash value. The resulting 80 bits are the random number that is either handed
to the caller (in case of the blocking_pool) or injected into the secondary DRNG (in case of the input_pool).
To ensure backtracking resistance, the 80 bits are also mixed into the input_pool or blocking_pool,
respectively. In case the caller requested more data, the process of generating the SHA-1 hash, folding it,
providing it to the caller, and mixing it back into the entropy pool is repeated again until the requested
number of bytes are generated or insufficient entropy is detected which leads to a block of the repetition
operation. The function which mixes data into the entropy pool is based on an LFSR. This implies that the
LFSR is the state-transition function of the entropy pool.

The ChaCha20 DRNG operates by invoking the ChaCha20 DRNG block function repeatedly until the
requested number of bytes are generated. Hence, the output function of this DRNG is based on the
ChaCha20 stream cipher. The application of the ChaCha20 stream cipher changes the state of the DRNG as
defined for ChaCha20 in [RFC7539], section 2.4: the counter value of the state is incremented by one after
each ChaCha20 block operation. After a caller's request is satisfied, 256 bits of unused ChaCha20 block
function data is XORed with the key part of the ChaCha20 state defined in [RFC7539], chapter 2, to ensure
enhanced backtracking resistance. The ChaCha20 DRNG is seeded by the input_pool by XORing the
input_pool data with the key part of the ChaCha20 state.

3.2.1 Linux-RNG Internal Design

The Linux-RNG maintains two different entropy pools and a ChaCha20 DRNG to collect, compress and
maintain entropy. Figure 2 depicts the relationship between the entropy pools, the ChaCha20 DRNG and the
entropy sources. The arrows in this figure explain the flow of information.

Federal Office for Information Security 21

3 Design of the Linux-RNG
Documented Linux Kernel Version: 5.5

Fully tested Linux Kernel Version: 5.0

Jdewirandom fdeviurandom
petrandomd) getrandom)

strect entropy store struct crng_state

blocking_pool —_—
[Output-Paal) ‘ Chathazd
L] L] L
o
struct entropy stare -

P

=
input_paal *ﬂ-&%‘
§%ang bh"‘"ﬁ

Time variance
calculation with
Al TIMer randomnecs

add device add hwgeneratar add input add disk add_interrupt

_randonness _randanness _randompess _randomness |~ _randomness

Figure 2: Relationship of entropy pools, ChaCha20-DRNG and

entropy sources

The relationship of the entropy pools and the ChaCha20 DRNG to the noise sources and to each other is

visible in figure 2:

e The input_pool is the primary entropy pool that collects and compresses the entropy from hardware
events. That entropy pool has a default size of 4,096 bits®. The purpose of the input_pool is to collect
entropy from the noise sources and provide it to the secondary random number generators discussed in

the following two bullet points.

* Theblocking_pool is fed with true random data from the input_pool. From user space, this entropy pool
can be accessed using the /dev/random device file or the get random system call with the flag

GRND_ RANDOM. The entropy pool has a size of 1,024 bytes.

¢ The ChaCha20 DRNG obtains its entropic seed data from the input_pool as well and is accessible:

* from user space via /dev/urandom or the get random system call without flags, and

» from kernel space viathe get random bytes function.

The ChaCha20 DRNG has an internal state of 512 bits. However, only 256 bits, the key part of the ChaCha20
state, are filled with true random data. Further details about the maintenance of the ChaCha20 state are

given in section 3.3.2.

The noise sources depicted by the gray boxes in figure 2 feed the input_pool. According to this approach, the

input_pool collects the entropy from the noise source and compresses it.

The noise sources can be characterized as follows:

* Device drivers may provide data that the device driver author believes to contain some randomness via
the add device randomness APIL Discussions in later sections will explain that the Linux-RNG will
use the data from this noise source, but treats it as having no entropy. Thus, the data is used to stir the

internal state only.

* The Linux kernel implements device drivers for hardware random number generators. They may
provide true random data via the add hwgenerator randomness APL Such hardware random

number generators are available in specialized hardware only.

3 Larger or smaller entropy pool sizes can be defined during compile time. The remainder of this document
discusses the default size. Nonetheless, the discussion can be applied equally to a different entropy pool size.

22

Federal Office for Information Security

Design of the Linux-RNG 3
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

* HID such as keyboard or mice form the next noise source used by the Linux-RNG and may provide
entropy via the add input randomness APIL The data obtained by HID events such as a pressed key
or mouse movement is supplemented with a time stamp that the Linux-RNG obtains when an event
arrives using the add_timer_randomness function.

* Hardware events pertaining to any kind of block devices such as hard disks are obtained by the Linux-
RNG with the add disk randomness API forming another noise source. Events cover read and
write operations of a hard disk. Similarly to the HID noise source, the Linux-RNG adds a time stamp to
each disk event by invoking the add_timer_randomness function. More details are provided in section
3.5.2.3 about the collection of data from block devices. At this point, however, it shall be noted that not
all block devices will contribute as a noise source. For example, solid-state-drives (SSD) are not used as
noise sources whereas hard disks with spinning disks are used as such.

* When an interrupt arrives, the Linux-RNG is triggered with the add_interrupt randomness APL
For each received interrupt, the Linux-RNG obtains a time stamp and supplemental data which is fed
into a fast_pool instance that is local to the CPU on which the interrupt is processed. The use of fast_pool
instead of injecting the data directly into the input_pool is required to maintain performance. Receiving
and processing an interrupt is a very performance-critical code path. Normal work loads trigger
hundreds to thousands of interrupts each second where a complex operation would simply decrease the
system performance significantly. Throughout this document, the fast_pool is considered to belong to
the interrupt noise source. The discussion of the fast_pool indicated in figure 2 will be given in section
3.5.2.2 as it is tightly integrated with the gathering of raw entropy from interrupts. Therefore, fast_pool is
not considered as a stand-alone entropy pool or random number generator like the ones mentioned
before.

The listed entropy pools can each be viewed as independent random number generators. The input_pool
together with the noise sources form a NDRNG. The blocking_pool can be viewed as a separate DRNG which
is constantly being seeded by the input_pool. The ChaCha20 DRNG is the third random number generator
in the Linux-RNG which is also seeded by the input_pool. The input_pool will exclusively deliver data to
either the blocking_pool or the ChaCha20 DRNG only which implies that a caller will never obtain data
from the input_pool directly.

3.3 Deterministic Random Number Generators (DRNGs)

The Linux-RNG entropy pools can be considered as a DRNG when disregarding the noise sources. This
section discusses the state maintenance of the deterministic operation of the entropy pools as well as the
ChaCha20 DRNG.

The input_pool as well as the blocking_pool are both managed with the same code logic outlined in the
following.

3.3.1 Entropy Pools

The random number generator implementation maintains a separate state for each of the two entropy pools
of input_pool and blocking_pool. Both pools are governed by the same data structure which contains the
following important information:

struct entropy store ({
/* read-only data: */
struct poolinfo *poolinfo;

__u32 *pool;

Federal Office for Information Security 23

3 Design of the Linux-RNG
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

struct entropy store *pull;

unsigned add ptr;
unsigned input rotate;
int entropy count;

unsigned int initialized:1;

~_u8 *last data;

i

The member variables relevance is discussed in the following bulleted list:

* Thevariable poolinfo contains the definition of the polynomial used to stir new values into the
entropy pool. Currently, two polynomials are used, one for the input_pool and another for the
blocking_pool. See section 3.3.1.1 for the description on how the polynomials are applied. The following
listing shows the definition of the polynomials - note that the first value gives the size of the pool in 32-
bit words whereas the following five values define the polynomial that is applied when mixing new data

into the pool. The first polynomial is used for the input_pool whereas the second polynomial is used for
the blocking_pool:

static struct poolinfo {

/* x7128 + %7104 + %776 + x*51 +x"25 + x + 1 */
{ s(128), 104, 76, 51, 25, 113,

/* x732 + x726 + %719 + x4 + xNT + x + 1 */
{ S(32), 26, 19, 14, 7, 11},

e Thevariable pool contains the pointer to the static data block that holds the actual random pool. The
following code shows the definition of the random pool for the input_pool, and the blocking_pool. When
the discussed state data structure is initialized, the appropriate variable is registered with pool. The
trailing keyword of __latent_entropy refers to the latent entropy GNU Compiler Collection (GCC) plugin
which will be discussed in section 3.5.2.6.

#define INPUT POOL SHIFT 12
#define INPUT POOL WORDS (1 << (INPUT_ POOL SHIFT-5))
#define OUTPUT POOL_SHIFT 10
#define OUTPUT POOL_WORDS (1 << (OUTPUT POOL_SHIFT-5))

static u32 input pool data[INPUT POOL WORDS] latent entropy;
static _ u32 blocking pool data[OUTPUT POOL WORDS] _ latent entropy;

e Thevariable pull holds the reference to the primary pool definition. This implies that this variable is
NULL for the input_pool. The blocking_pool references the input_pool with this pointer.

* Thevariable add ptr holds the index to the current pool word that was accessed when mixing data
into the random pool. For more information about the pool index, see section 3.3.1.1

24 Federal Office for Information Security

Design of the Linux-RNG 3
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

* Thevariable entropy count holds the entropy estimator value used to determine how much entropy
is currently stored in the entropy pool.

* Thevariable input rotate contains the input data rotation value that is used when mixing new
input value into the random pool as explained in section 3.3.1.1.

e Thevariable initialized isused to identify whether the input_pool was provided with 128 bits of
entropy at one point. This identifier has the following theoretical problem: depending on the assumed
entropy in the data, zero to 11 bits* of entropy may be stirred into the entropy pool per injection. At the
same time the entropy pool is seeded with the input containing entropy, callers may read random data
from it. For an insufficiently seeded random number generator, this leads to a loss in entropy that is
visualized with the following worst-case analogy: when an RNG receives one bit of entropy which is
followed by a generation of one or more random numbers, the caller is required to guess one bit to break
the state of the RNG. When one new bit of entropy is received after the attacker's gathering of random
data, the new state of the RNG will again only have one bit of entropy and not two bits (the addition of
the first and second seed). Hence, in a pathological case, the entropy pool may receive 128 bits of entropy
in 128 separate seeding steps where an attacker can request random data from the entropy pool between
each seeding operation. An attacker has to guess 2'.128 different statesand not 2! -ie.the
amount of guessing to deduce the RNG state is reduced to a manageable level. However, as this variable is
only used to decide whether the received entropy is diverted to the blocking_pool, because the
input_pool is considered fully seeded, this illustrated issue is not considered a lead to an attack.

* Thevariable last state holds the last random value extracted for the given pool. That value is used
to implement the Federal Information Processing Standard (FIPS) 140-2 continuous test. This variable is
initialized only when the kernel is in FIPS mode.

The discussed state data structure is initialized for each entropy pool during compile time.

3.3.1.1 Entropy Pools State Transition Function

The Linux-RNG maintains two entropy pools: the input_pool and the blocking_pool. Although both have a
different size, they are processed identically. The only difference is the use of a different polynomial for the
LFSR discussed in this section. Therefore, this section applies to both entropy pools unless explicitly noted.

When data is received that is to be inserted into the entropy pool, the data and the existing state of the
entropy pool are processed using a LFSR. That data is mixed into the random pools using the

mix pool bytes function. The function uses a reference to the pool the given data shall be mixed into,
the data to be mixed in and the size of the data buffer to be mixed in. The actual work for mixing data into
the pools is done with mix pool bytes. Thelogic follows that of a linear shift register with a twist as
discussed below.

static u32 const twist table[8] = {
0x00000000, O0x3b6e20c8, 0x76dc4190, 0x4db26158,
Oxedb88320, 0xd6db6a3e8, 0x9b64c2b0, 0xal00ae278 };

* The pool is stirred with a primitive polynomial of the appropriate
* degree, and then twisted. We twist by three bits at a time because
* it's cheap to do so and helps slightly in the expected case where

* the entropy is concentrated in the low-order bits.

*/

4 The explanation for the limit of 11 bits is given in section 3.6.

Federal Office for Information Security 25

3 Design of the Linux-RNG
Documented Linux Kernel Version: 5.5

Fully tested Linux Kernel Version: 5.0

static void mix pool bytes extract(struct entropy store *r, const void

*in,

tapl = r->poolinfo->tapl;

tap2 = r->poolinfo->tap2;

tap3 = r->poolinfo->tap3;

tap4 = r->poolinfo->tapi4;

tap5 = r->poolinfo->tapb;

input rotate = r->input rotate;

i = r->add ptr;

int nbytes, u8 outl[64])

/* mix one byte at a time to simplify size handling and churn

faster */

while (nbytes--) {

w = rol32 (*bytes++,

i = (i - 1) & wordmask;

input rotate & 31);

/* XOR in the various taps */

A

w "= r->pool[i];
w "= r->pooll[(i
w "= r->pooll[(i

w "= r->pooll[(i
w = r->pooll (1

w "= r->pooll[(i

+ + 4+ o+ o+

tapl)
tap?2)
tap3)
tap4)
tapb)

&

&
&
&
&

wordmask];
wordmask];
wordmask] ;
wordmask] ;

wordmask];

/* Mix the result back in with a twist */

r->pool[i] = (w >> 3)

/*

~ twist tablelw & 7];

* Normally, we add 7 bits of rotation to the pool.

* At the beginning of the pool, add an extra 7 bits

* rotation, so that successive passes spread the

* input bits across the pool evenly.

*/

26

Federal Office for Information Security

Design of the Linux-RNG 3
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

input rotate += 1 ? 7 : 14;

r->input rotate = input rotate;
r->add ptr = i;
}

The mixing function operates on the entropy pool referenced by the input variable r which either points to
the input_pool or the blocking_pool. The mixing function performs the following steps to mix the input
data into the random pool state of r->pool:

Fetch one byte of the input data starting at the offset of the number of loops (i.e. first loop iteration implies 1
byte offset, second loop iteration implies 2 bytes offset), and cast the one byte into a four-byte variable. The
casting operation fills the leading 3 bytes with zeros. After the casting, the logic left-rotates the bit-
representation of these 4 bytes by the value resulting from the mathematical operation input rotate &
31 that discards the high 27 bits and only leaves the low 5 bits. This operation “slides” the one input byte
within the 4 byte buffer such that over time each bit position of the input byte will be hit each byte of the 4
byte buffer with an equal probability. The variable input rotate isincremented by 7 unless the word 0
is processed where the variable is incremented by 14 at the end of processing one input byte. This approach
to increment the rotation pointer ensures that “successive passes spread the input bits across the pool
evenly”.

1 Pick the index which points to the entropy pool word that is to be updated. This implies that one
processed byte from the input updates one 32-bit word in the entropy pool. The entropy pool words are
accessed sequentially.

2 XOR the 4 bytes from step 1 with:
the current word of the entropy pool pointed to by the at the index value obtained in step 1, and

b the current value of the pool word pointed to by the index plus the first tap (i.e. exponent value) of the
LFSR polynomial. All other pool words pointed to by the index plus the respective other taps of the
LFSR are also obtained for the XOR operation. Note that this index is wrapped if needed. All selected
words using the offsets defined by the polynomial implements the LFSR.

3 The u32 value calculated by XORing the input with the 5 different entropy pool words pointed to by the
taps of the polynomial from step 2 is further stirred by XORing it with one value of the twist table.
This operation permutates the first three bits of the word using a bijective operation. The idea is that
these three bits are mixed using the “twist”.

4 The value calculated in step 3 replaces the previously existing value as the new value of the pool word
pointed to by the index in step 1.

5 Repeat with step 1 until all input bytes are mixed into the pool value.

The result of the entire operation is that data with an arbitrary length can be mixed (the Linux-RNG source
code uses the term “stir”) into the entropy pool.

Figure 3 illustrates the update of one pool value of the input pool data state variable associated with
the input_pool. The following figure uses the values specified with the polynomial defined for the
input_pool. The logic applies to the blocking _pool polynomial definition equally. The figure assumes that
the index of the pool member variable to be changed is 40 (i.e. i==40).

Federal Office for Information Security 27

3 Design of the Linux-RNG
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

uiF input_pool_data] INPUT_PDOL_SIZE]

(4 + 103 180 + 1] (4B + 25} {40 + 51) (28 + 76)
& 128 & 128 & 128 & 128 & 128

L, 13 a4l 65 ' N 16| . 137

w3z input
= @ 3l input pool data[40]

= @ 3l input pool data[l5]

L] uiZ? input pool data[llé]

] udZ input pool data[%1]
L] udZ input poal data[65) -

a u3Z input pool data[41] -

Iw == 3] @

twist_table |w & 7]

Figure 3: Update of pool value for input_pool
The entropy pool word 40 is replaced with all of the following 32 bit values XORed:
* the one input byte that is currently being processed and expanded to 32 bits,
* the content of the entropy pool word 40,
* the content of the entropy pool word 41 - i.e. 40 + first LFSR tap value,
* the content of the entropy pool word 65 - i.e. 40 + second LFSR tap value,
* the content of the entropy pool word 91 - i.e. 40 + third LFSR tap value,
* the content of the entropy pool word 116 - i.e. 40 + fourth LFSR tap value,

* the content of the entropy pool word 15 - i.e. 40 + fifth LFSR tap value wrapped at 127 (note: the
wrapping occurs at 127 which is the last of the 128 entropy pool words considering the words are
counted starting with zero).

The resulting 32 bit value is right-shifted by 3 bits. The “lost” 3 bits from the right-shift operation is used as
an index into the array of twist table with 8 different entries. The selected twist_table entry is finally
XORed with the right-shifted 32 bit value.

Note that the function to mix data into the pool does not update the entropy estimator which will be
discussed in the subsequent sections.

3.3.1.2 Entropy Estimator

Before discussing the data generation, the aspect of entropy estimation must be discussed at this point. For
both of the entropy pools of input_pool and blocking pool, the Linux-RNG maintains a separate integer
value, the entropy estimator. This integer value is intended to denominate the amount of entropy present in
the respective entropy pool.

The entropy estimator value will never be larger than the corresponding entropy pool is in size, because an
entropy pool can hold at most as much entropy as it is in size. The entropy estimator on the other side
cannot fall below zero. It is key that the entropy estimator must be processed with the same dimension as
the value it is compared or processed with. When considering the size of the entropy pool in bytes, the
entropy estimator must be processed in bytes. If for example the newly provided input entropy is measured
in bits, the entropy estimator must be processed in bits. Thus, the Linux-RNG applies an appropriate
conversion logic to the value of the entropy estimator depending on the processed data as discussed below.

28 Federal Office for Information Security

Design of the Linux-RNG 3
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

The basic concept of maintaining the entropy estimator can be summarized with the following bulleted list:

* If new data is mixed into the entropy pool, the entropy estimator is increased by the heuristically
determined entropy content associated with the mixed-in data. The entropy estimation heuristic is
outlined in section 3.6. This section also explains how the estimated entropy content value is used to
increase the entropy estimator of the respective entropy pool.

* When random data is obtained from the entropy pool, the number of generated random bytes is simply
subtracted from the entropy estimator. The process of extracting random numbers and the implicit
decrease of the entropy estimator is outlined in section 3.3.1.3.

A subtle detail is important for the debiting as well as crediting entropy to the entropy estimator. The
entropy estimator integer value denominates the entropy in fraction of bits. Considering the use of a 32-bit
integer value, the question must be raised how fractions can be processed. Fractions are maintained by
declaring the three LSB of the integer value as values right of the decimal point. All remaining 29 MSB of the
integer value denominate values left of the decimal point. Figure 4 illustrates the entropy estimator integer
value.

Entropy Esbmador Inbeger

Fr;aﬂ?rg I entropy_count
Bits J entropy_count »» 3
Bytas Ie'ltrnpy count == &

Figure 4: Entropy estimator integer value conversion

The code that credits and debits or simply reads the entropy estimator ensures that the proper integer value
is used that corresponds with one of the following use cases:

* When operating on the integer value with fractions of bits, the integer value is used unchanged.

* In case the Linux-RNG code requires obtaining the amount of entropy in whole numbers of bits present
in an entropy pool, it uses the entropy estimator and shifts its value right by 3 bits.

* When the Linux-RNG operation requires processing the entropy content of an entropy pool in bytes, the
entropy estimator is shifted right by 6 bits.

For example: The entropy estimator contains a value of 132. This value has the third and eighth bit set. Thus,
the integer value is to be interpreted as:

* 132 one-eighth of a bit,

e 132/8=132/2%=132>>3 =16 bits (note, due to the use of integer arithmetic, the fractions of a value are
discarded),

* 16/8=16/2°=16>>3=132/(2**2° =132 /2°=132>>6 = 2 bytes.

3.3.13 Entropy Pool Output Function

The extraction of random numbers from the entropy pools is implemented with the following functions:

* extract entropy user extracts data from the blocking pool for a user space caller. This function
may check for pending signals and may sleep - the check and the sleep operationare used to ensure that
if a process is blocked, it still receives signals and it cannot trigger arbitrarily large kernel operations
which would dominate other processes. Furthermore, it copies the gathered data to user space using the
common kernel function of copy to user.

Federal Office for Information Security 29

3 Design of the Linux-RNG
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

* extract entropy extracts data from the input_pool. Also, it contains the FIPS 140-2 related
continuous self-test to verify that the previously calculated random value is different from the current
random value.

With respect to the extraction of random numbers, both functions implement the same steps by invoking
the function _extract buf which implements the output function for the entropy pools. Before the
extract buf function is called to transfer the actual data, an update of the entropy estimator of the
entropy pool producing the requested number of random bytes is performed using the account function.
That function is given the number of bytes to be obtained from that entropy pool requested by the caller.
First, the function verifies that sufficient entropy is available. If not, it reduces the number of random bytes
to be obtained from the entropy pool to the available entropy which implies that the caller only receives the
available amount of entropy. Secondly, it reduces the entropy estimator by the number of bytes determined
by the previous check before extracting and transferring the actual random bytes.

The code outlined below must always consider that the entropy estimator integer value denominates the
entropy content in fractions of bits where the value for requested random number is in bytes. Therefore, the
function implements the proper conversion from fraction of bits into bytes. The service function returns
the number of bytes that are deemed available.

static size t account (struct entropy store *r, size t nbytes, int min,

int reserved)

entropy count = orig = ACCESS ONCE (r->entropy count);
ibytes = nbytes;
/* If limited, never pull more than available */

have bytes = entropy count >> (ENTROPY SHIFT + 3);

if ((have bytes -= reserved) < 0)
have bytes = 0;

ibytes = min t(size t, ibytes, have bytes);

nfrac = ibytes << (ENTROPY SHIFT + 3);

if ((size t) entropy count > nfrac)

entropy count -= nfrac;
else
entropy count = 0;
if (cmpxchg(&r->entropy count, orig, entropy count) != orig)

return ibytes;

30 Federal Office for Information Security

Design of the Linux-RNG 3
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

In the first step of the account function, the entropy estimator for the processed entropy pool is read. As
the account function is invoked when data is obtained from the entropy pool, the account function
reduces the entropy estimator by the requested amount of bytes, if sufficient entropy is available. Hence, the
debit operation must verify that the entropy estimator does not become negative. Therefore, after reading
the entropy estimator, the code compares the amount of bytes requested by the caller with the entropy
estimator value and obtains the smaller integer of both. This obtained value is now subtracted from the
entropy estimator value of the entropy pool. The code converts the values as the entropy estimator
maintains the entropy in fractions of bits whereas initially bytes were processed. The conversion is
performed with the bit shift operation - the code replaces the macro value of ENTROPY SHIFT with 3.
Thus, the conversion operation shifts the integer values by 6 to achieve the conversion between fraction of
bits to bytes. After completing this debit operation, the calculated entropy estimator value is stored back
into the variable field of the entropy pool.

The account function also wakes up any process that polls the /dev/random device file when it falls below
the threshold stored in random write wakeup thresh. Theidea of this wake-up is to allow user
space application to provide more entropy to the Linux-RNG once the entropy estimator signals a low
entropy content. As mentioned in section 3.4.1.1, that threshold can be modified at runtime with a file
having the same name present under the /proc directory structure.

The number of bytes that were debited is returned by account and is now used to perform the extraction
of the random value using the function extract buf with the following steps:

1 When extracting a random number, a SHA-1 hash is calculated of the entire entropy pool. But before the
SHA-1 hash is calculated, the SHA-1 hash is initialized. The memory used for the SHA-1 operation is
initialized with the SHA-1 constants defined in [FIPS180-4]. However, if the CPU provides a hardware
random number generator, the memory holding the SHA-1 constants are overwritten with the output of
that random number generator. This means that in this case, the official SHA-1 operation is not used, but
a variant with the identical operation, but with a different initialization. Nonetheless, the subsequent
description still refers to the operation as SHA-1.

2 The entire entropy pool is processed by the SHA-1 transformation which implies that the SHA-1 hash is
calculated across the entire entropy pool content.

3 Theresulting SHA-1 hash is mixed into the entropy pool with the process discussed in section 3.3.1.1.

4 Fold the calculated SHA-1 hash in half by XORing the first 4 bytes with the fourth 4 bytes, the second 4
bytes with the fifth 4 bytes. The third 4 byte component is XORed with itself by taking the first 2 bytes
and XORing them with the second 2 bytes. The folding implies that the original SHA-1 hash of length 160
bits is reduced to 80 bits.

5 Return the 10 bytes calculated in step (4).
The folding of the SHA-1 hash is implemented with the following code snippet:

static void extract buf (struct entropy store *r, u8 *out)

{

/*

* In case the hash function has some recognizable output
* pattern, we fold it in half. Thus, we always feed back
* twice as much data as we output.

*/

hash[0] "= hash[3];

Federal Office for Information Security 31

3 Design of the Linux-RNG
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

hash[1l] 7*= hash[4];
hash[2] *= rol32 (hash[2], 16);

Finally, either the 10 bytes of the SHA-1 calculation are returned, or the requested number of bytes if that
number is less than 10 bytes.

The function extract buf isintended to be invoked repeatedly to generate as many random bytes as
requested by the caller.

3.3.1.4 Initialization
When the Linux-RNG is initialized, all random pools and the ChaCha20 DRNG are initialized to prevent
them from being empty. The initialization is performed during boot time of the kernel.

When the kernel initializes the driver for the random number generator, it calls the function
rand initialize.Thisfunctioncalls init std data for each of the random pools.

static void init std data(struct entropy store *r)

{
ktime t now = ktime get real();

r->last pulled = jiffies;
mix pool bytes(r, &now, sizeof (now));
for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
if (larch get random seed long(&rv) &&
larch get random long (&rv))
rv = random get entropy();
mix pool bytes(r, &rv, sizeof(rv));
}
mix pool bytes(r, utsname (), sizeof (* (utsname())));
}
The function init std data performs the following initialization steps.

As a first step, the function obtains the current time and mixes it into the entropy pool. The entropy pool is
not empty, but contains the contents of the memory allocated for the pool. As the pool is statically allocated
and the memory is occupied during early boot process, it is likely that it contains zeros. The resolution of
that time value is discussed in the kernel code:

/*

* ktime t:

*

* On 64-bit CPUs a single 64-bit variable is used to store the hrtimers

* internal representation of time values in scalar nanoseconds. The

32 Federal Office for Information Security

Design of the Linux-RNG 3

Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

*

*

design plays out best on 64-bit CPUs, where most conversions are
NOPs and most arithmetic ktime t operations are plain arithmetic

operations.

On 32-bit CPUs an optimized representation of the timespec structure
is used to avoid expensive conversions from and to timespecs. The
endian-aware order of the tv struct members is choosen to allow
mathematical operations on the tv64 member of the union too, which

for certain operations produces better code.

For architectures with efficient support for 64/32-bit conversions the
plain scalar nanosecond based representation can be selected by the
config switch CONFIG KTIME SCALAR.

/

In case a CPU random number generator is known to the Linux-RNG, data from that hardware RNG is
mixed into the entropy pool in a second step.

In a last step, the initialization operation obtains the system specific information and mixes the collected
data into the entropy pool. The collected data contains the following information which is also explained in
the man page uname(2):

Operating system name (e.g. “Linux” - this is a compile time variable)

Name within “some implementation-defined network” (such as the DNS hostname - at the time of
initialization of the Linux-RNG, this variable is not set)

Operating system release (e.g. 4.9.0 for the kernel version of 4.9.0 - this is a compile-time variable)
Operating system version (this is a compile-time variable)
Hardware identifier (such as “x86_64" — this is a compile time variable)

Domainname when the operating system is part of a NIS or Yellow-Pages network infrastructure (at the
time of initialization of the Linux-RNG, this variable is not set)

3.3.2 (ChaCha20 DRNG

The ChaCha20 DRNG is based on the identically named stream cipher developed by Daniel Bernstein
[CHACHAZ20]. The ChaCha20 DRNG uses a data structure that complies with the definition of [RFC7539],
section 2.3. The ChaCha20 DRNG is therefore maintained with the following data structure:

struct crng state {

}s

The member variables are used to store the following information:

_u32 state[l6];
unsigned long init time;
spinlock t lock;

Federal Office for Information Security 33

3 Design of the Linux-RNG
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

The state array of 16 32-bit words holds the ChaCha20 stream cipher state according to [RFC7539]
section 2.3. This section defines the state of a ChaCha20 operation which is identical to the state used by
the Linux-RNG in the discussed array denominated by the state variable. This array can therefore be
segmented into the following parts:

* The first four words hold the constants used by the ChaCha20 block operation.

* The next eight words hold the key information used by the ChaCha20 block operation.
¢ The thirteenth word is the counter.

* The fourteenth to sixteenth words are the nonce.

The init_time variable contains the time when the ChaCha20 DRNG was seeded last. The ChaCha20
DRNG is automatically reseeded after 5 minutes irrespective of the amount of data produced by the
DRNG.

The DRNG initial state and state update is depicted in figure 5.

1

ChaCha2d ChaCha20 ChaCha2l ChaCha20
crng state |mbalzation Siae Culput Stale Otk
conslant
constant [Expand JExpand JExpand
constant | | 32-byta k° F2-byte k° 32-byta k°
eonslant [ReiSead - -
k g =1
= & g £
ki = =
key -3 g
= Saad fram E %
inputl_poal "
key + lime *® o o
koy g g
key F F
countar Geed + - +H -
L] Sead from Saed Seead inom
e input_posol i inpul_poa
e + time & limea & lime
init_timse < resaed Sead tima Sead tima

Backiracking Resisiance

COulput Buffer y]

Figure 5: ChaCha20 DRNG state and state transition

The left-most column in figure 5 shows the ChaCha20 DRNG state with its various u32 words as described in
the previous bulleted list.

The second left column indicates the ChaCha20 DRNG state after its initialization operation:

The constants are filled with the 16-bytes string “Expand 32-byte k”. This string is derived from the
reference implementation of ChaCha20 as provided by Daniel Bernstein and found at the URL
http://cr.yp.to/chacha.html.

The key part, the counter, and the nonce are filled with random data extracted from the current content
of the input_pool (which is considered to have hardly any entropy at the time the ChaCha20 DRNG
initializes).

The key part, the counter, and the nonce are XORed with the output of the CPU random number
generator if one is present. If it is not present, one high-resolution time stamp obtained with the kernel
function random get entropy word is XORed with the key part (note, figure 5 illustrates the case

34

Federal Office for Information Security

http://cr.yp.to/chacha.html

Design of the Linux-RNG 3
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

where the CPU random number generator is not present and the time stamp is obtained). On Intel x86
systems, this function invokes the RDTSC processor instruction.

* The init_time value is set such that the reseed is triggered with the next request to the ChaCha20 DRNG
to generate random numbers.

3.3.2.1 ChaCha20 DRNG State Transition Function and Output Function

The ChaCha20 DRNG operation can be explained when considering how the ChaCha20 stream cipher
operates. ChaCha20 is conceptually very similar to the counter block chaining mode defined in [SP800-38A].
Using the ChaCha20 state, the ChaCha20 block operation generates a 64-byte output block from the state.
After the generation of the output block, the counter value in that state is increased by one. With the
updated state which differs only slightly from the previous state based on the increment operation, a new
ChaCha20 block operation can be performed resulting in another output block, and so on. The generated
blocks are concatenated to form a bit-stream.

The ChaCha20 stream cipher uses the generated sequence of output blocks as a key bit-stream. That key bit-
stream is XORed with the plaintext or ciphertext to perform the ChaCha20 encryption or decryption
operation.

The ChaCha20 DRNG uses the aforementioned key bit-stream as a stream of random numbers (the term
random bits would be a more appropriate reference in this case). The DRNG therefore operates using the
following steps that are implemented with the invocation of the function extract crngand its repeated
invocation:

1 If a CPU hardware random number generator is present, generate a 32 bit data block and XOR it with the
second nonce value. This operation is intended to stir the ChaCha20 state.

2 Generate one 64-byte output block from the ChaCha20 DRNG state with the ChaCha20 block operation
defined in [RFC7539], sections 2.2 and 2.3. Both sections explain in detail how the ChaCha20 Quarter
Round operation is applied to the state and how the Quarter Rounds are formed into one complete
ChaCha20 block operation.

3 Increment the counter variable by one.

4 Invoke steps 1 through 3 again as often as needed in order to produce sufficient output blocks to satisfy
the requested number of bytes. The number of generated ChaCha20 output blocks can be defined as:

[(requested bytes)

(64 bytes)
[f the caller requested random numbers that are not divisible to the block size of ChaCha20, the required
most significant bits of the last ChaCha20 block are used to completely satisfy the requested random
number size. For example, if the caller requests 80 bytes of random numbers, two ChaCha20 output
blocks are generated. The first block forms the first 64 bytes. The 16 most significant bytes from the
second block are used to satisfy the remaining part of the requested number size.

| . The number of generated blocks are concatenated to form the random number.

5 After a request for random numbers is satisfied, 256 bits from a yet unused ChaCha20 output block (i.e.
data not given to a user) are XORed with the key part of the ChaCha20 DRNG. This operation implies a
non-revocable change of the ChaCha20 state to support enhanced backtracking support. The required
256 bits are obtained as follows: if the last output block generated to satisfy the caller's request has at
least 256 bits left that were not returned to the caller, the leftmost 256 unused bits are used for the state
update. If less than 256 unused bits are present, another ChaCha20 block operation is performed to
generate 512 new bits. The 256 most significant bits are used to update the state. Any remaining unused
bits are discarded. Continuing the previous example with the generation of 80 bytes, the second output
block has yet 48 unused bytes remaining. From those 48 bytes, the 256 most significant bits are used. The
remaining 16 bytes are discarded.

Federal Office for Information Security 35

3 Design of the Linux-RNG
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

With this description, the following state transition functions are present:

* Aslong as one request for random numbers is not satisfied: increment the counter by one after each
ChaCha20 block operation.

* After one request for random numbers is satisfied: XOR the key part of the ChaCha20 DRNG state with
256 unused bits from the last ChaCha20 block operation.

The output function of the ChaCha20 DRNG is identical with the ChaCha20 block operation.

Considering steps 2 through 5, the ChaCha20 DRNG has a very close relationship to the CTR DRBG without
a derivation function and without prediction resistance defined in [SP800-90A]. But instead of using the
Advanced Encryption Standard (AES) as cipher core, ChaCha20 is used. Another difference is evident with
step 5: the CTR DRBG unconditionally generates a new AES block for updating its internal state whereas the
ChaCha20 DRNG may use “left-over” bytes from the last output block that were not used by the caller.

The reseed operation of the ChaCha20 DRNG is implemented with the following steps:

1. Obtain 32 bytes from the input_pool. It may be possible that the input_pool returns less than the
requested 32 bytes in case insufficient entropy is present. In case the underlying hardware system is a
NUMA system and the ChaCha20 DRNG instance to be reseeded is a secondary ChaCha20 DRNG (see
section 3.3.2.2), the required 32 bytes are obtained from the primary ChaCha20 DRNG. The primary
ChaCha20 DRNG will always deliver the requested amount of bytes.

2. If RDSEED is available and delivers data on the current CPU, the 32 bytes obtained in step 1 are XORed
with output from RDSEED. If RDSEED is not present or cannot deliver data and RDRAND is present, 32
bytes from RDRAND are obtained and XORed with the data obtained in step 1. If neither RDSEED nor
RDRAND are present and can deliver data, 8 high-resolution time stamps are XORed with the data from
step 1.

3. The data from steps 1 and 2 are XORed with the key component of the ChaCha20 DRNG state. Figure 5
illustrates the reseed operation.

The ChaCha20 DRNG as used in the Linux-RNG produces unlimited amounts of random numbers between
reseeds. It is reseeded after 5 minutes. Therefore, the entropy used to seed the ChaCha20 DRNG is
distributed evenly over the generated random numbers based on the properties of ChaCha20.

3.3.2.2 ChaCha20 on Non-Uniform Memory Access (NUMA) Systems

Commonly, the Linux-RNG maintains one instance of the ChaCha20 DRNG that is accessible via
/dev/urandom. If the kernel is compiled with support for non-uniform memory access (NUMA), one
secondary ChaCha20 DRNG instance is allocated per online NUMA node.

* One ChaCha20 DRNG instance is designated as primary ChaCha20 DRNG. This primary ChaCha20
DRNG is seeded with data from the input_pool. In a non-NUMA system, the one present ChaCha20
DRNG is identical to the primary ChaCha20 DRNG in a NUMA environment.

e For each online NUMA node, a secondary ChaCha20 DRNG is created whose memory that is used for its
state is NUMA-node-local. When callers request data with one of the available interfaces (/dev/urandom,
or the get random system call from user space, or get random bytes from kernel space), the
kernel first identifies the NUMA node the caller operates on. The request for random numbers is
processed by the ChaCha20 DRNG instance that is allocated for that NUMA node. Each secondary
ChaCha20 DRNG obtains the seed data from the primary ChaCha20 DRNG instance.

The secondary ChaCha20 DRNGs are initialized identically to the primary ChaCha20 DRNG stated before
with one small difference: instead of obtaining random numbers from the input_pool, the secondary
ChaCha20 DRNG seed from the primary ChaCha20 DRNG.

36 Federal Office for Information Security

Design of the Linux-RNG 3
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

3.3.2.3 ChaCha20: Initially or Fully Seeded

The Linux-RNG maintains the concept of an initially® or fully® seeded primary ChaCha20 DRNG. Initially
versus fully seeded is defined as follows:

* During initialization time of the kernel, the kernel inject a fast_pool content into the primary ChaCha20
DRNG upon receipt of 64 interrupts by that fast_pool. When four of these injection operations are
completed, the primary ChaCha20 DRNG is considered initially seeded. Note, the content of the
fast_pool that was injected into the primary ChaCha20 DRNG is not used for injection into the
input_pool.

* During initialization time of the kernel, after the entropy estimator of the input_pool reaches 128 for the
first time, the primary ChaCha20 DRNG is reseeded as documented in section 3.3.2.1 from the
input_pool. Reaching this state indicates that the ChaCha20 DRNG is fully seeded.

Commonly, the initially seeded state is reached much earlier than the fully seeded state. In some rare cases it
may be possible that the fully seeded state is reached earlier than the initially seeded state - in this case, the
initially seeded state is skipped. However, the step to reach the fully seeded state, i.e. the reseed from the
input_pool, is always executed.

If the ChaCha20 DRNG state initialization successfully used the RDRAND or RDSEED instruction, the
ChaCha20 DRNG is treated as fully seeded already at initialization time. With this behavior, the Linux-RNG
“trusts” the CPU-based noise sources to deliver data with sufficient entropy. This default behavior can be
adjusted as follows:

* During compile time of the kernel, if the configuration option of CONFIG_RANDOM_TRUST_CPU is not
set, the default behavior is that RDRAND and RDSEED are not considered trustworthy and thus the
ChaCha20 DRNG is not considered fully seeded after initialization. This applies even if
RDRAND/RDSEED successfully delivered random numbers.

* Atboot time of the Linux kernel, the kernel command line argument “random.trust_cpu” can be used to
toggle the trusting of the RDRAND/RDSEED instructions. The toggling of the parameter changes the
default behavior outlined above. If the kernel command line argument is set to true, the CPU-based
noise sources are “trusted” and thus a successful reading of data from RDRAND/RDSEED at initialization
time will cause the ChaCha20 DRNG to be treated as fully seeded. Conversely, if the kernel command line
argument is set to false, the CPU-based noise sources are “not trusted”. If the kernel command line
argument is not set, the aforementioned default behavior applies.

The discussion in the subsequent section will explain when the notion of an initially or fully seeded primary
ChaCha20 DRNG is relevant.

3.4 Interfaces to Linux-RNG

3.4.1 Character Device Files

The devices /dev/random and /dev/urandom are registered by providing file operations data structures
linking the system call operations with the service functions. The data structures contain pointers to the
respective call-back functions implemented by the Linux-RNG which are made known to the system call
handler functions. Both devices are linked with the kernel-internal functions handling read, write and other
types of requests on these character device files with the following code:

static const struct memdev {

5 The kernel prints the log message “random: fast init done” in this case.
6 The kernel prints the log message “random: crng init done”.

Federal Office for Information Security 37

3 Design of the Linux-RNG
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

const char *name;

mode t mode;

const struct file operations *fops;
struct backing dev info *dev info;

} devlist[] = {

(8]
(9]

{ "random", 0666, &random fops, NULL },

{ "urandom", 0666, &urandom fops, NULL },

}i

The code shows that for the /dev/random device file, a function pointer data structure random_fops is
registered. This function pointer data structure contains the handler functions implementing the kernel-
side read and write operations that are triggered when user space performs a read or write on /dev/random.
The device file of /dev/random is defined to be created with world-read/writable Unix permission bits. The
same is done for the /dev/urandom device where the function pointer data structure of urandom fops is
registered.

The devices stored in devlist are all registered during kernel boot with the chr_dev_init function.

The callback functions registered for /dev/random are:

const struct file operations random fops = {
.read = random read,
.write = random write,
.poll = random poll,
.unlocked ioctl = random ioctl,
.fasync = random fasync,
.1llseek = noop llseek,

}i
Similarly, the callback functions for /dev/urandom are:

const struct file operations urandom fops = {

.read urandom read,
.write = random write,

.unlocked ioctl = random ioctl,

.fasync = random fasync,
.1llseek = noop llseek,
}i

These functions referenced in the random fops and urandom fops are all implemented as part of the
Linux-RNG and are discussed in the following subsections.

38 Federal Office for Information Security

Design of the Linux-RNG 3
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

3411 random_poll

The random pol1l function registered in the function pointer data structures is invoked when user space
uses the po11 system call with /dev/random.

The poll system call implementation allows processes to be triggered on two occasions, depending on the
poll system call request type invoked by user space as follows:

* read: When sufficient entropy is available indicated by the fact that the entropy estimator is larger than a
given threshold, the kernel wakes up the polling processes to allow them obtaining data with a separate
call. This allows user space to asynchronously poll /dev/random to avoid the blocking behavior when
reading /dev/random in case entropy is too low. The threshold can be modified at runtime by writing a
positive integer value into /proc/sys/kernel/random/read_wakeup_threshold. The read-like poll is
applied when the caller uses the POLLIN option as discussed in the po11 man page.

* write: When insufficient entropy is available indicated by the fact that the entropy estimator falls below a
given threshold, the kernel wakes up the processes that waited with a write poll. Although the poll
system call backend is only implemented for /dev/random, the kernel wakes the polling process up
when the entropy estimator of either /dev/random or /dev/urandom falls below the threshold. The
threshold can be modified at runtime by writing a positive integer value into /proc/sys/kernel/random/
write_wakeup_threshold. That value specifies the threshold in bytes. The write-like po11 is applied
when the caller uses the POLLOUT option as discussed in the pol1 man page.

3.4.1.2 Read and Write Operation

For entropy extraction via the device files, the kernel implements the following methods. These methods
are referenced by the aforementioned function pointer data structures.

/dev/random: When accessing the random number generator using this device file, the read function of
random_read is called. The entropy pool blocking_pool is drained as outlined above using the
extract entropy user function. If that function returns that zero bytes were obtained - which is
determined by the calculation of the account function - the calling process is put to sleep until the
entropy estimator for the input_pool reaches 64 bits. The following code demonstrates the discussed
function.

static ssize t
_random_read(struct file *file, char user *buf, size t nbytes, loff t

*ppos)
{

nbytes = min t(size t, nbytes, SEC XFER SIZE);
n = extract entropy user (&blocking pool, buf, nbytes);
wait event interruptible (random read wait,

ENTROPY BITS (&input_pool) >=

random read wakeup bits);

Federal Office for Information Security 39

3 Design of the Linux-RNG
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

/dev/urandom: When random data is extracted via /dev/urandom, the ChaCha20 output function
extract crng discussed in section 3.3.2.1 is invoked.

The write service function is identical for both devices. The random number device driver allows writing of
data into the /dev/random and /dev/urandom device files. Both devices use the same function to
implement the write method: random write.random write callsthewrite pool service function
which mixes the data provided by user space with the input_pool. The entropy estimator is not changed
when mixing data into the entropy pool using the write operation, but the user-provided data is mixed into
the entropy pool.

static int
write pool (struct entropy store *r, const char user *buffer, size t
count)

{

_u32 buf[le];

while (count > 0) {

bytes = min (count, sizeof (buf));
count -= bytes;
mix pool bytes(r, buf, bytes);

The code listing shows that the user space data is mixed into the pool in 16 byte chunks.

3.4.13 Input/Output Controls (IOCTLs) Usable With /dev/random

Both device files implement the following IOCTL commands which are usable with the ioct1 system call:

* RNDGETENTCNT: Extraction of the entropy estimator value for the input_pool. This IOCTL is identical
to the contents of /proc/sys/kernel/random/entropy_avail.

* RNDADDTOENTCNT: Add a user space supplied integer value to the entropy estimator for the input_pool
using the logic discussed in section 3.6. This IOCTL is restricted to the capability of CAP_SYS ADMIN,
which is only given to administrative processes.

* RNDADDENTROPY: Mix in random user space supplied data into the input_pool using the same logic as
outlined in section 3.4.1.2. In addition, add a user space supplied integer value to the entropy estimator
for the input_pool using the logic discussed in section 3.6. This IOCTL is restricted to the capability of
CAP SYS ADMIN.

* RNDZAPENTCNT: Initialize all entropy pools and reset their contents as discussed in section 3.3.1.4. This
IOCTL is restricted to the capability of CAP_SYS ADMIN.

¢ RNDCLEARPOOL: See RNDZAPENTCNT.

40 Federal Office for Information Security

Design of the Linux-RNG 3
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

* RNDRESEEDING: If the caller possesses the capability of CAP_SYS ADMIN, the primary ChaCha20
DRNG is reseeded. In addition, all NUMA-node-local ChaCha20 DRNG instances will be reseeded next
time they are invoked.

3.4.2 System Call

In addition to the character device files of /dev/random and /dev/urandom, the Linux-RNG offers the
getrandom system call to user space for obtaining random data. This system call uses three parameters:
the first and second parameter allow the caller to supply the buffer pointer and the size of the buffer that
shall receive the random data. The third parameter flags allow the caller to define’:

* GRND_ RANDOM - If this bit is set, then random bytes are drawn from the /dev/random pool instead of
the /dev/urandom pool. The /dev/random pool is limited based on the entropy that can be obtained
from environmental noise. If the number of available bytes in /dev/random is less than requested by the
caller of the system call, the call returns just the available random bytes. If no random bytes are available,
the behavior depends on the presence of GRND NONBLOCK.

* GRND_ NONBLOCK - By default, when reading from /dev/random, get random blocks if no random
bytes are available, and when reading from /dev/urandom, it blocks if the entropy pool has not yet been
initialized. If the GRND NONBLOCK flag is set, then get random does not block in these cases, but
instead immediately returns -1 with errno set to EAGATIN.

The main difference between /dev/urandom and getrandom is that the system call blocks the caller and
does not return random data until the ChaCha20 DRNG is considered to be fully seeded. After reaching this
state, get random will not block any more and behave identically to reading from /dev/urandom.

The advantage of using the getrandom system call over accessing the character device files is the exclusion
of the Linux kernel virtual file system (VFS) layer. That layer adds huge complexity which may be the cause
of errors returned to users. These errors may have no relationship to the Linux-RNG operation. Thus, the
system call allows bypassing the VFS which is not of relevance to the Linux-RNG.

3.4.3 In-Kernel Interfaces

To supply in-kernel consumers such as the kernel crypto API or the networking stack with entropy, the
Linux-RNG offers the function get random bytes. This function behaves exactly like /dev/urandom
for user space as it delivers the requested amount of random data irrespective of the seed status of the
entropy pools. The function get random bytes requires the following arguments: a pointer to the
buffer and the size of the buffer to be filled with random data. The call to this function will always succeed.

In addition, functions filling a unsigned int variable, i.e. a variable with 4 bytes, and an unsigned long long
variable, i.e. an 8-byte variable, with random bytes efficiently is provided with the API calls of
get_random_u32 and get_random_u64, respectively. The kernel maintains one memory block with the block
size of ChaCha20 (512 bits) on each CPU. The CPU-local buffer allows a lock-less access of the memory.
When using these APIs, the ChaCha20 DRNG is used to fill the respective CPU-local buffer. After filling the
CPU-local buffer, the needed 4 or 8 random bytes are copied from that buffer to the caller. The kernel
remembers which bytes of the CPU-local buffer have already been given to callers. In a next call of the AP]I,
the kernel returns the next unused 4 or 8 bytes to the caller. This is continued until all random data in the
CPU-local buffer is used which will trigger a new invocation to the ChaCha20 DRNG to overwrite the
respective CPU-local buffer.

During boot time, a number of in-kernel callers request random numbers from the Linux-RNG. The author
of this study performed some measurements on how many bytes are requested by in-kernel users during

7 The following listing is taken from the getrandom(2) man page.

Federal Office for Information Security 41

3 Design of the Linux-RNG
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

boot time before even user space is booted. Depending on the kernel functions and hardware support
present in the underlying system, the number of bytes can be up to 1,000 bytes. Considering the work of this
study, quantitative testing shows that the Linux-RNG will not be seeded with sufficient data at that point,
which implies that these callers receive random data with questionable entropy. Luckily, none of the callers
that were identified use the random numbers for cryptographic purposes. Often, these random numbers are
used to initialize hash maps, universally unique identifies (UUIDs), initial values for networking-related
operations and similar items.

Although the kernel does not offer an equivalent to /dev/random inside the kernel, it offers an interface
that is conceptually similar to the get random system call where the caller only receives random data after
the primary ChaCha20 DRNG has been fully seeded®. The difference, however, is that an in-kernel caller
cannot be blocked like user space processes. The concept rests on the function

add random ready callback offered by the Linux-RNG to in-kernel users. This function allows
callers to register a callback function that is invoked when the primary ChaCha20 reaches the fully seeded
state.

The reader should note that using get random_ bytes without any precautions does not guarantee that
sufficient entropy has been collected to generate cryptographically strong random numbers.

An example of the use case of this callback mechanism is given with the in-kernel SP800-90A DRBG seeding
operation. This DRBG is seeded with the following steps:

1 During initialization of the DRBG, the code tries to register a callback function with
add random ready callback.]If that operation fails with the error code ~-EALREADY, the DRBG
code knows that the Linux-RNG is fully seeded. In this case, it pulls the required amount of seed data
from get random bytes and considers its state fully seeded. Otherwise, seed data from another
noise source separate from the Linux-RNG is used and the DRBG applies the following steps.

2 Pull the required amount of data defined by the DRBG seed size from get random bytes.In
addition, the DRBG pulls an equal amount of random data from the separate noise source (the Jitter RNG
noise source present in the kernel crypto API). Both data blocks are used to initialize and seed the DRBG.

3 Thereseeding threshold of the DRBG is set to 50 which means that the DRBG will reseed itself with step
2 after 50 requests of random numbers.

4 At some point the Linux-RNG considers itself fully seeded and triggers the registered callback function.
That callback function now performs the following steps:

a Pull the required amount of data defined by the DRBG seed size from get random bytesand
reseed the DRBG.

b Deactivate the other noise source.
c Set the reseed threshold to the regular value defined by SP800-90A.

The behavior of add random ready callbackisasynchronous in nature. A synchronous waiting
until the ChaCha20 is initially seeded is provided with the API call of wait for random bytes. This
function will put the caller to sleep as long as the ChaCha20 DRNG is not initially seeded. Once the initially
seeding threshold is reached, the caller is woken up. At that point, the caller can now invoke the

get random bytes API call to obtain random data from the initially seeded ChaCha20 DRNG.

3.44 /proc Files

The following /proc files are provided by the Linux-RNG to allow all users to read status information and to
allow administrators to alter the behavior of the Linux-RNG. More information can be obtained with the
random man page.

8 Note that getrandom blocks until the primary ChaCha20 DRNG is either initially or fully seeded.

42 Federal Office for Information Security

Design of the Linux-RNG 3
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

* /proc/sys/kernel/random/poolsize: size of the input_pool in bits.

* /proc/sys/kernel/random/entropy_avail: current state of the entropy estimator of the input_pool. The
entropy estimator is adjusted to show the entropy content in bits.

* /proc/sys/kernel/random/read_wakeup_threshold: threshold that when reached by the entropy_avail
value triggers a wakeup of readers. When waking up sleeping processes, the process will find some
entropy present in the Linux-RNG that can be picked up from /dev/random.

* /proc/sys/kernel/random/write_wakeup_threshold: when entropy_avail falls below that threshold, user
space suppliers of entropy are woken up with the goal to inject entropy into the Linux-RNG.

* /proc/sys/kernel/random/boot_id: UUID generated during boot.
* /proc/sys/kernel/random/uuid: UUID that is re-generated during each request.
* /proc/sys/kernel/random/urandom_min_reseed_secs: currently unused.

Most of the proc files are read-only: the file permission settings do not allow a write operation and the
kernel does not implement a write-handler. The files containing the threshold values are writable by the
root-user only.

3.5 Entropy Sources

The purpose of the Linux random number generator is to:
* collect entropy from various sources,

* mix gathered input values into the input_pool, and

* estimate the obtained entropy.

The following sections discuss these aspects.

Data that is believed to contain entropy and contribute to the entropy collection of the Linux-RNG is
specifically marked such that the reader can immediately identify such data.

3.5.1 Timer State Maintenance for Entropy Sources
Each hardware entropy source maintains a timer state. That state is used to store the time deltas as well as
the time of the last hardware event occurrence.
The timer state keeps the following information:
struct timer rand state {
cycles t last time;
long last delta, last deltaZz;
unsigned dont count entropy:1l;

}s

#define INIT TIMER RAND STATE { INITIAL JIFFIES, };

The variables 1ast time,last deltaand last deltaZ2 are used for the entropy calculation to
support the calculation of time deltas discussed in section 3.6.

Federal Office for Information Security 43

3 Design of the Linux-RNG
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

The variable dont count entropy is currently unused. The macro INIT TIMER RAND STATE can
be used to initialize the 1ast time member variable to a value that causes a wrapping of the value 5
minutes after boot. The idea here is that potential bugs hiding in the kernel code can be found faster
whereas the debugging setting itself is irrelevant to the operation of the Linux-RNG.

According to figure 2 the kernel maintains three classes of entropy sources. For each of these classes, the
kernel instantiates a timer state data structure.

HID, i.e. devices that are defined as being the "console” of the system: the kernel maintains one instance of
the timer state data structure for the collection of all HID devices. Therefore, the time deltas of events of all
HID devices are stored together which implies that the collection of all HID devices are used as one entropy
source. The instance is defined in the code with the static variable:

static struct timer rand state input timer state = INIT TIMER RAND STATE;

Disk devices: the kernel maintains one time state data structure instance per physical disk. Therefore, the
time deltas of events triggered by one disk are maintained separately. This implies that one physical disk
represents one independent entropy source®. The following code listing shows how the timer state data
structure is instantiated per disk by allocating the required amount of memory and registering it with the
per-disk data structure maintained by the kernel for each disk instance:

void rand initialize disk(struct gendisk *disk)
{

struct timer rand state *state;

/*

* If kzalloc returns null, we just won't use that entropy

* source.

*/
state = kzalloc(sizeof (struct timer rand state), GFP_ KERNEL);
if (state)

disk->random = state;
}

Interrupts: the kernel sets up one fast_pool instance per CPU accessible in a per-CPU variable
irg randomness. The idea is that any operation on the fast_pool instance can be performed without
holding a lock. The fast pool is defined as follows:

struct fast pool {
_u32 pool[4];
unsigned long last;
unsigned short reg idx;
unsigned char count;

}s

9 The allocation of the time state data structure is performed irrespective of whether a block device is
considered to contribute entropy or not as discussed in section 3.5.2.3.

44 Federal Office for Information Security

Design of the Linux-RNG 3
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

static DEFINE PER CPU(struct fast pool, irg randomness);

The pool array holds the actual entropy data and constitutes the pool. The 1ast variable holds the time
when the fast_pool was read last to inject its data into the input_pool. Except to seed the primary ChaCha20
DRNG during early boot, the content of the fast_pool is not transferred to the input_pool if the last
operation is less than one second ago. The count variable counts the number of interrupts processed by
this fast_pool to ensure that at least 64 interrupts have been received before the fast_pool can be transferred
to the input_pool. Finally, the reg idx variable is the index which CPU register shall be mixed into the
fast_pool. This index is incremented by one each time an interrupt is received for the given fast_pool. The
macro DEFINE PER CPU implies that an instance of the fast_pool data structure is allocated for each
CPU.

The entropy calculation discussed in section 3.6 requires the information from the timer state.

3.5.2 Entropy Collection

The random number generator exports service functions which are placed at well-defined locations in the
kernel code to obtain hardware-related events. These events and the time stamp when these events occur
are used to stir the input_pool and to potentially increase its entropy estimator.

As depicted in figure 2, various entropy collection functions are defined for different classes of hardware
events. The following sections discuss the individual entropy collection functions.

The specially marked values identified in the subsequent subsections identify the raw entropy which is
added to the input_pool. The term raw entropy references the entropy content of events. Per definition,
entropy cannot be measured, yet the Linux-RNG wants to quantify the amount of entropy that it receives
from its noise sources. The quantification of entropy can only be performed using a heuristic approach
which attributes an entropy estimate to the data received from the noise sources. The quality of this raw
entropy relative to the heuristically assumed entropy for each event defines the strength of this RNG. When
the heuristic entropy value is smaller than the raw entropy, the available entropy is underestimated, i.e. the
Linux-RNG would be considered conservative and thus would certainly have the cryptographic strength
identified by the entropy estimator. On the other hand, if the heuristic entropy value is larger than the raw
entropy, the Linux-RNG would overestimate the available entropy. In this case, the random numbers
produced by the Linux-RNG would not be as cryptographically strong as indicated by the entropy estimator.

3.5.2.1 add_input_randomness

The input layer of the kernel that handles all input devices like keyboards or mice, calls this service function
every time an input event is handled by the kernel. Such events are key presses, mouse movements, mouse
button presses and similar events. To ensure that auto-repeat events are detected and properly discarded,
the service function of add input randomness only stirs the random pool if the event value is
different from the previous value.

Every event has a value that is processed with add input randomness. For example, the key strokes
from a keyboard are associated with a key code. When a mouse is moved, the dimensions such as left or
right, forward or backward of the mouse is recorded.

The function add input randomness compares the event value of the current event with the one of
the previous event. If both event values are identical (for example, a mouse is moved in one direction by two
steps or the same key is pressed twice) the event is discarded. Otherwise, the event is added to the
input_pool. The following code shows the important steps:

10 Each event is assigned a value, such as the key code of the keyboard key that was pressed. Therefore, if
repeatedly the same key is pressed, the service function would obtain the same key value and therefore
discard this value.

Federal Office for Information Security 45

3 Design of the Linux-RNG
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

void add input randomness (unsigned int type, unsigned int code,

unsigned int wvalue)

static unsigned char last value;

/* ignore autorepeat and the like */
if (value == last value)

return;

last value = value;
add timer randomness (&input timer state,
(type << 4) ~ code * (code >> 4) ~ value);

The listed code does not contain any locks which protect the comparison with the previous value against
simultaneous events on other CPUs. This is considered acceptable because in the worst-case one event that
should be discarded is not. When events occur simultaneously it is not really possible to state in which order
these events are to be processed. Therefore, a missing lock is uncritical.

The add input randomness function uses the following values as event value that will eventually be
mixed into the input_pool:

low 4 bits of the event type ®
event code ®
high 4 bits of the event code ®
event value

The interpretation of the event type, event code and event value varies greatly, depending on the type of
HID. As the quantitative analysis will show, the HID event information contains very little entropy.
Therefore, further explanation of the kind of data related to the event information is not considered
relevant.

The time variances used to mix the random values into the input_pool compare all HID which means that
one global input timer state static variable is used discussed in section 3.5.1. This means that one
time state variable is maintained for all input device events.

The event value is statistically analyzed in section 6.1.3.

3.5.2.2 add_interrupt_randomness

As the name of the service function already suggests, interrupts are used as a source of entropy. This service
function is placed inside the standard Linux interrupt handler and invoked every time an interrupt is
received by the kernel. In addition, this function is called inside the VMBus interrupt handler, because when
Linux executes as guest on Microsoft Hyper-V, all interrupts from the hypervisor are exclusively processed
by the VMBus interrupt handler.

Before discussing the code and data structures involved in the gathering of interrupts to be mixed into the
entropy pools, the concept of the handling of interrupts must be clarified. After the discussion of the
concept, the code analysis is presented.

Considering figure 2, the interrupts are not directly fed into the input_pool but rather into a “baby entropy
pool” called fast_pool. This fast_pool is four u32 words in size and therefore contains 128 bits. In addition,

46 Federal Office for Information Security

Design of the Linux-RNG 3
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

the fast_pool maintains a variable called reg idx which may be used to sequentially point to a CPU
register whose content may be used to be mixed into the entropy pool as discussed below.

One instance of the fast_pool is created per CPU. Depending on which CPU an interrupt is received from,
the fast_pool of that CPU is used. The event values as well as the time stamps of each interrupt are mixed
into the respective fast_pool. The entire content of that fast_pool is mixed into the input_pool after the
following requirements are all met:

* the receipt of at least 64 interrupts that are mixed into the current fast_pool - this case is tracked with the
count variable of the fast_pool, and

* the last mix-in of that fast_pool was more than a second ago, which is tracked with the last variable of the
fast_pool data structure.

This implies that the function add_interrupt randomness does not use the function
add timer randomness toadd time stamps as used by other entropy collection functions.

Figure 6 illustrates the occurrence of an interrupt on a particular CPU, the mixing into the applicable
fast_pool and the final mixing with the input_pool.

ST @Rt ropy ETOre

input_pool

mix_pool byres
strect fast pool struct fast_poal

oo} i ™~ Ll L= ™ ™ ™M
sl Ml - T = (T Rt Nl
e = = = | =l = =l = ™
o s | & |8 a |a |8 a
g g | & | & g | a8 -] g
=3 =3 =3 =3 = i o o
rast_mix fast_mix

struct fast pool =truct fast pool
o | e || @ @ [w [| m
a3 |l=g 3|3 a9 |3 |3
E|E|E|X X X8 %
E|&|A&| & A | A | A&
L]
=] o
= :"_" :! = & o
= - -
B e B g & [&
Sl A | e |iverupts| 5| 5| 5| &
I8 [] W o = @ a
= c = = | = =
= (=] - = =1 =1
| | | | e
CRUD CPUN

Figure 6: Processing of interrupts by fast_pools
and connection to input_pool

For every interrupt that is received by the Linux kernel, the four u32 words of the fast pool are updated as
depicted in figure 6 at the bottom. These words are updated with the following data:

* fast pool->pool[0] - the firstfast_pool word: This word is the XOR-combination of the low 32
bits of the high-resolution time stamp (processor cycles), the 32 high bits of the coarse Jiffies time stamp
and the interrupt number together with the existing value in the word. Details of the time stamps are
given in section 3.5.2.7. However, one key difference to section 3.5.2.7 is evident: the fast_pool operation
uses absolute time stamps instead of time variances.

* fast pool->pool[1l] -thesecond fast_pool word: the lower 32 bits of the Jiffies time stamp is
combined with the high 32 bits of the high-resolution time stamp together with the existing value in that
word using XOR.

* fast pool->pool[2] and fast pool->pool[3] - the third and fourth fast_pool word: the
upper and lower 32 bit of the 64 bit value of the CPU instruction pointer is XORed with the existing
values in those words. If this value is not available, the return address of the add_interrupt_randomness
function is used, which is static for the given kernel binary.

Federal Office for Information Security 47

3 Design of the Linux-RNG
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

The following code shows the mixing of the interrupt into the random number state.
void add interrupt randomness (int irqg, int irqg flags)

{

struct fast pool *fast pool =
this cpu ptr(&irg randomness);
struct pt regs *regs = get irqg regs();
unsigned long now = jiffies;
cycles t cycles = random get entropy();

c_high = (sizeof (cycles) > 4) ? cycles >> 32 : 0;

J _high = (sizeof(now) > 4) ? now >> 32 : 0;

fast pool->pool[0] 7= cycles ~ j high * irqg;

fast pool->pool[l] "= now ”~ c_high;

ip = regs ? instruction pointer(regs) : RET IP ;

fast pool->pool[2] "= ip;
fast pool->pool[3] "= (sizeof(ip) > 4) ? ip >> 32
get reg(fast pool, regs);

fast mix(fast pool);

The first step is the fetching of the fast_pool for the CPU processing the interrupt. When looking at the file /
proc/interrupts, the CPU executing the interrupt handler of a specific interrupt number is presented. In
most cases, CPUOQ is used to serve the interrupt which is the first CPU.

After obtaining the reference to the fast_pool, the interrupt event data is added to the content of the
fast_pool as discussed above. The addition of the data to the fast_pool is followed by a stirring of the
fast_pool using the fast mix function. This stir operation tries to combine the content of all four words
with the goal of distributing the information of each of the words evenly among the words.

If both conditions listed above about the number of interrupts and the expired time since last read-out are
met, the current fast_pool content is injected into the input_pool.

void add interrupt randomness (int irg, int irqg flags)

{
if ((fast pool->count < 64) &&
'time after (now, fast pool->last + HZ))

return;

r = &input pool;

48 Federal Office for Information Security

Design of the Linux-RNG 3

Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

fast pool->last = now;

_ _mix pool bytes(r, &fast pool->pool, sizeof(fast pool->pool));

/*
* If we have architectural seed generator, produce a seed and
* add it to the pool. For the sake of paranoia don't let the
* architectural seed generator dominate the input from the
* interrupt noise.
*/
if (arch get random seed long(&seed)) {
_ _mix pool bytes(r, &seed, sizeof(seed));

credit = 1;

fast pool->count = 0;

/* award one bit for the contents of the fast pool */

credit entropy bits(r, credit + 1);

The code snippet shows:

1

2
3
4

Both conditions, the number of interrupts and the expired time must be met.
The time stamp of the last read-out of the fast_pool is set to the current time.
The content of the fast_pool is mixed into the input_pool.

If a CPU hardware random number generator is present", inject the output of that RNG. On 32-bit
systems, RDSEED fills a variable with a size of 32 bit. On 64-bit systems, the variable's size filled with
RDSEED output is 64 bit.

Reset the number of received interrupts to zero for the initial condition check in step 1.

Increase the entropy estimator of the input_pool by 1 - if the CPU hardware random number generator
was present, the entropy estimator is increased by 2.

With these steps, it is evident that

all four u32 words of the fast_pool

are used to update the input_pool.

In addition, if RDSEED is present, the

32 bits or 64 bits filled by RDSEED

11 At the time of writing, this is only present with the Intel RDSEED operation.

Federal Office for Information Security 49

3 Design of the Linux-RNG
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

are mixed into the input_pool.
That means that the 64 interrupts'® are assumed to represent one bit of entropy.

The conservative estimation of the entropy is warranted considering the relationship of the interrupt noise
source and other noise sources. The interrupt handler function implementing the Top-Half interrupt
handler of an interrupt executes add_interrupt randomness function. However, if the interrupt was
from a HID device or a block device event, the Bottom-Half interrupt handler will invoke the respective
other entropy gathering function. That means that the interrupt collection function must be considered to
have a correlation with the HID/block device collection function. As any correlation diminishes entropy, a
conservative estimation of the implied entropy is warranted and implemented in the Linux-RNG.

During boot time of the kernel, the following code in add interrupt randomness isimportant:
#define crng ready() (likely(crng init > 1))
#define CRNG INIT CNT THRESH (2*CHACHA20 KEY SIZE)

void add interrupt randomness (int irqg, int irqg flags)

{

if (unlikely(crng init == 0)) {
if ((fast pool->count >= 64) &&
crng fast load((char *) fast pool->pool,
sizeof (fast pool->pool))) {
fast pool->count = 0;

fast pool->last = now;

return;

static int crng fast load(const char *cp, size t len)

if (crng init cnt >= CRNG_INIT CNT_ THRESH) ({

crng init = 1;

This code shows the initialization of the primary ChaCha20 DRNG. The first four sets of 64 interrupts
received by a fast_pool will be used to seed the primary ChaCha20 DRNG. The requirement that only four
sets of 64 interrupts are used is enforced with the value of crng_init which is set to one after the receipt of
256 interrupts.

12 Itis also possible that more interrupts were processed if the interrupts came in at a rate faster than 64
interrupts per HZ time.

50 Federal Office for Information Security

Design of the Linux-RNG 3
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

The event value is statistically analyzed in section 6.1.1.

3.5.2.3 add_disk_randomness

The last entropy gathering service function which adds data into the input_pool and can increase its
entropy estimator is add disk randomness, which is called by the scsi_lib subsystem, function

scsi end request, which handles the accesses to ATA, SATA and SCSI mass storage devices attached
to the system.

In Linux kernels before version 5.0, the add disk randomness function was called from the central
code path in the block device layer by the function blk update bidi request. With version 5.0,
this call was removed due to some structuring changes in the generic block layer.

The conditions for the call have remained the same, and are described as follows:

When a disk event occurs, the device number forming the major and minor device number plus 0x100 is
used to add entropy to the input_pool:

void add disk randomness (struct gendisk *disk)
{
if (!disk || !disk->random)

return;

add timer randomness (disk->random, 0x100 + disk devt(disk));

}

The function disk devt (disk) obtains the member variable device->devt from the device data
structure registered with the disk device structure which holds the device definition of the disk device.

In addition to the device number, the timer state variable disk->randomis used to add entropy to the
pool. The kernel maintains one timer state variable per disk device.

The timer state variable for a disk device is initialized with rand_initialize disk thatallocates
zeroized memory and registers it with di sk—>random. This service function is called unconditionally
when a new disk device is allocated by the block device layer.

struct gendisk *alloc disk node(int minors, int node_ id)

{

rand initialize disk(disk);

The function add_disk randomness is only invoked if the following constraint is met for the given
block device.

static bool scsi end request (struct request *req, blk status t error,

unsigned int bytes, unsigned int bidi bytes)

if (blk queue add random(rg->q))

Federal Office for Information Security 51

3 Design of the Linux-RNG
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

add disk randomness (rg->rq disk);

The code shows that only if the wait queue of the respective block device holds the flag
QUEUE_FLAG ADD RANDOM (which is obtained with the b1k queue add randommacro), the
handler function of the random number generator is triggered. Per default, that flag is set for each block
device:

#define QUEUE FLAG DEFAULT ((1 << QUEUE FLAG IO STAT) | \
(1 << QUEUE FLAG STACKABLE) | \
(1 << QUEUE FLAG SAME COMP) | \

(1 << QUEUE_FLAG_ADD RANDOM))

However, using the SysFS file of add random found for each block device, that flag can be toggled. If the
file contains a 1, the flag is set for the respective block device wait queue. This toggling can be used together
with the contents of the SysFS file rotational, which identifies a block device based on rotating disks.

In addition, the kernel starting with 3.18 unsets the flag for disks that are known to not have rotational
disks. Such unsetting of the flag is done for:

e SSDs,

* MMGs,

* Network block Devices,

* ZRAM block devices,

e Multiple Devices (MD - software RAID) block devices,

* Memory Technology Device (MTD) block devices,

¢ Device Mapper block devices,

* S390 Support for Storage Class Memory (SCM) block devices,

* 5390 XPRAM block devices, and

* the IBM PCle SSD storage device: Flash Adapter 900GB Full Height.

The reason why disk devices are used as an entropy source is based in the nature of the disk devices and the
resolution of the timer maintained by the kernel. The timer is very precise so that time variances in reading
sectors from disks can be measured. Such time variances occur when the disk is spinning. For example,
when sector 0x100 is to be read and the disk has to spin a quarter turn before reaching the start of this
sector, the waiting time for the kernel is smaller than when the kernel would read that sector again and the
disk would need to spin, say, three quarters. Moreover, the time to position the reading head also affects the
timer.

However, a drawback must be considered when using disks that have no spinning disk. As the discussed
time variances when reading only depend on moving parts, the entropy gathered by disks without spinning
disks must be considered minimal.

The data obtained by the entropy collection value is the

block device number + 0x100.

The event value is statistically analyzed in section 6.1.2.

52 Federal Office for Information Security

Design of the Linux-RNG 3
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

3.5.2.4 add_device_randomness

Contrary to the aforementioned entropy collection functions, the goal of add device randomnessis
to feed the input_pool during initialization time of device drivers. The function of add_device_randomness
is intended to be invoked only once by device drivers with device-specific data.

The device-specific data is usually data that contains some uncertainty. This device-specific data together
with the time stamp of the invocation of the function is mixed into the entropy pool.

The entropy estimator of the input_pool is left unchanged which implies that the device-specific data is not
assumed to contain entropy. Therefore, the device-specific data is only used to further stir the entropy pool.

In case the primary ChaCha20 DRNG is not yet considered to be initially seeded, the data is also mixed into
the ChaCha20 DRNG state using a small LFSR with a period of 255 to ensure that each part of the ChaCha20
DRNG key maintained in the state buffer is modified.

The data to be mixed into the entropy pool is:

Device driver specific value, and

High-resolution time stamp @ Jiffies.

During boot time, before the the ChaCha20 DRNG is considered to be initially seeded, all data that is
received by add device randomness isinjected into the ChaCha20 DRNG instead of the input_pool.
This shall guarantee that the data stream originating from /dev/urandom during boot benefits from the
input data. This implies that the blocking_pool does not benefit from the data obtained via

add_device randomness during boot. Such approach is considered appropriate because the
blocking_pool will only generate data if it is seeded with fresh data from noise sources.

3.5.2.5 add_hwgenerator_randomness

The Linux kernel contains an additional entropy collection mechanism for in-kernel hardware-RNG device
drivers. Before the advent of the add hwgenerator randomness function, the user space rngd
daemon was required to transport random bits from /dev/hwrng - the interface to the hardware-RNG
framework - to /dev/random. With the functionality described in the following, this detour via user space is
no longer needed.

Contrary to the aforementioned interface functions which use the add timer randomness function to
feed the entropy into the input_pool®, the interface for the hardware-RNG driver framework mixes the
obtained entropy directly into the input_pool, by using the functionmix pool bytes. Therefore, this
interface establishes another seed source for the input_pool in addition to those listed in figure 2.

Figure 7 illustrates the interface and how it links with the input_pool.

13 See also figure 2 which shows how the seed sources are linked into the random number generator.

Federal Office for Information Security 53

3 Design of the Linux-RNG
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

[add_hwgenerator_randommess I

—-I Primary ChaCha2() DRNG initially Seeded?

L—‘.ql‘('li |'||"||||:||'1 ChaCha2) DEMNCG with data

—vI random.write_wakeup.bits? >Entropy estimator |

|—- Suapend caller

mix_pool_bytes

Mix data into input_pool |

—-I credit_entropy_bits I

Figure 7: Linux-RNG interface for hardware RNG drivers

If the interface detects that the primary ChaCha20 DRNG is not yet initially seeded, the data received via the
API call is used to seed the primary ChaCha20 DRNG.

The interface first mixes the random data into the input_pool using the standard function

mix pool bytes discussed in section 3.3.1.1. After stirring the pool, the entropy estimator for the
input_pool is updated with the entropy value that the caller of the interface specifies - i.e. the random
number generator does not apply any heuristics to estimate the entropy from the obtained values using
time variances. The interface is intended to bypass the entropy estimation heuristics implemented with the
standard function of add timer randomness and therefore does not use that function.

The hardware-RNG driver framework implements a kernel thread which continuously reads data from the
registered hardware RNG devices and invokes the add hwgenerator randomness interface function
with the data obtained from the hardware device. The interface function implements a throttling
mechanism. The caller is allowed to feed data into the Linux-RNG if the value in the entropy estimator of
the input_pool falls below a threshold set by the variable random write wakeup bits.

The entropy collection function add_hwgenerator randomness is exclusively used for mixing
random data into the Linux-RNG that is derived from hardware random number generators. Per default,
hardware random number generators are used as noise source for the Linux-RNG, if they are defined with a
positive entropy “quality” value. At the time of writing, the following hardware random number generator
drivers define a quality value:

* The driver for the Cavium random number generator (drivers/char/hw_random/cavium-rng-vf.c)

1
defines a quality of 1,000 which is translated by the framework into % =0.977 bits of entropy per

data bit.

* The virtio-rng driver (drivers/char/hw_random/virtio-rng.c) defines a quality of 1,000 which implies that
its data is treated with the same entropy content as described for the Cavium RNG.

Please note that the CPU hardware RNGs like the Intel RDRAND or RDSEED instructions are not processed
with the add hwgenerator randomness function.

The developers of the respective device drivers are responsible to define an entropy content delivered by the
respective hardware random number generator. The Linux-RNG does not implement any heuristics to
estimate the entropy content of data obtained from these hardware random number generators. Further
details about hardware RNGs are provided in section 3.9.2.

The data to be mixed into the entropy pool of the Linux-RNG is the

random number produced by the hardware random number generator.

54 Federal Office for Information Security

Design of the Linux-RNG 3
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

3.5.2.6 Latent Entropy GCC Plugin

Starting with kernel 4.9, a GNU Compiler Collection (GCC) plugin named “latent_entropy” is added. As the
name indicates, it is a plugin to the C compiler used to generate the binary code out of the kernel source
code. This GCC plugin can be used to alter the binary code behavior compared to the “assumed” behavior
visible with the C code. However, the GCC plugin code will not end up as part of the Linux kernel binary.

The latent entropy GCC plugin is designed to extract as much uncertainty from a running system at boot
time as possible, hoping to capitalize on any possible variation in CPU operation (due to runtime data
differences, hardware differences, SMP ordering, thermal timing variation, cache behavior, etc).

The concept of the GCC plugin is the permutation of a global variable based on any variation in code
execution. During the boot process, the Linux kernel uses all available CPUs for the initialization of the
kernel. Depending on the state of the CPU, sometimes a function on one CPU will complete earlier than a
function on another CPU. In a subsequent boot process, this may be reversed. These variances are picked up
by mixing a function-specific value into the global variable. The variablemay therefore be different
depending on the particular order of functions that were executed. The GCC plugin inserts a local variable
in every marked function at compile time. The GCC plugin also adds logic so that the value of this variable is
modified by randomly chosen operations (ADD, XOR and left-rotation) and random values (GCC generates
separate static values for each location at compile time and also injects the stack pointer at runtime). The
resulting value depends on the control flow path (e.g., loops and branches taken).

Before the modified function returns, the plugin mixes this local variable into the latent_entropy global
variable. The value of this global variable is added to the kernel entropy pool during initialization of the
kernel when the function do_one initcall isinvoked, and during the creation of a new process when
invokingthe do fork function.Inboth cases,the add device randomness Linux-RNG API
function is invoked with the current content of the 1latent entropy global variable. As discussed in
section 3.5.2.4, the injected data is considered to have no entropy.

Additionally, the plugin can pre-initialize arrays with build-time random contents, so that two different
kernel builds running on identical hardware will not have the same starting values.

3.5.2.7 Mixing Entropy Source Data Into Entropy Pool

When entropy from the HID and block device entropy sources discussed above is mixed into the random
number state, the function add timer randomness isused. This function always mixes the gathered
entropy into the input_pool. Hardware entropy is never mixed into the blocking_pool or the ChaCha20
DRNG with the exception of the ChaCha20 DRNG initial seeding as illustrated in figure 2.

When mixing the hardware data into the input_pool, the function add timer randomness adds not
just the hardware-related data, but also timing data:

static void add timer randomness (struct timer rand state *state, unsigned
num)

{

struct {
long jiffies;
unsigned cycles;
unsigned num;

} sample;

Federal Office for Information Security 55

3 Design of the Linux-RNG

Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0
sample.jiffies = jiffies;
sample.cycles = random get entropy();
sample.num = num;

r = &input pool;

mix pool bytes(r, é&sample, sizeof (sample));

The above code snippet shows a data structure that is filled with:
* the current jiffies value which is a 64-bit value on a 64-bit CPU and a 32 bit value on a 32-bit CPU,

* ahigh-resolution time stamp at the time of invocation of this code using the random get entropy
function where the 32 low bits of the time stamp are used, and

* the value num which is the hardware-related data provided by the hardware entropy gathering functions
like add input randomness.

Please note that the compiler performs a padding of the data structure where the separate variables all
occupy 8 bytes on a 64-bit CPU. Therefore, sizeof (sample) will be 24 bytes on a 64-bit system.

After filling the data structure with the mentioned values, the input_pool is selected as destination for the
data. The final invocation of the function mix_pool_bytes mixes the data into the input_pool as illustrated in
section 3.3.1.1

The platform dependent function random get entropy is used to read the hardware timer. This
function uses the following processor functions on the individual platforms to extract the timer value:

* The RDTSC (Read Time Stamp Counter) instruction on Intel x86 and AMD-Opteron
e The STCK (Store Clock) instruction on the zArchitecture
e The MFTB (Move From Time Base) instruction on Power

* On ARM 32-bit systems, the register value from the internal co-processor P15 is read using the opcode 0
and CRm = c14.This operation is implemented in the function arch counter get cntpct with
the invocation of the following assembler code:
asm volatile("mrrc pl5, 0, %Q0, %R0, cl4" : "=r" (cval));

* On ARM 64-bit systems, the register CNTVCT_ELO is read by the function
arch counter get cntvct whichin turn uses the invocation
arch timer reg read stable (cntvct el0) thatusesthe following assembler helper code:
asm volatile ("mrs %6, " _stringify (r) : "=r" (__wval));

In all cases those instructions return a 64-bit value of the current hardware time counter irrespective of the
word size of the underlying CPU.

In the case of the Intel x86 and the Opteron the value of the clock is incremented every processor cycle,
even when the processor is halted. This results in about 1 Billion increments per second on a 1 GHz
processor. The value of the hardware time counter is reset to zero when the processor receives a reset signal.

In the case of IBM System Z thereare 2*' increments of the hardware time counter every 1.048576
seconds. The value stored is the Time Of Day (TOD) clock, which is initialized when the kernel is started.

In the case of the Power architecture, the hardware time counter is incremented every 32 cycles of the
processor. This results in 31,250,000 increments per second on a 1 GHz CPU. This hardware time counter is
reset to zero when the CPU is reset.

56 Federal Office for Information Security

Design of the Linux-RNG 3
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

Direct access to the hardware timer eliminates potential effects of a software maintained timer and the
influence of any software running on the kernel on the value of the timer. It also provides the highest
resolution possible for the given hardware platform.

In addition to the mixing of data into a given pool, add timer randomness also triggers the
calculation of the entropy estimation for the processed data. This entropy estimation is discussed in section
3.6.

Using the data structure sample, the following data is mixed into the entropy pool:

high-resolution time stamp || Jiffies || event value

This value is subjected to quantitative analyses in section 6.2.

3.6 Entropy Estimation

In the preceding section it was shown how the entropy pool is updated. As noted there, the update of the
entropy pool does not imply an update of the entropy that is estimated to exist in the given pool.

The entropy estimation is only carried out in the function add timer randomness. Therefore, if datais
mixed into the random pools by any source other than the hardware events (like when user space writes
data into the device files), the entropy estimator is not updated. One exception to this rule is the injection of
data from the interrupt noise source: add_interrupt randomness applies one or two bits of entropy
per fast_pool to input_pool transferal as specified in section 3.5.2.2.

The Linux-RNG estimates the entropy of a hardware event and modifies the entropy estimator of the
input_pool accordingly. The entropy estimator of the blocking_pool is simply modified when data from the
input_pool is mixed in or when data is read. The ChaCha20 DRNG does not have any entropy estimator as it
operates as a DRNG which is seeded once every 5 minutes with the available entropy of up to 256 bits.

The idea of the entropy estimation is that each hardware event is awarded a heuristically estimated entropy
value which then increments the entropy estimator of the entropy pool. The process of estimating the
entropy is performed for each received event.

The entropy estimator is an integer value that is stored in the data structure for each entropy pool. The
integer value denominates the entropy in 1/8th of a bit. This allows the tracking of fractions of bits. To
handle these fractions, the following translation code is used every time the entropy held in the entropy
pool in bits shall be obtained:

/*
* To allow fractional bits to be tracked, the entropy count field is

* denominated in units of 1/8th bits.

#define ENTROPY_SHIFT 3
#define ENTROPY BITS(r) ((r)->entropy count >> ENTROPY SHIFT)

The entropy estimator value entropy count is updated after the values are stirred into the input_pool as
follows. The Jiffies time of the hardware eventis t, .The Jiffies timestamps referring to prior hardware
events of the respective hardware component are denoted with f,_;) through ¢, _3 .Section3.5.1
illustrates which hardware components are tracked individually or jointly.

The following values are calculated in add _timer randomness:

14 The symbol “||” marks a concatenation of data.

Federal Office for Information Security 57

3 Design of the Linux-RNG
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

e delta= [(t,=t,_y)
* delta2= |((tn_t(nfl))_(t(nfl)_t(nfz)))‘

* delta3= |(((tn_t(n—l))_(t(n—l)_t(n—Z)))_((t(n—l)_t(n—Z))_(t(n—Z)_t(n—3)>))‘

These values can be interpreted as the first, second and third discrete derivative of the event time for the
hardware component.

The entropy of one event is now heuristically determined as follows:
1 Compute the minimum delta valuemin (delta, delta2, delta3).

2 Calculate the log, of the minimum delta as an integer operation - i.e. value after the decimal point is
discarded. The implementation of the logarithmic operation is achieved by dividing the minimum delta
value by 2 and obtain the highest bit of the value.

3 Mask out the bits higher than bit 11.

The method used is heuristic and assumes that the lower bits of the time of a hardware entropy event are
unpredictable. Even two identical instruction sequences in a system with no network interrupt would result
in very different interrupt timings, since the time, for example, of a disk I/O interrupt depends on the status
of the disk such as the position of the read/write head and the position of the sector relative to the
read/write head (this applies only to spinning hard disks and not to solid state disks). Therefore the lower
bits of the timer value are highly unpredictable even in the case where the same instruction sequences are
executed.

The use of Jiffies for the entropy calculation is historic: in the old days, the kernel only had the Jiffies time
stamp available. With the advent of high-resolution timers, the majority of entropy is derived from this
time stamp. Yet, the heuristic entropy estimation logic is not updated.

The heuristic entropy estimation value for the given hardware event is now used to increase the entropy
estimator of the input_pool. The increase operation is explained in the following code comment:

static void credit entropy bits(struct entropy store *r, int nbits)

{

/*
* Credit: we have to account for the possibility of
* overwriting already present entropy. Even in the
* ideal case of pure Shannon entropy, new contributions

* approach the full value asymptotically:

* entropy <- entropy + (pool size - entropy) *

* (1 - exp(-add entropy/pool size))

* For add entropy <= pool size/2 then
* (1 - exp(-add entropy/pool size)) >=
* (add _entropy/pool size)*0.7869...

* so we can approximate the exponential with

58 Federal Office for Information Security

Design of the Linux-RNG 3
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

* 3/4*add_entropy/pool size and still be on the

* safe side by adding at most pool size/2 at a time.

* The use of pool size-2 in the while statement is to
* prevent rounding artifacts from making the loop

* arbitrarily long; this limits the loop to
log2 (pool size) *2

* turns no matter how large nbits is.

*/

With that description, it is clear that the entropy estimate for a given hardware event is not simply added to
the entropy estimator up to the ceiling of the size of the entropy pool. Hence, the estimated value of the
pool asymptotically approaches the maximum possible value defined by the size of the entropy pool. The
fuller the entropy pool gets with entropy - i.e. the entropy estimator gets larger - the less of the entropy
estimate increases the entropy estimator. That is, if the entropy estimator is close to its ceiling (the size of
the entropy poo)l the entropy value of a hardware event that gets added is only a minuscule fraction of the
value that was heuristically attributed to the event.

On the other hand, when extracting data from of the input_pool, the amount of produced bits is simply
subtracted from the entropy estimator.

As this approach applies to both the input_pool and blocking_pool entropy estimator, the following
conservatism in the entropy estimate is evident: to outline the issue, the extreme case is applied that the
input_pool entropy estimator is close to its ceiling. In this case, the heuristic entropy estimate awarded to
the just received event will increase the entropy estimator of the input_pool by a tiny fraction only. When
pulling data out of the input_pool to seed the blocking_pool, the input_pool entropy estimator is decreased
by the read amount of bits. As the blocking_pool, however, is subject to the same entropy estimate addition
handling, the blocking_pool entropy estimator is increased by a fraction of the bits obtained from the
input_pool. Ultimately that implies that the heuristic entropy estimate awarded to one hardware event is
reduced during insertion of the event data into the input_pool and implicitly further reduced when
transferring it from the input_pool to the blocking_pool.

The credit entropy bits function also triggers the wakeup of read-like polling processes if the
entropy estimator rises above a set threshold.

3.6.1 Storing of “Superfluous” Entropy
The logic discussed for changing the entropy estimator shows that in case the input_pool is considered to be
full of entropy, the hardware events only stir the pool but do not contribute to the entropy estimation.

The following approach is used to fill the blocking_pool in case of a filled input_pool. This means that the
output pool is also used as a store of entropy and the entirety of the Linux-RNG consisting of the different
entropy pools can collect more entropy than the size of the input_pool.

static void credit entropy bits(struct entropy store *r, int nbits)

{

if (r == &input pool) {

Federal Office for Information Security 59

3 Design of the Linux-RNG
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

int entropy bits = entropy count >> ENTROPY SHIFT;

struct entropy store *other = &blocking pool;

/* If the input pool is getting full, and the blocking
* pool has room, send some entropy to the blocking
* pool.
*/
if (!work pending(&other->push work) &&
(ENTROPY BITS(r) > 6 * r->poolinfo->poolbytes) &&

(ENTROPY BITS (other) <= 6 * other->poolinfo-
>poolbytes))

schedule work (&other->push work) ;

If the entropy estimation of the input_pool rises above a threshold and the entropy estimation of the
destination entropy pool is below a certain threshold, a kernel work queue is triggered which transmits
entropy asynchronously. The threshold for the input_pool is the wakeup threshold for the reading/writing
as already discussed. The threshold for the destination pools is 75% of the size of the entropy pool.

The blocking_pool has a work queue which triggers the standard transfer mechanism from the input_pool:
/*

* Used as a workqueue function so that when the input pool is getting
* full, we can "spill over" some entropy to the output pools. That

* way the output pools can store some of the excess entropy instead

* of letting it go to waste.

*/

static void push to pool(struct work struct *work)

{

_xfer secondary pool(r, random read wakeup bits/8);

The code uses the same function for transferring entropy between the entropy pools as discussed in section
3.3.13.

3.7 Generic Architecture and Linux-RNG

With chapter 2, a general architecture of NDRNGs is given. This section now maps the general architecture
to the Linux-RNG to analyze whether all components that are expected to be present with a NDRNG are in
fact present to consider the Linux-RNG as a stand-alone system.

Figure 8 provides a mapping of the Linux-RNG with the theoretical discussion about NDRNG architecture.
Using the mapping, the noise sources as well as the DRNG can be clearly identified and separated from the
remainder of the Linux-RNG processing.

60 Federal Office for Information Security

Design of the Linux-RNG 3

Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5
Linux RNG Architecture
Jdeyirandam Sdewfurandam
getrandomi} getrandom()
AEruCT @Al ropy s1ore BIFUCT enlFopy_sTofe - —
blacking_pool
[Output-Paal] | ChalCha2i |

struct entropy store

-
input_punl " _ERruck
Aast_papl
a r 3
/tast_pool %
J \
———e .'. " .|
T j i
- _'_:"ﬁ me VAranoe | |
& [calculation with | |
.'. |

add_timer randbenéss

add_device |add_hwgenerator | add_input. Jadd_disk "alm_lnterruﬁt
_randnnness _randonness 1,_r'su'u!rrrmu.h.:;.r:_x_‘rP:r'm-m'll-u-..l:l:l' l{anﬂm{;ﬁﬁ

PCl Davice —
Hardware HOD

Figure 8: Linux-RNG architecture comared with the generic architecture

With figure 8, three areas are illustrated which are separated by a dotted line:

The upper left part contains the Linux-RNG illustration shown in the preceding section.

The Linux-RNG observes and records events from various hardware devices. These hardware devices are
illustrated in the lower left part of figure 8. Each of the gray boxes of the Linux-RNG containing

“add_* randomness” maps to a device type that is monitored by the Linux-RNG. The Linux-RNG
boxesof add device randomnessand add hwgenerator randomness are not further
mapped and discussed, as they either do not deliver any entropy or access highly specialized hardware
that is not commonly present in standard systems. To keep the entire discussion concise, these two boxes
are therefore disregarded. Further details about these functions are given in section 3.5.

The right part of figure 8 contains the architecture illustration from figure 1. As the discussion is about
NDRNG, figure 8 does not further show the box about the cryptographic usage of data obtained from the
noise source via the DRNG.

The right side of figure 8 shows the theoretical noise source concept from figure 1. Figure 8 uses different
colors for the different components and uses equally colored arrows that point to the respective
components of the Linux-RNG. To be precise:

The unpredictable phenomenon identified with the red arrows in the Linux-RNG are the events
triggered by the monitored hardware components. Section 3.5 provides details about these sources of
unpredictability.

The recording of the unpredictable phenomenon, i.e. the events and their precise timing triggered by the
aforementioned hardware components, is performed by the blue-marked components of the Linux-
RNG, namely the add * randomness functions.

Federal Office for Information Security 61

3 Design of the Linux-RNG
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

* The digitization of the data obtained with the recording components is implemented by injecting the
recorded data into the input_pool. Digitization is performed in a very simple fashion in the Linux-RNG
as follows:

e For HID and block devices, the recorded event type and time stamp are stored in a data structure
which then is simply treated as a byte-stream that is injected into the input_pool. The interpretation
of the recorded data as a byte stream is the digitization of that data.

* For interrupts, regular snapshots of the fast_pool are injected into the input_pool. Similarly to the
HID and block devices, the contents of the fast_pool is treated as a byte-stream when it is mixed into
the input_pool. Again, the interpretation of the fast_pool as a byte-stream implements the digitization
aspect.

* When considering the health test, the Linux-RNG implements one mechanism that serves as a common
health test for all data that will be mixed into the input_pool: the entropy estimation heuristic. The
entropy estimation calculates the first, second and third derivative of the time stamp of each event. Now,
when this entropy estimation is zero, the input_pool does not provide any data to the callers of the
ChaCha20 DRNG or the blocking_pool. Therefore, if an event is received where one of these derivatives is
zero and hence indicates a pattern that should be considered to have very little or no entropy, the event
data is mixed into the input_pool without allowing the input_pool being read by that amount of data. In
effect, this implies that the mixed in event data is treated as poor data where the noise source failed to
deliver entropy.

* The function inserting data into the input_pool using an LFSR can be considered a conditioning logic.

* The DRNG part is implemented by the output function to read the input_pool: the output function
calculates a SHA-1 hash over the entire input_pool which is used as the random number.

The description illustrates that the NDRNG solely is provided by the input_pool and the functions feeding it
with data. This allows the following interpretation of the Linux-RNG architecture:

The input_pool together with its feeding functions is the NDRNG as already mentioned.

The blocking_pool can be considered as a standalone, independent DRNG which is seeded from the NDRNG
of the input_pool.

Similarly, the ChaCha20 DRNG is a standalone, independent DRNG seeded from the input_pool. This
characterization is clearly evident when considering the author's implementation of the ChaCha20 DRNG as
an independent user space implementation available at http://www.chronox.de/chacha20_drng.html as
well as an independent kernel space implementation provided at http://www.chronox.de/lrng.html (see the
file Irng_standalone.c).

3.8 Use of the Linux-RNG

To ensure that the data read from the Linux RNG contains sufficient entropy, a number of precautions must
be taken. If one of these measures is not carried out, the quality of the data read from the Linux RNG can be
reduced significantly.

The changes introduced with the addition of ChaCha20, specifically the seeding of the ChaCha20 DRNG
with the first filled fast_pool instances alleviates the issues discussed below. The quantitative analysis on the
entropy of interrupts given in section 6.2.1 outlines that significant entropy is provided on systems with a
high-resolution time stamp such as Intel x86 systems. On such systems, the following precautions may not
need to be fulfilled in their strictest form.

During the shutdown of Linux, a number of bytes must be read from /dev/urandom and stored in non-
volatile storage. When storing the data, the storage must ensure that the data is inaccessible to untrusted
entities. For example, the permissions of a file holding the data shall be 600 and the directory holding the file

62 Federal Office for Information Security

http://www.chronox.de/lrng.html
http://www.chronox.de/chacha20_drng.html

Design of the Linux-RNG 3
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

shall not be writable by untrusted users. Moreover, the number of bytes to be read is defined by the contents
of /proc/sys/kernel/random/poolsize. The following code may be used to generate such a seed file:

umask 077

rm -f /var/lib/random-seed

dd if=/dev/urandom \
of=/var/lib/random-seed \
bs=$ (cat /proc/sys/kernel/random/poolsize) \
count=1

If the system does not have a defined shutdown cycle (for example it is an embedded device), the generation
of the seed file should be performed during run time at either given intervals or once after boot. For
example, the seed file can be generated every hour or one hour after boot.

During the startup of the user space the seed generated during the last run must be mixed into the state of
the RNG by simply writing the seed into /dev/random or /dev/urandom. When writing into these files, the
entropy pool is further mixed, ensuring that the state and therefore the entropy of the previous instance of
the Linux RNG is used to update the current state.

Considering regular Linux distributions, the initial installation writes a large amount of data to disk
resulting in a large quantity of entropy. In addition, the installation process may require human interaction
which leads to additional entropy being added via the HID of mouse or keyboard. That entropy should be
saved similarly to saving the seed for a regular reboot discussed for step 1.

In the case of a full disk encryption configuration, the volume master key used for encrypting all data is
generated very early in the initial installation cycle using a random number generator that is seeded by
either /dev/random or /dev/urandom. Considering the worst-case scenario of having an automated
installation process with only limited administrator interaction, the entropy in the Linux kernel is very low.
Therefore, the volume master key also will not have much entropy. In such a scenario, it is mandatory that
additional entropy is gathered before the key is generated. For example, the installer may require a number
of keyboard interactions before either /dev/random or /dev/urandom is accessed and read from. As a
conservative rule of thumb, one key stroke may be assumed to have one bit of entropy.

In the case of LiveCDs, the boot sequence should be interrupted to require the user to provide entropy using
the HIDs such as mouse or keyboard before any cryptographically strong key is to be generated. For
example, when starting the OpenSSH daemon, the entropy inside the Linux kernel should be topped off.
The reason for this requirement is that such LiveCDs do not implement the reseed maintenance. The
subsequent mix-in into /dev/random during the next boot cycle therefore lacks significant entropy before
disks are accessed or Human Interface Device devices are utilized.

3.9 Hardware-based Random Number Generators

3.9.1 CPU Hardware Random Number Generators

The driver for the Linux kernel random number generator uses the following hooks to request random
numbers from a hardware noise source in the source code file include/linux/random.h:

#ifdef CONFIG ARCH RANDOM
include <asm/archrandom.h>

#else

Federal Office for Information Security 63

3 Design of the Linux-RNG
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

static inline int arch get random long(unsigned long *v)
{
return 0;
}
static inline int arch get random int (unsigned int *v)

{

return O;

static inline bool arch get random seed long(unsigned long *v)
{
return O;
}
static inline bool arch get random seed int (unsigned int *v)

{

return O;

#endif
The functions have the following meaning:

* arch get random long:returnsa 64-bit value (64-bit architectures) or a 32-bit value (32-bit
architectures) from the DRNG output interface .

* arch get random int:returnsa 32-bit value from the DRNG output interface.

* arch get seed long:returnsa 64-bit value (64-bit architectures) or a 32-bit value (32-bit
architectures) from the seeding output interface.

* arch get seed int:returnsa 32-bit value from the seeding output interface.

The mentioned functions are set to return 0 which implies that the Linux RNG would perform its operation
completely without the help of a hardware RNG. However, if the kernel is compiled with hardware support,
the file asm/archrandom.h contains replacements for the given functions.

The following sections discuss the currently implemented hardware RNG support.

39.1.1 Intel RDRAND and RDSEED Instructions

Starting with the IvyBridge x86_64 processor, Intel implements the RDRAND instruction. That instruction
provides access to a hardware noise source that is processed by a deterministic SP800-90A compliant DRBG
based on AES in CTR mode®.

15 For more details, see http://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-
software-implementation-guide/.

64 Federal Office for Information Security

http://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide/
http://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide/

Design of the Linux-RNG 3
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

Starting with the Broadwell Intel x86_64 CPU release, the RDSEED instruction is offered in addition. The
RDSEED instruction allows access to the output of the AES CBC-MAC conditioned noise data which is also
used to seed the aforementioned CTR DRBG.

The Linux kernel implements the support for the RDRAND and RDSEED instructions by implementing the
above mentioned architecture-specific callback functions to return random numbers with a different size.

The implementation is based on assembler code provided in the file arch/x86/include/asm/archrandom.h.
The assembler code makes sure that the instruction is only invoked if the CPU implements the requested
RDRAND or RDSEED instruction by checking the CPUID feature of X86 FEATURE RDRAND or

X86 FEATURE RDSEED, respectively.

3.9.2 Hardware Random Number Generator Framework

The Linux kernel implements a framework for hardware RNGs which are provided with dedicated hardware
components such as PCI cards or auxiliary hardware components which are not commonly present for the
majority of users. This framework exports a character device file to user space, /dev/hwrng, that allows user
space to read data from a device driver that registered with the framework and found the associated
hardware. The hardware random number generator framework is unrelated to the Linux-RNG and to the
CPU hardware RNG support mentioned above.

The common use case of the hardware RNG framework is to install a user space program, such as the rngd,
which:

1 Opens /dev/random and waits on this device with poll or select until insufficient entropy is present in
the input_pool.

2 When the Linux-RNG identifies that the entropy is running low, the rngd process is woken up as
described above.

3 Therngd process now reads some data from /dev/hwrng and injects that data using the IOCTL
RNDADDENTROPY into the input_pool. This injection increases the entropy estimator by the value
provided by rngd.

To avoid such a detour through user space, the Linux-RNG offers the function

add hwgenerator randomness tothe hardware RNG framework. Using this interface function, the
hardware random number generator framework can inject entropy into the input_pool directly without
requiring user space support.

The following subsection illustrates the different use cases of the hardware random number generator
support using the example of the IBM POWER system.

3.9.21 IBM POWER Random Number Generator

The IBM POWER CPU implements a hardware noise source based on ring oscillators. This noise source is
only accessible from software executing in supervisor state, i.e. a driver in an operating system kernel.

The IBM POWER system is offered with two hypervisors that are mutually exclusive: the IBM proprietary
PowerVM, and PowerKVM based on Linux with KVM support. When using hypervisors, the noise source
can only be accessed by the hypervisor. Guest operating systems must interact with the virtual machine
monitor to access the data from the hypervisor.

Figure 9 illustrates the data flow of the random numbers from the noise source to the Linux random
number generator when Linux executes as a guest operating system in a PowerVM environment:

Federal Office for Information Security 65

3 Design of the Linux-RNG
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

mgd -
LRNG AT
Linue Kermal

pEeris-mng
[

TOE [Poweryhl Guest)
P VA Host

Hypercal
i

Hyparvisar

Criver

POWER Hardware

POWER HW RNG

Figure 9: Flow of random
numbers in a PowerVM
environment

The figure for PowerVM shows the following information flow when new random numbers are requested in
the Linux guest operating system:

1 New data is obtained from the noise source by a PowerVM proprietary device driver.

2 PowerVM makes this data available via a hypercall. That hypercall is used by the Linux guest kernel
driver pseries-rng.

3 The driver pseries-rng is registered with the Linux kernel hardware RNG framework that makes the data
available to the Linux guest operating system user space via the /dev/hwrng device file.

4 The rngd daemon pulls the data from /dev/hwrng, performs statistical tests as outlined in rngd(8) which
includes a monobit test and a poker test.

5 The rngd injects the data into /dev/random on the Linux guest operating system using the
RNDADDENTROPY IOCTL to mix it into the input_pool.

Figure 10 illustrates the data flow of the random numbers from the noise source to the Linux-RNG when
Linux executes as a guest operating system in a PowerKVM environment.

66 Federal Office for Information Security

Design of the Linux-RNG 3

Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

LRNG

Lirux Kernel

wirtio-rig
&

TOE [Powaiiutd Gl
PoweryT Hosl

Parawirt
RMG FIFO

e

migd QEMU

Fres-ramdam = LRNG
'

Linues Kermal

DOAwET-Tmg

HUANEH HANDWane
POAVER HW RNG
Figure 10: Flow of random

numbers in a PowerKVM
environment

The figure for PowerKVM shows the following information flow when new random numbers are requested
in the Linux guest operating system:

1

New data is obtained from the noise source by the Linux power-rng device driver in the Linux host. This
device driver is connected with the Linux kernel hardware RNG framework that makes the data available
to the Linux host operating system user space via the /dev/hwrng device file.

The rngd daemon in the PowerKVM host pulls the data from /dev/hwrng and performs statistical tests as
outlined in the rngd man page which includes a monobit test and a poker test.

The rngd injects the data into /dev/random on the Linux host operating system using the
RNDADDENTROPY IOCTL to mix it into the input_pool.

The QEMU virtual motherboard application in the PowerKVM host provides a para-virtualized device
which acts as a first-in, first-out (FIFO) between the guest OS and the PowerKVM host /dev/random .

The QEMU para-virtualized device is accessed by the Linux guest operating system device driver virtio-
rng.

The driver virtio-rng is registered with the Linux kernel hardware random number generator framework
that makes the data available to the Linux guest operating system user space via the /dev/hwrng device
file. In addition, that particular device driver uses the hardware random number generator framework to
establish a dedicated link to the Linux random number generator of the Linux guest operating system
and can provide data to the input_pool. The framework establishes a kernel thread named “hwrng” that
pulls 32 bytes from the virtio-rng device (and thus from the PowerKVM host /dev/random device) and
adds it to the Linux guest operating system input_pool as discussed in section 3.5.2.5. When the thread is
spawned at the time the virtio-rng driver is loaded and initialized, the first 32 bytes are provided to the
input_pool.

3.10 Support Functions for Other Kernel Parts

The source code file drivers/char/random.c implementing the Linux-RNG offers service functions to other
kernel parts that are not related to the Linux-RNG. These service functions are briefly explained below.

16 The administrator of the host system can configure QEMU to access also /dev/urandom.

Federal Office for Information Security 67

3 Design of the Linux-RNG
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

The functions get random_int and get random long are provided to support a lean but not
cryptographically secure RNG. It obtains an unsigned integer value from one of the following sources:

 [f the architecture implements a hardware random number generator (currently only Intel's RDRAND is
registered here), it obtains the data from that RNG and returns.

e Otherwise the following mechanism is used:
* obtain a per-CPU global value that is used to store the memory for the following operations,

* add the value of the calling task's PID, the Jiffies and the value of the current high-precision time
stamp (e.g. RDTSC) to the first 32 bits of that value,

e calculate an MD5 hash of this value,
* store the MD5 hash as the new value in the global per-CPU variable, and
* return the first 32 bits of the MD5 hash to the caller.

The function get random bytes arch allows callers to obtain random numbers from the CPU
hardware RNG. If the current CPU does not provide such support, the service function transparently falls
back to calling the Linux-RNG API function get random bytes.

randomize page isafunction which fills memory with random values obtained from the
aforementioned function get random_long where the page pointer is adjusted to a page boundary.

3.11 Time Line of Entropy Requirements

To give the reader a general impression when random numbers are required in a Linux system, this section
describes the boot process of a common Linux environment. The reader should consider this section as
guidance only, since the precise random number requirements highly depend on the structure of the Linux
system, including whether it uses an initramfs, is a Live-CD, how user space is booted, etc.

This section uses the common Linux distributions such as Fedora, openSUSE or Debian as examples and
assumes the use of systemd as user space initialization framework and the use of an initramfs.

The description also provides an indication of event times since boot when certain events happen. These
event times naturally may vary widely depending on the CPU speed, used hardware components that need
initialization and similar factors. Therefore, these event times should be used by the reader only as an
indication where the relative sequence of events in a large number of cases remains the same.

3.11.1 Installation Time

The installation of a Linux system is commonly started by booting a Live-CD or a USB thumb-drive with an
[SO image. The booted Linux environment is solely started from the boot media, such as a DVD or USB
drive.

The installation environment is not considered a general-purpose computing environment and thus is not
intended to be used to process user data with cryptographically secure mechanisms. In special
circumstances, such “installation-like” Linux environments are used for active use including cryptographic
purposes, like Live-CDs. Yet, such use cases are rare and require additional consideration regarding entropy.

So, why is the installation time still of interest? The answer lies in more and more common full-disk
encryption installations. As of now, Linux with its dm-crypt full disk encryption solution does not support
encrypting the disk at runtime. Therefore, when the full disk encryption support is enabled, it is mandatory
that the partitions subjected to encryption are prepared accordingly before any data is copied onto them.

68 Federal Office for Information Security

Design of the Linux-RNG 3
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

For the root partition, such a setup can consequently only be performed before it is created and data is
copied to it.

The installation tools commonly ask all installation-relevant questions before any operation including disk
accesses is performed. This also covers the request of the user's password during the installation process that
will guard the master volume key. One of the first steps during the installation will be the preparation of the
hard disk as a dm-crypt container. This preparation includes the generation of the master volume key that is
arandom number commonly obtained from libgcrypt's DRNG that is seeded from /dev/urandom. That
implies that this master volume key, which remains unchanged for the lifetime of the file system, is created
before hardly any disk operations have been performed. In some cases, the installation tool is even ASCII-
based which requires the user to press a few keys only without the use of a mouse. Thus, the two noise
sources for block devices and HID hardly collect entropy.

After the installation is completed, some installers already create the seed file which is injected into the
Linux-RNG during the first boot from the newly installed hard disk. Since by the end of the installation time
many disk accesses have been performed without much random data having been extracted from the
Linux-RNG, its entropy pool can be considered to be full of entropy and thus the seed data to be entropic,
too.

3.11.2 First Reboot After Installation

After the installation of the system, the first following reboot is important regarding its cryptographic
security. During that first reboot, the SSH host keys are created at the time the SSH daemon is started. The
start of the SSH daemon commonly happens during the start phase of the network daemons between 2 and
10 seconds after boot, depending on the CPU speed and other properties of the system.

Other cryptographic keys may be automatically generated almost at the same time, such as keys and
certificates for TLS servers and others.

3.11.3 Regular Usage

The following description outlines the sequence of events with respect to the Linux-RNG and the use of
random numbers that may be commonly observed during regular boot sequences:

1 The system is powered on, and the kernel is loaded into memory and boots.

2 Either in the very late stages of the kernel boot or during the first steps of the initramfs user space boot
operation, the first four fast_pools are injected into the ChaCha20 DRNG to bring it into an initially
seeded state.

3 After ending the initramfs phase which mounted the root file system, the user space initialization starts.
During the early phase of this initialization, the seed file is written into /dev/random.

4 Cryptographic daemons such as the SSH server daemon, web servers with TLS support, and the IKE
daemon start. During their startup, the used cryptographic libraries seed their DRNG from
/dev/urandom. Those daemons are accessible from remote entities and are intended to grant secure
cryptographic operation. Note, those user space DRNGs either do not reseed automatically at all (like it is
the case with OpenSSL's SSLeay DRNG) or only after a large reseed interval (in cases like SP800-90A
DRBGs, or libgcrypt's CSPRNG). This means that by the time the daemons start and initialize their DRNG,
sufficient entropy must be present in the Linux-RNG as these daemons must be considered to be
cryptographically insecure otherwise.

5 Far later than the completion of the user space initialization, the input_pool is filled with 128 bits of
entropy for the first time. To give readers an impression about the delay in a worst-case, the author
installed a Fedora 25 system in a virtual machine with hardly any devices. Although the ChaCha20 DRNG

Federal Office for Information Security 69

3 Design of the Linux-RNG
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

initial seeding step was reached after about 0.9 to 1 seconds after boot, the fully seeded stage that marks
the receipt of 128 bits of entropy in the input_pool was reached up to 90 seconds after boot. The boot
process of user space with an SSH daemon was fully completed after 2.5 seconds.

3.12 Security Domain Protecting the Linux-RNG

Based on the architecture description of the preceding sections it is evident that the Linux-RNG keeps a
state which collects and maintains the entropy from the noise sources. Furthermore, the Linux-RNG reads
data from the noise sources which contain the raw entropy. All entropy will be immediately lost if either the
state of the Linux-RNG or the behavior of the noise sources can be observed by an untrusted entity.

Moreover, the processing logic is vital to ensure that the entropy is maintained and proper random numbers
are generated. Thus, besides maintaining the internal state of the RNG, the processing logic must be
protected against modification by an untrusted entity.

The protection of the Linux-RNG state, the noise sources and the processing logic of the Linux-RNG can
only be achieved by requiring the hosting execution platform to provide a security domain for the Linux-
RNG. Such security domain is available with the Linux kernel which hosts the Linux-RNG. The protection
requirements and assurance level of the Linux-RNG are at least as high as those of any other kernel
functionality and data.

Any violation of the security domain of the Linux kernel by an untrusted entity, including either read
and/or write access to the Linux kernel data or processing logic, implies that the entropy of the random
numbers generated by the Linux-RNG must be considered compromised. It would mean that their
cryptographic strength is diminished.

Such violations of the security domain include:

* Execution of untrusted code as part of the Linux kernel security domain: This would be the case if that
untrusted code is loaded into the kernel and executed with kernel privileges. This can either happen
because of Linux kernel bugs allowing the insertion of untrusted code via broken kernel interfaces, or if a
privileged user space application is compromised to permit loading untrusted code. The execution of
untrusted code allows read and write access to the Linux-RNG, its state and its noise sources.

* Read access to the state of the Linux kernel security domain: If an untrusted entity gains read access to
the state data maintained within the Linux kernel the security domain is violated. Such read access may
either be direct by exploiting bugs in the Linux kernel allowing such read operations or by using side
effects of either the Linux kernel behavior or the underlying environment. As an example of undesired
side channels are all attacks abusing cache behavior (L1, L2, L3 caches, TLB), branch-prediction and
similar mechanisms. In addition, read access to the Linux kernel security domain may be possible by a
virtual machine monitor if the Linux kernel executes as a guest or by more privileged software
components. Latter include the BIOS, the System Management Mode (SMM) or the Management
Element (ME) found in contemporary x86 hardware.

* Write access to the state or the processing logic of the Linux kernel security domain may allow an
untrusted entity to alter either the behavior of the Linux-RNG or its state. Such write accesses may also
be either using direct means by exploiting Linux kernel bugs or by indirect means of side channels.

The software of the Linux kernel cannot defend against attackers with physical access to the execution
environment. Thus, the proper operation of the Linux-RNG depends on the security of the Linux kernel and
its execution environment where the administrator must ensure the following by virtue of operational
procedures:

* the physical security of the execution environment,
* aproper patch management to ensure that the Linux kernel receives timely security updates, and

* by using a trustworthy execution environment including trustworthy hardware for the Linux-RNG.

70 Federal Office for Information Security

Conducted Analyses of the Linux-RNG 4
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

4 Conducted Analyses of the Linux-RNG

An analysis of the Linux-RNG implemented in the Linux kernel version 2.6.10 has been published in 2006 by
Gutterman et al. In [GPRO06]. A study by Lacharme et al. from the year 2012 [LRSV12] has been carried out for
kernel version 2.6.30.7 and some newer versions show that some of the attacks described in [GPRO6] are no
longer possible with newer kernel versions.

It should be noted that some attacks require access to system resources which allow full control over the
system itself. If an attacker can read the blocking_pool or the state of the ChaCha20 DRNG hosted in the
Linux kernel, he has much more dangerous power than subverting the random number generator. In this
case, the attacker can subvert every operation of software on the system by reading, changing, and replaying
any data. Thus, an attacker can reach his ultimate goal of controlling user data much easier than using the
detour of controlling a random number generator.

4.1 Attacks of Gutterman et al. And its Relevance

The following section gives a brief overview of the different attacks which have been discussed by
Gutterman et al. Potentially applied countermeasures already mentioned by [LRSV12] are outlined as well.

4.1.1 Denial of Service Attacks

Two different denial of service attacks are presented in [GPR06]. The first consists of a continuous request of
random numbers from the blocking_pool. It is suggested that a set of quotas may be used, which is
considered impractical.

A continuous reading from /dev/urandom, i.e. the nonblocking_pool that was part of the discussed kernel
version could reduce the entropy present in the input_pool faster than it was replenished by the noise
sources. This also implies an implicit denial of service attack to the blocking_pool and thus /dev/random. In
kernels starting with version 4.8 this issue has been completely removed by using the ChaCha20 DRNG
instead of the nonblocking_pool. This DRNG performs a reseed after 5 minutes irrespective of the amount
of random numbers that were generated. Furthermore, as outlined by Lacharme et al.,, the kernel maintains
a min-entropy content in the input_pool which is reserved for /dev/random and cannot be obtained by any
operation with the ChaCha20 DRNG.

4.1.2 Use of Diskless Systems

As discussed in section 3.8, the Linux-RNG is commonly used such that during shutdown, a seed is
generated from /dev/urandom which is stored on disk. This seed is written back into /dev/random during
system boot to stir the entropy pools. Such an approach should cover scenarios where insufficient entropy is
available during boot time.

The writing or reading of the seed data is not possible on diskless systems like Live-CDs or router-style use
cases like OpenWRT. The author of the Linux-RNG Ted Ts’o responded to the case that he does not consider
this issue as an error of the Linux-RNG but rather a usage error.

In the current implementations of the Linux-RNG, this issue is mitigated by injecting four sets of 64
interrupts into the ChaCha20 DRNG to ensure that it is seeded as soon as possible. Furthermore, the
introduction of the get random system call with its blocking nature also counters the problems of diskless
systems.

Federal Office for Information Security 71

4 Conducted Analyses of the Linux-RNG
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

4.1.3 Enhanced Backward Secrecy

In the considered scenario the attacker knows the content of the entropy pool and wants to deduce the
previous state. In the kernel version analyzed in [GPRO6] a sub-optimal use of the feedback function implied
that the enhanced backward secrecy property was not fully present. Changes to the Linux-RNG feedback
implementation documented in [LRSV12] prevented the attacks outlined by Gutterman et al.

4.2 Lacharme’s Analysis

Further conclusions from [LRSV12] are presented in the following sub-sections.

4.2.1 Linux-RNG Without Input to the Entropy Pools

In case no entropy is collected from the noise sources, the input_pool and the blocking_pool will stop
producing random numbers. The nonblocking_pool that served /dev/urandom for the discussed kernel
versions started to operate as a deterministic random number generator using an LFSR as state transition
function and SHA-1 as output function.

The LFSR state transition function implies that the internal state will become cyclic eventually. At the time
of writing of [LRSV12], non-irreducible polynomials were used for the LFSR which implied that the period
length was less than possible. This issue is fixed for the current kernels, as the LFSRs now use irreducible,
primitive polynomials. In addition, the nonblocking_pool is replaced by a ChaCha20 DRNG that uses the
ChaCha20 block function for its state transition which is not affected by polynomials.

4.2.2 Attacks on the Input

An important conclusion which is mathematically proven by Lacharme et al. is that the mix-in of new data
into the entropy pools will never lead to a reduction of the entropy already contained in the entropy pools.
Thus, input-based attacks are not possible which means that an attacker not knowing the state of an
entropy pool cannot adversely affect the entropy of the entropy pools.

4.2.3 Assessment of the Entropy Estimation

The Linux-RNG heuristic to estimate the entropy of events obtained by the noise sources must guarantee
that at least as much “real” entropy is present as estimated. Measurements which support this requirement
are provided in [LRSV12].

The measurements given in chapter 6 also support this conclusion and even determine that the Linux-RNG
significantly underestimates the gathered entropy.

4.3 Conclusions from [LRSV12] and [GPRO06]

Both studies give hints for further development of the Linux-RNG. These hints mostly refer to direct
countermeasures of the discussed weaknesses. In addition, Gutterman et al. challenged the unnecessary
complexity of the Linux-RNG design including the large pool sizes and the invocation of SHA-1 that
happens too often. Instead a Barak-Halevi-construction is suggested.

As already outlined, the concerns raised in [GPRO6] have been addressed in newer kernel versions.

72 Federal Office for Information Security

Conducted Analyses of the Linux-RNG 4
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

Lacharme et al. confirm that the Linux-RNG reaches an appropriate security level. The authors also point
out that replacing the used SHA-1 hash with more modern hash functions like SHA-3 would require a
complete redesign.

Lacharme et al. complain that no theoretical basis for the entropy estimation is present. Such theoretical
basis is presented by Benjamin Pousse with [P12]. Pousse uses the so-called Kolmogorov-complexity which
is defined by the shortest possible description of a message. In other words, the Kolmogorov-complexity of a
bit string is the bit length of an optimal compression of the considered bit string.

Federal Office for Information Security 73

5 Coverage of BSI Requirements NTG.1 and DRG.3
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

5 Coverage of BSI Requirements NTG.1 and DRG.3

The functionality classes of NTG.1 and DRG.3 are defined in [AIS2031], sections 4.10 and 4.8, respectively.
The current chapter lists all requirements of the respective functionality classes and compares them with
the implementations found in the Linux-RNG.

The analysis demonstrates the following:

* The behavior of /dev/random complies with all requirements of NTG.1 on contemporary x86 hardware
having a high-resolution time stamp. This analysis does not provide a statement for other hardware
architectures, as measurements are only applied on x86 systems. Since the entropy estimation partially
depends on architecture-specific high-resolution time stamps, the results and conclusions of this chapter
cannot be readily applied to other hardware architectures. At least the requirement of NTG.1.6 for
empirical measurements is not covered on other architectures.

* The implementation of the ChaCha20 DRNG feeding /dev/urandom, the get random system call, and
the in-kernel get random bytes API complies with the requirements of DRG.3 if applying the
constraints outlined in section 5.2.1. When a suitable replacement for the seed source discussed in
DRG.3.1 is found, this conclusion can be applied to other hardware architectures as DRG.3defines
procedural requirements only.

To claim NTG.1 compliance, the ATH9K device driver provided for Atheros Chips based Wi-Fi cards must be
compiled with the option CONFIG ATH9K HWRNG set to “N” during the kernel compilation. When this
option is enabled, the hardware random number generator with its noise source invokes the Linux-RNG
add_hwgenerator randomness function to provide data and update the entropy estimator. At the
time of writing, the noise source is not independently analyzed nor is its design publicly available. Thus, it is
unclear whether the NTG.1 properties are met by the Linux-RNG when the Atheros random number
generator is present and activated.

5.1 /dev/random: NTG.1

This section analyzes the NTG.1 properties implemented by /dev/random.

In addition, when considering the input_pool as a separate NDRNG, the analysis applies to the input_pool as
well. This is due to the fact that the input_pool has the very same characteristics as observed for
/dev/random with respect to the NTG.1 requirements. The following characteristics relied upon by the
NTG.1 discussion below are identical for both:

e Use of an LFSR with a primitive and irreducible polynomial as state transition function. This finding is
discussed in detail in section 7.1

e Use of a SHA-1 based output function

* Blocking behavior, i.e. prevention of the generation of random numbers if the entropy estimation is too
low

* The entropy estimation maintenance is identical for both. Note that the entropy estimation maintenance
applied by the Linux-RNG reduces the heuristic entropy estimation even further if the amount of
entropy assumed to be present in the entropy pool is already high. The following discussion disregards
this detail which makes the Linux-RNG entropy estimation maintenance even more conservative than
already outlined below.

The following sections discuss the blocking_pool. Considering the identical properties of the blocking pool
and input_pool, all statements are equally applicable to the input_pool. Thus, the input_pool by itself can be
considered to be an NTG.1 compliant random number generator as well.

74 Federal Office for Information Security

Coverage of BSI Requirements NTG.1 and DRG.3 5
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

511 NTG.1.1

The requirement of NTG.1.1 is defined as:

“The RNG shall test the external input data provided by a non-physical entropy source in order to estimate
the entropy and to detect non-tolerable statistical defects under the condition [assignment: requirements
for NPTRNG operation].”

NPTRNG refers to “non-physical true random number generator”.

This requirement is implemented with the functionality maintained for the input_pool (and thus implicitly
enforced for the blocking_pool) as follows. The following statements have to be added to the assignment
operation of the NTG.1.1 requirement:

* For each noise source, the entropy collection functions implement checks as to whether the event value
is “appropriate”. Using these mechanisms, statistically significant skews are prevented. Specifically the
following checks are implemented:

* HID: The function add_input randomness discards event values that are identical to the
preceding event value.

* Block devices: The function add disk randomness discards an event if either no data structure
is allocated for a particular block device to maintain noise source specific information or if the block
device is considered inappropriate as a source for entropy.

* Interrupts: The interrupt noise source is stimulated by interrupts received from devices. If the
interrupt data is not correct, the interrupt cannot be processed by the Linux kernel and the device will
be inoperable and thus cease to function. If multiple devices were to suffer from such conditions, it is
likely that either the kernel will crash or the entire system will cease to function.

e HID / block device noise source: The Linux-RNG function of add_timer randomness calculates an
entropy estimate for each received HID or block device event as discussed in section 3.6. Using the
minimum of the first, second and third discrete derivative of the time stamp, statistical defects in the
monotonically increasing counter are detected. If such defects are detected, the event is credited with
zero bits of entropy.

e Interrupts: The Linux-RNG awards a set of 64 or more interrupts exactly one bit of entropy as discussed
in section 3.5.2.2. If the Intel CPU instruction of RDSEED is present, two bits of entropy are awarded to
the 64 or more interrupts. Statistical defects are caught by the aforementioned requirement that
interrupts must operate benignly, i.e. in a way that supports the operating system execution, as otherwise
the system may cease to function. Furthermore, due to the massive underestimation of entropy in the
interrupts, potential statistical abnormalities or the absence of any entropy delivered by RDSEED are
countered.

* Theread function of /dev/random takes the entropy estimation into consideration and only delivers as
many bits as entropy is available. For each read bit, the entropy estimate is reduced by one bit.

These mechanisms implemented by the Linux-RNG imply that the processing of the data from the noise
sources complies with the requirements of NTG.1.1.

512 NTG.1.2

The requirement of NTG.1.2 is defined as:

“The internal state of the RNG shall have at least [assignment: Min-entropy]. The RNG shall prevent any
output of random numbers until the conditions for seeding are fulfilled.”

Federal Office for Information Security 75

5 Coverage of BSI Requirements NTG.1 and DRG.3
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

Based on the design and the statistical analysis, the assignment for the Min-entropy can be specified as
follows: “... as many bits of theoretical min-entropy as requested by the caller ...”. The reason for this
assignment is the blocking behavior enforced by the output function of the blocking_pool generating
random numbers for /dev/random. For every bit of random data generated for /dev/random, raw noise that
is awarded an heuristic entropy value of at least one bit must have been collected by the Linux-RNG.

The question that must be answered for a conclusion is whether the heuristically determined entropy
content estimated by the Linux-RNG is not larger than the real entropy content of the raw noise. Section 6.2
provides this comparison which can be summarized as follows:

* Interrupts: The heuristic entropy applied by the Linux-RNG when the RDSEED instruction is present is 2
bits of entropy per 64 interrupts, i.e. 1/32th bit of entropy per interrupt"’. The analysis of the Linux-RNG
has shown that the entropy content of each high-resolution time stamp provides more than 2 bits
(SP800-90B min-entropy with 4-bit window), more than 4 bits (SP800-90B min-entropy with an 8-bit
window), 19.2 bits (Shannon entropy), or 12.1 bits (AIS 20/31 min-entropy). Irrespective of the used
entropy value, these values are significantly higher than the heuristically applied entropy.

* Block devices: The entropy heuristic applied by the Linux-RNG awards on average 0.21 bits of entropy
per block device event. The measurement of the raw noise shows the following entropy content per
event: more than 2.7 bits (SP§00-90B min-entropy with a 4-bit window), more than 5.5 bits (SP800-90B
min-entropy with an 8-bit window), 17.7 bits (Shannon entropy), or 13.5 bits (AIS 20/31 min-entropy).
Again, the heuristic entropy value applied by the Linux-RNG for each event is significantly less than the
measured entropy.

* HID: The Linux-RNG entropy heuristic awards on average 1.29 bits of entropy per HID event. The raw
noise measurement shows the following entropy content per HID event: more than 1.8 bits (SP800-90B
min-entropy with a 4-bit window), more than 4 bits (SP800-90B min-entropy with an 8-bit window), 15.6
bits (Shannon entropy), or 10.1 bits (AIS 20/31 min-entropy). Just as for the block device and interrupt
noise sources, the Linux-RNG heuristic therefore underestimates the available entropy.

As all heuristic entropy values applied by the Linux-RNG to the entropy estimator steering the blocking
behavior of /dev/random are less than the available entropy in the raw noise, the entropy estimator value
underestimates the available entropy. As the blocking behavior rests on the entropy estimator, it is
guaranteed that each bit produced by /dev/random is backed by at least one bit of fresh entropy obtained
from the noise sources.

Therefore, the implementation of /dev/random complies with the requirements set forth by NTG.1.2.

513 NTG.1.3

The requirement of NTG.1.3 is defined as:

“The RNG provides backward secrecy even if the current internal state and the previously used data for
reseeding, resp. for seed-update, are known.”

For performing the analysis, it is assumed that an attacker has the information specified by NTG.1.3:
* the content of the entropy pool s; at the time index t, as well as

* all data used for the seeding and reseeding for the time index 0, 1, ..., t.

As defined in NTG.1, the attacker wants to obtain the previous random number out.,,.

* Figure 11 depicts the situation and the relationship of input and output data. Please note that the figure
provides a simplified expression of the Linux-RNG processing as the parallel execution and processing of

17 This is the worst case value. It may be the case that more interrupts are collected that are collectively awarded
2 bits of entropy.

76 Federal Office for Information Security

Coverage of BSI Requirements NTG.1 and DRG.3 5
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

data is not covered. In the parallel processing, several phases may overlap. Yet, the conclusion that can be
drawn from figure 11 is identical for a single threaded or parallel processing.

Figure 11 uses the following symbols:

* s refers to the entropy pool content at the time index t

* ¢, refers to new entropy from the noise sources at time index t

e h,refers to the SHA-1 hash of the entropy pool at the time index t

* out;, refers to the output data provided by the Linux-RNG to the caller at the time index t

B -
i
s
e . -
Mix
X
out,, fold(h,) 5,

Figure 11: Relationship between Linux-RNG
processing and attacker-known and unknown
data

Figure 11 indicates attacker-known data with a green background color whereas the attacker-unknown data
is indicated with a red color.

The attacker wants to determine the value of out.;). In order to determine this value, h.;) and si.;) must be
constructed from ey and s.

It is assumed that the attacker is capable of reversing the LFSR to the state before e is mixed into the
entropy pool considering that in the worst case no additional entropy has been mixed into the entropy pool.
Yet, this state contains the mixed-in SHA-1 output hy., as well as s, An attacker is unable to extract the h-
1y after it has been mixed in without knowing s,y due to the properties of SHA-1 and the LSFR operation:

¢ Both functions are non-invertible.

e For both functions it is hard to obtain a pre-image for a given output. For SHA-1 the effort is related to
the collision resistance which is considered extremely high. For the LFSR, the determination of a pre-
image of the entropy pool with a size of 1024 bits is considered, on the outside, to take eons with current
computer technology.

With this rationale it can be concluded that the random numbers generated for /dev/random complies with
the requirements of NTG.1.3.

The reader should consider the whole picture when assessing the threat to be countered for NTG.1.3: the
entropy pool is maintained in the Linux kernel. If an attacker is capable of eavesdropping on the Linux
kernel to observe the entropy pool and the mix function, all security barriers of the operating systems have
already been breached, it becomes useless to repel subsequent attacks against the Linux-RNG:

* Everyread invocation to /dev/random or /dev/urandom can be monitored to catch every newly
generated random number. In addition, the read invocations can be modified to return attacker-crafted
“random numbers”.

* The attacker can read all memory regions of the system. This includes the state of DRNGs seeded by
/dev/random or /dev/urandom.

Federal Office for Information Security 77

5 Coverage of BSI Requirements NTG.1 and DRG.3
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

* An attacker can monitor, modify or replay all cryptographic operations of the operating systems. The
modification applies to the key material as well which is derived from random number generators like
/dev/random.

Thus, the discussion around NTG.1.3 must be considered academic in nature with hardly any practical
relevance. In practice an attacker will make use of acquired privileges more effectively than monitoring the
Linux-RNG and deducing previous random numbers.

514 NTG.14

The requirement of NTG.1.4 is defined as:

“The RNG generates output for which [assignment: number of strings] strings of bit length 128 are mutually
different with probability [assignment: probability].”

The blocking_pool entropy pool has a size of 1024 bits. In a worst-case scenario when the blocking_pool has
just been fully seeded with fresh entropy it can generate 1024 bits of entropy before it reseeds with newly
fresh entropy.

To generate a bit string of 128 bits, /dev/random performs two SHA-1 operations which produce 80 bits
each after the folding operation. Both values will be concatenated where the trailing 32 bits will be
discarded.

In the ideal case the generated bit strings exhibit an equidistribution. Considering the birthday paradox, this
implies that after after 2 blocks of 128 bits each have been generated, probably the following collision is
present:

P(Collision after 2** blocks)~0.3935.
The probability that after generating n 128 bit blocks no collisions are present can be calculated as follows.
The number of possibilities for the output of n pairwise different bit strings of length 128 bits is:
A=2"(2"=1)- (2" —n+1)
Therefore, the probability that there are no collisions after the generation of n blocks results in

A
P(n)_ (2128)71
Instead of using the Stirling formula, an easier estimation of the lower boundary for the probability P is
provided as follows. This rough estimation can be used due to the presence of large numbers:

A=2"727—1) (2% —n+1)>(2 = n+1)
Using this rough estimation formula, a lower boundary for the probability P can be obtained using the
following easy to process formula:

2% 1)
2128)

P(n)>(

Using this formula, a probability can be calculated that 255 successive bit strings of size 128 bits are pairwise
different with a probability of P > 0.999996.

Stating the obtained results differently, k > 255 bit strings of size 128 bits can be generated where no
collisions occur with a probability of P > 1 - €, with € = 3.8e-6. This means that with the given probability,
the bit strings are pairwise different. These values should be put into perspective with the requirement of
[AIS2031] for AVA_VAN.5 with k>2%* and € < 2%,

Using the formula with n = 264 the following estimate can be obtained for the probability of having no
collisions (i.e. the bit strings are pairwise different):

78 Federal Office for Information Security

Coverage of BSI Requirements NTG.1 and DRG.3 5
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

P(no collisions after 2* blocks)> 1 ~(.3678.
e

Comparing this value with the precise probability using the initially stated probability for collisions of
0.3935, the probability for having no collisions is 1 — 0.3935 =0.6065. Comparing this value with the
estimated value using the estimation formula it can be concluded that the probabilities P(n) in reality are
significantly higher than calculated with that formula. This means that significantly more than 2% bit
strings with a length of 128 bits will be pairwise different with a probability of P > 1 - 2. Therefore it can be
concluded that /dev/random is resistant for an attacker with a high the attack potential.

To apply the findings to the Linux-RNG blocking_pool, it can be concluded that the behavior of the
blocking_pool comes close to the ideal case:

* Theblocking_pool has a large size of 1024 bits. The pre-image for each SHA-1 value is therefore
extremely large, which implies that the assumption of an equidistribution must be considered to be
appropriate. In addition, a big part of the 1024 bit entropy pool is changed by each random number
generation.

* Random numbers are only generated when sufficient entropy is present. If insufficient entropy is
present, fresh entropy is obtained from the input_pool which again will change the entropy pool content
significantly.' This will support the assumption of an equidistribution. It should be noted that a
reseeding is enforced at the latest after the generation of 6 blocks of 128 bits each.

* SHA-1 was subject to extensive assessments that have shown that generated SHA-1 values are a close
approximation of an equidistribution supported by the avalanche effect.

* The folding operation using XOR is considered to not change the assumed equidistribution.
This allows the conclusion that /dev/random fulfills the requirements of NTG.1.4.

Side note: The rationale also applies to the extraction of data from the input_pool, since the procedure for
the generation of data is identical for the blocking_pool and the input_pool.

515 NTG.15

The requirement of NTG.1.5 is defined as:

“Statistical test suites cannot practically distinguish the internal random numbers from output sequences of
an ideal RNG. The internal random numbers must pass test procedure A [assignment: additional test
suites].”

The execution of the Test Procedure A defined in [AIS2031] on the output of /dev/random is documented in
section 8.1.

The requirement for additional statistical tests is covered with section 8.1 which refers to other statistical
methods. In addition, all tests conducted in chapter 6 and following can be considered to support the stated
requirement.

Considering section 8.1, the assignment of the requirement can be specified as: “... as well as the dieharder
test suite®, the Chi-Squared test and the test of compressing the generated data with gzip, bzip2, xz and
lzma”.

516 NTG.1.6

The requirement of NTG.1.6 is defined as:

18 The absolute min-entropy that is required for a transport is 1 byte.
19 Test suite is provided at http://www.phy.duke.edu/~rgb/General/dieharder.php

Federal Office for Information Security 79

http://www.phy.duke.edu/~rgb/General/dieharder.php

5 Coverage of BSI Requirements NTG.1 and DRG.3
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

“The average Shannon entropy per internal random bit exceeds 0.997.”

As outlined in section 5.1.2 for NTG.1.2, the testing performed in section 6.2 allows a comparison of the
heuristic entropy estimation awarded by the Linux-RNG to each noise source event with the entropy
present in this value. The analysis shows that the heuristic entropy estimation is significantly lower than the
entropy obtained from the noise sources. This implies that the Linux-RNG is very conservative in its
entropy estimation.

The heuristic entropy estimation is maintained for the blocking_pool that drives the blocking behavior of
the /dev/random output function. This mechanism allows only to draw as many bits from /dev/random as
there is entropy present in the blocking_pool. The entropy estimation is increased by the heuristic entropy
estimation awarded to the data mixed into the blocking_pool and is decreased by the number of bits
obtained via /dev/random. With this concept, the Linux-RNG implies that each data bit generated for /dev/
random out of the blocking_pool is backed by one bit of entropy obtained from the noise sources.

The blocking behavior of /dev/random implies that only as much entropy can be extracted from the
blocking_pool as entropy went into it. The Linux-RNG uses its heuristic entropy estimation to control this
behavior.

As the heuristic entropy estimation is significantly lower than the measured entropy, the following
statement holds true: if it can be demonstrated that the measured entropy ensures that the requirement of
NTG.1.6 is met, then the heuristic entropy estimation applied by the Linux-RNG to the blocking behavior is
sufficient to guarantee the compliance with NTG.1.6 as well.

The following rationale shows for each noise source independently why the measured entropy is sufficient
to meet NTG.1.6*:

* Interrupts: A set of at least 64 interrupts is awarded 2 bits of entropy by the heuristic of the Linux-RNG.
This means that after obtaining 64 interrupts and mixing it into the LFSR, 2 bits are allowed to be read
from the entropy pool via SHA-1 before the blocking behavior stops additional read operations. The
measured entropy for one interrupt using the Shannon entropy is given in section 6.2.1 with 19.2 bits.
That means, with the collection of 64 interrupts, the Linux-RNG has collected 64 * 19.2 = 1228,8 bits of
entropy. The use of the fast_pool with its 4 32 bit words can only hold 128 bits of entropy. Assuming that
the fast_pool mix operation does not destroy entropy, 64 or more interrupts injected into an entropy
pool will have 128 bits of (Shannon) entropy. That means that for each 2 bits of generated random data,
128 bits of Shannon entropy have been obtained from the interrupt noise source.

* Block devices: As shown in section 6.2.2, each block device event is awarded on average 0.21 bits of
entropy by the Linux-RNG heuristic. That means that after around 5 block device events that have been
received on average, the blocking_pool allows the generation of one random bit. The Shannon entropy
value measured for block device events is 17.7 bits of entropy per event as listed in section 6.2.2. Thus for
5 block device events, the Linux-RNG has collected 5 * 17.7 = 88.5 bits of entropy. This implies that for
each generated random bit, the Linux-RNG has obtained 88.5 bits of entropy from the block device noise
sources.

e HID: Considering section 6.2.3, the Linux-RNG heuristic awards on average each HID event 1.29 bits of
entropy. This means that after 4 HID events around 4 * 1.29 = 5 bits of random data can be produced
before the blocking behavior is enforced. Using the measured Shannon entropy value of 15.6 bits per
HID event, it implies that for generating 5 bits of random data, four blocks with 15.6 bits of Shannon
entropy each having in total 62.4 bits of Shannon entropy are obtained by the Linux-RNG from the HID
noise source.

20 The discussion refers to bit-wise reading from the entropy pool. The Linux-RNG implementation requires a
minimum size of one byte and a minimum transfer size of data from the input_pool to the blocking_pool of 64
bits. To illustrate the relationship between the measured and heuristic entropy values and the blocking
behavior, the discussion assumes a bit-wise read operation is possible. Therefore, this is considered to be a
worst-case analysis.

80 Federal Office for Information Security

Coverage of BSI Requirements NTG.1 and DRG.3 5
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

Due to the independence of the noise sources, the Shannon Entropy values can be added when obtaining
entropy from all noise sources in parallel.

It can be concluded that for each generated random bit, much more than one bit of Shannon entropy is
collected from the noise sources by the Linux-RNG. In a worst case, when the Linux-RNG fills the entire
entropy pool with size of 1024 bits with data from the noise source, the amount of Shannon entropy from
the individual events that are collected by the Linux-RNG is much more than 1024 bits, because the Linux-
RNG applies its conservative heuristic entropy estimation. Though the maximum amount of entropy that
the entropy pool can maintain is equal to its size, i.e. 1024 bits. This means that once the Linux-RNG
considers its entropy completely filled, 1024 bits of Shannon entropy are present in that pool.

The Linux-RNG output function allows the generation of 1024 bits of random data from that completely
filled entropy pool before the blocking behavior is enforced. Assuming that the LFSR state transition
function and the SHA-1-based output function do not destroy entropy, this means that in this worst case
scenario one bit of generated random data is backed by one bit of Shannon entropy.

This allows the conclusion that /dev/random meets the requirement of NTG.1.6.

5.1.7 NTG.1 Properties on Different Environments

The purpose of this study is to demonstrate that the Linux-RNG with its /dev/random device file complies
with the properties of NTG.1. The testing was executed on a specific hardware type outlined in the
Appendix. The conclusions of the NTG.1 assessment apply to other environments considering the following
restrictions:

* The Linux system executes on an Intel / AMD x86 CPU.
e The CPU implements the RDTSC instruction.
* The maximum CPU clock frequency is at least 1GHz.

* The Linux system either executes directly on the hardware without a virtual machine monitor or as a
guest within one of the the virtual machine monitors assessed in [LRNGVIRT].

e The source code for the Linux-RNG is unchanged compared to the source code discussed in this
document.

e The Linux kernel is fully trusted and does not execute any code unknown to the vendor. This implies
that the state of the kernel and therefore the state of the Linux-RNG is fully protected.

Any deviations from the mentioned requirements implies that the NTG.1 assessment given in the preceding
sections is not applicable and a separate NTG.1 analysis is required.

5.2 ChaCha20 DRNG: DRG.3

In addition to the /dev/random analysis, the ChaCha20 DRNG backing /dev/urandom, the
get random bytes APl and the getrandom system call is analyzed to comply with DRG.3.

52.1 DRG3.1

The requirement of DRG.3.1 is defined as:

“If initialized with a random seed [selection: using a PTRNG of class PTG.2 as random source, using a PTRNG
of class PTG.3 as random source, using an NPTRNG of class NTG.1 [assignment: other requirements for
seeding]], the internal state of the RNG shall [selection: have [assignment: amount of entropy], have
[assignment: work factor], require [assignment: guess work]].”

Federal Office for Information Security 81

5 Coverage of BSI Requirements NTG.1 and DRG.3
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

The seeding of the ChaCha20 DRNG allows the use of CPU-based noise sources which contribute entropy.
These noise source, however, cannot be analyzed or tested and thus must be assumed to have zero bits of
entropy for this discussion. This implies that to ensure these noise sources do not contribute entropy, the
following kernel command line option must be set: random. trust cpu=0 or the kernel compile-time
option of CONFIG RANDOM TRUST CPU must be set to “NO” (i.e. disabled).

The ChaCha20 DRNG is seeded by reading from the input_pool. As outlined in section 5.1, the input_pool
complies with the requirements from NTG.1 and is therefore considered an NTG.1 random number
generator.

This implies that the first selection can be instantiated with the selection “using an NPTRNG of class NTG.1”.

The second selection implies that the DRNG has been seeded before being used by the caller. This is only
enforced for the getrandom system call which blocks until a set of 64 interrupts have been received four
times and used to seed the ChaCha20 DRNG. Using the SP800-90B min-entropy measured for the interrupt
events in sections 6.3.1 and 6.3.2, each interrupt event delivers more than 2 bits of entropy (using the lowest
SP800-90B value from the referred sections). This implies that when receiving 256 interrupts, the Linux-
RNG has received at least 512 bits of entropy.

Considering that the interrupt data is mixed into the 256 bit key part of the ChaCha20 state, the maximum
entropy that the used memory location can hold is equal to its size, i.e. 256 bits. This implies that after the
receipt of 256 interrupts that are mixed into the ChaCha20 key part, the state of the ChaCha20 DRNG
contains 256 bits. Thus the second selection of DRG.3.1 can be instantiated with: “have 256 bits of entropy”.

The in-kernel API call of add random ready callback allows registering callback functions by
kernel subsystems. When using this API, the registered kernel subsystem’s callback function is invoked after
either the ChaCha20 DRNG is initially seeded with the aforementioned 64 interrupts four times and after
the input_pool has received 128 bits of entropy. Thus, when using the API call to register a callback, the
aforementioned statements about the amount of entropy present in the ChaCha20 DRNG equally apply
after the callback functions have been triggered.

This allows the conclusion that the DRG.3.1 requirements are met for the get random system call. In
addition, when using the in-kernel APl get random bytes after the callback function registered with
add random ready callback hasbeen triggered implies that the requirements for DRG.3.1 are met
as well.

Contrary, due to the lack of initial seeding enforcement, the following methods of using the ChaCha20
DRNG are not DRG.3.1 compliant:

* using /dev/urandom, and

* usingget random bytes either before the callback functions registered with the API of
add_random ready callback hasbeen triggered or using get random bytes without
registering a callback at all.

522 DRG.3.2

The requirement of DRG.3.2 is defined as:
“The RNG provides forward secrecy.”

The forward secrecy is guaranteed by the ChaCha20 DRNG as follows: The ChaCha20 DRNG maintains an
internal state which holds a key that is unknown to the caller. Furthermore, the ChaCha20 DRNG
increments the counter by one after each generated block. Assuming that the ChaCha20 block function is
irreversible for an observer that does not have access to the ChaCha20 state with its key, a caller cannot
deduce subsequent random numbers from his obtained random number.

82 Federal Office for Information Security

Coverage of BSI Requirements NTG.1 and DRG.3 5
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

Furthermore, ChaCha20 is resistant against determining the used key by assessing the already generated
random numbers.

These properties therefore guarantee forward secrecy.

Therefore, the ChaCha20 DRNG complies with the requirements of DRG.3.2.

5.2.3 DRG.3.3

The requirement of DRG.3.3 is defined as:
“The RNG provides backward secrecy even if the current internal state is known.”

After the generation of a random number, the ChaCha20 DRNG updates its internal state using random
numbers that it has generated but that are not provided to any caller and that are discarded immediately
afterwards. Assuming that the ChaCha20 block function is irreversible without the key, an attacker cannot
deduce the previous state used to generate previous random numbers via the ChaCha20 block operation
even when the current ChaCha20 state is known to the attacker.

Therefore, the ChaCha20 DRNG complies with the requirements of DRG.3.3.

524 DRG.34

The requirement of DRG.3.4 is defined as:

“The RNG, initialized with a random seed [assignment: requirements for seeding], generates output for
which [assignment: number of strings] strings of bit length 128 are mutually different with probability
[assignment: probability].”

Considering that the ChaCha20 block operation has similar characteristics to SHA-1 that are outlined in
section 5.1.4 for NTG.1.4 compliance, the presented calculation equally applies to ChaCha20. The following
characteristics of ChaCha20 are important:

* The output of the ChaCha20 block operation follows an equidistribution.

¢ The ChaCha20 DRNG is based on an internal state of 512 bits which can maintain a seed value of up to
256 bits. Larger seed values or more seed is XORed such that it fits into the 256 bits. Although the state is
significantly smaller as the blocking_pool, the output function is conceptually identical: using a
cryptographic function a new random value is derived from the internal state where the output follows
an equidistribution.

The major difference to section 5.1.4 is that the blocking_pool is frequently reseeded with fresh entropy. The
ChaCha20 DRNG is reseeded after five minutes, which allows the generation of large amounts of random
data in a worst case. Between the reseeds, the quality of the random numbers rests on the quality of the
ChaCha20 block operation. As this operation produces data following an equidistribution, the conclusion
from section 5.1.4 is still applicable for the deterministic operation phase of the ChaCha20 DRNG.

Therefore, the ChaCha20 DRNG complies with the requirements of DRG.3.4.

5.2.5 DRG3.5

The requirement of DRG.3.5 is defined as:

“Statistical test suites cannot practically distinguish the random numbers from output sequences of an ideal
RNG. The random numbers must pass test procedure A [assignment: additional test suites].”

Section 8.2 provides a rationale for the execution of the Test Procedure A defined in [AIS2031].

Federal Office for Information Security 83

5 Coverage of BSI Requirements NTG.1 and DRG.3
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

Additional statistical tests are applied as covered in section 8.2, which documents the statistical methods
applied to the output of the ChaCha20 DRNG. In addition, all tests conducted in chapter 6 and following can
be considered to support the stated requirement.

Considering section 8.2, the assignment of the requirement can be specified as: “... as well as the dieharder
test suite, the Chi-Squared test and the test of compressing the generated data with gzip, bzip2, xz and lzma”.

This allows the conclusion that the ChaCha20 DRNG complies with the requirements of DRG.3.5.

84 Federal Office for Information Security

Test Series: Raw Entropy 6
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

6 Test Series: Raw Entropy

The test series documented in this chapter cover the analysis of the output of the noise sources depicted on
the lower part of figure 2. The tests are devised so that the unprocessed data recorded by the noise sources
are measured and obtained for this analysis.

The noise sources with their generated data are described in section 3.5.2. This section also outlined that
only a subset of the noise sources provide data which is assigned an entropy estimate. The following
sections only perform an assessment of the noise sources with an entropy estimate. All other noise sources
mix the entropy pools but do not affect any conclusions drawn in chapter 5 regarding the type of the Linux-
RNG being an NTG.1 and a DRG.3 random number generator. One exception is to be noted: although
hardware random number generators can contribute entropy, they are considered specialized hardware
which is not present in common hardware systems. Furthermore, any assessment requires further analysis
of the design of these hardware random number generators. As they are commonly proprietary, such
information is not publicly available preventing a full analysis.

The study attempts to deliver a conservative analysis that should be applicable to a large array of systems
and use cases. Therefore, if data received by a noise source has questionable entropy content, this study
assumes a worst-case scenario where the data is assumed to contribute no entropy to the Linux-RNG.

6.1 Analyzed Noise Source Data

Before the analyses of the data from the noise sources are conducted, the noise sources are again discussed
regarding their produced data and the relevance of that data concerning entropy.

6.1.1 Interrupt Noise Source

As outlined in section 3.5.2.2, the noise source of Interrupts collects different data for each event. Based on
the following considerations, the implied entropy in the data parts varies greatly:

e The Jiffies time stamp recorded for one interrupt commonly has a resolution of 1000 Hz. Interrupt
occurrence can be observed by monitoring /proc/interrupts which contains the number of interrupts
received for each interrupt in real time The corresponding number is incremented as soon as a new
interrupt is processed. Considering that an attacker is able to monitor that file and that the increment of
the numbers in that file happens as soon as an interrupt arrives, it is assumed for this study that an
attacker is able to deduct that the Jiffies value awarded for a respective interrupt by the Linux-RNG can
be obtained with full accuracy by an attacker. This implies that for a worst-case scenario that no entropy
would be delivered with the Jiffies value. Therefore, this Jiffies value will not be further analyzed and is
considered to deliver no entropy by this study.

¢ In addition to the Jiffies value, the Linux-RNG records the instruction pointer and the content of one of
the registers. This data varies depending on the type of interrupt. Yet, for one given interrupt it is
assumed that these values are predictable. The instruction pointer is constant for a given interrupt. The
registers may change depending on the recorded data by the hardware device. As the hardware device
may store data that can be deducted by an attacker, such as memory addresses where hardware event
information is found, the study is conservative and treats the data obtained from the registers and the
instruction pointer as having no entropy. Consequently, such data will not be analyzed.

* Finally, the interrupt noise source records the 32 LSB of the high-resolution time stamp. Albeit the issue
discussed for Jiffies affects also the high-resolution time stamp, it is of no concern due to the following.
The high-resolution time stamp has a resolution of nanoseconds. When observing hardware events or
/proc/interrupts, an attacker must be able to deduce the nanosecond value obtained by the Linux-RNG
for a given interrupt with a high degree of precision. The degree of precision the attacker must apply to

Federal Office for Information Security 85

6 Test Series: Raw Entropy
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

deduce the time stamp value must be higher than the entropy awarded to the event by the Linux-RNG.
In other words, if an attacker can deduce the used time stamp with a precision of, say, 2 bits (i.e. the
attacker’s uncertainty is only 2 bits), but the Linux-RNG would award this event more than 2 bits, the
Linux-RNG would overestimate the available entropy. As the Linux-RNG awards 64 interrupts one bit of
entropy, a single interrupt is implied to have 1/64th bit of entropy. Thus, the attacker must deduct the
high-resolution time stamp with full accuracy if he wants to undermine the entropy estimation of the
Linux-RNG. Even when he cannot deduct the last bit with a precision better than 63 correct deductions
out of 64 observations, the best attack against the noise source of the interrupts is brute force. Therefore,
the high-resolution time stamp is considered for further entropy analysis.

6.1.2 Block Device Noise Source

Sections 3.5.2.3 and 3.5.2.7 outlines the data obtained by the Linux-RNG for one block device event. Just as
for the interrupt noise source, the following list discusses each data component regarding its entropy
contribution:

With the function add disk randomness, the block device number that triggered the event is
recorded. Hardware commonly has one block device attached, i.e. one hard disk is attached. Therefore,
this value will always be the same for each event. Even with two or more hard disks, an attacker can
trigger block device events on each disk separately. Hence, no or hardly any entropy must be considered
present with the block device number. Thus the study will disregard this value for the entropy analysis.

The function add_timer randomness isinvoked to add the Jiffies time stamp for a block device
event. Albeit the block device events are not observable as interrupts with their /proc/interrupts file, an
attacker is able to trigger block device events and record his trigger times. It is assumed that an attacker is
able to resolve the precise Jiffies value considering the coarse resolution of the Jiffies time stamp. Hence,
again, the Jiffies value is considered to deliver no entropy which leads to the exclusion of the Jiffies value
from consideration in the study’s entropy analysis.

Finally,add timer randomness adds the high-resolution time stamp to each block device event.
Albeit an attacker can cause block device events, with the high resolution of the time stamp of
nanoseconds, it is considered to be impossible to deduct the precise timing of the block device event at
this resolution. Le. the attacker would not be able to deduce the LSBs of the time stamp with a precision
higher than the entropy awarded to the event by the Linux-RNG. Hence, this study will focus on the
assessment of the high-resolution time stamp for block device events.

6.1.3 HID Noise Source

The HID noise source delivers data as discussed in sections 3.5.2.1 and 3.5.2.7. Again, the following list
provides a rationale why data components are included or excluded from the entropy assessment:

21

The function add_input randomness records the event number processed by the HID. For
example, a keyboard records the key number and whether the key was pressed or released. For a mouse,
commonly two coordinates for the two dimensional movement are recorded. All these values are
considered observable by an attacker. This is particularly the case when using the graphical interface of
X11. As long as an attacking process can interact with the X11 server by having the X11 cookie, the
following command executed without privilege requirements turns into a perfect key logger?'. A similar
command can be used to obtain mouse movement data. This implies that the HID event data must be
assumed to have no entropy in the worst-case. Thus, no analysis is performed for this data.

To invoke such perfect key logger, the following command can be used:
xinput list | grep -Po 'id=\K\d+ (?=.*slavel\s*keyboard)' | xargs -P0 -
nl xinput test

86

Federal Office for Information Security

Test Series: Raw Entropy 6
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

* Likeforadd disk randomness,add input randomness invokesadd timer randomess
to add the Jiffies time stamp to a particular HID event. As this Jiffies value suffers from the same issue
discussed in section 6.1.2, this value will be disregarded in the entropy analysis of this study.

* Again, for each HID event, the high-resolution time stamp is added. The same considerations as outlined
in section 6.1.2 apply to HID events. Therefore, the high-resolution time stamp is subject for further
analysis.

6.2 Min-Entropy as per SP800-90B

The discussions of the noise sources in section 6.1 concludes that solely the high-resolution time stamp used
for each event is of relevance to the entropy analysis.

The high-resolution time stamp is recorded using the test provided in the test directory linux-entropy-
sp80090Db. This test uses several SystemTap scripts which are enumerated in the following:

* HID measurement: to measure the high-resolution time stamp of HID events, the SystemTap script
recording/raw_entropy_hid.stp instruments add_timer_randomness to read out the high-resolution time
stamp from the sample data structure (see section 3.5.2.7 for details about this data structure). In
conjunction, a second SystemTap script record/entropy_per_event_hid.stp is used to record the entropy
estimation applied by the Linux-RNG to the HID events. To allow other reviewers to assess the quality of
the event values and Jiffies values, they are recorded but disregarded in the subsequent assessments.

* Block device measurement: the SystemTap scripts of record/raw_entropy_disk.stp and
record/entropy_per_event_disk.stp are used to record the same data for block devices as outlined for HID
devices above. Again, the event values and the Jiffies values are recorded for third-party verification.
However, they are again not considered in the analysis below.

* Interrupt measurement: the SystemTap script raw_entropy_irq.stp instruments
add interrupt randomness. It obtains the high-resolution time stamp for this interrupt. There is
no SystemTap script measuring the entropy estimation applied to interrupts as the Linux-RNG applies a
fixed estimate of one bit (in case of Intel x86 systems with RDRAND it is two bits) per injection of a
fast_pool content into the input_pool.

The recorded data set is simply a set of 32 bit integer values holding the high-resolution time stamps for
each recorded interrupt. To make testing easier and more repeatable, the script recording/gendata.sh is
provided which invokes the SystemTap scripts appropriately. That script triggers the testing to obtain data
for 1,000,000 noise source events.

The resulting data for the high-resolution time stamp is analyzed for its min-entropy content as defined in
[SP800-90B]. In order to perform the calculations, the type of data to be processed must be determined, i.e.
whether the input data is IID or non-IID. With a time stamp value, even when it is fast moving and thus
wrapping within some seconds, it is still a monotonically increasing counter. Therefore, this data set is
always considered to be non-IID. This determination implies that the following types of min-entropy values
are calculated defined by [SP800-90B]:

* Most Common Value Estimate

* Collision Estimate

* Markov Estimate

¢ Compression Estimate

e t-Typle Estimate

* Longest Repeated Substring (LRS) Estimate

¢ Multi Most Common in Window Prediction Estimate

Federal Office for Information Security 87

6 Test Series: Raw Entropy
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

* Lag Prediction Estimate
e MultiMMC Prediction Estimate
e LZ78Y Prediction Estimate

As documented in [SP800-90B] almost all of these min-entropy estimations can only be calculated for input
data that has a small width. A high-resolution time stamp has a width of 32 bits. To allow processing the
time stamps with the aforementioned min-entropy estimation calculations, the application
validation/extractlsb.c obtains the 4 least significant bits of the time stamp and concatenates all 4 LSB of all
time stamps into a bit stream. This means that the input data width is now 4 bits instead of 32 bits. The
calculation of the min-entropy estimations using 4 bits instead of 32 bits is considered to support the
conservative assessment of this study. In addition, the mentioned application also extracts the 8 LSB* of
each time stamp and concatenates them into a bit-stream. This allows the calculation of the min-entropy
estimation of the input data with 6 bit width. The following tables therefore provide the entropy estimation
for 4 bit and 8 bit input data widths. The tool used to calculate the SP800-90B min-entropy values is
available at NIST GitHub repository.

For comparison, the min-entropy and the Shannon entropy defined by [AIS2031] are calculated as well. The
used formulas are provided in section 2.3.2 [AIS2031] and are not re-iterated here. The time stamp is a
monotonically increasing integer which implies that the entropy lies in the deltas of the time stamps and
the distribution of those deltas. This means that to perform the calculation for the Minimum and Shannon
entropy, the time stamp deltas are used as a basis for the calculation. The time stamp deltas are calculated
from the adjacent time stamps from the absolute time stamps recorded by the measurements.

6.2.1 Interrupt Noise Source Min-Entropy Estimates

The collection of data for interrupts was conducted twice: once with a normal use case and once with a
worst-case. In the normal use case the test environment was made to resemble regular usage where Internet
searches and regular office duties were performed. The worst-case covered the test system in a virtual
environment where the host system sent a ping flood to the test system. Each received ICMP request and
response triggered an interrupt that was recorded.

The worst-case test execution returned the following data.

22 The reason for selecting 8 LSB is to support the Markov min-entropy value calculation which can only be
calculated for small data blocks.

88 Federal Office for Information Security

https://github.com/usnistgov/SP800-90B_EntropyAssessment

Test Series: Raw Entropy 6

Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5
Entropy Estimate 4 Bits Width 8 Bits Width

Most Common Value Estimate 3.9684 7.9656

Collision Estimate 3.7452 7.576

Markov Estimate 3.9796 7.9648
Compression Estimate 3.4848 7.1328

t-Typle Estimate 3.7268 7.436

LRS Estimate 3.8868 7.9712

Multi Most Common in Window | 3.9604 7.9736
Prediction Estimate

Lag Prediction Estimate 3.9884 7.9896
MultiMMC Prediction Estimate 3.9708 7.9736

LZ78Y Prediction Estimate 3.97 7.968

Table 2: Interrupts: SP800-90B Min-Entropy Measurements - Worst Case

The associated Shannon entropy value is 17.147 bits per interrupt event. The min-entropy value according
to [AIS2031] is 14.472 bits per interrupt event.

The normal use case returned the following data.

Entropy Estimate 4 Bits Width 8 Bits Width

Most Common Value Estimate 3.9792 7.9784
Collision Estimate 3.6128 7.5656
Markov Estimate 3.9824 7.9864
Compression Estimate 3.472 7.336
t-Typle Estimate 3.7268 7.4856
LRS Estimate 3.9796 7.9648
Multi Most Common in Window 3.9824 7.9864
Prediction Estimate

Lag Prediction Estimate 3.796 7.9776
MultiMMC Prediction Estimate 3.9776 7.984
LZ78Y Prediction Estimate 3.9804 7.9816

Table 3: Interrupts: SP800-90B Min-Entropy Measurements - Normal Use Case

Applying the Shannon entropy formula on the data set, a value of 18.412 bits per interrupt event is
calculated. Using the min-entropy formula according to [AIS2031], a result of 13.954 bits per interrupt event
is measured.

The conclusions that can be drawn from the numbers follow. Regardless of the worst-case or normal case,
the high-resolution time stamp of each interrupt will return significantly more than two bits of entropy.

The Linux-RNG requires the data of at least 64 interrupts to be collected and mixed into the input_pool. The
entire data from 64 interrupt is credited with one bit of entropy (two bits when RDRAND is present). This
implies that significantly more entropy is collected than the Linux-RNG will credit.

Federal Office for Information Security 89

6 Test Series: Raw Entropy

Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

Even when the fast_pool operation will not retain all entropy delivered by the interrupt noise source data,
the massive underestimation of entropy by the Linux-RNG is assumed to counter such a potential effect.

As the Linux-RNG massively underestimates the entropy present in the interrupt noise source event data,
the Linux-RNG acts conservatively and thus upholds the cryptographic strength it reports with its entropy
estimation.

6.2.2 Block Device Noise Source Min-Entropy Estimates

On contemporary hardware with a lot of RAM, a normal usage of block devices will cause insignificant block
device events. This is due to the fact that the entire unused portion of RAM is used as a buffer cache to
prevent repeating disk accesses. To obtain sufficient data, a worst-case has been measured. This worst-case
has been implemented by constantly mounting and unmounting a block device. This causes the buffer

cache to be irrelevant for the disk accesses caused by the mount operations, as the buffer cache is flushed
with each unmount operation of a file system. The worst-case produced the following data:

Entropy Estimate 4 Bits Width 8 Bits Width
Most Common Value Estimate 3.9684 7.9656
Collision Estimate 3.7452 7.592
Markov Estimate 3.9796 7.9808
Compression Estimate 3.48448 7.1328
t-Typle Estimate 3.7268 7.436
Longest Repeated Substring (LRS) |3.8868 7.9712
Estimate
Multi Most Common in Window |3.96 7.9736
Prediction Estimate
Lag Prediction Estimate 3.9888 7.9896
MultiMMC Prediction Estimate 3.9708 7.9736
LZ78Y Prediction Estimate 3.97 7.968

Table 4: Block Devices: SP800-90B Min-Entropy Measurements

Using the Shannon entropy formula, 19.592 bits per block device event is calculated. A value of 16.762 bits
per block device event is calculated as the min-entropy according to [AIS2031].

In addition to the collection of the noise source data, the test also collected the entropy estimates per block
device event applied by the Linux-RNG. The histogram given in figure 12 specifies all possible entropy
estimation values from zero to 11 that can be applied by the Linux-RNG. The histogram shows how often
the Linux-RNG awards these entropy estimates to the recorded block device events.

Figure 12 also shows that the mean value of all entropy estimates is 0.01 bits of entropy. This can be
interpreted that on average, the Linux-RNG awarded each block device event 0.01 bits of entropy.

90 Federal Office for Information Security

Test Series: Raw Entropy 6
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

Estimated Entropy per Event

o
-
o |
=
=
=
@
T =
o
kY
)
L
g
= =]
@ o
[:F]
o
o
=]

0 2 4 6 8 10
Min: 0 - 1st Qu: 0 - Median: 0 - Mean: 0.01
3rd Qu: 0 - Max: 11 - Sigma: 0.11 - Var Coefi: 9.969693

Figure 12: Entropy Estimate per Block Device Event Applied by Linux-RNG

Comparing the result shown in figure 12 with the min-entropy estimates calculated from the measured
time stamps, the following conclusion is drawn: the min-entropy estimates have significantly more than 3
bits of entropy per event. On the other hand, the Linux-RNG considers that each event has on average only
0.01 bits of entropy.

This allows the conclusion that the Linux-RNG significantly underestimates the entropy present in the
block device noise source data. This significant underestimation implies that the Linux-RNG acts
conservatively and thus upholds the cryptographic strength it reports with its entropy estimation.

6.2.3 HID Noise Source Min-Entropy Estimates

The entropy measurements for HID is only performed for regular use cases. No worst-case scenario can be
devised for HID.

To perform testing of the HID noise source within a reasonable time, only 500.000 samples of HID noise
source events were recorded. The entropy estimates for the high-resolution time stamp applied to those
events are listed in the table below.

Federal Office for Information Security 91

6 Test Series: Raw Entropy
Documented Linux Kernel Version: 5.5

Fully tested Linux Kernel Version: 5.0

Table 5: HID: SP800-90B Min-Entropy Measurements

Entropy Estimate 4 Bits Width 8 Bits Width
Most Common Value Estimate 3.9832 7.9808
Collision Estimate 2.2932 8
Markov Estimate 3.99 7.988
Compression Estimate 0.9824 3.0696
t-Typle Estimate 0.4304 0.944
LRS Estimate 0.4948 0.6384
Multi Most Common in Window |2.7196 6.3704
Prediction Estimate
Lag Prediction Estimate 1.364 1.5072
MultiMMC Prediction Estimate 0.5272 1.112
LZ78Y Prediction Estimate 3.7952 4.6632

The Shannon entropy formula applied on the data set results in 17.155 bits per HID event. 13.049 bits per
HID event are calculated when using the min-entropy formula according to [AIS2031] .

The test record of the entropy estimate applied by the Linux-RNG for each recorded HID event is depicted
with figure 13. This figure lists all possible entropy estimates applied by the Linux-RNG to a HID noise
source event ranging from 0 to 11. A histogram is prepared showing all recorded entropy estimates for HID
noise source events.

As shown in figure 13, the mean value of the histogram is 0.42 bits. This implies that the Linux-RNG

awarded 0.42 bits of entropy to each HID noise source event on average.

92

Federal Office for Information Security

Test Series: Raw Entropy 6
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

Estimated Entropy per Event

0.5
I

Relative Frequency
0.3

0.2

01

0.0

0 2 4 6 8 10
Min: 0 - 1st Qu: 0 - Median: 0 - Mean: 0.42
3rd Qu: 1 - Max: 11 - Sigma: 0.6 - Var Coeif: 1.414296

Figure 13: Entropy Estimate per HID Event Applied by Linux-RNG

A conclusion can be reached when comparing the heuristic entropy values applied by the Linux-RNG from
figure 13 with the min-entropy estimates. The min-entropy estimates have shown that at least that amount
of entropy is available (0.43 bits) as applied by the entropy heuristic (0.42 bits) when considering the lowest
SP800-90B min-entropy values.

This comparison allows to conclude that the Linux-RNG again underestimates the available entropy for
HID events. This underestimation shows again that, the Linux-RNG applies a conservative entropy
estimation and thus upholds the cryptographic strength it reports with its entropy estimation.

6.2.4 Conclusion of SP800-90B Measurements

The conclusions given for each noise source regarding the SP800-90B measurements are collectively
summarized with as follows.

For all noise sources that contribute entropy to the Linux-RNG, the Linux-RNG applies a very conservative
entropy estimate to each individual noise source.

Considering the HID and block device noise sources alone, the combinations of the noise source event data
when mixing the data into the input_pool is not considered to diminish any entropy. This is due to the fact
that both noise sources are independent. Thus, viewing both noise sources collectively, it can be concluded
that the Linux-RNG significantly underestimates the entropy.

Bringing the data from the interrupt noise source into the picture, the interpretation changes as follows: the
interrupt noise source has a correlation with the HID and block device noise source as each HID or block
device event also triggers an interrupt noise source event. The correlation is assumed to be diminished by
the use of the fast_pool which mixes the interrupt data of at least 64 interrupts before injecting the data into
the input_pool. Yet a complete diminishing of correlation between the data of the HID and block device
noise source on the one hand and the fast_pool content on the other hand cannot be assumed.

Federal Office for Information Security 93

6 Test Series: Raw Entropy
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

However, the Linux-RNG applies a massive underestimation of the available entropy in case of interrupts
which gives rise to the following concern: the min-entropy estimates show that for 64 interrupts
significantly more than 128 bits of entropy are present in the input data. The Linux-RNG awards these 64
interrupts, however, only one bit (in the presence of RDRAND 2 bits are applied). This massive
underestimation of entropy is considered to outweigh the potentially existing correlation between the HID
and block device noise source event data on the one side and the interrupt noise source event data
maintained by the fast_pool and injected into the input_pool on the other side.

This finally allows the conclusion that the entropy present in the noise source data collectively is
underestimated by the Linux-RNG. Therefore, the Linux-RNG is conservative such that the heuristically
determined entropy value awarded to an event and added to the entropy estimator of an entropy pool can
be considered to represent at least the cryptographic strength of the data maintained by the Linux-RNG.

6.3 Entropy During Early Boot

The measurements of the raw noise source data shows that at runtime, the Linux-RNG entropy estimator
maintained for an entropy pool indicates at least the cryptographic strength of the data present in that
entropy pool.

At runtime, when sufficient data is added to the entropy pools, the Linux-RNG state is always considered to
be sufficiently strong.

However, the following question must be raised: are the noise source data received by the Linux-RNG
during early kernel boot time equally entropic to support cryptographically strong random numbers to be
produced by the Linux-RNG during boot time? This question is of particular importance to system services
requiring seed data from /dev/random or /dev/urandom during system boot time.

The following test has been devised to measure the entropy during early boot. This test considers that
during early boot, only interrupts are triggered and received. No block device is yet set up, and no HID are
initialized to allow users to interact with the system. Therefore, testing is limited to measure interrupt event
data only. As outlined in section 6.1.1, only the high-resolution time stamp recorded for interrupts is of
interest to entropy measurements.

The Linux kernel has been modified with the patch boottime/boottime_test.diff. This patch records the
high-resolution time stamps obtained for the first 128 interrupts. A user space shell script
boottime/boottime_test_record.sh stores these 128 time stamps to disk and initiates a reboot.

The test is performed for 50,000 reboot cycles for the virtual environment as well as for the bare-metal
environment. At the end of the testing, 50,000 times 128 time stamps are collected and analyzed.

The first analysis performs an SP800-90B min-entropy estimate calculation discussed in section 6.2.1. Such a
min-entropy estimate is calculated for each of the 128 32-bit time stamps individually. This means that the
min-entropy estimate for the first till the 128th 32-bit time stamp of all boot cycles is calculated. Therefore,
the full result contains 128 entries with min-entropy estimates. To limit the amount of space in this report
for presenting the data, the tables in the following subsections only list the lowest min-entropy estimate out
of all estimate types enumerated in section 6.2 for all 128 different interrupt occurrences.

In addition to the calculation of the min-entropy according to SP800-90B, the min-entropy and the
Shannon entropy according [AIS2031] has been calculated as well. Both formulas are provided in section
2.3.2 of [AIS2031] and are not repeated here. As the time stamp is a monotonically increasing integer, the
entropy lies in the deltas of the time stamps and the distribution of those deltas. Therefore, to perform the
calculation for the Minimum and Shannon entropy, the time stamp deltas are used as a basis for the
calculation. The time stamp deltas are calculated from the adjacent time stamps.

The testing of the early boot entropy is conducted twice due to its importance. The first test is performed in
avirtualized environment. This environment has very few devices that can trigger interrupts. This means

94 Federal Office for Information Security

Test Series: Raw Entropy 6

Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

that the time until 128 interrupts are received is longer relative to the boot time of the Linux kernel. Yet,

more variations must be expected as the virtual machine monitor may reschedule the virtual machine guest
that is tested. Such rescheduling operations may introduce delays which would be visible with more
variations in the time stamps. The second early boot entropy test is executed with a Linux kernel executing
directly on hardware. This hardware has more devices that can deliver interrupts. Yet this test environment

is not affected by virtual machine monitor rescheduling events.

6.3.1 Early Boot Entropy Testing in a Virtual Environment

Time Stamp Lowest SP800- | Lowest SP800- Min-entropy Shannon
Position / Time |90B min-entropy | 90B min-entropy| (AIS 20/31)of | Entropy of Time
delta estimate of 4 Bits | estimate of 8 Bits Time Delta Delta
Width Time Width Time
Stamp Stamp

1 3.164152 6.321312 12.159 15.844
2 3.164152 6.321312 12.274 15.764
3 3.164612 6.977632 12.274 15.771
4 3.225552 6.666392 13.274 15.643
5 3.092844 6.602600 12.537 15.27

6 3.359940 6.348272 11.859 15.16

7 3.117876 6.920120 12.159 15.131
8 3.445524 6.231656 12.052 15.129
9 3.297788 6.681840 12.159 15.119
10 3.232592 6.726816 12.052 15.105
11 3.361196 6.530800 11.859 15.103
12 3.081280 6.758688 11.952 15.091
13 3.242416 7.036352 12.159 15.078
14 3.216636 6.570752 12.052 15.062
15 3.270588 6.343104 12.052 15.063
16 3.191524 6.346608 11.859 15.05

17 3.343716 6.263152 11.859 15.063
18 3.330696 6.369176 11.952 15.056
19 3.116880 6.568680 12.052 15.059
20 3.446528 6.649480 12.052 15.067

Federal Office for Information Security

95

6 Test Series: Raw Entropy

Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0
Time Stamp Lowest SP800- | Lowest SP800- Min-entropy Shannon
Position / Time |90B min-entropy | 90B min-entropy (AIS 20/31) of | Entropy of Time
delta estimate of 4 Bits | estimate of 8 Bits Time Delta Delta
Width Time Width Time
Stamp Stamp

21 3.176908 6.364352 12.052 15.064
22 3.036088 6.607968 11.689 15.053
23 3.461780 6.406040 11.952 15.055
24 3.273912 6.875080 11.952 15.053
25 3.280780 6.983944 11.689 15.051
26 3.188164 6.381624 11.859 15.048
27 3.131684 6.697856 12.052 15.074
28 3.179088 6.708536 11.952 15.055
29 3.226916 6.852416 11.772 15.118
30 3.151240 6.630416 12.689 15.564
31 3.291272 7.142880 13.859 15.837
32 3.143308 6.454064 12.859 15.601
33 3.144060 6.307624 12.689 15.465
34 3.104256 6.417872 12.537 15.221
35 3.404188 6.411456 12.537 15.68

36 3.254288 6.487048 13.052 15.615
37 3.050188 6.802104 13.052 15.545
38 3.230192 6.474176 12.689 15.55

39 3.340920 6.689888 13.052 15.612
40 3.341084 7.121680 12.859 15.705
41 3.221800 6.617536 11.537 15.338
42 3.348848 6.406392 11.159 15.043
43 3.344880 6.802808 13.859 15.848

96 Federal Office for Information Security

Fully tested Linux Kernel Version: 5.0

Test Series: Raw Entropy 6
Documented Linux Kernel Version: 5.5

Time Stamp Lowest SP800- | Lowest SP800- Min-entropy Shannon
Position / Time |90B min-entropy | 90B min-entropy (AIS 20/31) of | Entropy of Time
delta estimate of 4 Bits | estimate of 8 Bits Time Delta Delta
Width Time Width Time
Stamp Stamp

44 3.138980 6.776728 13.859 15.841
45 3.044384 6.663920 12.689 15.583
46 3.216300 6.474176 12.537 15.552
47 3.024200 6.727024 13.537 15.824
48 3.130916 6.477184 13.859 15.817
49 3.214240 6.555840 13.537 15.775
50 3.493144 6.890160 13.537 15.739
51 3.195340 6.431824 13.537 15.731
52 3.477344 6.250976 13.537 15.725
53 3.187896 6.320472 13.859 15.727
54 3.294976 7.028488 13.537 15.717
55 3.353060 6.841864 13.537 15.709
56 3.259816 6.611384 13.537 15.731
57 3.211132 6.143544 13.859 15.795
58 3.223824 6.523312 14.274 15.843
59 3.162372 6.736776 13.537 15.827
60 3.327736 7.020096 13.859 15.751
61 3.252712 6.663056 13.537 15.72

62 3.265756 6.705760 13.859 15.706
63 3.440552 6.360896 13.537 15.698
64 3.110100 6.525888 13.537 15.703
65 3.081140 6.659008 13.537 15.697
66 3.032832 6.390752 13.537 15.689
67 3.382332 7.012120 13.274 15.681

Federal Office for Information Security

97

6 Test Series: Raw Entropy

Documented Linux Kernel Version: 5.5

Fully tested Linux Kernel Version: 5.0

Time Stamp Lowest SP800- | Lowest SP800- Min-entropy Shannon
Position / Time |90B min-entropy | 90B min-entropy (AIS 20/31) of | Entropy of Time
delta estimate of 4 Bits | estimate of 8 Bits Time Delta Delta
Width Time Width Time
Stamp Stamp

68 3.156640 6.737816 13.274 15.675
69 3.116740 6.440936 13.274 15.677
70 3.352636 6.667944 13.537 15.664
71 3.444560 7.033192 13.537 15.668
72 3.319580 6.679504 13.537 15.662
73 3.373844 6.625000 13.274 15.661
74 3.265196 6.582832 13.537 15.662
75 3.331448 6.590368 13.537 15.671
76 3.186888 6.930712 13.537 15.682
77 3.267740 6.547672 13.537 15.673
78 3.152324 6.898800 13.274 15.664
79 3.130872 6.609872 13.274 15.666
80 3.086236 6.559224 13.537 15.668
81 3.080592 6.565632 13.537 15.67

82 3.177792 6.466224 13.859 15.709
83 3.115764 6.545856 13.859 15.778
84 3.311148 6.898600 14.274 15.804
85 3.173292 6.773008 13.859 15.78

86 3.149712 6.661808 13.537 15.696
87 3.040060 6.457128 13.274 15.646
88 3.187388 6.895712 13.274 15.652
89 3.081628 6.986384 13.537 15.648
90 3.122720 6.747464 13.537 15.651
91 3.067516 6.493744 13.537 15.665

98

Federal Office for Information Security

Fully tested Linux Kernel Version: 5.0

Test Series: Raw Entropy 6
Documented Linux Kernel Version: 5.5

Time Stamp Lowest SP800- | Lowest SP800- Min-entropy Shannon
Position / Time |90B min-entropy | 90B min-entropy (AIS 20/31) of | Entropy of Time
delta estimate of 4 Bits | estimate of 8 Bits Time Delta Delta
Width Time Width Time
Stamp Stamp

92 3.264896 6.540808 13.859 15.715
93 3.081388 6.594856 13.052 15.736
94 3.177652 6.629000 13.537 15.671
95 3.156068 6.615192 13.537 15.639
96 3.102948 6.522048 13.537 15.652
97 3.276060 6.867016 13.537 15.723
98 3.238848 6.772560 13.859 15.8

99 2.578068 5.524936 13.859 15.824
100 2.487492 5.463768 13.537 15.797
101 2.813840 6.691064 13.537 15.738
102 2413476 5.238568 13.537 15.702
103 2.582076 5.079576 13.537 15.676
104 2.344500 5.781840 13.537 15.664
105 2.969664 5.638736 13.537 15.662
106 2.602308 5.665384 13.537 15.662
107 2.677696 5.526312 13.537 15.653
108 2.941272 5.371176 13.274 15.653
109 2.787420 5.422736 13.537 15.644
110 2.386012 5.769432 13.537 15.642
111 2.741884 5.672008 13.537 15.648
112 2.542964 5477464 13.537 15.647
113 2.667744 6.080816 13.537 15.644
114 2.661780 5.580488 13.274 15.644
115 2.745624 6.468296 13.537 15.641

Federal Office for Information Security

99

6 Test Series: Raw Entropy

Documented Linux Kernel Version: 5.5

Fully tested Linux Kernel Version: 5.0

Time Stamp Lowest SP800- | Lowest SP800- Min-entropy Shannon
Position / Time |90B min-entropy | 90B min-entropy (AIS 20/31) of | Entropy of Time
delta estimate of 4 Bits | estimate of 8 Bits Time Delta Delta
Width Time Width Time
Stamp Stamp

116 2.746308 5.692912 13.274 15.639
117 2.581732 5.759480 13.537 15.639
118 2.467832 5.735216 13.537 15.643
119 2.446332 5.671016 13.537 15.644
120 2.777600 5.899432 13.537 15.638
121 2.521128 5.399248 13.274 15.642
122 2.859536 6.037480 13.537 15.644
123 2.303792 5.161488 13.537 15.646
124 2.647892 5.501936 13.274 15.647
125 2.606484 6.132192 13.537 15.667
126 2.418868 5.516688 13.537 15.673
127 2.612740 6.306040 13.537 15.679
128 2.837576 5.676232

Table 6: Interrupts: Early Boot SP800-90B Min-Entropy Measurements in Virtual Environment

The table shows that the high-resolution time stamp of each of the first 128 interrupts has an estimated
min-entropy of at least 8 bits in the 4 LSB of the time stamp. In addition, the table shows that for the 8 LSB
of the time stamp, at least 5 bits are measured for each of the first 128 interrupts. Considering the min-
entropy according to AIS 20/31 applied to the time deltas (i.e. the difference of two adjacent time stamps),
the range of values is between 11 and 14 bits per interrupt event. The Shannon entropy values for the time
deltas are even higher and range above 15 bits per interrupt event.

To allow the reader to get a graphical view of the time stamp distribution, figure 14 is provided. Considering
the statement above regarding time deltas, such time deltas are used as a basis for the distribution graph
instead of absolute time stamps. Therefore, figure 14 shows the time delta distribution of the time stamps
recorded for the first and second interrupt - the X-axis presents the number of ticks of the time delta. All
other interrupts exhibit a similar distribution pattern. To make the graphic more readable, only the 90%
quartile of the time delta data is depicted. The remaining 10% cover such a large value span with so little
probability of occurrence that they would render the graphic unreadable.

The histogram shows that the time delta is widely distributed over the entire continuum of possible time
delta values. It shows some concentration of time deltas in the low end of the possible range of time delta
values ranging from zero to 2*. The two green bars show the 25% and 75% quartile of the data set. The red
dotted line indicates how a Gaussian standard normal distribution would look like when using the standard
derivation of the data set.

100 Federal Office for Information Security

Test Series: Raw Entropy 6

Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5
Histogram
[
<
©
w0
. |
2
g 5
o : -
3 o
£ 7
©
= -
|
[
o [~
=2
©
o
o
S
7 -
1]
= [I I 1
Oe+00 1e+09 2e+09 3e+09
Time Deltas

Figure 14: Histogram of Time Deltas for First and Second Interrupt in a Virtual Environment

The table with the min-entropy estimates for the time stamps of the first 128 interrupts visualized in figure
14 allows the conclusion that the entropy present in the time stamps is already sufficiently large for
achieving a commonly required security strength of 128 bits. As these first 128 interrupts are not obtained
from block device or HID events, the correlation issue outlined in section 6.2.4 is not applicable. Therefore,
the Linux-RNG massively underestimates the boot-time entropy present with the interrupt time stamps.

6.3.2 Early Boot Entropy Testing on Native Hardware

The test to obtain early boot data used as input to the Linux-RNG is re-performed with the Linux kernel
executing on native hardware. This re-testing is provided to allow a comparison between a virtual and a
native environment. The virtual environment has fewer devices compared to native hardware and thus
generates fewer interrupts during boot as fewer devices need to be initialized and interacted with. It is
expected that this property reduces the amount of entropy present in the measurements for virtual
environments. Conversely, virtual environments are subject to frequent re-scheduling events performed by
the host. Such rescheduling events increase the variations of the interrupt event time stamps which can be
interpreted as entropy. A Linux kernel executing on native hardware is not subject to scheduling events
enforced by external entities. Thus, the time stamps picked up by the Linux-RNG interrupt noise source
executing on native hardware should have less variations.

Both described effects oppose each other, i.e. the one effect is expected to increase the entropy on native
hardware whereas the other is expected to decrease the entropy. To obtain a better understanding of the
magnitude of the effects, the early boot interrupt event time stamps are obtained for a Linux-RNG
executing on native hardware.

Federal Office for Information Security 101

6 Test Series: Raw Entropy

Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0
Time Stamp Lowest SP800- | Lowest SP800- Min-entropy Shannon
Position / Time |90B min-entropy | 90B min-entropy (AIS 20/31) of | Entropy of Time
delta estimate of 4 Bits | estimate of 8 Bits Time Delta Delta
Width Time Width Time
Stamp Stamp

1 2.523752 6.657072 8.799 11.1

2 3.243216 6.657072 7.482 10.184

3 3.233932 6.711256 6.777 9.254

4 3.112624 6.522896 6.618 9.208

5 3.126408 6.866816 7.924 13.058

6 3.117260 6.764768 11.632 14.515

7 3.233428 6.853248 10.077 13.206

8 3.021152 6.276872 12.31 15.18

9 3.313892 6.476072 11.824 15.216

10 3.180784 6.318520 10.774 13.106

11 3.068548 6.298288 10.877 14.799

12 3.053152 7.085320 9.093 12.519

13 2.975800 6.826672 13.632 15.608

14 2.966264 6.314264 11.931 14.961

15 3.023292 6.662832 1231 15.207

16 3.034524 6.438768 12.632 15.202

17 3.017228 6.573744 11.24 14.307

18 3.062660 6.839248 10.774 14.398

19 3.138460 6.463064 10.678 14.268

20 3.232848 6.519888 9.904 14.529

21 3.067868 6.555048 10.587 14.554

22 3.224884 6.372264 12.632 15.234

23 3.147372 6.622224 11.544 14.616

24 3.243900 6.291568 12.824 15.364

102 Federal Office for Information Security

Fully tested Linux Kernel Version: 5.0

Test Series: Raw Entropy 6
Documented Linux Kernel Version: 5.5

Time Stamp Lowest SP800- | Lowest SP800- Min-entropy Shannon
Position / Time |90B min-entropy | 90B min-entropy (AIS 20/31) of | Entropy of Time
delta estimate of 4 Bits | estimate of 8 Bits Time Delta Delta
Width Time Width Time
Stamp Stamp

25 3.097536 6.626352 13.632 15.583

26 3.054600 6.910352 11.384 14.211

27 3.235292 6.713536 12.632 15.238

28 2.979912 6.673488 11.824 14.115

29 3.009916 6.690504 12.31 15.353

30 3.077064 6.999272 11.544 14.118

31 3.192548 6.950480 12.824 15.488

32 3.221872 6.308184 12.172 14.769

33 3.170064 6.185320 1231 15.02

34 2.984208 6.737384 11.931 14.164

35 3.093872 6.528520 12.632 15.3

36 3.132196 6.368656 1131 14.166

37 3.019472 6.267216 12.824 15.418

38 3.163796 6.442912 11.824 14.329

39 3.160292 6.368056 12.047 14.966

40 3.136232 6.582504 11.544 14.148

41 3.153084 6.861312 1231 15.323

42 3.132992 6.522656 11.824 14.559

43 3.130900 6.794104 13.31 15.598

44 3.146536 6.916976 12.172 15.082

45 3.379284 6.538008 12.172 15.292

46 3.144336 6.894248 11.931 14.945

47 3.258212 6.417568 11.544 15.214

48 3.087040 6.875448 12.31 15.227

Federal Office for Information Security

103

6 Test Series: Raw Entropy

Documented Linux Kernel Version: 5.5

Fully tested Linux Kernel Version: 5.0

Time Stamp Lowest SP800- | Lowest SP800- Min-entropy Shannon
Position / Time |90B min-entropy | 90B min-entropy (AIS 20/31) of | Entropy of Time
delta estimate of 4 Bits | estimate of 8 Bits Time Delta Delta
Width Time Width Time
Stamp Stamp

49 3.198252 6.473072 1331 15.513
50 3.113904 6.358544 13.047 15.513
51 3.294476 6.702296 12.172 15.216
52 3.381812 6.483592 13.632 15.616
53 3.272460 6.314160 13.31 15.572
54 2.918928 6.416688 13.047 15.546
55 3.073476 6.865888 12.824 15.554
56 3.048224 6.383248 13.632 15.556
57 3.077248 6.679928 14.047 15.593
58 3.234284 6.942920 12.824 15.477
59 3.084016 6.700680 13.047 15.496
60 3.126624 6.690640 13.632 15.569
61 3.187556 6.433992 13.632 15.561
62 3.173180 6.315504 14.047 15.602
63 3.012424 6.193688 13.632 15.588
64 3.214220 6.830648 13.31 15.535
65 3.273944 6.398200 13.047 15.523
66 3.267136 6.450952 12.824 15.499
67 3.178368 6.557112 13.047 15.516
68 3.033760 6.454536 1331 15.536
69 3.268784 6.473024 13.31 15.528
70 3.224404 7.061808 12.824 15.488
71 3.031392 6.532432 13.047 15.563
72 2.938388 6.381848 13.31 15.53

104

Federal Office for Information Security

Fully tested Linux Kernel Version: 5.0

Test Series: Raw Entropy 6
Documented Linux Kernel Version: 5.5

Time Stamp Lowest SP800- | Lowest SP800- Min-entropy Shannon
Position / Time |90B min-entropy | 90B min-entropy (AIS 20/31) of | Entropy of Time
delta estimate of 4 Bits | estimate of 8 Bits Time Delta Delta
Width Time Width Time
Stamp Stamp

73 3.284808 6.289568 13.632 15.553
74 3.237712 6.465232 13.31 15.533
75 3.166976 6.980784 13.31 15.45

76 3.158248 6.521680 12.462 15.241
77 3.377052 6.624920 13.047 15.44

78 3.298104 6.317968 13.31 15.456
79 3.277244 6.393984 1331 15.525
80 3.070432 6.891128 12.632 15.372
81 3.121220 7.019472 13.047 15.409
82 3.235860 6.336552 12.462 15.372
83 3.424640 6.510512 12.632 15.395
84 3.301660 6.315360 12.824 15.443
85 3.153000 6.631992 13.047 15.453
86 3.088300 6.549000 12.632 15.225
87 3.162404 6.352120 12.632 15.324
88 3.205232 6.485600 12.462 15.232
89 3.260064 6.366632 12.824 15.427
90 2.972028 6.850064 12.172 15.349
91 3.048044 6.633472 12.462 15.144
92 3.511388 6.600576 12.632 15.433
93 3.070232 6.455864 12.462 15.302
94 3.439240 6.504992 12.632 15.262
95 3.076072 7.109392 1231 15.091
96 2.991204 6.320072 12.462 15.189

Federal Office for Information Security

105

6 Test Series: Raw Entropy
Documented Linux Kernel Version: 5.5

Fully tested Linux Kernel Version: 5.0

Time Stamp Lowest SP800- | Lowest SP800- Min-entropy Shannon
Position / Time |90B min-entropy | 90B min-entropy (AIS 20/31) of | Entropy of Time
delta estimate of 4 Bits | estimate of 8 Bits Time Delta Delta
Width Time Width Time
Stamp Stamp

97 3.142976 7.033808 1331 15.438
98 3.106980 6.744144 10.077 14.217
99 3.193568 6.666944 12.31 15.292
100 3.241764 6.543856 11.172 14.407
101 3.191532 6.635120 10.503 13.767
102 3.309320 6.555568 13.632 15.552
103 3.302180 6.520360 1331 15.558
104 3.071644 6.511568 12.172 15.085
105 3.109848 6.591264 1331 15.435
106 3.379844 6.365384 12.824 15.434
107 3.250672 6.546048 13.047 15.432
108 2.976388 6.548752 12.824 15.427
109 3.155624 6.375024 12.824 154

110 3.045116 6.791640 12.824 15.388
111 3.241400 7.183808 13.047 15.376
112 3.131784 6.415952 12.824 15.364
113 3.013964 6.455496 13.047 15.375
114 3.206112 6.700768 12.824 15.422
115 3.246716 6.235520 12.632 15.364
116 3.214056 6.547528 1231 15.361
117 2.979380 6.171472 12.632 15.344
118 3.215396 6.665712 13.31 15.494
119 3.161804 6.642616 1331 15.513
120 3.237372 6.369456 13.31 15.5

106

Federal Office for Information Security

Fully tested Linux Kernel Version: 5.0

Test Series: Raw Entropy 6
Documented Linux Kernel Version: 5.5

Time Stamp Lowest SP800- | Lowest SP800- Min-entropy Shannon
Position / Time |90B min-entropy | 90B min-entropy (AIS 20/31) of | Entropy of Time
delta estimate of 4 Bits | estimate of 8 Bits Time Delta Delta
Width Time Width Time
Stamp Stamp

121 3.083428 6.329824 13.31 15.487
122 3.240476 6.529224 12.824 15.472
123 3.246416 6.380088 12.632 15.476
124 3.155656 6.554800 12.824 15.475
125 3.208796 6.502376 13.047 15.479
126 3.123564 6.506184 12.824 15471
127 3.144524 6.673000 13.047 15.476
128 3.287312 6.179592

Table 7: Interrupts: Early Boot SP800-90B Min-Entropy Measurements on Native Hardware

The interpretation of the table is identical to the table presented for the virtual environment boot time
measurements.

The different statistical entropy values calculated from the measurements of the first interrupt event time
stamps obtained by the Linux-RNG after boot on native hardware do not deviate significantly from the
same values obtained on a virtual environment. Thus, the mentioned contrary effects are concluded to
cancel each other out or are insignificant to the overall entropy present in the Linux kernel boot process.

A graphical representation of the values presented in the table is given in figure 15. It shows the histogram
of the delta between the first and the second interrupt event time stamp of each boot cycle recorded by the
Linux-RNG where the X-axis represents the number of ticks between the occurrence of both interrupts. As
discussed for the virtual environment, the 90% quartile is depicted.

Federal Office for Information Security

107

6 Test Series: Raw Entropy
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

Histogram

Relative Freguency
0.00010 0.00015 0.00020
1 1]

0.00005
1

I I I I |
2e4+06 des06 Be+06 Be+06 1e+07

0.00000
|

Time Deltas

Figure 15: Histogram of Time Deltas for First and Second Interrupt in a Native Environment

The pattern of the histogram is very similar to virtual environments shown in figure 14 albeit the
concentration of values is a bit higher. That is supported by the fact that the entropy value for the first time
delta is a bit lower than the rest of the time deltas. Starting with the second time delta depicted in figure 16,
the distribution of the time delta values exhibits more distinct spikes. Yet, considering the scales of the X
and Y axis, the distribution is sufficiently large to support the conclusion of the presence of sufficient
entropy.

108 Federal Office for Information Security

Test Series: Raw Entropy 6

Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5
Histogram
=]
I
= -
=
(=1
z =
[—
= =1
S o
=2
o
-
o =
2 = -
= (=]
2 o
o
Wy
=]
o |
<
(=]
=
= - anniiiioieine . a
[=1 I |
11560000 11565000 11570000
Time Deltas

Figure 16: Histogram of Time Deltas for Second and Third Interrupt in a Native Environment

With the obtained results, the same conclusions for the measurements in virtual environments given in
section 6.3.1 can be drawn. Disregarding the correlation problem, and considering that the Linux-RNG
awards the time stamps from 64 interrupts only one bit of entropy, the Linux-RNG is considered to
massively underestimate the entropy present in the interrupt time stamps during early boot.

6.3.3 Conclusions of Early Boot Entropy Measurements

The measurements of the entropy contained in the interrupt event time stamps recorded by the Linux-RNG
for the first 128 interrupts show that it amounts to significant values. The entropy per time stamp
considerably exceeds one bit.

When interpreting the entropy measurements with a safety margin to assume worst case scenarios by
cutting the measured values in half, the entropy values are still more than one bit of entropy per time
stamp. For the following discussion, one bit of entropy per time stamp is assumed. Thus, the measurements
show that collecting 128 interrupt event time stamps while booting is sufficient to cover the initial seeding
requirements set forth by the German BSI with [TR021021] as well as [SP800-131A] specified by the US NIST.

Applying the general Linux-RNG entropy heuristics, the Linux-RNG significantly underestimates the
available entropy. This finding is supported by the fact that the correlation problem between interrupts on
one side and HID / block device noise sources on the other side as discussed above is not in full effect during
early boot. The underestimation of the entropy is alleviated to some extent by injecting the first four sets of
received 64 interrupts into the ChaCha20 DRNG and marking this DRNG as initially seeded. Based on the
aforementioned measurements and applying the discussed safety margin where each time stamp is
considered to contain one bit of entropy, 256 bits of entropy are injected into the ChaCha20 DRNG state.
When reaching the state of being fully seeded and thus having the ChaCha20 DRNG seeded with 256 bits of
entropy from at least 256 interrupts and 128 bits of heuristically measured entropy from the noise sources,

Federal Office for Information Security 109

6 Test Series: Raw Entropy
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

the get random system call unblocks and generates random numbers. This allows the conclusion that
when the get random system call unblocks, sufficient entropy has been accumulated to be available for use
cases with strong cryptographic requirements.

The measurements of the available entropy during boot for virtual environments and native hardware
hardly differ. Thus, the conclusion is equally applicable to both environments.

[t is important to note that this conclusion is only applicable to environments with a high-resolution time
stamp. Hardware architectures with a low-resolution time stamp will not have significant amounts of
entropy after boot.

Even the get random system call is considered to always provide data from a sufficiently seeded DRNG.
This finding is not applicable to /dev/urandom or even the get random bytes in-kernel API, as
explained by the following observations:

* On the test system executed within a virtual environment, the kernel boot process completes after
around one second after boot. At that time, the user space from the initramfs is started. The first 128
interrupts are received at around this time when user space starts. Interrupts are collected in per-CPU
fast_pools and injected into the ChaCha20 DRNG only once one of the fast_pool received 64 interrupts.
Considering the presence of multiple CPUs where interrupts may be received by the different CPUs and
thus mixed into the respective CPU’s fast_pool the following pathological case must be considered.
Common systems have multiple CPUs, often 4 CPUs while in virtual environments there is no need for a
correspondence of a virtual CPU to a physical or hyperthreaded CPU to allow for an over-commitment
of CPUs. Assuming the presence of 4 CPUs, in a pathological case where each of the CPU processes
interrupts with an equal chance?®, 256 interrupts are required before even one fast_pool is injected into
the ChaCha20 DRNG. Thus, at the time user space starts and data is obtained from /dev/urandom, the
ChaCha20 DRNG in a worst case may not be seeded with any data. Naturally, with more CPUs on the
system, the pathological case is more severe.

* Executing the Linux-RNG on native hardware shows that the kernel boot process is finished some two
seconds after boot. By that time it is likely but not guaranteed that 256 interrupts are received. Thus, the
outlined pathological case for /dev/urandom is still relevant for native hardware, though with a lesser
probability.

23 It is quite likely that such pathological case is present. When reviewing /proc/interrupts, for a number of
interrupt types a more or less even distribution of interrupts to CPUs can be seen.

110 Federal Office for Information Security

Test Series: State Transition Function of DRNG 7
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

7 Test Series: State Transition Function of DRNG

With chapter 6, the analysis of the unprocessed data obtained from the noise sources was conducted. The
Linux-RNG receives that data and mixes it into the input_pool using the LFSR operation. A very similar
LFSR operation is performed when data is injected into the blocking_pool. When data is injected into the
ChaCha20 DRNG, it is mixed with the already present data. In all three cases, the state transition function of
the deterministic random number generation mechanism is used to mix-in the received data.

This chapter analyzes the state transition function used to process input data and to update the internal
state used for the deterministic processing.

This chapter is separated into two main components:

* The first set of tests performs an analysis of the state transition function without using any data from the
noise sources. This is done by extracting the state transition function of the Linux-RNG into standalone
code. This standalone code can now be invoked with arbitrary input data to study the behavior of the
function. To allow the reader to reproduce the results of this test, the extracted code for the state
transition function is identical to the corresponding code in the random.c Linux kernel code. The
functions that deliver the input are changed so that a counter starting at one is increased by one with
each request and provides the input data. The state after the state transition function operation is
dumped as a hexadecimal string for the analysis.

* Inasecond set of tests, the state transition function of an operational Linux-RNG is monitored.
Snapshots of the state content after the state transition function has processed the entire state are taken
and analyzed once to see whether they exhibit characteristics of white noise.

Before the testing is conducted, the properties of the LFSR polynomial are analyzed.

7.1 Properties of the LFSR Polynomials

Using the mathematical tool magma, the LFSR polynomials can be analyzed. The analysis follows [LRSV12]
and is performed over GF(2*?) considering the formula Q(X) = o (P(X) - 1) + 1 where P(X) references the
polynomial subject to assessment.

For performing the analysis of the polynomials, the mathematical tool Magma is used. An interface that is
freely available can be accessed at http://magma.maths.usyd.edu.au/calc/ where the Magma code listed
below can directly be processed with.

The following code is used for the analysis of the polynomials applied for the LFSR of the input_pool and
blocking_pool:

// Define finite field of size 2
F2 := FiniteField(2);

// Define a polynomial ring over the finite field of size 2

R2<x> := PolynomialRing (F2);

// This is the CRC-32-IEEE 802.3 polynomial mentioned in Section 3.1.3

// which can be found in

Federal Office for Information Security 111

http://magma.maths.usyd.edu.au/calc/

7 Test Series: State Transition Function of DRNG
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

//

https://www.xilinx.com/support/documentation/application notes/xapp209.pd
f

G := x"32 + x"26 + x"23 + x"22 + x*16 + x712 + x"11 + x710 + x°8 + x°7 +
x5 + x™MM + x"2 + x + 1;

// Check if this polynomial is irreducible. It must be

// irreducible because otherwise F32 would not be a field
print "is the CRC-32-IEEE 802.3 polynomial irreducible?";
IsIrreducible (G) ;

// Define the finite field with 2732 elements with defining
// polynomial G (see above)

F32<alpha> := ext<F2 | G>;

// Define a polynomial ring over the finite field F32
R<y> := PolynomialRing (F32);

// Define the polynomials P and Q used in random.c

P input := y*128 + y*104 + y"76 + y"51 + y"25 + y + 1;
Q input := alpha”3*(P_input-1)+1;

P output := y*32 + y"26 + y*19 + y*14 + y*7 + y + 1;

Q output := alpha”3* (P input-1)+1;

// Check if Q(X) is irreducible

print "is Q for input pool polynomial irreducible?";
IsIrreducible (Q input);

print "is Q for the blocking pool polynomial irreducible?";

IsIrreducible (Q output);

// Divide Q(x) by its leading coefficient to make it monic.
// Only then it can be tested for primitivity

print "is input pool polynomial primitive?";

1 := LeadingCoefficient (Q input);

IsPrimitive (Q input/1);

112 Federal Office for Information Security

Test Series: State Transition Function of DRNG 7
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

print "is blocking pool polynomial primitive?";
1 := LeadingCoefficient (Q output);
IsPrimitive (Q output/1l);

The polynomial used for the input_pool LFSR operation is deemed to be not primitive but irreducible over
GF(2%*) as explained in [LRSV12].

Similarly, the polynomial used for the blocking_pool LFSR operation is identified to be not primitive, but
irreducible over GF(2*) as explained in [LRSV12].

The implementation switched from primitive and irreducible to these polynomials between kernel version
3.12 and 3.13.

Another set of polynomials are suggested in [FV17] for the input_pool as well as the blocking_pool. Both
suggested polynomials are assessed with the Magma code outlined above considering Q(X) = a* (P(X) - 1) + 1
with P(X) referencing the respective polynomial. Both polynomials were identified to be primitive and
irreducible over GF(2%). Thus, it is suggested to use the polynomials presented in [FV17] for the LFSR
operation of the input_pool as well as the blocking_pool.

7.2 Standalone Operation of State Transition Functions

The code that is extracted from random.c is marked as such in the C code used for the following tests. The
extracted code is identical to the Linux kernel code to allow an immediate confirmation that the state
transition functions used by the Linux-RNG are analyzed.

To utilize the state transition functions, the following additional code is added:

* The code from the state transition function is part of a user space application. This means that a main
function is present as the entry function used during startup of the application.

* The state transition function requires input data. In the Linux kernel code, the data from the noise
sources is mixed into the input_pool. The ChaCha20 DRNG and the blocking_pool use the output data
from the input_pool. In both cases, the data is replaced by a data generating function which maintains an
8 bit variable, i.e. C character data type. That variable is used as a counter which is incremented by one
each time new data is requested. When the variable reaches 255, it will wrap back to zero upon the next
increment. This allows a byte-wise analysis of the behavior of the state transition function.

* The state transition function may require helper code which is added. The following types of helper code
are added:

* For the ChaCha20 operation, the ChaCha20 block function is implemented. To ensure that this block
function operates correctly, a self test is added using the test vectors from [RFC7539] section 2.3.2.

* The LFSR operation requires a logarithm function which is taken from the Linux kernel code.
* Converter code from binary into hexadecimal representation is added.

* Particularly for the ChaCha20 code extracted from random.c, code fragments in the extracted functions
had to be commented out as it covered aspects not applicable to the test code. The original code is still
left in the test code, but commented out to allow reviewers to verify that the applied changes are
appropriate. These changes include:

* Disabling the secondary ChaCha20 DRNG handling code. This is justified as the test code only
analyzes the ChaCha20 state transition function for one instance. This includes the NUMA setup code.

* Disabling the reseed timer enforcement. As mentioned in the ChaCha20 DRNG design, the ChaCha20
DRNG is reseeded every 5 minutes. As this is irrelevant for testing, the respective trigger code is
disabled.

Federal Office for Information Security 113

7 Test Series: State Transition Function of DRNG
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

* Removing the locking code.

* Disabling the special triggers to fetch data from the fast_pools during the initialization.

7.2.1 LFSR State Transition Function

The code for the LFSR demonstration is provided in the test directory of Ifsr_demonstration/. This code
contains the LFSR with the polynomials for the input_pool and the blocking_pool. Therefore, this code can
be used to validate both entropy pools.

The state of the entropy pool is initialized with zeros.

The test mixes 128 bytes (input_pool) or 32 bytes (blocking_pool) into the entropy pool. This number is
equal to the number of 32-bit words present in the entropy pool (128 and 32, respectively). As the mixing
function operates word-wise, after the mix-in of the 128 bytes / 32 bytes, all words of the entire entropy
pool have been updated once. After the mix-in of each individual byte, the state of the entropy pool is
printed to see the filling of the state with data.

This injection operation is performed for 100,000 cycles. A snapshot of the binary representation of the
entropy pool state is extracted after each complete mix-in of 128 bytes / 32 bytes.

The resulting binary data is processed as follows — all processing is identical with the data processing
outlined and discussed in detail in chapter 8:

* The Chi-Squared value calculated by the ent tool is obtained.
* The binary data is compressed with the gzip2,bzip2, xz and 1zma compression tools.

* The binary data is processed with the Test Procedure A defined in [AIS2031].

7.2.1.1 input_pool

To support the discussion of the behavior of the LFSR, the content of the input_pool before the first LFSR
operation is set to zero.

After the injection of the first byte which holds a 1, the state of the entropy pool is:

000
000
000
000
000
000
000
000
000
000
000
000
000
000c8206e
3b

The output shows that the majority of the state is still zeros. Only the last byte contains data. This
observation can be readily matched to the LFSR operation as follows:

* The byte that was mixed in contains a one. Even the expansion of the one byte into a 32 bit word leaves it
at one because the rotation operation leaves it untouched as the input rotate variable is still zero.

114 Federal Office for Information Security

Test Series: State Transition Function of DRNG 7
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

* The LFSR polynomial application to the 32 bit value holding a one will not change the value as all taps
taken from the other parts of the entropy pool are still zero.

* Thelow 3 bits of the 32-bit value holding a one are taken as a pointer into the twist table storing
the CRC32 constants. The low 3 bits represent a one, thus the value 0x3b6e20c8 is chosen from the table.

* Thetwist table valueis XORed with the 32-bit value that is right-shifted by 3. The 32-bit value
contains a one which after a right-shift by 3 turns into a zero. Thus, the twist_table value is XORed with
zero leaving only the twist table value.

When considering the fact that the test system is an Intel x86 system which operates in little-endian format,
the memory dump represented with the hexadecimal values shown above, and turning the little-endian
representation into a big-endian representation which is used for integer operation, it is visible that the
entropy pool state contains just the value from the twist table.

After the second byte with a value 2 is mixed into the entropy pool, its content is:

000
000
000
000
000
000
000
000
000
000
000
000
000
00039c46d07c8206e
3b

[t is visible that the first 32 bit word is unchanged and only the second 32-bit word is modified. That second
word is already affected by the first word due to the LFSR polynomial.

After printing the state of the entropy pool after the 127" byte is mixed in, it contains:

000000001e83e686423d37ead46cdb9359%9e6dffl12b5631e%9ae4ad4605282607df625218c5fF
fdffcfb5c2a131462991d7dd59010cf08f1f10adbab6097ec9bb92efcc26a9f18a23423e3
41c2b8d298b3e3853¢c1cl197£d22747d47e9¢c267782503bad8bf6205a8396220937848950
ea80d8224delc6fbb7ad74d625del184¢c99240beef8cd2£33e6£2c172162040d0595410¢30
52521d687c0e65e744£9a3989a3838d7b67d30faf8f027b654ebe8ab115e2a4£99036bd7£
efcebefbd21dd158bd49e3d15baeb38748edc6£73437£90a9e522902£7b7dd0b8d299%e48d
3f8d2943976ae550ee591bad5d1952512c020af18e261b208419c15bfd49aleb265c6c2c8f
19a4e8a3365cb214bfcd461a6ca5687d7927¢c1df5£f50£fc0d9de3cflec8af2550££78779e23
8a2a90a92b5c089908ab277951a5¢ce315e8181£f3bf9c1£f044910952778130a714605636623
b33987536ea624a5af62fe5595fd639a75e62885db21£fa7del1090337829048d77939£50c7
0069e85e9b68767275034650713e095€119081e2d60f2bfde5914bcd89b4ae29df70502a6
07£49df8beb9d478£d735b15caededbf6ell868b20fc7058cc8d26d7£412029%9ad7bd98d74
687deeaBalodf6522b3f£f1913a22c%9a%9a5¢ca315198e38c9006016084e40800a325470310b
e54de8a63c8b549a9fcach49e88e6acd49f8672832571926aa74£f80833b39¢c46d07¢c8206e
3b

[t is visible that all words of the entropy pool except the last one is filled. Yet, all words have been modified
only once - compare the first and second word with the output listing above.

After the 128™ byte is mixed in, the entire entropy pool has been modified once:

Federal Office for Information Security 115

7 Test Series: State Transition Function of DRNG
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

6b83e8731e83e686423d37ecad6cdb935%e6dffl12b5631e%9aed4ad4605282607d£625218c5f
fdffcfb5¢c2a131462991d7dd59b10cf08f1f10adbab6097ec9bb92efcc26a9f18a23423e3
41c2b8d298b3e3853¢1cl197£d22747d47e9¢c267782503bad8bf6205a8396220937848950
ea80d8224de0c6fbb7ad74d625de184c99240beef8cd2£f33e6f2¢c1721620d40d0595410¢30
52521d687¢c0e65e744f9a3989a3838d7b67d30faf8f027b654ebe8a5115e2a4£f99036bd7£
efceb5efbd21dd158bd49e3d15baeb538748edc6£73437£90a9e522902£7b7dd0b8d299%e48d
3£8d2943976ae550ee591bad5d1952512c020af18e261b208419c15bfd49%9aleb5265c6c2c8f
19a4e8a3365cb214bfcd461a6ca5687d7927¢c1df5£f50£fc0d9de3cflec8af2550££78779e23
8a2a90a92b5c089908ab277951a5¢ce315e8181£f3bf9c1£04490952778130a714605636623
b33987536ea624a5af62fe5595£d639a75e62885db21£fa7del1090337829048d77939£50c7
0069e85e9b68767275034650713e095€119081e2d60f2bfde5914bcd89b4ae29df70502a6
07£49d£f8beb9d478£d735b1l5caededbf6ell868b20£fc7058cc8d26d7£41202%9ad7bd98d74
687deeaBalodfo522b3ff1913a22¢c%9a9%9a5¢ca315198e38c9006016084e40800a325470310b
e54de8a63c8b549a9fcach49e88e6acd49f8672832571926aa74f80833b39¢c46d07¢c8206e
3b

The test now dumps this data after the 128™ byte has been mixed in as a binary bit stream. This dumping is
performed again every time when 128 bytes have been mixed into the entropy pool. This operation is
performed for 100,000 cycles.

The binary output shows the following characteristics:

* The Chi-Squared result when processing the data bit-wise is 28.00. The result indicates that the output is
white noise.

* The Chi-Squared result for byte-wise processing of the binary data is 30.38. This result also indicates tjat
the data is white noise.

e For all compression algorithms, the “compressed” data is larger than the binary data. Thus, the
compression algorithms could not find patters that allow the data to be compressed. This is another
indication for the data being white noise.

* All tests pass the test procedure A, providing another indication for white noise data.

All results combined strongly suggest that the data shows characteristics of white noise which is expected
for an LFSR operation. This allows the conclusion that the LFSR implementation does not exhibit flaws that
are considered to diminish entropy.

Considering that LFSRs with primitive polynomials are expected to produce white noise and collecting and
compressing entropy, it can be concluded that the LFSR used for the input_pool state transition is
appropriate for the maintenance of data holding entropy.

7.2.1.2 blocking_pool

The same analysis performed for the input_pool is performed for the blocking_pool. As the state transition
function applied to the blocking_pool is identical to the one used for the input_pool with the exception of
the used LFSR polynomial, this section relies on the previous section for the rationale.

After mixing in the first byte holding a one into the empty blocking_pool, its contents is:

000
000
000
00000000000000000000000000000c8206e3b

Again, the data is identical to the content of the input_pool as the same operation is applied. This is to be
expected, since the application of the LFSR polynomial only XORs zeros onto the input data and thus does

116 Federal Office for Information Security

Test Series: State Transition Function of DRNG 7
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

not alter the input data. Only the application of the twist table modifies the data, as in the case of the
input_pool.

The mixing in the second byte with a value of two changes the state of the entropy pool to:

000
000
000
00000000000000000000039c46d07c8206e3b

Again it is visible that the data is identical to the state of the input_pool after the mix-in of the second byte.
At this point, the only applied LFSR tap is the use of the first word. The LFSR polynomials for the input_pool
and the blocking_pool are identical for this tap.

After the mix-in of the 32" byte, the entropy pool contains:

d33dc01d7194435279d5238b0d414acdf31691cbl1£9d0a9ca810485¢c09fa305c36e5edlc?
ab810e85354d044£870bffd8b554bcb8a284e223£390d552ee280342¢c96985a40d55976da
0b86c439151b6aac093e7964b3905a52017cleda8a63c8ac8dcd4fbac549e88e6acd49f867
2832571926aa74£80833b39¢c46d07¢c8206e3b

With this mix-in of the 32™ byte, all words in the blocking_pool have been modified once. A snapshot of the
entropy pool is recorded as a bit-stream.

Just like for the input_pool, 100,000 cycles of a complete modification of the blocking_pool are performed
where a snapshot of the entropy pool state is recorded after each complete modification.

This binary data bit stream shows the following characteristics:

* The Chi-Squared result when processing the data bit-wise is 88.36. The result indicates that the output is
white noise.

* The Chi-Squared result for byte-wise processing of the binary data is 31.38. This result also indicates that
the data is white noise.

e For all compression algorithms, the “compressed” data is larger than the binary data. Thus, the
compression algorithms could not find patterns that allow the data to be compressed. This is another
indication that the data is white noise.

* All tests pass the test procedure A, providing another indication for white noise data.

The conclusion that can be drawn from these results is the same as for the input_pool: The LFSR operation is
considered to be appropriate for the maintenance of data containing entropy.

7.2.2 (ChaCha20 State Transition

To demonstrate the ChaCha20 state transition behavior, the test code provided in the directory chacha20/ is
used.

The code provides a snapshot of the ChaCha20 state after each operation is applied as part of the state
transition operation. Thus, the code allows the assessment of the following aspects:

* The ChaCha20 DRNG initialization fills the key part of the state as well as the counter and the nonce part.
The initial fixed values are filled with the known ASCII string.

* ChaCha20 DRNG fast load phase (4 copies of fast_pool) causes the state to be non-cryptographically
mixed as the input data is XORed with the present data.

* (ChaCha20 DRNG reseed causes the state to be non-cryptographically mixed as the input data is XORed
with the present data.

Federal Office for Information Security 117

7 Test Series: State Transition Function of DRNG
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

* The generation of data results in white noise even though the seed is deterministic.
* The backtrack resistance causes the state to be cryptographically mixed.

The test provides a memory for the ChaCha20 state which is filled with zeros to allow the operation of the
DRNG to be made visible.

After the initialization of the ChaCha20 state, it has the following content:

65787061 6642033 322d6279 7465206b 00000000 01000000 02000000 03000000
04000000 05000000 06000000 07000000 08000000 09000000 0a000000 0LOOOOOO

That ChaCha20 state shows the expected content:

* The first four words contain the ASCII character representation of the words “expand 32-byte k”.
According to the rules of ASCII, the small letter representation of the alphabet starts hex 61 for ‘a’ and
ends with hex 7A for ‘z’. Thus, ‘e’ is transformed into hex 65, ‘X’ is transformed into hex 78, ‘p’ is
transformed into hex 70 and so on. These hexadecimal numbers are the ones found for the first four
words.

* The following words are filled “random” numbers from the seed source according to the initialization of
the ChaCha20 DRNG in the Linux-RNG. As described, the test tool’s “seed source” is a counter that is
incremented by one as it is visible in the different words. The initialization is performed using integer
arithmetic which implies that the bit stream shows the little-endian representation of the integer values.

The next step is the first loading of the fast_pool. All bytes in that fast_pool are set to ones. The resulting
ChaCha20 state is as follows:

65787061 6e642033 322d6279 7465206b 01010101 00010101 03010101 02010101
04000000 05000000 06000000 07000000 08000000 09000000 0a000000 0bOOOOOO

This state shows that the 4 words of the fast fast_pool are injected into the words four through seven which
stores the first 128 bits of the ChaCha20 key according to [RFC7539], section 2.3. The mix-in of the four
words whose bytes are all set to one is performed using XOR. This XOR result is therefore clearly visible
compared to the previous state.

The second fast_pool content is set to all bytes containing a two. The resulting state after the mix-in is:

65787061 6642033 322d6279 7465206b 01010101 00010101 03010101 02010101
06020202 07020202 04020202 05020202 08000000 09000000 0a000000 0OLOOOOOO

The state now clearly shows that the words eight to eleven are modified by the XOR operation. These words
represent the second 128 bit part of the 256 bit ChaCha20 key as defined in [RFC7539], section 2.3.

The third fast_pool content is set to all bytes containing the value three. The content of the ChaCha20 DRNG
looks like:

65787061 6e642033 322d6279 7465206b 02020202 03020202 00020202 01020202
06020202 07020202 04020202 05020202 08000000 09000000 0a000000 0bOOOOOO

This is expected as the four fast_pool words are XORed with the first 128 bits of the key part of the ChaCha20
DRNG state.

The fourth fast_pool content is set to all bytes holding the value four. As expected, the content is now:

65787061 6642033 322d6279 7465206b 02020202 03020202 00020202 01020202
02060606 03060606 00060606 01060606 08000000 09000000 0a000000 0OLOOOOOO

This content shows that the second part of the 128 bits of the ChaCha20 key are modified by the XOR
operation.

The injection of the fast_pool is followed by a full reseed of all words defining the key. Again, the reseed uses
predictable content based on two counters (one for the time stamp and one defining the input_pool result):

118 Federal Office for Information Security

Test Series: State Transition Function of DRNG 7
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

65787061 6e642033 322d6279 7465206b 0b070707 0b070707 00070707 0b070707
17030303 17030303 17030303 17030303 08000000 09000000 0a000000 0bOOOOOO

In the test, the next operation after a full reseed is the generation of one ChaCha20 block used as random
number. The internal state after the random number generation is:

65787061 6642033 322d6279 7465206b 0b070707 0b070707 0b070707 0bO70707
17030303 17030303 17030303 17030303 09000000 09000000 0a000000 0L0OOOOOO

The only difference to the previous state is the increment of the counter word - word 13 - by one. This state
is used for the next ChaCha20 block operation. The result of the state after the next ChaCha20 operation
differs, as expected, by another increment of one of the counter word. This behavior is conceptually
identical to the counter block chaining mode specified in [SP800-38A]:

65787061 6642033 322d6279 7465206b 0b070707 0b070707 0b070707 0bO70707
17030303 17030303 17030303 17030303 0a000000 09000000 0a000000 0L0O0OOOOO

This operation continues to satisfy one request for random numbers of an arbitrary length which generates
the required ChaCha20 blocks. For the testing, the ChaCha20 output is recorded as a bit-stream for 100,000
ChaCha20 blocks. This bit stream is assessed in the following.

After one request is satisfied, the internal state is updated by XORing the “left-over” parts of the last
ChaCha20 block (if more than 256 bits are unused) or by using the 256 MSB of a new ChaCha20 block into
the key part of the ChaCha20 state:

65787061 6e642033 322d6279 7465206b d718cfea 9082279 9clf8d30 965c3e00
71c54c0d 28e2e298 7dd93068 9b3ce29f a8860100 09000000 0a000000 0bOOOOOO

This state shows that the counter value (in little endian) is decimal 100,008 as expected after the generation
of 100,000 ChaCha20 blocks (note, the counter started with the value 8 due to the ChaCha20 initialization).
In addition, the key part of the state is XORed with the output of the ChaCha20 block operation. This means
that this state update is the only time when the state is affected by a cryptographic operation.

The entire state update discussion demonstrates that:

* The first four words of the state are never changed.

* Any data mixed into the ChaCha20 state is mixed into the key part of the state.

* The counter value is a monotonically increasing counter.

* The nonces are not modified.

The output of the 100,000 ChaCha20 block shows the following statistical properties:

* The Chi-Squared value when treating the data stream as bit-wise is 78.26 which indicates white noise.

e The Chi-Squared value for a byte-wise processing of the data stream is 21.44 which also indicates white
noise.

e All compression algorithms deliver a “compressed” data whose size is larger than the original data
stream. This implies that no structures are found by the compression algorithms, which is an indication
that the data stream is white noise.

* All tests defined by the test procedure A are passed.

7.3 AIS 20/31 Test Procedure A for Entropy Pools

Using the test code input_pool/, the input_pool as well as the blocking_pool are observed. The SystemTap
test code takes a snapshot of the entropy pool after an amount of bytes has been mixed in that equals its size
in words. That means that a snapshot is taken of the input_pool after 128 bytes have been mixed in.

Federal Office for Information Security 119

7 Test Series: State Transition Function of DRNG
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

Similarly, a snapshot of the blocking_pool has been taken after 32 bytes have been mixed into the
blocking_pool. After the mix-in of the stated amount of bytes, all words in the entropy pool have been
changed by the LFSR operation.

With the obtained data, a binary string can be obtained that shows whether the LFSR implementing the
state transition function of the entropy pools guarantees white noise in the entropy pool.

7.3.1 input_pool
After generating 1,000,020 snapshots with the test code and concatenating all data, a binary string is present
that can be analyzed as follows:

* The Chi-Squared value using the ent tool shows a value < 0.01 (bit-wise) and 296.24 (byte-wise) which
indicates white noise.

e The test procedure A is passed by the bit string.

The test results for the input_pool confirm the test results obtained during the analysis presented in section
7.2.

7.3.2 blocking_pool
Similarly to the input_pool, the blocking_pool is analyzed after taking 60728 snapshots. Again, the data can
be characterized:

* The Chi-Squared value provided with the ent tool shows the value of 1.27 (bit-wise) and 228.53 (byte-
wise) which indicates white noise.

* The test procedure A is also passed by the bit string.

This implies that the test results confirm the results obtained from the analysis provided in section 7.2.

120 Federal Office for Information Security

Test Series: DRNG Output Functions 8
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

8 Test Series: DRNG Output Functions

The test series in this chapter is not so much about entropy and its maintenance, but it rather focuses on the
correctness of the different DRNG output functions. The goal is to identify problems in such output
functions highlighted with issues like CVE:2013-4345 which indicates an off-by one issue in the Linux
kernel ANSI X9.31 DRNG output function, or even the error introduced by the author of this study to the
SP800-90A DRBG present in the Linux kernel crypto API causing truncated outputs and fixed with the patch
8ff4c191d1123ealba610dbc25e93568d9e7756¢ contained in the upstream Linux kernel Git tree. These bugs
are caused when random data shall be produced that are not equal to the block size of the deterministic
random number generation process, i.e. the block size of the used cryptographic function in the random
number generator output function.

The testing is intended to obtain data from the output functions which generate random numbers. The
output is then processed by statistical testing to analyze whether deviations from the expected white noise
are present.

The testing is conducted on the output received by callers via the /dev/random device (data is received from
the blocking_pool) and the /dev/urandom device (data is received from the ChaCha20 DRNG).

The test code used for the functional verification of the output functions is provided in the test code
directory of DRNG-output. The conducted testing can be summarized as follows. The device files
/dev/random and /dev/urandom are accessed such that 1000 blocks of data are created. The testing covers
all block sizes ranging from 1 byte to 4096 bytes. The use of different block sizes shall verify that the code
producing the random numbers can handle every request of any length correctly. It is assumed that when
the test result for the block sizes up to 4096 bytes shows no deficiencies, larger block sizes are handled
correctly as well by the deterministic random number generation process.

To validate the output, the generated data is subjected to the following analyses:

* The generated data is processed with the ent tool to obtain the Chi-Squared test result. If the Chi-
Squared test result is below 0.10 or above 99.9, the result is flagged for further analysis. This test is
considered to be a search for a “smoking gun” as to whether the generated data is not white noise. The
calculation of the Chi-Squared value is considered an easy approach to identify white noise due to the
following: if the Chi-Squared test fails, then no white noise is assumed to be present. However, there
could be false positives in the sense that the Chi-Squared result indicates white noise data where in fact a
pattern is present. This applies in particular to the types of errors this set of tests wants to detect:
programming errors leading to a pattern present in the output data. Thus, the Chi-Squared testing is
deemed sufficient to find a “smoking gun” for further analysis.

* The generated data is compressed with the gzip2,bzip2, xz and 1zma compression tools. These tools
cover contemporary as well as state-of-the-art compression algorithms with high compression factors.
The size of the original binary data is then compared with the size of the “compressed” file. The test
would mark an error if the “compressed” file is smaller than the original size. If the compressed file is
smaller, then patterns are present that can be detected with the compression algorithms. If a file is not
compressible it is deduced that no pattern detectable by the compression algorithms is present. In this
case, the “compressed” file must be larger because the compression algorithms add extra data to their
output. If at least one of the compression operations is able to create a file with smaller size than the
original file, the processed data is not white noise, signaling a failure in the deterministic random
number generating functions of the Linux-RNG.

e Thetool dieharder is used to process the random data extracted from either /dev/random or
/dev/urandom. To apply all tests implemented in the dieharder statistical tool to the output of /dev/

urandom, the following call is executed:
cat /dev/urandom | dieharder -a -g 200
For processing /dev/random, the same command is used.

Federal Office for Information Security 121

8 Test Series: DRNG Output Functions
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

* Using the data generated for the dieharder testing, the Test Procedure A defined in [AIS2031] is
applied to the binary data produced by /dev/random and /dev/urandom. This Test Procedure A covers
the Monobit test, the Poker test, the Runs test, the Long Runs test, and the Autocorrelation test. The test
procedure A is implemented with the test tool test_proc_A.pl provided as part of the test suite.

As /dev/random blocks if no entropy is present, a tool is devised that injects zero buffers into /dev/random
and increases the entropy estimator via the RNDADDENTROPY IOCTL. By injecting a zero buffer into
/dev/random, the dieharder test validates the strength of the /dev/random output function and not the
potential cryptographic strength of the inserted data.

8.1 Output of blocking_pool

When obtaining data from /dev/random with the different block sizes, 8 out of the 4096 data sets showed a
Chi-Squared value which was outside the aforementioned range. When rerunning the test on these block
sizes, the Chi-Squared value was again back in the expected range. Thus, these outliers were a false positive
due to the small data size. This allows the conclusion that the Chi-Squared testing does not indicate that the
random number generation function used for /dev/random exhibits implementation errors.

The compression operation of the output data always showed that the “compressed” file is larger than the
original data. Again, this indicates that the compression algorithms were unable to detect patterns in the
data file which confirms that no implementation errors were detected in the random number generating
function backing /dev/random.

The dieharder testing shows two “weak” results. All other tests passed.

When executing the test procedure A on the data obtained for the dieharder tests, all tests pass. This
indicates white noise data and thus again confirms the previous results.

8.2 Output of ChaCha20 DRNG

Just like for the blocking_pool, the output data from the ChaCha20 DRNG that backs /dev/urandom shows 8
out of 4096 data sets with Chi-Squared values outside the allowed range. Again, when re-running the testing
for the affected block size, the observed Chi-Squared value is back in the expected range, confirming that the
initial outliers are false positives. Thus, the Chi-Squared test results do not indicate any programming errors
in the ChaCha20-DRNG feeding /dev/urandom.

The file compression test showed that all “compressed” files for all compression algorithms and all block
sizes are larger than the original files. This result confirms the Chi-Squared testing result that no
implementation error in the ChaCha-20 DRNG random number generation function can be detected.

All dieharder tests results are marked as “passed”. No failed or “weak” test result is present. This type of
result is expected for white noise data. Thus, the dieharder test result confirms the initial test results.

All tests pass the test procedure A, indicating white noise data confirming the results of the previous tests.

8.3 Conclusion of the Output Function Testing

The testing has shown that both the output function generating random numbers for /dev/random and the
one for /dev/urandom produce white noise. Thus, no implementation errors that would diminish the
entropy in the random numbers were identified.

122 Federal Office for Information Security

New Developments in Linux-RNG 9
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

9 New Developments in Linux-RNG

The current document analyzes one particular version of the Linux kernel with its Linux-RNG
implementation. The document always applies to the Linux kernel versions found at
http://www kernel.org.

For each new Linux kernel version, the current document is subject to review analyzing the following
possible differences to the assessed newer Linux kernel version:

* All changes performed to the following files of drivers/char/random.c, include/linux/random.h, include/
uapi/linux/random.h, arch/x86/include/asm/archrandom.h.

* Changes to the invocation of the entropy gathering functions documented in sections 3.5.2.1, 3.5.2.2,
3.5.2.3, and 3.5.2.5. This assessment shall include new conditions applied to the invocation of these
entropy gathering functions.

* Functions marked with either EXPORT_SYMBOL or EXPORT_SYMBOL_GPL implemented in random.c
shall be assessed whether their invocation in the remainder of the Linux kernel has changed. These
functions are interfaces exported by the Linux-RNG to other kernel parts.

Any changes identified for the aforementioned items are assessed in the following sections regarding their
impact to the documented Linux-RNG functionality. The preceding sections are updated as necessary.

9.1 Linux Kernel 4.10

Previously assessed Linux kernel version: 4.9 - http://www.kernel.org/pub/linux/kernel/v4.x/linux-
49.tar.xz

Currently assessed Linux kernel version: 4.10 — http://www kernel.org/pub/linux/kernel/v4.x/linux-
4.10.tar.xz

The following subsections contain the assessment of potential changes.

9.1.1 Changes to the Linux-RNG Implementation

9.1.1.1 File drivers/char/random.c

File showing deltas: see kernelupdates/4.10/random.c.diff
The following changes are visible:

* Replacement of asm/uaccess.h include file with linux/uaccess.h. This is due to a move of C code from the
old to the new file. This change does not have any effect on the functionality of the Linux-RNG.

9.1.1.2 File include/linux/random.h

No changes to the file are present.

9.1.1.3 File include/uapi/linux/random.h

No changes to the file are present.

Federal Office for Information Security 123

http://www.kernel.org/pub/linux/kernel/v4.x/linux-4.10.tar.xz
http://www.kernel.org/pub/linux/kernel/v4.x/linux-4.10.tar.xz
http://www.kernel.org/pub/linux/kernel/v4.x/linux-4.9.tar.xz
http://www.kernel.org/pub/linux/kernel/v4.x/linux-4.9.tar.xz
http://www.kernel.org/

9 New Developments in Linux-RNG
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

9.1.1.4 File arch/x86/include/asm/archrandom.h

No changes to the file are present.

9.1.2 Changes to Invocation of Entropy Gathering Functions

9.1.2.1 add_input_randomness

No change to the invocation in input handle event and thus no effect to the Linux-RNG.

9.1.2.2 add_interrupt_randomness

No change to the invocationin handle irg event percpuand vmbus isr and thus no effect to
the Linux-RNG.

9.1.2.3 add_disk_randomness

No change to the invocationinblk update bidi requestandscsi end request andthusno
effect to the Linux-RNG.

9.1.24 add_hwgenerator_randomness

No change to the invocation in hwrng fil1fn and thus no effect to the Linux-RNG.

This function is still invoked in the ATH9K WLAN driver when the Linux kernel configuration option
CONFIG_ATH9K HWRNG is set.

9.1.3 Definition and Use of new Interfaces

No functions implemented in random.c are newly defined with one of the EXPORT_SYMBOL*() macros.
Therefore, no new interfaces are exported.

9.2 LinuxKernel 4.11

Previously assessed Linux kernel version: 4.10 - http://www.kernel.org/pub/linux/kernel/v4.x/linux-
4.10.tar.xz

Currently assessed Linux kernel version: 4.11 - http://www kernel.org/pub/linux/kernel/v4.x/linux-
411 tar.xz

The following subsections contain the assessment of potential changes.

9.2.1 Changes to the Linux-RNG Implementation

9.2.1.1 File drivers/char/random.c

File showing deltas: see kernelupdates/4.11/random.c.diff

124 Federal Office for Information Security

http://www.kernel.org/pub/linux/kernel/v4.x/linux-4.11.tar.xz
http://www.kernel.org/pub/linux/kernel/v4.x/linux-4.11.tar.xz
http://www.kernel.org/pub/linux/kernel/v4.x/linux-4.11.tar.xz
http://www.kernel.org/pub/linux/kernel/v4.x/linux-4.11.tar.xz
http://www.kernel.org/pub/linux/kernel/v4.x/linux-4.10.tar.xz
http://www.kernel.org/pub/linux/kernel/v4.x/linux-4.10.tar.xz

New Developments in Linux-RNG 9
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

The following changes are visible:

* Several changes are applied to cleanup the code suggested by the author of this study, including: removal
of unused random min urandom seed variable from operational code (the variable is left as it is a
user-space interface but it has no purpose any more), removal of the urandom init wait wait
queue, removal of the 1imi t variable in entropy pool data structure and all code used for the
maintenance of the nonblocking_pool (which is not used any more), removal of unused function
maybe reseed primary crng.These changes do not affect the Linux-RNG functionality as only
unused code paths are removed.

* Theimplementation of get random intand get random long have been replaced with the
functions get random u32and get random u64 which use the ChaCha20 DRNG from the
Linux-RNG. These two new functions are marked as an interface function with the EXPORT SYMBOL
macro. This implies that these two new functions are new in-kernel interfaces to the Linux-RNG as
documented in section 3.4.3. The new interface does, however, not constitute a change in the logic flow
of the Linux-RNG.

9.2.1.2 File include/linux/random.h

File showing deltas: see kernelupdates/4.11/random.h.diff
The following changes are visible:

* Thenew API calls of get random u32and get random u64 mentioned above are defined. The
old API calls of get random intand get random long arereplaced with a call to the new API
calls.

9.2.1.3 File include/uapi/linux/random.h

No changes to the file are present.

9.2.14 File arch/x86/include/asm/archrandom.h

No changes to the file are present.

9.2.2 Changes to Invocation of Entropy Gathering Functions

9.2.2.1 add_input_randomness

No change to the invocation in input handle event and thus no effect to the Linux-RNG.

9.2.2.2 add_interrupt_randomness

No change to the invocationin handle irg event percpuand vmbus isr and thusno effectto
the Linux-RNG.

Federal Office for Information Security 125

9 New Developments in Linux-RNG
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

9.2.2.3 add_disk_randomness

No change to the invocationinblk update bidi requestandscsi end request andthusno
effect to the Linux-RNG.

9.2.24 add_hwgenerator_randomness

No change to the invocation in hwrng fil1lfn and thus no effect to the Linux-RNG.

This function is still invoked in the ATH9K WLAN driver when the Linux kernel configuration option
CONFIG ATH9K HWRNG is set.

9.2.3 Definition and Use of new Interfaces

The functions of get random u32and get random u64 discussed above are marked with the
EXPORT SYMBOL macro. Therefore, these functions are considered new in-kernel APIs.

9.3 Linux Kernel 4.12

Previously assessed Linux kernel version: 4.11 - http://www .kernel.org/pub/linux/kernel/v4.x/linux-
4.11.tar.xz

Currently assessed Linux kernel version: 4.12 - http://www kernel.org/pub/linux/kernel/v4.x/linux-
4.12 tar.xz

The following subsections contain the assessment of potential changes.

9.3.1 Changes to the Linux-RNG Implementation

9.3.1.1 File drivers/char/random.c

File showing deltas: see kernelupdates/4.12/random.c.diff
The following changes are visible:

* Fixrace condition in edge conditions on M68K architectures when accessing an Linux-RNG internal
variable atomically.

* Fixrace conditions in the CPU-local buffer accesses for the get random u32 and
get random u64 API functions.

9.3.1.2 File include/linux/random.h

No changes to the file are present.

9.3.1.3 File include/uapi/linux/random.h

No changes to the file are present.

126 Federal Office for Information Security

http://www.kernel.org/pub/linux/kernel/v4.x/linux-4.12.tar.xz
http://www.kernel.org/pub/linux/kernel/v4.x/linux-4.12.tar.xz
http://www.kernel.org/pub/linux/kernel/v4.x/linux-4.11.tar.xz
http://www.kernel.org/pub/linux/kernel/v4.x/linux-4.11.tar.xz

New Developments in Linux-RNG 9
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

9.3.1.4 File arch/x86/include/asm/archrandom.h

No changes to the file are present.

9.3.2 Changes to Invocation of Entropy Gathering Functions

9.3.2.1 add_input_randomness

No change to the invocation in input handle event and thus no effect to the Linux-RNG.

9.3.2.2 add_interrupt_randomness

No change to the invocationin handle irg event percpuand vmbus isr and thus no effect to
the Linux-RNG.

9.3.2.3 add_disk_randomness

No change to the invocationinblk update bidi requestandscsi end request andthusno
effect to the Linux-RNG.

9.3.24 add_hwgenerator_randomness

No change to the invocation in hwrng fil1fn and thus no effect to the Linux-RNG.

This function is still invoked in the ATH9K WLAN driver when the Linux kernel configuration option
CONFIG_ATH9K HWRNG is set.

9.3.3 Definition and Use of new Interfaces

No functions implemented in random.c are newly defined with one of the EXPORT_SYMBOL*() macros.
Therefore, no new interfaces are exported.

9.4 Linux Kernel 4.13

Previously assessed Linux kernel version: 4.12 - http://www kernel.org/pub/linux/kernel/v4.x/linux-
412 tar.xz

Currently assessed Linux kernel version: 4.13 - http://www kernel.org/pub/linux/kernel/v4.x/linux-
4.13.tar.xz

The following subsections contain the assessment of potential changes.

9.4.1 Changes to the Linux-RNG Implementation

94.1.1 File drivers/char/random.c

File showing deltas: see kernelupdates/4.13/random.c.diff

Federal Office for Information Security 127

http://www.kernel.org/pub/linux/kernel/v4.x/linux-4.13.tar.xz
http://www.kernel.org/pub/linux/kernel/v4.x/linux-4.13.tar.xz
http://www.kernel.org/pub/linux/kernel/v4.x/linux-4.12.tar.xz
http://www.kernel.org/pub/linux/kernel/v4.x/linux-4.12.tar.xz

9 New Developments in Linux-RNG
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

The following changes are visible:

* Theimplementation of add device randomness hasbeen changed such that all received data is
directly mixed into the ChaCha20 DRNG before the ChaCha20 DRNG is considered to be initially seeded.
Section 3.5.2.4 has been updated accordingly.

* Thefunctionwarn unseeded randomness hasbeen added which generates kernel log messages
about callers of get random bytes that request random data before the ChaCha20 DRNG is initially
seeded. This change is intended to aid kernel development to notify users when requests for random
data are made too early. This change does not affect the cryptographic aspects of the Linux-RNG.

* TheAPIfunctioncallof wait for random bytes isadded. This API call is documented in section
343.

9.4.1.2 File include/linux/random.h

File showing deltas: see kernelupdates/4.13/random.h.diff
The following changes are visible:

* The declaration of the aforementioned new API function of wait for random bytes isadded.
This is accompanied by helper functions of get random bytes wait,get random u32 wait,
get random u64 wait,get random long waitandget random int wait whichall
invoke the respective functions without the “_wait” prefix after the ChaCha20 DRNG has been initially
seeded.

* The helper function of get random canary is added which invokes the Linux-RNG
get random long API function and zeroizes the 8 LSB of the generated 64 bit random integer
variable on 64-bit systems. On 32-bit systems, a 32-bit random integer value is generated which remains
unchanged. This function call is intended to support the stack canary initialization to protect against C
string overflows. This change does not affect the Linux-RNG operation.

9.4.1.3 File include/uapi/linux/random.h

No changes to the file are present.

9.4.14 File arch/x86/include/asm/archrandom.h

No changes to the file are present.

9.4.2 Changes to Invocation of Entropy Gathering Functions

9.4.21 add_input_randomness

No change to the invocation in input handle event and thus no effect to the Linux-RNG.

9.4.2.2 add_interrupt_randomness

No change to the invocationin handle irg event percpuand vmbus isr and thus no effect to
the Linux-RNG.

128 Federal Office for Information Security

New Developments in Linux-RNG 9
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

9.4.2.3 add_disk_randomness

No change to the invocationinblk update bidi requestandscsi end request andthusno
effect to the Linux-RNG.

9.4.24 add_hwgenerator_randomness

No change to the invocation in hwrng fil1lfn and thus no effect to the Linux-RNG.

This function is still invoked in the ATH9K WLAN driver when the Linux kernel configuration option
CONFIG ATH9K HWRNG is set.

9.4.3 Definition and Use of new Interfaces

The API function call of wait for random bytes isadded and marked with EXPORT_SYMBOL. This
API call is documented in section 3.4.3.

9.5 Linux Kernel 4.14

Previously assessed Linux kernel version: 4.13 - https://www kernel.org/pub/linux/kernel/v4.x/linux-
4.13.tar.xz

Currently assessed Linux kernel version: 4.14 - https://www.kernel.org/pub/linux/kernel/v4.x/linux-
4.14 tar.xz

Assessment of changes: Changes do not affect the functionality of the Linux-RNG.

The following subsections contain the assessment of potential changes.

9.5.1 Changes to the Linux-RNG Implementation

9.5.1.1 File drivers/char/random.c

No changes to the file are present.

9.5.1.2 File include/linux/random.h

The file received an additional comment regarding the software license. This change does not affect any part
of the functionality defined with this file.

9.5.1.3 File include/uapi/linux/random.h

The file received an additional comment regarding the software license. This change does not affect any part
of the functionality defined with this file.

9.5.1.4 File arch/x86/include/asm/archrandom.h

No changes to the file are present.

Federal Office for Information Security 129

https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.14.tar.xz
https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.14.tar.xz
https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.13.tar.xz
https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.13.tar.xz

9 New Developments in Linux-RNG
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

9.5.2 Changes to Invocation of Entropy Gathering Functions

9.5.2.1 add_input_randomness

No change to the invocationin input handle event and thus no effect to the Linux-RNG.

9.5.2.2 add_interrupt_randomness

No change to the invocationin handle irqg event percpuandvmbus isr and thusno effectto
the Linux-RNG.

9.5.2.3 add_disk_randomness

No change to the invocationinblk update bidi requestandscsi end request andthusno
effect to the Linux-RNG.

9.5.24 add_hwgenerator_randomness

No change to the invocation in hwrng fil1lfn and thus no effect to the Linux-RNG.

This function is still invoked in the ATH9K WLAN driver when the Linux kernel configuration option
CONFIG ATH9K HWRNG is set.

9.5.3 Definition and Use of new Interfaces

No functions implemented in random.c are newly defined with one of the EXPORT_SYMBOL*() macros.
Therefore, no new interfaces are exported.

9.6 Linux Kernel 4.15
Previously assessed Linux kernel version: 4.14 - https://www .kernel.org/pub/linux/kernel/v4.x/linux-
4.14 tar.xz

Currently assessed Linux kernel version: 4.15 - https://www.kernel.org/pub/linux/kernel/v4.x/linux-
4.15.tar.xz

Assessment of changes: Changes do not affect the functionality of the Linux-RNG.

The following subsections contain the assessment of potentially relevant changes.
9.6.1 Changes to the Linux-RNG Implementation

9.6.1.1 File drivers/char/random.c

The implementation uses the macro READ_ONCE instead of the now deprecated ACCESS_ONCE macro to
perform an atomic read operation of a variable. This change does not alter the behavior of the Linux-RNG.

130 Federal Office for Information Security

https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.15.tar.xz
https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.15.tar.xz
https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.14.tar.xz
https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.14.tar.xz

New Developments in Linux-RNG 9
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

9.6.1.2 File include/linux/random.h

No changes.

9.6.1.3 File include/uapi/linux/random.h

No changes.

9.6.14 File arch/x86/include/asm/archrandom.h

The file contains an editorial change to the assembler code which does not alter the behavior of the
implemented functionality or the functionality of the Linux-RNG.

9.6.2 Changes to Invocation of Entropy Gathering Functions

9.6.2.1 add_input_randomness

No change to the invocation in input handle event and thus no effect on the Linux-RNG.

9.6.2.2 add_interrupt_randomness

No change to the invocationin handle irg event percpuand vmbus isr and thusno effect on
the Linux-RNG.

9.6.2.3 add_disk_randomness

No change to the invocationinblk update bidi requestandscsi end request andthusno
effect on the Linux-RNG.

9.6.2.4 add_hwgenerator_randomness

No change to the invocation in hwrng f£illfn and thus no effect to the Linux-RNG.

This function is still invoked in the ATH9K WLAN driver when the Linux kernel configuration option
CONFIG ATHO9K HWRNG is set.

9.6.3 Definition and Use of new Interfaces

No functions implemented in random.c are add by means of any of the EXPORT_SYMBOL*() macros.
Therefore, no new interfaces are exported.

9.7 Linux Kernel 4.16

Previously assessed Linux kernel version: 4.15 - https://www kernel.org/pub/linux/kernel/v4.x/linux-
415 tar.xz

Federal Office for Information Security 131

https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.15.tar.xz
https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.15.tar.xz

9 New Developments in Linux-RNG
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

Currently assessed Linux kernel version: 4.16 - https://www kernel.org/pub/linux/kernel/v4.x/linux-
4.16.tar.xz

Assessment of changes: Changes do not affect the functionality of the Linux-RNG.

The following subsections contain the assessment of potentially relevant changes.

9.7.1 Changes to the Linux-RNG Implementation

9.7.1.1 File drivers/char/random.c

The diff of the file shows numerous changes. All of these changes, however, can be categorized into the
following modifications:

Use aligned memory access for ChaCha20: The ChaCha20 block transformation function operates on 32-
bit words. This applies to input as well as output buffers the ChaCha20 block transformation is applied
to. When accessing memory as 32-bit words, the CPU will always access the memory on a 4-byte word
boundary. In order to ensure that all bytes of the input/output buffer are accessed by the ChaCha20
block transformation (and not up to 3 bytes before or after), it is mandatory that the pointer to the input/
output buffer is aligned on a 4-byte boundary. So far, the input/output buffers were treated as an array of
8-bit words. Technically it was therefore possible that the buffer pointers are not aligned on a 4-byte
boundary. The modification changes all input/output buffer pointers to be aligned to a 4-byte boundary.
This change in the code does not affect the x86 32-bit or 64-bit processor architecture, because the GCC
compiler will align even 8-bit buffer pointers on either a 4-byte or 8-byte boundary. However, on other
architectures, this is not guaranteed. Therefore, the change does not affect the operation of the Linux-
RNG on an x86 architecture.

Change of the poll infrastructure: The Linux kernel poll infrastructure received changes unrelated to the
Linux-RNG implementation. This change also affects the interface functions exported by the poll
infrastructure to other kernel parts. These interface changes imply that the Linux-RNG invocation of the
poll infrastructure must be changed accordingly. The changes required in the Linux-RNG, however, are
minuscule: a rename of 3 flags whose purpose did not change and the change of the data type of a
variable without a change of the meaning of the variable. These changes do not affect the operation of
the Linux-RNG.

9.7.1.2 File include/linux/random.h

No changes.

9.7.1.3 File include/uapi/linux/random.h

No changes.

9.7.1.4 File arch/x86/include/asm/archrandom.h

No changes.

132

Federal Office for Information Security

https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.16.tar.xz
https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.16.tar.xz

New Developments in Linux-RNG 9
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

9.7.2 Changes to Invocation of Entropy Gathering Functions

9.7.21 add_input_randomness

No change to the invocationin input handle event and thus no effect on the Linux-RNG.

9.7.2.2 add_interrupt_randomness

No change to the invocationin handle irg event percpuand vmbus isr and thusno effecton
the Linux-RNG.

9.7.2.3 add_disk_randomness

No change to the invocationinblk update bidi requestandscsi end request andthusno
effect on the Linux-RNG.

9.7.24 add_hwgenerator_randomness

No change to the invocation in hwrng fil1lfn and thus no effect to the Linux-RNG.

This function is still invoked in the ATH9K WLAN driver when the Linux kernel configuration option
CONFIG ATH9K HWRNG is set.

9.7.3 Definition and Use of new Interfaces

No functions implemented in random.c are add by means of any of the EXPORT_SYMBOL*() macros.
Therefore, no new interfaces are exported.

9.8 Linux Kernel 4.17
Previously assessed Linux kernel version: 4.16 - https://www kernel.org/pub/linux/kernel/v4.x/linux-
4.16.tar.xz

Currently assessed Linux kernel version: 4.17 - https://www.kernel.org/pub/linux/kernel/v4.x/linux-
4.17 tar.xz

Assessment of changes: Changes do not affect the functionality of the Linux-RNG. The NTG.1 properties of /
dev/random are not affected by the changes.

The following subsections contain the assessment of potentially relevant changes.
9.8.1 Changes to the Linux-RNG Implementation

9.8.1.1 File drivers/char/random.c

The diff of the file shows numerous changes. All of these changes, however, can be categorized into the
following modifications:

Federal Office for Information Security 133

https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.17.tar.xz
https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.17.tar.xz
https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.16.tar.xz
https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.16.tar.xz

9 New Developments in Linux-RNG
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

Although the following change is only in one line, it has user-visible impact: The Linux-RNG now
considers the ChaCha20 DRNG fully seeded after it received 128 bit of entropy from the noise sources.
Previously it was sufficient that it received at least 256 interrupts. The Linux-RNG author announced this
change as a big security update indicating that the previous implementation affecting the behavior of the
getrandom(2) system call was considered insecure. Based on the measurements of the amount of entropy
considered to be present in the interrupts provided with section 6.3, such security impact cannot be
detected at least for Intel x86-based systems. Furthermore, it is assumed that such security relevance is
equally not applicable for all platforms with a high-resolution timer. Nonetheless, the change does not
affect the security of the Linux-RNG. Changes to the design description in the preceding sections have
been applied.

The use of the function wq_has_sleepers is added to verify the presence of waiting tasks in the
rand_read_wakeup wait queue before invoking the function to wake all up. This addition is a cosmetic
change to prevent the invocation of the wakeup function if there are no tasks waiting. The change does
not affect the security of the Linux-RNG.

The safety-check in credit_entropy_bits_safe to prevent overflowing the entropy estimator is modified to
cap the maximum entropy level to be added to the size of the entropy pool instead of to a value that is
mathematically safe. This change is considered to be a safety-related change and has no relevance to
security, because the input to the function must already be correct to ensure that the entropy estimator
holds the proper entropy value. Therefore, the change does not affect the security of the Linux-RNG.

The allocation of the per-NUMA-node ChaCha20 DRNG instances is now moved into a work queue for
asynchronous allocation of the instances. While the instances are not yet allocated, the initial ChaCha20
DRNG instance is used. Thus, the change does not affect the security of the Linux-RNG.

Add the function crng_slow_load which is called from the add_device_randomness noise source with the
goal to inject the seed data into the ChaCha20 DRNG state. The goal is to inject the data with a code path
that does not have the time constraints of interrupts. Besides, the data is mixed directly into the
ChaCha20 DRNG state using a small LFSR to ensure that each bit of the ChaCha20 DRNG is touched
when injecting data. The change does not affect the security of the Linux-RNG.

The Linux-RNG prints out warnings at early boot time in case data is obtained when it is not yet initially
or fully seeded. Changes are added to rate-limit these logs and to allow a boot-time flag to toggle the rate
of the log data. The change does not affect the security of the Linux-RNG.

The change introduces a flag crng_global_init_time which is used to trigger a reseed of each ChaCha20
DRNG instance if the newly added IOCTL of RNDRESEEDCRNG is invoked. The new IOCTL is
documented in section 3.4.1.3. The change does not affect the security of the Linux-RNG.

Remove of the unused entropy pool state variable dont_count_entropy. The change does not affect the
security of the Linux-RNG.

9.8.1.2 File include/linux/random.h

The following changes are visible:

The change log of the change reads: Always fill buffer in get_random_bytes_wait. In the unfortunate
event that a developer fails to check the return value of get_random_bytes_wait, or simply wants to make
a "best effort" attempt, for whatever that's worth, it's much better to still fill the buffer with _something_
rather than catastrophically failing in the case of an interruption. This is both a defense-in-depth
measure against inevitable programming bugs, as well as a means of making the API a bit more useful.
The change does not affect the security of the Linux-RNG.

134

Federal Office for Information Security

New Developments in Linux-RNG 9
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

9.8.1.3 File include/uapi/linux/random.h

The following changes are visible:

* The definition of the new IOCTL of RNDRESEEDCRNG is added. The change does not affect the security
of the Linux-RNG.

9.8.14 File arch/x86/include/asm/archrandom.h

No changes.

9.8.2 Changes to Invocation of Entropy Gathering Functions

9.8.2.1 add_input_randomness

No change to the invocation in input handle event and thus no effect on the Linux-RNG.

9.8.2.2 add_interrupt_randomness

No change to the invocationin handle irg event percpuand vmbus isr and thusno effect on
the Linux-RNG.

9.8.2.3 add_disk_randomness

No change to the invocationinblk update bidi requestandscsi end request andthusno
effect on the Linux-RNG.

9.8.2.4 add_hwgenerator_randomness

No change to the invocation in hwrng f£illfn and thus no effect to the Linux-RNG.

This function is still invoked in the ATH9K WLAN driver when the Linux kernel configuration option
CONFIG ATHO9K HWRNG is set.

9.8.3 Definition and Use of new Interfaces
No functions implemented in random.c are add by means of any of the EXPORT_SYMBOL*() macros.
Therefore, no new interfaces are exported.

However, a new IOCTL is added as discussed above.

9.9 Linux Kernel 4.18
Previously assessed Linux kernel version: 4.17 - https://www.kernel.org/pub/linux/kernel/v4.x/linux-
4.17 tar.xz

Currently assessed Linux kernel version: 4.18 - https://www kernel.org/pub/linux/kernel/v4.x/linux-
4.18.tar.xz

Federal Office for Information Security 135

https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.18.tar.xz
https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.18.tar.xz
https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.17.tar.xz
https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.17.tar.xz

9 New Developments in Linux-RNG
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

Assessment of changes: Changes do not affect the functionality of the Linux-RNG. The NTG.1 properties of /
dev/random are not affected by the changes.

The following subsections contain the assessment of potentially relevant changes.

9.9.1 Changes to the Linux-RNG Implementation

99.1.1 File drivers/char/random.c

The diff of the file shows one change:

e The Linux-RNG allows inserting data with the IOCTL of RNDADDENTROPY as documented in section
3.4.1.3. The handling function obtaining the data from user space is write_random. This function is
changed to XOR each 32-bit word of the user-provided input data with 32 bits obtained from the
RDRAND CPU instruction. The cause of the change was the addition of the Jitter RNG to the Linux user
space daemon of rndg whose purpose is to provide additional entropy. The Linux-RNG author publicly
claimed that he did not trust the Jitter RNG output.

9.9.1.2 File include/linux/random.h

No changes.

9.9.1.3 File include/uapi/linux/random.h

No changes.

99.14 File arch/x86/include/asm/archrandom.h

No changes.

9.9.2 Changes to Invocation of Entropy Gathering Functions

9.9.2.1 add_input_randomness

No change to the invocation in input handle event and thus no effect on the Linux-RNG.

9.9.2.2 add_interrupt_randomness

No change to the invocationin handle irqg event percpuand vmbus isr and thusno effecton
the Linux-RNG.

9.9.2.3 add_disk_randomness

No change to the invocationinblk update bidi requestandscsi end request andthusno
effect on the Linux-RNG.

136 Federal Office for Information Security

New Developments in Linux-RNG 9
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

9.9.24 add_hwgenerator_randomness

No change to the invocation in hwrng fil1lfn and thus no effect to the Linux-RNG.

This function is still invoked in the ATH9K WLAN driver when the Linux kernel configuration option
CONFIG ATH9K HWRNG is set.

9.9.3 Definition and Use of new Interfaces

No functions implemented in random.c are add by means of any of the EXPORT_SYMBOL*() macros.
Therefore, no new interfaces are exported.

9.10 Linux Kernel 4.19

Previously assessed Linux kernel version: 4.18 - https://www kernel.org/pub/linux/kernel/v4.x/linux-
4.18.tar.xz

Currently assessed Linux kernel version: 4.19 - https://www.kernel.org/pub/linux/kernel/v4.x/linux-
4.19.tar.xz

Assessment of changes: Changes do affect the functionality of the Linux-RNG with respect to the seeding
process of the ChaCha20 DRNG supporting /dev/urandom and the get_random_bytes in-kernel interface.
The NTG.1 properties of /dev/random are not affected by the changes. However, the DRG.3 properties of

the ChaCha20 DRNG are affec ted.

The following subsections contain the assessment of potentially relevant changes.

9.10.1 Changes to the Linux-RNG Implementation

9.10.1.1 File drivers/char/random.c

The diff of the file shows one change:

* The initial seeding process of the ChaCha20 DRNG has been altered. The CPU-based noise sources may
now be considered “trusted” by the Linux-RNG causing the ChaCha20 to be fully initialized at the time
the ChaCha20 DRNG state is initialized. Details are given in section 3.3.2.3. This affects the entropy
estimate of a newly initialized ChaCha20 DRNG. As it has an impact on the entropy estimation for the
ChaCha20 DRNG, it also has an impact on the DRG.3 properties of the ChaCha20 DRNG. Therefore,
section 5.2.1 has been updated.

* The Linux kernel received a new kernel command line argument “random.trust_cpu”. This argument
allows toggling the default trust into the CPU-based noise sources at boot time. This relates to the
aforementioned initialization of the ChaCha20 DRNG and therefore that security implication statement
applies here as well.

* Locking in add_timer_randomness() has been updated. This does no affect the Linux-RNG behavior.

9.10.1.2 File include/linux/random.h

The diff shows the addition of the function prototypes added with the changes discussed for random.c
above. This implies that these changes do not affect the Linux-RNG behavior.

Federal Office for Information Security 137

https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.19.tar.xz
https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.19.tar.xz
https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.18.tar.xz
https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.18.tar.xz

9 New Developments in Linux-RNG
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

9.10.1.3 File include/uapi/linux/random.h

No changes.

9.10.1.4 File arch/x86/include/asm/archrandom.h

No changes.

9.10.2 Changes to Invocation of Entropy Gathering Functions

9.10.2.1 add_input_randomness

No change to the invocation in input handle event and thus no effect on the Linux-RNG.

9.10.2.2 add_interrupt_randomness
No change to the invocationin handle irg event percpuand vmbus isr and thusno effect on
the Linux-RNG.

A function call to add_interrupt_randomness is added to the function of hv_stimer0 isr partof the
Microsoft Hyper-V code. This function is triggered when the stimer0 is operating in Direct Mode. Direct
Mode does not use the VMbus or any VMbus messages that would trigger vmbus_1isr. Hence, the addition
is considered appropriate as an event triggered by Hyper-V is detected.

9.10.2.3 add_disk_randomness

No change to the invocationinblk update bidi requestandscsi end request andthusno
effect on the Linux-RNG.

9.10.2.4 add_hwgenerator_randomness

No change to the invocation in hwrng fil1lfn and thus no effect to the Linux-RNG.

This function is still invoked in the ATH9K WLAN driver when the Linux kernel configuration option
CONFIG ATH9K HWRNG is set.

9.10.3 Definition and Use of new Interfaces

No functions implemented in random.c are add by means of any of the EXPORT_SYMBOL*() macros.
Therefore, no new interfaces are exported.

9.11 Linux Kernel 4.20
Previously assessed Linux kernel version: 4.19 - https://www kernel.org/pub/linux/kernel/v4.x/linux-
4.19.tar.xz

Currently assessed Linux kernel version: 4.20 — https://www.kernel.org/pub/linux/kernel/v4.x/linux-
4.20.tar.xz

138 Federal Office for Information Security

https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.20.tar.xz
https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.20.tar.xz
https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.19.tar.xz
https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.19.tar.xz

New Developments in Linux-RNG 9
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

Assessment of changes: Changes do not affect the functionality of the Linux-RNG. The NTG.1 properties of /
dev/random are not affected by the changes.

The following subsections contain the assessment of potentially relevant changes.

9.11.1 Changes to the Linux-RNG Implementation

9.11.1.1 File drivers/char/random.c

The diff of the file shows one change:

e The ChaCha20 block operation interface function change applied to 4.16 has been reverted. The
ChaCha20 block operation again works on byte boundaries, not requiring word-aligned memory. Thus
the Linux-RNG buffer used to invoke the ChaCha20 block operation has been changed from a word-
array to a byte-array. The change does not affect the security of the Linux-RNG.

9.11.1.2 Fileinclude/linux/random.h

No changes.

9.11.1.3 File include/uapi/linux/random.h

No changes.

9.11.1.4 File arch/x86/include/asm/archrandom.h

No changes.

9.11.2 Changes to Invocation of Entropy Gathering Functions

9.11.2.1 add_input_randomness

No change to the invocation in input handle event and thus no effect on the Linux-RNG.

9.11.2.2 add_interrupt_randomness

No change to the invocationin handle irg event percpu, vmbus israndhv stimer0O isr
and thus no effect on the Linux-RNG.

9.11.2.3 add_disk_randomness

No change to the invocationinblk update bidi requestandscsi end request andthusno
effect on the Linux-RNG.

Federal Office for Information Security 139

9 New Developments in Linux-RNG
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

9.11.2.4 add_hwgenerator_randomness

No change to the invocation in hwrng fil1lfn and thus no effect to the Linux-RNG.

This function is still invoked in the ATH9K WLAN driver when the Linux kernel configuration option
CONFIG ATH9K HWRNG is set.

9.11.3 Definition and Use of new Interfaces

No functions implemented in random.c are add by means of any of the EXPORT_SYMBOL*() macros.
Therefore, no new interfaces are exported.

9.12 Linux Kernel 5.0

Previously assessed Linux kernel version: 4.20 - https://www kernel.org/pub/linux/kernel/v4.x/linux-
4.20.tar.xz

Currently assessed Linux kernel version: 5.0 — https://www kernel.org/pub/linux/kernel/v5.x/linux-
5.0.tar.xz

Assessment of changes: Changes do not affect the functionality of the Linux-RNG. The NTG.1 properties of /
dev/random are not affected by the changes.

The following subsections contain the assessment of potentially relevant changes.

9.12.1 Changes to the Linux-RNG Implementation

9.12.1.1 File drivers/char/random.c

The diff of the file shows one change:

* The ChaCha20 block operation interface function has remained functionally unchanged. Compile-time
constants (CHACHA20_BLOCK_SIZE and CHACHA20_KEY SIZE) have been renamed to omit the “20” in
their name. The same applies for the chacha20.h header file name.

9.12.1.2 File include/linux/random.h

No changes.

9.12.1.3 File include/uapi/linux/random.h

No changes.

9.12.1.4 File arch/x86/include/asm/archrandom.h

No changes.

140 Federal Office for Information Security

https://www.kernel.org/pub/linux/kernel/v4.x/linux-5.0.tar.xz
https://www.kernel.org/pub/linux/kernel/v4.x/linux-5.0.tar.xz
https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.20.tar.xz
https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.20.tar.xz

New Developments in Linux-RNG 9
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

9.12.2 Changes to Invocation of Entropy Gathering Functions

9.12.2.1 add_input_randomness

No change to the invocationin input handle event and thus no effect on the Linux-RNG.

9.12.2.2 add_interrupt_randomness

No change to the invocationin handle irg event percpu, vmbus israndhv stimer0 isr
and thus no effect on the Linux-RNG.

9.12.2.3 add_disk_randomness

The Linux kernel version 5.0 has undergone some changes in the block layer that have caused the call to
add_disk_randomness to be removed from b1k update bidi request. The call of the function
from scsi_end request hasremained unchanged. This implies that less disk events are detected and
processed by the Linux-RNG with this change.

The conditions under which the add disk randomness function is called (such as the exclusion of
storage devices that are not suitable for gathering entropy from timing variance measurements) have not
changed, and therefore do not affect the Linux-RNG.

9.12.2.4 add_hwgenerator_randomness

No change to the invocation in hwrng f£illfn and thus no effect to the Linux-RNG.

This function is still invoked in the ATH9K WLAN driver when the Linux kernel configuration option
CONFIG ATHO9K HWRNG is set.

9.12.3 Definition and Use of new Interfaces

No functions implemented in random.c are added by means of any of the EXPORT_SYMBOL*() macros.
Therefore, no new interfaces are exported.

9.13 Linux Kernel 5.1

Previously assessed Linux kernel version: 5.0 - https://www.kernel.org/pub/linux/kernel/v5.x/linux-
5.0.tar.xz

Currently assessed Linux kernel version: 5.1- https://www.kernel.org/pub/linux/kernel/v5.x/linux-
5.1.tarxz

Assessment of changes: Changes do not affect the functionality of the Linux-RNG. The NTG.1 properties of /
dev/random are not affected by the changes.

The following subsections contain the assessment of potentially relevant changes.

Federal Office for Information Security 141

https://www.kernel.org/pub/linux/kernel/v4.x/linux-5.1.tar.xz
https://www.kernel.org/pub/linux/kernel/v4.x/linux-5.1.tar.xz
https://www.kernel.org/pub/linux/kernel/v5.x/linux-5.0.tar.xz
https://www.kernel.org/pub/linux/kernel/v5.x/linux-5.0.tar.xz

9 New Developments in Linux-RNG
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

9.13.1 Changes to the Linux-RNG Implementation

9.13.1.1 File drivers/char/random.c

No changes.

9.13.1.2 Fileinclude/linux/random.h

No changes.

9.13.1.3 File include/uapi/linux/random.h

No changes.

9.13.1.4 File arch/x86/include/asm/archrandom.h

No changes.

9.13.2 Changes to Invocation of Entropy Gathering Functions

9.13.2.1 add_input_randomness

No change to the invocation in input handle event and thus no effect on the Linux-RNG.

9.13.2.2 add_interrupt_randomness

No change to the invocationin handle irg event percpu, vmbus israndhv stimer0O isr
and thus no effect on the Linux-RNG.

9.13.2.3 add_disk_randomness

No change to the invocationinand scsi_end request and thus no effect on the Linux-RNG.

9.13.2.4 add_hwgenerator_randomness

No change to the invocation in hwrng f£illfn and thus no effect to the Linux-RNG.

This function is still invoked in the ATH9K WLAN driver when the Linux kernel configuration option
CONFIG ATH9K HWRNG is set.

9.13.3 Definition and Use of new Interfaces

No functions implemented in random.c are added by means of any of the EXPORT_SYMBOL*() macros.
Therefore, no new interfaces are exported.

142 Federal Office for Information Security

New Developments in Linux-RNG 9
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

9.14 Linux Kernel 5.2

Previously assessed Linux kernel version: 5.1 - https://www.kernel.org/pub/linux/kernel/v5.x/linux-
5.1.tarxz

Currently assessed Linux kernel version: 5.2 — https://www kernel.org/pub/linux/kernel/v5.x/linux-
5.2.tar.xz

Assessment of changes: Changes do not affect the functionality of the Linux-RNG. The NTG.1 properties of /
dev/random are not affected by the changes.

The following subsections contain the assessment of potentially relevant changes.

9.14.1 Changes to the Linux-RNG Implementation

9.14.1.1 File drivers/char/random.c

The diff of the file shows one change:

* Ccode comments have been added to (partially) document the Linux-RNG interfaces. The change does
not affect the security of the Linux-RNG.

* A set of small code style fixes have been applied: Remove an unused variable, constify a data structure
that is only read and make a global variable only visible to the code in the file random.c. The change does
not affect the security of the Linux-RNG.

* A code change has been added to only read from /dev/random after its pool has received 128 bits. To
implement that change, a variable has been re-purposed which implies that the code using that variable
previously required a slight update. Yet, apart from the supply of data after 128 bits have been received,
no cryptographically visible changes are present. The change does not affect the security of the Linux-
RNG.

* A fix to the ChaCha20 RNG initialization has been applied when trusting the CPU-based noise data.
Previously, in this case the NUMA RNG instances were not initialized and thus the per-NUMA-node
ChaCha20 RNG was not present. The change does not affect the security of the Linux-RNG.

* Invoke the rand_initialize function of the Linux RNG earlier in the boot process to ensure that the stack
canary initialization benefits from the initialized Linux-RNG. The change does not affect the security of
the Linux-RNG.

* Fix deadlock when using an auxiliary interface provided by the Linux-RNG (the data generated by this
interface is not subject to assessment in this document). The change does not affect the security of the
Linux-RNG.

* Fix a soft-lockup when trying to read from an uninitialized blocking pool. The change does not affect the
security of the Linux-RNG.

9.14.1.2 File include/linux/random.h

The function declaration of the Linux RNG initialization for the early boot-process initialization change has
been added. The change does not affect the security of the Linux-RNG.

Federal Office for Information Security 143

https://www.kernel.org/pub/linux/kernel/v4.x/linux-5.2.tar.xz
https://www.kernel.org/pub/linux/kernel/v4.x/linux-5.2.tar.xz
https://www.kernel.org/pub/linux/kernel/v5.x/linux-5.1.tar.xz
https://www.kernel.org/pub/linux/kernel/v5.x/linux-5.1.tar.xz

9 New Developments in Linux-RNG
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

9.14.1.3 File include/uapi/linux/random.h

No changes.

9.14.1.4 File arch/x86/include/asm/archrandom.h

No changes.

9.14.2 Changes to Invocation of Entropy Gathering Functions

9.14.2.1 add_input_randomness

No change to the invocation in input handle event and thus no effect on the Linux-RNG.

9.14.2.2 add_interrupt_randomness

No change to the invocationin handle irg event percpu, vmbus israndhv stimer0 isr
and thus no effect on the Linux-RNG.

9.14.2.3 add_disk_randomness

No change to the invocationinand scsi end request and thus no effect on the Linux-RNG.

9.14.2.4 add_hwgenerator_randomness

No change to the invocation in hwrng fil1lfn and thus no effect to the Linux-RNG.

This function is still invoked in the ATH9K WLAN driver when the Linux kernel configuration option
CONFIG ATH9K HWRNG is set.

9.14.3 Definition and Use of new Interfaces

No functions implemented in random.c are added by means of any of the EXPORT_SYMBOL*() macros.
Therefore, no new interfaces are exported.

9.15 Linux Kernel 5.3

Previously assessed Linux kernel version: 5.2 - https://www.kernel.org/pub/linux/kernel/v5.x/linux-
S5.2tar.xz

Currently assessed Linux kernel version: 5.3 - https://www.kernel.org/pub/linux/kernel/v5.x/linux-
5.3.tar.xz

Assessment of changes: No changes.

144 Federal Office for Information Security

https://www.kernel.org/pub/linux/kernel/v4.x/linux-5.3.tar.xz
https://www.kernel.org/pub/linux/kernel/v4.x/linux-5.3.tar.xz
https://www.kernel.org/pub/linux/kernel/v5.x/linux-5.2.tar.xz
https://www.kernel.org/pub/linux/kernel/v5.x/linux-5.2.tar.xz

New Developments in Linux-RNG 9
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

9.15.1 Changes to the Linux-RNG Implementation

9.15.1.1 File drivers/char/random.c

No changes.

9.15.1.2 File include/linux/random.h

No changes.

9.15.1.3 File include/uapi/linux/random.h

No changes.

9.15.1.4 File arch/x86/include/asm/archrandom.h

No changes.

9.15.2 Changes to Invocation of Entropy Gathering Functions

9.15.2.1 add_input_randomness

No change to the invocation in input handle event and thus no effect on the Linux-RNG.

9.15.2.2 add_interrupt_randomness

No change to the invocationin handle irg event percpu, vmbus israndhv stimer0O isr
and thus no effect on the Linux-RNG.

9.15.2.3 add_disk_randomness

No change to the invocationinand scsi_end request and thus no effect on the Linux-RNG.

9.15.2.4 add_hwgenerator_randomness

No change to the invocation in hwrng f£illfn and thus no effect to the Linux-RNG.

This function is still invoked in the ATH9K WLAN driver when the Linux kernel configuration option
CONFIG ATH9K HWRNG is set.

9.15.3 Definition and Use of new Interfaces

No functions implemented in random.c are added by means of any of the EXPORT_SYMBOL*() macros.
Therefore, no new interfaces are exported.

Federal Office for Information Security 145

9 New Developments in Linux-RNG
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

9.16 Linux Kernel 5.4

Previously assessed Linux kernel version: 5.3 - https://www.kernel.org/pub/linux/kernel/v5.x/linux-
5.3.tar.xz

Currently assessed Linux kernel version: 5.4 — https://www kernel.org/pub/linux/kernel/v5.x/linux-
54.tarxz

Assessment of changes: Changes are applied that do affect the functionality of the Linux-RNG entropy
collection. The NTG.1 properties of /dev/random are not affected by the changes unless the newly added
Linux kernel configuration option CONFIG_RANDOM_TRUST_BOOTLOADER is set to “Y”.

9.16.1 Changes to the Linux-RNG Implementation

9.16.1.1 File drivers/char/random.c

The following changes are applied to random.c:

e The implementation gained a new noise source which is triggered when a caller requests random
numbers via either the getrandom(2) system call or via the in-kernel service function
wait_for_random_bytes. The new entropy source is a latch of two timer: one low-resolution timer
operating at 1000 Hz and one high-resolution timer operating in the nanosecond range. The high-
resolution time stamp is taken in a tight loop which is interrupted by a rescheduling event. When the
low-resolution timer expires, the current value of the high-resolution timer is sampled and injected into
the entropy pool. At the time the high-resolution time stamp is injected into the entropy pool and the
entropy estimator is increased by one (bit of entropy). The author of this document already played with
such intermix of two different clocks for a long time as part of the Jitter RNG development. Based on this
work, a user-space equivalent of the noise source is already present. This user space noise source
implementation was slightly updated to match the in-kernel equivalent. When executing and processing
the raw output data with the SP800-90B min entropy tool set, about 1.6 bits of entropy per high-
resolution time stamp sampled with the expiry of the low-resolution time stamp on an x86 test system.
Although this is an initial make-shift test which requires more in-depth study, the new noise source
seems to deliver the claimed entropy rate. Note, this new noise source is deactivated if no high-
resolution timer is identified.

The new noise source is only applied during boot time when the ChaCha20 DRNG is not yet fully seeded.
The new noise source only generates data until the ChaCha20 DRNG is fully seeded. This implies that the
noise source data mixed into the entropy pool and the associated increase in the entropy estimator is
immediately “consumed” by the ChaCha20 DRNG. Thus, this new entropy is not available to
/dev/random.

As only the getrandom(2) system call and its in-kernel equivalent are affected, /dev/random and its
NTG.1 property are not affected by this.

* The code gained a new interface allowing a boot loader to directly inject data into the entropy pool. This
data is processed with the add_device_randomness function discussed in the design above. Therefore, the
data from the boot loader is not awarded any entropy. However, if the kernel is compiled with the
compilation option of CONFIG_RANDOM_TRUST_BOOTLOADER, the data is processed with the
add_hwgenerator_randomness function discussed in the design above causing the entropy estimator of
the entropy pool to be increased by the number of bits injected by the boot loader. In this case, the data
from the boot loader is assumed to bear full entropy.

If CONFIG_RANDOM_TRUST_BOOTLOADER is not set, the NTG.1 property of /dev/random is
unaffected. If, however, this option is set to “Y” then the boot loader acts as an entropy-provider. In this

146 Federal Office for Information Security

https://www.kernel.org/pub/linux/kernel/v4.x/linux-5.4.tar.xz
https://www.kernel.org/pub/linux/kernel/v4.x/linux-5.4.tar.xz
https://www.kernel.org/pub/linux/kernel/v5.x/linux-5.3.tar.xz
https://www.kernel.org/pub/linux/kernel/v5.x/linux-5.3.tar.xz

New Developments in Linux-RNG 9
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

case, the data must be analyzed for its entropy content to preserve the NTG.1 claim. As the boot loader is
outside of the scope of this document, its data potentially provided to the Linux /dev/random cannot be
assessed here.

9.16.1.2 File include/linux/random.h

This file adds the declaration of the new boot loader interface function.

9.16.1.3 File include/uapi/linux/random.h

No changes.

9.16.1.4 File arch/x86/include/asm/archrandom.h

No changes.

9.16.2 Changes to Invocation of Entropy Gathering Functions

9.16.2.1 add_input_randomness

No change to the invocation in input handle event and thus no effect on the Linux-RNG.

9.16.2.2 add_interrupt_randomness

No change to the invocationin handle irg event percpu, vmbus israndhv stimer0 isr
and thus no effect on the Linux-RNG.

9.16.2.3 add_disk_randomness

No change to the invocationinand scsi end request and thus no effect on the Linux-RNG.

9.16.2.4 add_hwgenerator_randomness

No change to the invocation in hwrng £illfn and thus no effect to the Linux-RNG.

This function is still invoked in the ATH9K WLAN driver when the Linux kernel configuration option
CONFIG ATH9K HWRNG is set.

The function is also called by the boot loader interface function discussed in section 9.16.1.1. This section
outlines the impact on the NTG.1 claim.

9.16.3 Definition and Use of new Interfaces

A new interface function of add_bootloader_randomness is added. This is a wrapper to either
add_device_randomness or add_hwgenerator_randomness and is therefore not considered a stand-alone
interface in itself. Further details are provided in section 9.16.1.1.

Federal Office for Information Security 147

9 New Developments in Linux-RNG
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

9.17 Linux Kernel 5.5

Previously assessed Linux kernel version: 5.4 - https://www.kernel.org/pub/linux/kernel/v5.x/linux-
54.tarxz

Currently assessed Linux kernel version: 5.5 — https://www kernel.org/pub/linux/kernel/v5.x/linux-
5.5.tar.xz

Assessment of changes: All changes do not affect the NTG.1 property. Yet, the configuration option
CONFIG_RANDOM_TRUST_BOOTLOADER is present and its setting has an impact on the NTG.1 property
as discussed in section 9.16.

9.17.1 Changes to the Linux-RNG Implementation

9.17.1.1 File drivers/char/random.c

The following changes are applied to random.c:

e The VFS layer of the kernel now requires that the “file system operations” function pointer data structure
contains a function for the “compat_ioctl” entry. This function is used in case a 32-bit user space
application is executed on a 64-bit kernel and wants to perform an IOCTL system call on a file associated
with the file system operations function pointer data structure. Thus, the /dev/random and
/dev/urandom file system operations function pointer data received such an entry. The registered
generic function unconditionally will invoke the IOCTL handling function documented in section
3.4.1.3. This implies that for the new kernel, the 32-bit user space executing on a 64-bit kernel invokes the
same IOCTL handler as it used to before. Thus, this update to the Linux-RNG code base does not
introduce any functional change to the Linux-RNG.

9.17.1.2 Fileinclude/linux/random.h

No changes

9.17.1.3 File include/uapi/linux/random.h

No changes.

9.17.1.4 File arch/x86/include/asm/archrandom.h

No changes.

9.17.2 Changes to Invocation of Entropy Gathering Functions

9.17.2.1 add_input_randomness

No change to the invocationin input handle event and thus no effect on the Linux-RNG.

148 Federal Office for Information Security

https://www.kernel.org/pub/linux/kernel/v4.x/linux-5.5.tar.xz
https://www.kernel.org/pub/linux/kernel/v4.x/linux-5.5.tar.xz
https://www.kernel.org/pub/linux/kernel/v5.x/linux-5.4.tar.xz
https://www.kernel.org/pub/linux/kernel/v5.x/linux-5.4.tar.xz

New Developments in Linux-RNG 9
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

9.17.2.2 add_interrupt_randomness

No change to the invocationin handle irg event percpu, vmbus isrand
hv stimer0 vector handler and thus no effect on the Linux-RNG.

9.17.2.3 add_disk_randomness

No change to the invocationinand scsi end request and thus no effect on the Linux-RNG.

9.17.2.4 add_hwgenerator_randomness

No change to the invocation in hwrng fil1fn and thus no effect to the Linux-RNG.

This function is still invoked in the ATH9K WLAN driver when the Linux kernel configuration option
CONFIG_ATH9K HWRNG is set.

The function is also called by the boot loader interface function discussed in section 9.16.1.1. This section
outlines the impact on the NTG.1 claim.

9.17.3 Definition and Use of new Interfaces

No new interface was added.

Federal Office for Information Security 149

Appendix A: Testing Aspects and Implementation
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

Appendix A: Testing Aspects and Implementation

To reach conclusions about the quality of the random numbers produced by the Linux-RNG its behavior
and its operation had to be monitored at runtime. For such monitoring the Linux kernel must be
instrumented to allow for the reading of various parameters and state information without significantly
affecting this data by the test approach itself.

The Linux kernel implements several tracing mechanisms which can be used during runtime. The following
tracing mechanisms are available:

* SystemTap

e Ftrace

* Kernel debugger

* Manual instrumentation of the source code using printk
* ptrace system call for analyzing system calls

In the following sections, the used tracing method for measuring the Linux-RNG is described. The rationale
discusses also the impact of the tracing mechanism on the obtained results.

All tracing mechanisms have an impact on the timing behavior of the Linux kernel in general and the
Linux-RNG in particular. As the Linux-RNG uses timing variations as the raw noise, all tracing mechanisms
impact the Linux-RNG operation. Since that impact, however, is applicable to each measurement this
impact is akin to the Linux-RNG operating on a slower CPU. Since the Linux-RNG is expected to deliver
consistent results irrespective of the CPU execution speed, it can be concluded that the timing impact of the
tracing mechanisms is visible in the measurements but its impact on the conclusions drawn from the
measurements is negligible.

There are many possibilities to implement a tracing mechanism in the Linux kernel. Even when the Linux
kernel would not provide any tracing mechanism, it is still possible to modify the kernel, compile it and
start the measurements. Such an approach, however, has significant drawbacks due to the following base
requirements for selecting a suitable tracing mechanism:

* The impact of the tracing mechanism on the measurements must be negligible.

* Measurements should be generated at runtime of a stock kernel such as delivered by Linux distributions.
This means that the application of kernel patches which requires a re-compilation and reboot of the
kernel would be detrimental. For example, kernels installed on target systems can readily be tested and
measurements can be obtained using SystemTap.

* The measurements should be repeatable on newer kernel versions without much effort.

For the testing performed for this study, the SystemTap mechanism has been chosen as this mechanism
covers all aforementioned concerns, is easy to use and is automatable.

Early Boot Test

Even though it was stated above that applying patches and recompiling a kernel is less useful, this approach
was chosen for the early boot tests. As the test’s intent is to obtain data very early in the kernel boot
sequence, it is impossible to use a tracing mechanism that relies on certain commands to start. At the time
user space is available, the information to be obtained is long gone.

Thus, the only way for obtaining the intended measurements is to apply the patches to a kernel, re-compile,
install and boot it.

150 Federal Office for Information Security

Appendix A: Testing Aspects and Implementation
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

SystemTap Test Approach

SystemTap provides a kernel infrastructure to facilitate the collection of data from the runtime Linux kernel
environment. When using SystemTap, the developer does not need to instrument the Linux kernel with
proprietary code, recompile and reboot the system.

To use SystemTap, a command line program is provided that allows the caller to execute a SystemTap script.
SystemTap scripts are written in a high-level scripting language to allow for developing and building an
instrumentation of the currently executing Linux kernel. Conceptually, SystemTap can be regarded as a
programmable debugger.

The SystemTap command line program converts the script into a kernel module which contains additional
service functions. Part of these service functions is the ability to export data from kernel space to user space
using the DebugFS. This technical detail is hidden by the SystemTap command line application such that
the data exported via DebugFS from the SystemTap script can be accessed like any other data on the
command line via STDOUT or by writing the data to a file.

SystemTap scripts consist of functions which are invoked when pre-defined events occur. Such events can
be:

* Invocation of or returning from a kernel function
* Expiration of a timer-based alarm

The SystemTap infrastructure is part of the assessed Linux kernel.

Measurement Errors with SystemTap

The following problems must be considered when using SystemTap as they may cause measurement errors.

The kernel typically executes on a multi-processor hardware. This means that it is always possible that code
sequences in the Linux-RNG are executed in parallel. SystemTap can be used to respond to this parallelism.
This implies that the test scripts are always prone to race conditions?. In particular, such race conditions are
present when the SystemTap script has to examine the source of an invocation of the Linux-RNG code.
Considering the Linux-RNG architecture it is clear that the core function implementing the LFSR operation
or the modification of an entropy estimator is invoked by noise sources as well as when data is transferred
from one entropy pool to another.

Assume the following test sequence that is present in test scripts:

* Aneventinvokes add input randomness. The test script sets a global status flag to 1 to mark thata
relevant event happened.

* Inanext step, the LFSR mixing function is invoked. The test script uses the flag set in step 1 to enable the
core measurement logic.

* The global variable is set back to zero.

If between steps 1 and 2 a read on, say, /dev/random during normal operation happens where the global
variable is set, the LFSR mix operation is invoked to satisfy the /dev/random read operation. But the test
script thinks the monitored operation covers the mix-in of new data from the noise source. This conflict
causes invalid measurements.

24 A race condition is the uncontrolled modification of a variable when a non-atomic operation accesses this
variable by multiple entities. Non-atomic operations have dissimilar times-of-check and times-of-use. This
means that after one entity’s code completed a check on a variable content but before the content is used,
another entity may alter the content. This implies that the first entity’s check operation is now invalid without
the entity knowing that.

Federal Office for Information Security 151

Appendix A: Testing Aspects and Implementation
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

It is also possible that before reaching step 3 to reset the global variable, another LFSR operation is triggered
in addition to the monitored one. This implies that now two LFSR operations are recorded.

Such errors are easily detectable during tests conducted in section 6.2. These tests record the event values
for each hardware event. For example, the block device event value that was recorded is “8388880” which is
the device number of the only disk device on the test system. This number would not be an HID event
number. Thus, if an HID event number shows up in the block device records or vise versa, it is clearly
identifiable. The obtained test records did not show any such errors. This implies that the likelihood for such
errors to occur is very small and is not considered to affect the conclusions drawn from the measurements.

Prerequisite for SystemTap Use

To use SystemTap, the following prerequisites must be met:

* The kernel source code must be accessible for the SystemTap compilation. Commonly, Linux
distributions provide so-called “development” packages:

e Ubuntu: linux-headers-generic
* Red Hat: kernel-devel

* SUSE: kernel-*-devel (for kernels that are unchanged to the upstream kernel.org code base, use
kernel-vanilla-devel)

e For self-compiled kernels, the source code must be accessible under /lib/modules/$(uname -r)/build/

* The debug symbols of the running kernel must be installed. Linux distributions provide so-called
“debuginfo” packages - it may be possible that additional repositories need to be activated before these
packages with the debug symbols are accessible (please see the distribution-specific guidance):

¢ Ubuntu: linux-image-$(uname -r)-dbgsym
* Red Hat: kernel-debuginfo

* SUSE: kernel-*-debuginfo (for kernels that are unchanged to the upstream kernel.org code base, use
kernel-vanilla-debuginfo)

* For self-compiled kernels, the kernel configuration option CONFIG_DEBUG_INFO must be set to “y”.
This option can be found under “Kernel Hacking” > “Compile the kernel with debug info
(DEBUG_INFO) [N/y/?]” = “Kernel debugging (DEBUG_KERNEL) [Y/n/?]”

* The binaries and libraries forming the user space part of SystemTap must be installed. These software
components can be obtained either from the SystemTap Homepage or by installing the following
packages:

e Ubuntu: systemtap
* Red Hat: stap

¢ SLES: systemtap, systemtap-server
Impact of Measurement on Test Results
The SystemTap scripts only have an impact on the timing behavior of the Linux kernel. The functionality of

the entire kernel remains unchanged. Thus, only the aforementioned consideration regarding the timing
impact is applicable.

152 Federal Office for Information Security

http://sourceware.org/systemtap

Appendix A: Testing Aspects and Implementation
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

Test Execution
The tests specified in chapters 6 and following explain which commands are to be executed to collect the
required data. With some of these commands, SystemTap scripts are compiled and loaded.

Besides following the instructions in the different sections regarding the test invocation, no additional
operations are needed.

Listing of Used Hardware and Software

The testing was executed on the following hardware:

e Thinkpad T530 used for the native hardware early boot entropy tests documented in 6.3.2:
* 2 core CPU with two hyperthreads per core
¢ Intel(R) Core(TM) i7-3520M CPU @ 2.90GHz

* QEMU 2.8 used for the virtual environment early boot entropy tests documented in 6.3.1:
e 2 virtual CPUs corresponding with the 2 cores of the host system

¢ Intel Core Processor (Broadwell, no TSX)

Federal Office for Information Security 153

Appendix B: Test Results on Linux Kernel 4.9
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

Appendix B: Test Results on Linux Kernel 4.9

All tests shown in chapters 6 and following have been executed on newer kernels. To allow the reader to
compare the test results, this appendix contains the corresponding test results for the kernel 4.9.

If test results discussed in chapters 6 and following are not found in this appendix for kernel 4.9, the test
showed the same results. Thus the test discussion in the respective sections applies to the version 4.9 as well.

Testing of the Linux kernel 4.9 was performed on the following environment:

e Thinkpad T530 used for the native hardware early boot entropy tests documented in 6.3.2:
* 2 core CPU with two hyperthreads per core
e Intel(R) Core(TM) i7-3520M CPU @ 2.90GHz

* QEMU 2.7.1 used for the virtual environment early boot entropy tests documented in 6.3.1:
* 4virtual CPUs corresponding with the 4 hyperthreads of the host system
* Intel Core Processor (Haswell, no TSX)

¢ Thinkpad T540p used for all other tests executed on native hardware:
* 2 core CPU with two hyperthreads per core
¢ Intel(R) Core(TM) i7-4600M CPU @ 2.9GHz

Min-Entropy as per SP800-90B

Interrupt Noise Source Min-Entropy Estimates

The collection of data for interrupts was conducted twice: once with a normal use case and once with a
worst-case. In the normal use case the test environment was made to resemble regular usage where Internet
searches and regular office duties were performed. The worst-case covered the test system in a virtual
environment where the host system sent a ping flood to the test system. Each received ICMP request and
response triggered an interrupt that was recorded.

The worst-case test execution returned the following data.

154 Federal Office for Information Security

Appendix B: Test Results on Linux Kernel 4.9

Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5
Entropy Estimate 4 Bits Width 8 Bits Width
Most Common Value Estimate 3.965 7.883
Collision Estimate 2.944 8
Markov Estimate 3.612 N/A
Compression Estimate 2.748 7.575
t-Typle Estimate 3.181 7.342
LRS Estimate 2.822 7.773
Multi Most Common in Window |3.892 7.963
Prediction Estimate
Lag Prediction Estimate 3.180 6.642
MultiMMC Prediction Estimate 3.180 7.631
LZ78Y Prediction Estimate 2.820 7.632

Table 8: Interrupts: SP800-90B min-entropy Measurements - Worst Case
The associated Shannon entropy value is 14.602 bits per interrupt event. The min-entropy value according
to [AIS2031] is 11.665 bits per interrupt event.

The normal use case returned the following data.

Entropy Estimate 4 Bits Width 8 Bits Width

Most Common Value Estimate 3.956 7.870
Collision Estimate 1.980 4406
Markov Estimate 3.289 N/A
Compression Estimate 2.032 4.630
t-Typle Estimate 3.041 7.158
LRS Estimate 2.958 7.308
Multi Most Common in Window 3.180 7.660
Prediction Estimate

Lag Prediction Estimate 2.293 7.274
MultiMMC Prediction Estimate 2.293 6.642
LZ78Y Prediction Estimate 3.180 6.642

Table 9: Interrupts: SP800-90B Min-Entropy Measurements - Normal Use Case

Applying the Shannon entropy formula on the data set, a value of 19.204 bits per interrupt event is
calculated. Using the min-entropy formula according to [AIS2031], a result of 12.111 bits per interrupt event
is measured.

The conclusions that can be drawn from the numbers follow. Regardless of the worst-case or normal case,
the high-resolution time stamp of each interrupt will return significantly more than two bits of entropy.

The Linux-RNG requires the data of at least 64 interrupts to be collected and mixed into the input_pool. The
entire data from 64 interrupt is credited with one bit of entropy (two bits when RDRAND is present). This
implies that significantly more entropy is collected than the Linux-RNG will credit.

Federal Office for Information Security 155

Appendix B: Test Results on Linux Kernel 4.9
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

Even when the fast_pool operation will not retain all entropy delivered by the interrupt noise source data,
the massive underestimation of entropy by the Linux-RNG is assumed to counter such a potential effect.

As the Linux-RNG massively underestimates the entropy present in the interrupt noise source event data,
the Linux-RNG acts conservatively and thus upholds the cryptographic strength it reports with its entropy
estimation.

Block Device Noise Source Min-Entropy Estimates

On contemporary hardware with a lot of RAM, a normal usage of block devices will cause insignificant block
device events. This is due to the fact that the entire unused portion of RAM is used as a buffer cache to
prevent repeating disk accesses. To obtain sufficient data, a worst-case has been measured. This worst-case
has been implemented by constantly mounting and unmounting a block device. This causes the buffer
cache to be irrelevant for the disk accesses caused by the mount operations, as the buffer cache is flushed
with each unmount operation of a file system. The worst-case produced the following data:

Entropy Estimate 4 Bits Width 8 Bits Width
Most Common Value Estimate 3.967 7.890
Collision Estimate 2.728 5.570
Markov Estimate 3.768 N/A
Compression Estimate 2.810 5.883
t-Typle Estimate 3.360 7.342
Longest Repeated Substring (LRS) | 3.260 7.773
Estimate
Multi Most Common in Window |3.180 7.889
Prediction Estimate
Lag Prediction Estimate 3.180 6.642
MultiMMC Prediction Estimate 3.634 7.860
LZ78Y Prediction Estimate 3.634 7.862

Table 10: Block Devices: SP800-90B Min-Entropy Measurements
Using the Shannon entropy formula, 17.683 bits per block device event is calculated. A value of 13.456 bits
per block device event is calculated as the min-entropy according to [AIS2031].

In addition to the collection of the noise source data, the test also collected the entropy estimates per block
device event applied by the Linux-RNG. The histogram given in figure 17 specifies all possible entropy
estimation values from zero to 11 that can be applied by the Linux-RNG. The histogram shows how often
the Linux-RNG awards these entropy estimates to the recorded block device events.

Figure 17 also shows that the mean value of all entropy estimates is 0.21 bits of entropy. This can be
interpreted that on average, the Linux-RNG awarded each block device event 0.21 bits of entropy.

156 Federal Office for Information Security

Appendix B: Test Results on Linux Kernel 4.9
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

Estimated Entropy per Event

m_
=]
3‘3
g o
2
&
1]
i
2 =]
z =
=
Q
o
o
o
= T
[=]
I T T T 1
0 2 4 G a8 10

Min: 0 - 18t Qu: 0 - Median: 0 - Mean: 0.21
3rd Qu: 0 - Max: 11 - Sigma: 0.93 - Var Coefi: 4.338182

Figure 17: Entropy Estimate per Block Device Event Applied by Linux-RNG

Comparing the result shown in figure 17 with the min-entropy estimates calculated from the measured
time stamps, the following conclusion is drawn: the min-entropy estimates have significantly more than 2
bits of entropy per event. On the other hand, the Linux-RNG considers that each event has on average only
0.21 bits of entropy.

This allows the conclusion that the Linux-RNG significantly underestimates the entropy present in the
block device noise source data. This significant underestimation implies that the Linux-RNG acts
conservatively and thus upholds the cryptographic strength it reports with its entropy estimation.

HID Noise Source Min-Entropy Estimates

The entropy measurements for HID is only performed for regular use cases. No worst-case scenario can be
devised for HID.

To perform testing of the HID noise source within a reasonable time, only 200.000 samples of HID noise
source events were recorded. The entropy estimates for the high-resolution time stamp applied to those
events are listed in the table below.

Entropy Estimate 4 Bits Width 8 Bits Width
Most Common Value Estimate 3.910 7.729
Collision Estimate 1.856 4137
Markov Estimate 3.183 N/A
Compression Estimate 1.809 4.045
t-Typle Estimate 3.207 7.850
LRS Estimate 2.863 7.512

Federal Office for Information Security 157

Appendix B: Test Results on Linux Kernel 4.9

Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0
Entropy Estimate 4 Bits Width 8 Bits Width
Multi Most Common in Window 3.300 7.388
Prediction Estimate
Lag Prediction Estimate 2.553 7.069
MultiMMC Prediction Estimate 2.553 7.364
LZ78Y Prediction Estimate 3.288 7.364

Table 11: HID: SP800-90B Min-Entropy Measurements
The Shannon entropy formula applied on the data set results in 15.645 bits per HID event. 10.063 bits per
HID event are calculated when using the min-entropy formula according to [AIS2031].

The test record of the entropy estimate applied by the Linux-RNG for each recorded HID event is depicted
with figure 18. This figure lists all possible entropy estimates applied by the Linux-RNG to a HID noise
source event ranging from 0 to 11. A histogram is prepared showing all recorded entropy estimates for HID
noise source events.

As shown in figure 18, the mean value of the histogram is 1.29 bits. This implies that the Linux-RNG
awarded 1.29 bits of entropy to each HID noise source event on average.

Estimated Entropy per Event

0.4 0.5 06

Relative Frequency
0.3

0.2

01

11 I

I | T I 1

0 2 4 G 8 10
Min: 0 - 15t Qu: 0 - Median: 0 - Mean: 1.29

3rd Qu: 3 - Max: 11 - Sigma: 1.84 - Var Coeff: 1.43441

0.0

Figure 18: Entropy Estimate per HID Event Applied by Linux-RNG

A conclusion can be reached when comparing the heuristic entropy values applied by the Linux-RNG from
figure 18 with the min-entropy estimates. The min-entropy estimates have more than 2 bits of entropy per
event (8 bit width), or more than 1.8 bits of entropy per event (4 bits width). On the other hand, the Linux-
RNG applies on average 1.29 bits of entropy to a HID event.

158 Federal Office for Information Security

Appendix B: Test Results on Linux Kernel 4.9
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

This comparison allows to conclude that the Linux-RNG again underestimates the available entropy for
HID events. This underestimation shows again that, the Linux-RNG applies a conservative entropy
estimation and thus upholds the cryptographic strength it reports with its entropy estimation.

Entropy During Early Boot

This appendix applies to the test outlined in section 6.3 for kernel 4.9.

The test is performed for 50,000 reboot cycles. At the end of the testing, 50,000 times 128 time stamps are
collected and analyzed.

Early Boot Entropy Testing in a Virtual Environment

This appendix applies to the test outlined in section Fehler: Verweis nicht gefunden for kernel 4.9.

Time Stamp Lowest SP800- Lowest SP800- Min-entropy Shannon
Position / Time |90B min-entropy | 90B min-entropy | (AIS20/31)of | Entropy of Time
delta estimate of 4 Bits | estimate of 8 Bits Time Delta Delta
Width Time Width Time
Stamp Stamp

1 3.30173 5.09539 13.288 15.388

2 3.30173 5.09539 13.288 15.429

3 3.24271 5.05406 13.61 15.526

4 3.03697 5.09062 13.61 15.541

5 2.94828 5.17785 14.025 15.552

6 3.11278 5.18062 13.61 15.498

7 2.96301 5.16851 13.288 15.536

8 3.09998 4.97885 13.61 15.553

9 2.89757 5.1643 12.61 15.482

10 348 5.17752 11.086 14.683

11 3.02415 5.13717 10.909 14.452

12 3.49016 5.10904 10.655 14.143

13 3.18302 5.14208 9.937 13.6

14 3.26001 5.16127 9.937 13.515

15 3.02617 5.12335 11.15 15.023

16 2.92302 5.17071 12.802 15.526

17 2.9831 5.12957 12.802 15.482

18 3.25527 5.06403 12.15 15.474

19 3.04512 5.17675 13.288 15.565

20 3.05607 5.14117 14.025 15.602

21 3.32719 5.18943 13.025 15.51

22 3.04036 5.17868 12.288 15.194

Federal Office for Information Security 159

Appendix B: Test Results on Linux Kernel 4.9
Documented Linux Kernel Version: 5.5

Fully tested Linux Kernel Version: 5.0

Time Stamp Lowest SP800- | Lowest SP800- Min-entropy Shannon
Position / Time |90B min-entropy | 90B min-entropy (AIS 20/31) of | Entropy of Time
delta estimate of 4 Bits | estimate of 8 Bits Time Delta Delta
Width Time Width Time
Stamp Stamp

23 3.05264 5.05886 12.025 14.941
24 3.06226 5.10445 12.15 15.059
25 3.13945 5.11868 12.288 15.072
26 3.12209 5.16643 11.522 14.95
27 3.14601 5.12833 11.61 14.898
28 2.99096 5.14291 11.703 14.956
29 3.36326 5.07632 12.15 15.175
30 3.1681 5.12096 12.61 15.321
31 2.86473 5.0967 12.288 15.28
32 3.14747 5.10998 12.288 15.167
33 2.99754 5.12061 12.288 15.192
34 3.07821 5.02638 12.288 15.155
35 3.38898 4.99506 12.61 15.2
36 3.13147 5.17215 12.025 15.17
37 2.94192 5.14449 12.15 15.054
38 2.90004 5.15256 11.802 14.993
39 3.27431 5.17919 11.44 14.929
40 3.07125 5.087 11.522 14.924
41 3.03156 5.15921 12.025 14.939
42 3.13509 5.15989 11.909 14.95
43 3.25685 5.11564 11.362 14.954
44 2.93244 5.12911 11.217 14.952
45 3.29685 5.18695 1161 14.957
46 2.97205 5.16866 11.522 14.956
47 3.37692 5.15097 11.44 14.972
48 3.54018 5.14872 11.61 14.986
49 2.94066 5.16365 11.522 15.011
50 3.09786 5.12336 11.522 15.015
51 3.14017 5.07814 11.217 15.009
52 2.99162 5.13659 11.703 14.99
53 2.93623 5.08187 11.362 14.983
54 3.15187 5.11192 11.362 14.96
55 2.88776 5.12315 11.61 14.958

160

Federal Office for Information Security

Fully tested Linux Kernel Version: 5.0

Appendix B: Test Results on Linux Kernel 4.9
Documented Linux Kernel Version: 5.5

Time Stamp Lowest SP800- | Lowest SP800- Min-entropy Shannon
Position / Time |90B min-entropy | 90B min-entropy (AIS 20/31) of | Entropy of Time
delta estimate of 4 Bits | estimate of 8 Bits Time Delta Delta
Width Time Width Time
Stamp Stamp

56 2.96044 5.17851 11.909 14.979
57 3.54982 5.13802 12.025 14.989
58 3.02013 5.13341 11.909 14.929
59 3.38898 5.01221 12.025 14.928
60 3.09715 5.12272 11.909 14.935
61 2.96301 5.09843 11.61 14.888
62 3.30662 5.15366 11.703 14.863
63 2.92239 5.17039 11.703 14.869
64 3.03697 5.07835 11.61 14.862
65 2.96237 5.08455 11.44 14.85

66 3.19506 5.0043 11.909 14.893
67 3.34134 5.17747 11.802 14.944
68 3.01411 5.12867 11.522 14.737
69 3.11135 5.15828 11.025 14.45

70 3.12281 5.07231 11.15 14.54

71 3.30499 5.15676 11.802 14.807
72 3.15628 5.12891 11.44 14.925
73 3.03223 5.13207 11.703 14.908
74 3.22717 5.15972 11.288 14.876
75 2.98899 5.03567 1161 14.857
76 2.94192 5.15561 11.703 14.844
77 2.92302 5.1662 11.44 14.84

78 3.23648 5.11391 1161 14.896
79 3.088 5.06645 11.909 14.929
80 3.05195 5.06598 11.362 14.645
81 3.20416 5.12219 11.025 14.268
82 3.36241 5.15981 11.086 14.558
83 2.99227 5.02146 1161 15.099
84 3.19733 5.13076 12.44 15.371
85 2.94892 5.16468 12.288 15.203
86 3.32553 5.19812 11.802 14.976
87 2.85216 5.11442 11.44 14.983
88 3.01211 5.1312 12.025 14.99

Federal Office for Information Security

161

Appendix B: Test Results on Linux Kernel 4.9
Documented Linux Kernel Version: 5.5

Fully tested Linux Kernel Version: 5.0

Time Stamp Lowest SP800- | Lowest SP800- Min-entropy Shannon
Position / Time |90B min-entropy | 90B min-entropy (AIS 20/31) of | Entropy of Time
delta estimate of 4 Bits | estimate of 8 Bits Time Delta Delta
Width Time Width Time
Stamp Stamp

89 3.13219 498788 12.025 15.047
90 3.07751 5.03714 11.909 14.949
91 3.59439 5.09877 11.909 14.912
92 3.17852 5.14809 11.909 14.936
93 3.08239 5.15001 11.909 14.978
94 3.04717 5.224 11.802 14.896
95 3.11635 513731 11.802 14.923
96 3.02281 5.17201 12.025 14.944
97 3.04649 5.16605 11.909 14.948
98 3.52732 5.14062 11.909 14.897
99 3.37863 5.09191 11.909 14.972
100 3.12497 5.15368 1161 14.899
101 3.18377 5.06324 11.61 14.905
102 3.04036 5.12172 11.909 14.925
103 3.08309 5.05332 11.909 14.905
104 3.40988 5.06415 11.802 14.883
105 3.11135 4.88415 11.909 14.986
106 2.9714 5.1129 11.802 14.931
107 3.47081 5.07207 11.703 14.92

108 3.12353 5.13698 12.15 14.962
109 3.11135 5.13487 11.802 14.963
110 3.1733 5.09316 11.703 14.935
111 3.34637 51211 11.909 14.962
112 3.14309 5.1175 11.909 14.978
113 2.95019 5.18953 11.802 14.964
114 3.06709 5.14012 11.703 14.93

115 2.94828 5.16127 11.44 15.017
116 3.10779 5.07306 11.802 14.945
117 3.19961 5.16889 11.703 14.942
118 3.02953 4.9848 11.703 14.995
119 3.28554 511712 11.802 14.979
120 3.40638 5.07079 11.909 14.969
121 3.12497 5.14678 11.802 15.04

162

Federal Office for Information Security

Fully tested Linux Kernel Version: 5.0

Appendix B: Test Results on Linux Kernel 4.9
Documented Linux Kernel Version: 5.5

Time Stamp Lowest SP800- | Lowest SP800- Min-entropy Shannon
Position / Time |90B min-entropy | 90B min-entropy (AIS 20/31) of | Entropy of Time
delta estimate of 4 Bits | estimate of 8 Bits Time Delta Delta
Width Time Width Time
Stamp Stamp

122 2.88228 5.11998 11.802 14.965

123 3.30499 5.00985 11.909 14.932

124 2.95083 5.18148 12.025 14.949

125 3.14747 5.07219 11.802 14.97

126 3.17107 5.1625 11.909 14.94

127 3.0789 5.11768 11.802 14.956

128 3.53061 5.00221

Table 12: Interrupts: Early Boot SP800-90B Min-Entropy Measurements in Virtual Environment

The table shows that the high-resolution time stamp of each of the first 128 interrupts has an estimated
min-entropy of at least 3 bits in the 4 LSB of the time stamp. In addition, the table shows that for the 8 LSB
of the time stamp, at least 5 bits are measured for each of the first 128 interrupts. Considering the min-
entropy according to AIS 20/31 applied to the time deltas (i.e. the difference of two adjacent time stamps),
the range of values is between 10 and 13 bits per interrupt event. The Shannon entropy values for the time
deltas are even higher and range between 14 and 15.5 bits per interrupt event.

To allow the reader to get a graphical view of the time stamp distribution, figure 19 is provided. Considering
the statement above regarding time deltas, such time deltas are used as a basis for the distribution graph
instead of absolute time stamps. Therefore, figure 19 shows the time delta distribution of the time stamps
recorded for the first and second interrupt - the X-axis presents the number of ticks of the time delta. All
other interrupts exhibit a similar distribution pattern. To make the graphic more readable, only the 90%
quartile of the time delta data is depicted. The remaining 10% cover such a large value span with so little
probability of occurrence that they would render the graphic unreadable.

Federal Office for Information Security 163

Appendix B: Test Results on Linux Kernel 4.9

Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

Histogram

6e-06 Be-06 1e-05

Relative Frequency

4e-06

2e-06

Oe+00

T | T T T T T 1
0 500000 1000000 1500000 2000000 2500000 3000000 3500000

Time Deltas

Figure 19: Histogram of Time Deltas for First and Second Interrupt in a Virtual Environment

The histogram shows that the time delta is widely distributed over the entire continuum of possible time
delta values. It shows some concentration of time deltas in the low end of the possible range of time delta
values ranging from zero to 2*. The red bar shows the statistical mean value of the histogram. The blue line
shows the median and the two green bars show the 25% and 75% quartile of the data set. The red dotted line
indicates how a Gaussian standard normal distribution would look like when using the standard derivation
of the data set.

The table with the min-entropy estimates for the time stamps of the first 128 interrupts visualized in figure
19 allows the conclusion that the entropy present in the time stamps is already sufficiently large for
achieving a commonly required security strength of 128 bits. As these first 128 interrupts are not obtained
from block device or HID events, the correlation issue outlined in section 6.2.4 is not applicable. Therefore,
the Linux-RNG massively underestimates the boot-time entropy present with the interrupt time stamps.

Early Boot Entropy Testing on Native Hardware

This appendix applies to the test outlined in section Fehler: Verweis nicht gefunden for kernel 4.9.

Time Stamp Lowest SP800- | Lowest SP800- Min-entropy Shannon
Position / Time |90B min-entropy | 90B min-entropy| (AIS20/31)of | Entropy of Time
delta estimate of 4 Bits | estimate of 8 Bits Time Delta Delta

Width Time Width Time
Stamp Stamp
1 3.30499 5.15333 11.15 13.193
2 3.30499 5.15333 9.44 11.65
3 3.09715 5.17964 9.15 11.375

164

Federal Office for Information Security

Fully tested Linux Kernel Version: 5.0

Appendix B: Test Results on Linux Kernel 4.9
Documented Linux Kernel Version: 5.5

Time Stamp Lowest SP800- | Lowest SP800- Min-entropy Shannon
Position / Time |90B min-entropy | 90B min-entropy (AIS 20/31) of | Entropy of Time
delta estimate of 4 Bits | estimate of 8 Bits Time Delta Delta
Width Time Width Time
Stamp Stamp

4 2.96044 5.16013 8.882 11.155
5 3.06433 5.11205 8.727 11.157
6 3.46169 5.16314 8.48 11.078
7 3.05264 5.16173 8.261 10.922
8 3.07194 4.94216 8.752 11.165
9 2.8841 5.0768 10.855 14.461
10 2.92427 5.10604 11.15 14.488
11 3.11492 5.15423 9.61 11.441
12 3.26794 5.11223 9.828 11.505
13 3.02684 5.18255 11.362 14.423
14 2.99424 5.15633 11.703 14.715
15 3.00216 5.08594 14.025 15.589
16 3.19053 5.13294 12.025 15.369
17 3.06295 5.13405 8.679 11.054
18 3.13727 5.0667 7.56 9.286
19 3.01145 4.97159 6.415 7.84
20 3.03291 5.09018 5.902 7.762
21 2.94319 5.08526 6.937 12.497
22 3.10708 5.17654 10.252 14.923
23 3.04444 5.08905 11.522 14.514
24 3.22794 5.07332 11.217 14.593
25 3.09222 5.11183 9.828 13.507
26 3.00018 492814 8.46 12.012
27 3.45488 5.20711 8.055 10.523
28 3.22949 5.11442 7.094 9.507
29 3.24115 5.14023 6.749 9.223
30 2.91055 5.11148 6.587 9.185
31 2.95659 5.06464 6.861 9.369
32 3.2537 5.11438 7.32 9.814
33 2.97789 5.08937 7.348 10.133
34 2.974 5.06181 7.758 12.709
35 2.90004 5.14598 7.789 13.195
36 2.69958 4.90777 10.802 15.189

Federal Office for Information Security

165

Appendix B: Test Results on Linux Kernel 4.9
Documented Linux Kernel Version: 5.5

Fully tested Linux Kernel Version: 5.0

Time Stamp Lowest SP800- | Lowest SP800- Min-entropy Shannon
Position / Time |90B min-entropy | 90B min-entropy (AIS 20/31) of | Entropy of Time
delta estimate of 4 Bits | estimate of 8 Bits Time Delta Delta
Width Time Width Time
Stamp Stamp

37 2.51508 4.7596 11.802 14.515
38 2.17638 463331 12.025 15.131
39 2.15932 4.59699 104 13.847
40 2.16709 4.63145 11.288 14.407
41 2.11878 4.6035 942 12.479
42 2.05959 4.61474 10.217 13.187
43 2.08179 4.5926 9.855 12.525
44 2.08915 4.54992 104 13.282
45 2.10167 4.58879 9.522 12.607
46 2.1102 4.59488 10.44 13.991
47 2.09407 4.58762 8.995 12.587
48 2.0769 4.56889 10.4 14.018
49 2.07447 4.58863 8.937 12.653
50 2.06978 4.61553 10.752 14.48

51 2.07865 4.63452 9.632 13.107
52 2.21937 4.55743 11.362 14.371
53 2.34271 4.58054 9.632 12.974
54 2.32896 4.66535 10.703 13.45

55 2.32027 4.71625 9.27 12.455
56 2.42988 4.65204 10.565 13.749
57 2.39798 4.71931 9.288 12.692
58 2.36891 4.69557 10.288 13.706
59 2.40299 4.59747 9.252 12.653
60 2.40759 4.66288 9.565 13.044
61 246272 4.65679 8.752 12,511
62 245727 4.74267 10.217 13.769
63 241175 4.696 9.306 12.664
64 2.46956 4.64053 10.252 13.681
65 2.43299 4.67243 9.235 12.448
66 246272 4.71073 9.679 13.006
67 241351 4.63483 8.882 12.576
68 2.34313 4.64441 10.565 14.317
69 2.38974 4.69332 9.882 13.995

166

Federal Office for Information Security

Fully tested Linux Kernel Version: 5.0

Appendix B: Test Results on Linux Kernel 4.9
Documented Linux Kernel Version: 5.5

Time Stamp Lowest SP800- | Lowest SP800- Min-entropy Shannon
Position / Time |90B min-entropy | 90B min-entropy (AIS 20/31) of | Entropy of Time
delta estimate of 4 Bits | estimate of 8 Bits Time Delta Delta
Width Time Width Time
Stamp Stamp

70 245071 4.70943 12.025 15.271
71 246136 4.68495 10.855 14.161
72 2.68996 4.76885 11.703 14.849
73 2.56355 4.7644 10.252 13.406
74 2.73596 4.72446 11.522 14.024
75 2.5894 4.79207 10.48 13.259
76 246227 4.79052 11.522 14.127
77 2.51508 4.80296 10.183 13.334
78 2.49889 4.76837 11.288 14.382
79 2.60514 4.74695 9.727 13.227
80 246774 4.8078 11.288 14.284
81 2.61927 4.79807 9.995 13.199
82 2.7261 4.74498 10.855 13.931
83 2.69529 4.72362 10.44 13.31

84 2.74479 4.81701 10.966 14.071
85 2.6985 4.75939 10.61 13.439
86 2.83086 4.89239 11.802 14.883
87 2.60966 4.87646 10.802 14.591
88 2.87984 4.95871 13.025 15.519
89 2.94129 496163 12.15 14.993
90 2.9249 4.90284 12.61 15.215
91 3.09998 4.92943 12.44 15.093
92 2.9714 4.92112 12.288 14.96

93 3.05607 4.95678 12.802 15.204
94 2.81916 491172 12.44 15.138
95 2.86353 4.89614 12.802 15.34

96 2.99952 4.99188 12.44 15.272
97 2.98245 495782 13.025 15.486
98 3.01145 5.05297 12.15 15.102
99 3.12569 5.14276 12.288 15.336
100 292114 5.1058 11.61 14.82

101 3.1014 5.19469 12.61 15.327
102 3.0015 5.16685 12.44 15.414

Federal Office for Information Security

167

Appendix B: Test Results on Linux Kernel 4.9
Documented Linux Kernel Version: 5.5

Fully tested Linux Kernel Version: 5.0

Time Stamp Lowest SP800- | Lowest SP800- Min-entropy Shannon
Position / Time |90B min-entropy | 90B min-entropy (AIS 20/31) of | Entropy of Time
delta estimate of 4 Bits | estimate of 8 Bits Time Delta Delta
Width Time Width Time
Stamp Stamp

103 3.20721 5.14491 13.288 15.578
104 3.34805 5.19241 13.61 15.583
105 3.07333 5.1571 1361 15.579
106 2.92052 5.13835 13.025 15.44
107 3.17367 5.10252 13.025 15.488
108 3.15848 5.07703 12.025 15.216
109 3.05744 5.03846 12.802 15419
110 3.18302 5.10916 11.217 14.932
111 3.04649 5.10783 12.44 15.412
112 3.01545 5.12331 11.61 15.156
113 3.3838 5.09094 13.025 15.492
114 2.90127 5.08737 12.025 15.376
115 2.88045 5.0769 13.025 15.511
116 3.06019 5.07597 11.217 15.334
117 3.08379 498531 13.025 15471
118 2.99622 5.05527 11.288 15.235
119 3.05607 496621 12.288 15.454
120 3.38035 5.1295 10.703 15.201
121 2.98637 5.13873 12.15 15.447
122 2.95019 5.06541 10.61 15.169
123 3.13727 5.07633 12.44 15.449
124 3.1185 5.11505 10.752 15.176
125 3.09081 4.96025 12.44 15.468
126 2.91303 5.12936 11.802 15.264
127 3.03426 5.09961 13.025 15.458
128 3.45082 5.11811

Table 13: Interrupts: Early Boot SP800-90B Min-Entropy Measurements on Native Hardware
The interpretation of the table is identical to the table presented for the virtual environment boot time
measurements.

The different statistical entropy values calculated from the measurements of the first interrupt event time
stamps obtained by the Linux-RNG after boot on native hardware do not deviate significantly from the
same values obtained on a virtual environment. Thus, the mentioned contrary effects are concluded to
cancel each other out or are insignificant to the overall entropy present in the Linux kernel boot process.

168 Federal Office for Information Security

Appendix B: Test Results on Linux Kernel 4.9
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

A graphical representation of the values presented in the table is given in figure 20. It shows the histogram
of the delta between the first and the second interrupt event time stamp of each boot cycle recorded by the
Linux-RNG where the X-axis represents the number of ticks between the occurrence of both interrupts. As
discussed for the virtual environment, the 90% quartile is depicted.

Histogram
uw
< _
@
@0
uw
< |
L]
(T3]
[Te]
- < _
s 2
=
g 8
4]
L
[+
= 2]
@ o
@ F
od
[Te]
S
2
[=]
3 4 R l A
@
=] T T T T T 1
0 500000 1000000 1500000 2000000 2500000
Time Deltas

Figure 20: Histogram of Time Deltas for First and Second Interrupt in a Native Environment

It is interesting that the first time delta shows spikes at around 60000 ticks, 2.1 million ticks and 2.7 million
ticks. Nonetheless, these spikes exhibit variations such that the Shannon and AIS 20/31 min-entropy values
are large. Clearly, the pattern of the histogram is quite different compared to virtual environments shown in
figure 19. Starting with the third time delta, the distribution of the time deltas start to “normalize” and look
very similar to figure 19.

AIS 20/31 Test Procedure A for Entropy Pools

Using the test code input_pool/, the input_pool as well as the blocking_pool are observed. The SystemTap
test code takes a snapshot of the entropy pool after an amount of bytes has been mixed in that equals its size
in words. That means that a snapshot is taken of the input_pool after 128 bytes have been mixed in.
Similarly, a snapshot of the blocking_pool has been taken after 32 bytes have been mixed into the
blocking_pool. After the mix-in of the stated amount of bytes, all words in the entropy pool have been
changed by the LFSR operation.

With the obtained data, a binary string can be obtained that shows whether the LFSR implementing the
state transition function of the entropy pools guarantees white noise in the entropy pool.

Federal Office for Information Security 169

Appendix B: Test Results on Linux Kernel 4.9
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

input_pool

After generating 1,000,000 snapshots with the test code and concatenating all data, a binary string is present
that can be analyzed as follows:

e The Chi-Squared value using the ent tool shows a value 0.56 which indicates white noise.

* The test procedure A is passed by the bit string.

The test results for the input_pool confirm the test results obtained during the analysis presented in section
7.2.

blocking_pool

Similarly to the input_pool, the blocking_pool is analyzed after taking 100,000 snapshots. Again, the data can
be characterized:

* The Chi-Squared value provided with the ent tool shows the value of 0.05 which indicates white noise.

* The test procedure A is also passed by the bit string.

This implies that the test results confirm the results obtained from the analysis provided in section 7.2.

170 Federal Office for Information Security

Appendix C: Test Results on Linux Kernel 4.15
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

Appendix C: Test Results on Linux Kernel 4.15

This appendix chapter holds the test results for the tests of Linux Kernel 4.15 for reference and comparison
with future re-tests, as described in chapter 6.2.

Listing of Used Hardware and Software

The testing was executed on the following hardware:
e Thinkpad T530 used for the native hardware early boot entropy tests documented in 6.3.2:
* 2 core CPU with two hyperthreads per core
¢ Intel(R) Core(TM)i7-3520M CPU @ 2.90GHz
* QEMU 2.10.1 used for the virtual environment early boot entropy tests documented in 6.3.1:
* 4virtual CPUs corresponding with the 4 hyperthreads of the host system
¢ Intel Core Processor (Broadwell, no TSX)
* Apple MacBook Pro 2015 used for all other tests executed on native hardware:
* 2 core CPU with two hyperthreads per core
¢ Intel(R) Core(TM)i7-5557U CPU @ 3.10GHz

Min-Entropy as per SP800-90B

The discussions of the noise sources in section 6.1 concludes that solely the high-resolution time stamp used
for each event is of relevance to the entropy analysis.

The high-resolution time stamp is recorded using the test provided in the test directory linux-entropy-
sp80090Db. This test uses several SystemTap scripts which are enumerated in the following:

e HID measurement: to measure the high-resolution time stamp of HID events, the SystemTap script
recording/raw_entropy_hid.stp instruments add_timer_randomness to read out the high-resolution time
stamp from the sample data structure (see section 3.5.2.7 for details about this data structure). In
conjunction, a second SystemTap script record/entropy_per_event_hid.stp is used to record the entropy
estimation applied by the Linux-RNG to the HID events. To allow other reviewers to assess the quality of
the event values and Jiffies values, they are recorded but disregarded in the subsequent assessments.

* Block device measurement: the SystemTap scripts of record/raw_entropy_disk.stp and
record/entropy_per_event_disk.stp are used to record the same data for block devices as outlined for HID
devices above. Again, the event values and the Jiffies values are recorded for third-party verification.
However, they are again not considered in the analysis below.

* Interrupt measurement: the SystemTap script raw_entropy_irq.stp instruments
add interrupt randomness. It obtains the high-resolution time stamp for this interrupt. There is
no SystemTap script measuring the entropy estimation applied to interrupts as the Linux-RNG applies a
fixed estimate of one bit (in case of Intel x86 systems with RDRAND it is two bits) per injection of a
fast_pool content into the input_pool.

The recorded data set is simply a set of 32 bit integer values holding the high-resolution time stamps for
each recorded interrupt. To make testing easier and more repeatable, the script recording/gendata.sh is

Federal Office for Information Security 171

Appendix C: Test Results on Linux Kernel 4.15
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

provided which invokes the SystemTap scripts appropriately. That script triggers the testing to obtain data
for 1,000,000 noise source events.

The resulting data for the high-resolution time stamp is analyzed for its min-entropy content as defined in
[SP800-90B]. In order to perform the calculations, the type of data to be processed must be determined, i.e.
whether the input data is IID or non-IID. With a time stamp value, even when it is fast moving and thus
wrapping within some seconds, it is still a monotonically increasing counter. Therefore, this data set is
always considered to be non-IID. This determination implies that the following types of min-entropy values
are calculated defined by [SP800-90B]:

* Most Common Value Estimate

* Collision Estimate

* Markov Estimate

¢ Compression Estimate

* t-Typle Estimate

* Longest Repeated Substring (LRS) Estimate

* Multi Most Common in Window Prediction Estimate
e Lag Prediction Estimate

* MultiMMC Prediction Estimate

* LZ78Y Prediction Estimate

As documented in [SP800-90B] almost all of these min-entropy estimations can only be calculated for input
data that has a small width. A high-resolution time stamp has a width of 32 bits. To allow processing the
time stamps with the aforementioned min-entropy estimation calculations, the application
validation/extractlsb.c obtains the 4 least significant bits of the time stamp and concatenates all 4 LSB of all
time stamps into a bit stream. This means that the input data width is now 4 bits instead of 32 bits. The
calculation of the min-entropy estimations using 4 bits instead of 32 bits is considered to support the
conservative assessment of this study. In addition, the mentioned application also extracts the 6 LSB* of
each time stamp and concatenates them into a bit-stream. This allows the calculation of the min-entropy
estimation of the input data with 6 bit width. The following tables therefore provide the entropy estimation
for 4 bit and 6 bit input data widths.

For comparison, the min-entropy and the Shannon entropy defined by [AIS2031] are calculated as well. The
used formulas are provided in section 2.3.2 [AIS2031] and are not re-iterated here. The time stamp is a
monotonically increasing integer which implies that the entropy lies in the deltas of the time stamps and
the distribution of those deltas. This means that to perform the calculation for the Minimum and Shannon
entropy, the time stamp deltas are used as a basis for the calculation. The time stamp deltas are calculated
from the adjacent time stamps from the absolute time stamps recorded by the measurements.

Interrupt Noise Source Min-Entropy Estimates

The collection of data for interrupts was conducted twice: once with a normal use case and once with a
worst-case. In the normal use case the test environment was made to resemble regular usage where Internet
searches and regular office duties were performed. The worst-case covered the test system in a virtual
environment where the host system sent a ping flood to the test system. Each received ICMP request and
response triggered an interrupt that was recorded.

The worst-case test execution returned the following data.

25 The reason for selecting 6 LSB is that the Markov min-entropy value can only be calculated for data blocks not
exceeding 6 bits.

172 Federal Office for Information Security

Appendix C: Test Results on Linux Kernel 4.15

Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5
Entropy Estimate 4 Bits Width 8 Bits Width

Most Common Value Estimate 3.9833 5.95955
Collision Estimate 3.333 4.85264
Markov Estimate 3.82232 5.69777
Compression Estimate 3.33175 494307
t-Typle Estimate 3.64351 5.81733
LRS Estimate 3.14332 5.69474
Multi Most Common in Window 3.98114 5.94717
Prediction Estimate

Lag Prediction Estimate 3.91254 5.95643
MultiMMC Prediction Estimate 3.84493 5.50815
LZ78Y Prediction Estimate 3.8451 5.50815

Table 14: Interrupts: SP800-90B Min-Entropy Measurements - Worst Case

The associated Shannon entropy value is 14.025 bits per interrupt event. The min-entropy value according
to [AIS2031] is 11.412 bits per interrupt event.

The normal use case returned the following data.

Entropy Estimate 4 Bits Width 6 Bits Width

Most Common Value Estimate 3.97688 5.94959
Collision Estimate 2.55868 3.93252
Markov Estimate 3.75639 5.64278
Compression Estimate 2.64331 412894
t-Typle Estimate 3.42091 5.77394
LRS Estimate 3.23859 5.9087
Multi Most Common in Window 3.79055 5.85228
Prediction Estimate

Lag Prediction Estimate 3.59835 5.29956
MultiMMC Prediction Estimate 3.29956 5.6648
LZ78Y Prediction Estimate 2.55868 5.81447

Table 15: Interrupts: SP800-90B Min-Entropy Measurements - Normal Use Case

Applying the Shannon entropy formula on the data set, a value of 19.216 bits per interrupt event is
calculated. Using the min-entropy formula according to [AIS2031], a result of 13.163 bits per interrupt event
is measured.

The conclusions that can be drawn from the numbers follow. Regardless of the worst-case or normal case,
the high-resolution time stamp of each interrupt will return significantly more than two bits of entropy.

The Linux-RNG requires the data of at least 64 interrupts to be collected and mixed into the input_pool. The
entire data from 64 interrupt is credited with one bit of entropy (two bits when RDRAND is present). This
implies that significantly more entropy is collected than the Linux-RNG will credit.

Federal Office for Information Security 173

Appendix C: Test Results on Linux Kernel 4.15
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

Even when the fast_pool operation will not retain all entropy delivered by the interrupt noise source data,
the massive underestimation of entropy by the Linux-RNG is assumed to counter such a potential effect.

As the Linux-RNG massively underestimates the entropy present in the interrupt noise source event data,
the Linux-RNG acts conservatively and thus upholds the cryptographic strength it reports with its entropy
estimation.

Block Device Noise Source Min-Entropy Estimates

On contemporary hardware with a lot of RAM, a normal usage of block devices will cause insignificant block
device events. This is due to the fact that the entire unused portion of RAM is used as a buffer cache to
prevent repeating disk accesses. To obtain sufficient data, a worst-case has been measured. This worst-case
has been implemented by constantly mounting and unmounting a block device. This causes the buffer
cache to be irrelevant for the disk accesses caused by the mount operations, as the buffer cache is flushed
with each unmount operation of a file system. The worst-case produced the following data:

Entropy Estimate 4 Bits Width 6 Bits Width
Most Common Value Estimate 3.97764 5.94579
Collision Estimate 4 6
Markov Estimate 3.62004 5.50219
Compression Estimate 4 6
t-Typle Estimate 3.28755 5.71189
Longest Repeated Substring (LRS) |3.43395 5.70321
Estimate
Multi Most Common in Window |3.98959 5.97841
Prediction Estimate
Lag Prediction Estimate 3.29956 5.734
MultiMMC Prediction Estimate 3.29956 5.29956
LZ78Y Prediction Estimate 3.64385 441504

Table 16: Block Devices: SP800-90B Min-Entropy Measurements

Using the Shannon entropy formula, 18.912 bits per block device event is calculated. A value of 14.977 bits
per block device event is calculated as the min-entropy according to [AIS2031].

In addition to the collection of the noise source data, the test also collected the entropy estimates per block
device event applied by the Linux-RNG. The histogram given in figure 21 specifies all possible entropy
estimation values from zero to 11 that can be applied by the Linux-RNG. The histogram shows how often
the Linux-RNG awards these entropy estimates to the recorded block device events.

Figure 21 also shows that the mean value of all entropy estimates is 1.31 bits of entropy. This can be
interpreted that on average, the Linux-RNG awarded each block device event 1.31 bits of entropy.

174 Federal Office for Information Security

Appendix C: Test Results on Linux Kernel 4.15
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

Estimated Entropy per Event

Relative Frequency
0.3 0.4 0.5
!

0.2
|

0.1

]

| T | T | |
0 2 4 6 8 10
Min: 0 - 1st Qu: 0 - Median: 0 - Mean: 1.31
3rd Qu: 2 - Max: 11 - Sigma: 1.84 - Var Coeff: 1.401444

0.0

Figure 21: Entropy Estimate per Block Device Event Applied by Linux-RNG

Comparing the result shown in figure 21 with the min-entropy estimates calculated from the measured
time stamps, the following conclusion is drawn: the min-entropy estimates have significantly more than 3
bits of entropy per event. On the other hand, the Linux-RNG considers that each event has on average only
1.31 bits of entropy.

This allows the conclusion that the Linux-RNG significantly underestimates the entropy present in the
block device noise source data. This significant underestimation implies that the Linux-RNG acts
conservatively and thus upholds the cryptographic strength it reports with its entropy estimation.

HID Noise Source Min-Entropy Estimates

The entropy measurements for HID is only performed for regular use cases. No worst-case scenario can be
devised for HID.

To perform testing of the HID noise source within a reasonable time, only 500.000 samples of HID noise
source events were recorded. The entropy estimates for the high-resolution time stamp applied to those
events are listed in the table below.

Entropy Estimate 4 Bits Width 6 Bits Width
Most Common Value Estimate 3.95963 5.93102
Collision Estimate 3.43645 4.63996
Markov Estimate 3.75615 5.59784
Compression Estimate 3.29604 4.76048
t-Typle Estimate 3.32193 5.73607

Federal Office for Information Security 175

Appendix C: Test Results on Linux Kernel 4.15

Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0
Entropy Estimate 4 Bits Width 6 Bits Width

LRS Estimate 3.35119 5.86791
Multi Most Common in Window | 3.63368 5.90624
Prediction Estimate

Lag Prediction Estimate 3.63368 5.64622
MultiMMC Prediction Estimate 3.44475 5.63528
LZ78Y Prediction Estimate 3.63368 5.79679

Table 17: HID: SP800-90B Min-Entropy Measurements

The Shannon entropy formula applied on the data set results in 16.377 bits per HID event. 11.539 bits per
HID event are calculated when using the min-entropy formula according to [AIS2031] .

The test record of the entropy estimate applied by the Linux-RNG for each recorded HID event is depicted
with figure 22. This figure lists all possible entropy estimates applied by the Linux-RNG to a HID noise
source event ranging from 0 to 11. A histogram is prepared showing all recorded entropy estimates for HID
noise source events.

As shown in figure 22, the mean value of the histogram is 0.9 bits. This implies that the Linux-RNG awarded
0.9 bits of entropy to each HID noise source event on average.

Estimated Entropy per Event

M~
[
o
]
o

}_\D‘

(=]

=

[ii]

= = _]

g o

(L

g o |

ED

[5]

s
o
[]
F_
b=
= b
]

0 2 4 3] 8 10
Min: 0 - 1st Qu: 0 - Median: 0 - Mean: 0.9
3rd Qu: 3 - Max: 11 - Sigma: 1.48 - Var Coeff: 1.637116

Figure 22: Entropy Estimate per HID Event Applied by Linux-RNG

A conclusion can be reached when comparing the heuristic entropy values applied by the Linux-RNG from
figure 22 with the min-entropy estimates. The min-entropy estimates have more than 4 bits of entropy per
event (6 bit width), or more than 3 bits of entropy per event (4 bits width). On the other hand, the Linux-
RNG applies on average 0.9 bits of entropy to a HID event.

176 Federal Office for Information Security

Appendix C: Test Results on Linux Kernel 4.15
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

This comparison allows to conclude that the Linux-RNG again underestimates the available entropy for
HID events. This underestimation shows again that, the Linux-RNG applies a conservative entropy
estimation and thus upholds the cryptographic strength it reports with its entropy estimation.

Conclusion of SP800-90B Measurements

The conclusions given for each noise source regarding the SP800-90B measurements are collectively
summarized with as follows.

For all noise sources that contribute entropy to the Linux-RNG, the Linux-RNG applies a very conservative
entropy estimate to each individual noise source.

Considering the HID and block device noise sources alone, the combinations of the noise source event data
when mixing the data into the input_pool is not considered to diminish any entropy. This is due to the fact
that both noise sources are independent. Thus, viewing both noise sources collectively, it can be concluded
that the Linux-RNG significantly underestimates the entropy.

Bringing the data from the interrupt noise source into the picture, the interpretation changes as follows: the
interrupt noise source has a correlation with the HID and block device noise source as each HID or block
device event also triggers an interrupt noise source event. The correlation is assumed to be diminished by
the use of the fast_pool which mixes the interrupt data of at least 64 interrupts before injecting the data into
the input_pool. Yet a complete diminishing of correlation between the data of the HID and block device
noise source on the one hand and the fast_pool content on the other hand cannot be assumed.

However, the Linux-RNG applies a massive underestimation of the available entropy in case of interrupts
which gives rise to the following concern: the min-entropy estimates show that for 64 interrupts
significantly more than 128 bits of entropy are present in the input data. The Linux-RNG awards these 64
interrupts, however, only one bit (in the presence of RDRAND 2 bits are applied). This massive
underestimation of entropy is considered to outweigh the potentially existing correlation between the HID
and block device noise source event data on the one side and the interrupt noise source event data
maintained by the fast_pool and injected into the input_pool on the other side.

This finally allows the conclusion that the entropy present in the noise source data collectively is
underestimated by the Linux-RNG. Therefore, the Linux-RNG is conservative such that the heuristically
determined entropy value awarded to an event and added to the entropy estimator of an entropy pool can
be considered to represent at least the cryptographic strength of the data maintained by the Linux-RNG.

Entropy During Early Boot

The measurements of the raw noise source data shows that at runtime, the Linux-RNG entropy estimator
maintained for an entropy pool indicates at least the cryptographic strength of the data present in that
entropy pool.

At runtime, when sufficient data is added to the entropy pools, the Linux-RNG state is always considered to
be sufficiently strong.

However, the following question must be raised: are the noise source data received by the Linux-RNG
during early kernel boot time equally entropic to support cryptographically strong random numbers to be
produced by the Linux-RNG during boot time? This question is of particular importance to system services
requiring seed data from /dev/random or /dev/urandom during system boot time.

The following test has been devised to measure the entropy during early boot. This test considers that
during early boot, only interrupts are triggered and received. No block device is yet set up, and no HID are
initialized to allow users to interact with the system. Therefore, testing is limited to measure interrupt event

Federal Office for Information Security 177

Appendix C: Test Results on Linux Kernel 4.15

Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

data only. As outlined in section 6.1.1, only the high-resolution time stamp recorded for interrupts is of
interest to entropy measurements.

The Linux kernel has been modified with the patch boottime/boottime_test.diff. This patch records the
high-resolution time stamps obtained for the first 128 interrupts. A user space shell script
boottime/boottime_test_record.sh stores these 128 time stamps to disk and initiates a reboot.

The test is performed for 50,000 reboot cycles for the virtual environment as well as for the bare-metal
environment. At the end of the testing, 50,000 times 128 time stamps are collected and analyzed.

The first analysis performs an SP800-90B min-entropy estimate calculation discussed in section 6.2.1. Such a
min-entropy estimate is calculated for each of the 128 32-bit time stamps individually. This means that the
min-entropy estimate for the first till the 128th 32-bit time stamp of all boot cycles is calculated. Therefore,
the full result contains 128 entries with min-entropy estimates. To limit the amount of space in this report
for presenting the data, the tables in the following subsections only list the lowest min-entropy estimate out
of all estimate types enumerated in section 6.2 for all 128 different interrupt occurrences.

In addition to the calculation of the min-entropy according to SP800-90B, the min-entropy and the
Shannon entropy according [AIS2031] has been calculated as well. Both formulas are provided in section
2.3.2 of [AIS2031] and are not repeated here. As the time stamp is a monotonically increasing integer, the
entropy lies in the deltas of the time stamps and the distribution of those deltas. Therefore, to perform the
calculation for the Minimum and Shannon entropy, the time stamp deltas are used as a basis for the
calculation. The time stamp deltas are calculated from the adjacent time stamps.

The testing of the early boot entropy is conducted twice due to its importance. The first test is performed in
a virtualized environment. This environment has very few devices that can trigger interrupts. This means
that the time until 128 interrupts are received is longer relative to the boot time of the Linux kernel. Yet,
more variations must be expected as the virtual machine monitor may reschedule the virtual machine guest
that is tested. Such rescheduling operations may introduce delays which would be visible with more
variations in the time stamps. The second early boot entropy test is executed with a Linux kernel executing
directly on hardware. This hardware has more devices that can deliver interrupts. Yet this test environment
is not affected by virtual machine monitor rescheduling events.

Early Boot Entropy Testing in a Virtual Environment

Time Stamp Lowest SP800- Lowest SP800- Min-entropy Shannon
Position / Time |90B min-entropy | 90B min-entropy (AIS 20/31) of | Entropy of Time
delta estimate of 4 Bits | estimate of 6 Bits Time Delta Delta
Width Time Width Time
Stamp Stamp
1 3.09504 4.42222 11.522 14.318
2 3.09504 4.42222 14.025 15.556
3 2.94828 4.29682 12.802 15.446
4 3.0796 4.43014 13.025 15.434
5 2.97335 4.30794 13.61 15.519
6 3.07681 4.55651 13.61 15.554
7 3.02482 4.26731 12.025 15.438

178

Federal Office for Information Security

Fully tested Linux Kernel Version: 5.0

Appendix C: Test Results on Linux Kernel 4.15
Documented Linux Kernel Version: 5.5

Time Stamp Lowest SP800- | Lowest SP800- Min-entropy Shannon
Position / Time |90B min-entropy | 90B min-entropy (AIS 20/31) of | Entropy of Time
delta estimate of 4 Bits | estimate of 6 Bits Time Delta Delta
Width Time Width Time
Stamp Stamp

8 3.03629 4.4367 13.025 15.522
9 3.06295 4.3774 13.288 15.5

10 3.04853 4.41759 13.025 15.498
11 3.01545 4.18854 13.61 15.517
12 3.10708 4.42455 13.288 15.544
13 2.9805 4.25919 13.61 15.541
14 2.96752 4.56009 13.025 15.426
15 3.04512 4.23512 12.44 15.337
16 3.0789 421849 12.025 15.223
17 3.0255 4.40835 11.61 14.916
18 3.07751 4.15052 11.44 14.032
19 3.07472 4.35328 10.909 13.442
20 3.30989 4.60105 10.802 13.351
21 3.18302 481311 10.61 13.421
22 3.04853 445512 10.752 13.578
23 3.24976 4.54635 10.48 13.811
24 3.12858 5.07403 10.61 14.072
25 3.29199 4.36887 10.288 14.307
26 3.3181 4.36708 10.522 14.526
27 3.14893 4.6021 10.656 14.735
28 3.08239 4.33786 10.855 14.871
29 3.29199 4.88301 10.752 14.988
30 3.43466 4.63457 10.752 15.083
31 3.30907 4.32956 11.362 15.171

Federal Office for Information Security

179

Appendix C: Test Results on Linux Kernel 4.15
Documented Linux Kernel Version: 5.5

Fully tested Linux Kernel Version: 5.0

Time Stamp Lowest SP800- | Lowest SP800- Min-entropy Shannon
Position / Time |90B min-entropy | 90B min-entropy (AIS 20/31) of | Entropy of Time
delta estimate of 4 Bits | estimate of 6 Bits Time Delta Delta
Width Time Width Time
Stamp Stamp

32 3.35766 466228 11.288 15.229

33 3.11278 4.76283 12.288 15.271

34 3.09998 4.38553 12.025 15.295

35 3.40813 4.49365 12.44 15.311

36 3.43109 4.79615 12.288 15.342

37 3.1482 4.39872 12.61 15.356

38 3.18602 4.2282 13.025 15.349

39 3.17778 4.61107 13.025 15.357

40 3.17107 47291 13.025 15.362

41 3.12281 4.44046 13.288 15.361

42 3.15775 4.38101 12.44 15.367

43 3.16736 4.19687 13.025 15.366

44 3.16958 4.34753 12.802 15.36

45 3.21869 4.66173 12.802 15.355

46 3.09081 4.51282 12.61 15.339

47 3.21179 4.32608 12.61 15.332

48 3.15628 4.50296 12.802 15.319

49 3.11135 4.20904 12.802 15.298

50 3.05538 4.24659 12.802 15.273

51 3.07612 4.3738 1261 15.263

52 3.15187 4.41573 12.61 15.245

53 3.19431 4.37066 12.802 15.226

54 3.18602 4.36618 12.61 15.213

55 3.24584 4.43108 12.61 15.2

180

Federal Office for Information Security

Fully tested Linux Kernel Version: 5.0

Appendix C: Test Results on Linux Kernel 4.15
Documented Linux Kernel Version: 5.5

Time Stamp Lowest SP800- | Lowest SP800- Min-entropy Shannon
Position / Time |90B min-entropy | 90B min-entropy (AIS 20/31) of | Entropy of Time
delta estimate of 4 Bits | estimate of 6 Bits Time Delta Delta
Width Time Width Time
Stamp Stamp

56 3.45534 4.43776 12.802 15.18

57 3.17107 4.38916 12.44 15.169
58 3.221 4.53325 12.44 15.167
59 3.17256 5.03651 12.44 15.159
60 3.5211 4.47957 12.802 15.154
61 3.13509 4.32087 12.802 15.163
62 3.15451 4.43435 12.288 15.16

63 3.04376 4.62491 12.802 15.162
64 3.10921 464158 12.802 15.166
65 3.25527 4.59895 12.802 15.157
66 3.12713 4.73948 12.61 15.156
67 3.37863 4.61002 1261 15.149
68 3.21639 441712 12.61 15.158
69 3.06433 4.19389 12.802 15.166
70 3.05813 4.56162 12.802 15.171
71 3.02348 4.43623 12.802 15.171
72 3.25055 4.54635 12.802 15.182
73 3.1409 440284 12.61 15.169
74 3.56147 4.86901 12.61 15.167
75 3.32843 4.38779 1261 15.167
76 3.24741 4.46561 12.288 15.16

77 3.23648 4.5838 12.802 15.164
78 3.03765 4.3756 12.61 15.175
79 3.18752 4.34005 12.288 15.176

Federal Office for Information Security

181

Appendix C: Test Results on Linux Kernel 4.15
Documented Linux Kernel Version: 5.5

Fully tested Linux Kernel Version: 5.0

Time Stamp Lowest SP800- | Lowest SP800- Min-entropy Shannon
Position / Time |90B min-entropy | 90B min-entropy (AIS 20/31) of | Entropy of Time
delta estimate of 4 Bits | estimate of 6 Bits Time Delta Delta
Width Time Width Time
Stamp Stamp

80 3.19885 4.2503 1261 15.181
81 2.96301 44757 12.802 15.175
82 3.26714 4.62759 12.802 15.179
83 3.23959 4.34225 12.802 15.191
84 3.2537 4.39918 12.802 15.187
85 3.12281 4.2981 12.61 15.192
86 3.17554 4.55244 12.15 15.191
87 3.01745 4.23227 12.61 15.195
88 3.10211 4.58744 12.288 15.214
89 3.25055 4.22051 12.44 15.242
90 3.19658 4.70856 12.44 15.28

91 3.32305 4.55958 1261 15311
92 3.38725 4.44564 12.61 15.312
93 3.03765 4.18342 12.61 15.318
94 3.23648 4.6984 12.61 15.335
95 3.18002 44414 12.802 15.361
96 3.29929 4.57964 1261 15.343
97 3.27431 4.43435 12.44 15.339
98 3.17703 4.51827 12.61 15.322
99 3.19355 4.68663 1261 15.325
100 3.12066 4.38417 12.61 15.298
101 3.03358 4.45845 12.61 15.29

102 3.20874 5.04669 12.15 15.254
103 3.11994 4.24126 12.288 15.236

182

Federal Office for Information Security

Fully tested Linux Kernel Version: 5.0

Appendix C: Test Results on Linux Kernel 4.15
Documented Linux Kernel Version: 5.5

Time Stamp Lowest SP800- | Lowest SP800- Min-entropy Shannon
Position / Time |90B min-entropy | 90B min-entropy (AIS 20/31) of | Entropy of Time
delta estimate of 4 Bits | estimate of 6 Bits Time Delta Delta
Width Time Width Time
Stamp Stamp

104 3.02281 4.38146 12.44 15.211
105 3.31975 4.78059 12.15 15.199
106 3.1548 4.17713 12.15 15.18

107 3.1548 4.39827 11.909 15.165
108 3.16513 4.33786 12.025 15.143
109 3.01145 4.44801 11.802 15.149
110 2.97076 4.16581 12.15 15.136
111 2.96108 4.39188 12.025 15.152
112 3.07056 4.25195 12.025 15.145
113 3.00018 4.16347 12.15 15.159
114 3.01879 443108 12.15 15.154
115 3.07751 4.46705 12.15 15.178
116 3.34469 4.59057 12.15 15.185
117 3.00746 4.41066 12.15 15.199
118 3.14601 4.68384 12.288 15.202
119 2.95083 4.55958 12.288 15.214
120 3.13872 4.39827 12.025 15.209
121 2.98441 4.38734 12.61 15.223
122 3.0817 4.53827 12.288 15.219
123 3.18377 4.19607 12.44 15.233
124 3.12353 4.29384 12.61 15.224
125 3.09857 4.40055 12.44 15.238
126 3.01145 44213 12.288 15.239
127 2.99424 4.3729 12.61 15.242

Federal Office for Information Security

183

Appendix C: Test Results on Linux Kernel 4.15
Documented Linux Kernel Version: 5.5

Fully tested Linux Kernel Version: 5.0

Time Stamp Lowest SP800- | Lowest SP800- Min-entropy Shannon
Position / Time |90B min-entropy | 90B min-entropy (AIS 20/31) of | Entropy of Time
delta estimate of 4 Bits | estimate of 6 Bits Time Delta Delta

Width Time Width Time
Stamp Stamp
128 3.15628 4.2998

Table 18: Interrupts: Early Boot SP800-90B Min-Entropy Measurements in Virtual Environment

The table shows that the high-resolution time stamp of each of the first 128 interrupts has an estimated
min-entropy of at least 3 bits in the 4 LSB of the time stamp. In addition, the table shows that for the 6 LSB
of the time stamp, at least 4 bits are measured for each of the first 128 interrupts. Considering the min-
entropy according to AIS 20/31 applied to the time deltas (i.e. the difference of two adjacent time stamps),
the range of values is between 10 and 13 bits per interrupt event. The Shannon entropy values for the time
deltas are even higher and range between 13 and 15.5 bits per interrupt event.

To allow the reader to get a graphical view of the time stamp distribution, figure 23 is provided. Considering
the statement above regarding time deltas, such time deltas are used as a basis for the distribution graph
instead of absolute time stamps. Therefore, figure 23 shows the time delta distribution of the time stamps
recorded for the first and second interrupt - the X-axis presents the number of ticks of the time delta. All
other interrupts exhibit a similar distribution pattern. To make the graphic more readable, only the 90%
quartile of the time delta data is depicted. The remaining 10% cover such a large value span with so little
probability of occurrence that they would render the graphic unreadable.

Histogram
[Ty]
(=]
Z
=
wy
2
3 &
| =
€O
=1
(=
@O
&
2 &
L]
[iF]
o
wy
<
&
=
(=]
5
[13]
= I | 1 I I
500000 1000000 1500000 2000000 2500000 3000000
Time Deltas

Figure 23: Histogram of Time Deltas for First and Second Interrupt in a Virtual Environment

The histogram shows that the time delta is widely distributed over the entire continuum of possible time
delta values. It shows some concentration of time deltas in the low end of the possible range of time delta

184 Federal Office for Information Security

Appendix C: Test Results on Linux Kernel 4.15

Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

values ranging from zero to 2*. The two green bars show the 25% and 75% quartile of the data set. The red
dotted line indicates how a Gaussian standard normal distribution would look like when using the standard
derivation of the data set.

The table with the min-entropy estimates for the time stamps of the first 128 interrupts visualized in figure
23 allows the conclusion that the entropy present in the time stamps is already sufficiently large for
achieving a commonly required security strength of 128 bits. As these first 128 interrupts are not obtained
from block device or HID events, the correlation issue outlined in section 6.2.4 is not applicable. Therefore,
the Linux-RNG massively underestimates the boot-time entropy present with the interrupt time stamps.

Early Boot Entropy Testing on Native Hardware

The test to obtain early boot data used as input to the Linux-RNG is re-performed with the Linux kernel
executing on native hardware. This re-testing is provided to allow a comparison between a virtual and a
native environment. The virtual environment has fewer devices compared to native hardware and thus
generates fewer interrupts during boot as fewer devices need to be initialized and interacted with. It is
expected that this property reduces the amount of entropy present in the measurements for virtual
environments. Conversely, virtual environments are subject to frequent re-scheduling events performed by
the host. Such rescheduling events increase the variations of the interrupt event time stamps which can be
interpreted as entropy. A Linux kernel executing on native hardware is not subject to scheduling events
enforced by external entities. Thus, the time stamps picked up by the Linux-RNG interrupt noise source
executing on native hardware should have less variations.

Both described effects oppose each other, i.e. the one effect is expected to increase the entropy on native
hardware whereas the other is expected to decrease the entropy. To obtain a better understanding of the
magnitude of the effects, the early boot interrupt event time stamps are obtained for a Linux-RNG
executing on native hardware.

Time Stamp Lowest SP800- | Lowest SP800- Min-entropy Shannon
Position / Time |90B min-entropy | 90B min-entropy| (AIS20/31)of | Entropy of Time
delta estimate of 4 Bits | estimate of 6 Bits Time Delta Delta
Width Time Width Time
Stamp Stamp

1 3.41339 490751 9.602 11.606
2 3.41339 490751 9.123 11.477
3 3.30499 4.87345 8.149 11.301
4 3.02348 462011 7.764 11.303
5 3.07751 470516 10.284 11.718
6 3.30336 4.63564 10.947 12.68

7 3.10566 44815 10.488 12.368
8 3.10637 470516 10.14 12.234
9 3.27911 4.24598 13.947 15.519
10 3.19506 4.4917 12.725 15.417

Federal Office for Information Security

185

Appendix C: Test Results on Linux Kernel 4.15
Documented Linux Kernel Version: 5.5

Fully tested Linux Kernel Version: 5.0

Time Stamp Lowest SP800- | Lowest SP800- Min-entropy Shannon
Position / Time |90B min-entropy | 90B min-entropy (AIS 20/31) of | Entropy of Time
delta estimate of 4 Bits | estimate of 6 Bits Time Delta Delta
Width Time Width Time
Stamp Stamp

11 3.2608 4.78237 10.175 12.839
12 3.07095 4.63929 10.832 13.438
13 3.06697 4.55047 10.947 14.28

14 3.08464 4.62135 11.947 15.372
15 3.17343 4.72057 9.832 12.375
16 2.97548 4.60863 10.175 12.75

17 3.03407 4.55272 9.284 11.979
18 3.00643 4.57684 9.466 12.249
19 3.04527 4.56994 9.193 11.956
20 3.05688 4.55582 10.284 12.649
21 3.02857 4.57091 9.123 11.887
22 3.03849 4.53796 11.532 14.607
23 3.03825 4.56751 9.445 11.989
24 3.04682 4.51154 9.65 12.524
25 3.02328 4.5501 8.963 11.881
26 3.05099 4.58221 9.778 12.62

27 3.05461 4.56925 9.123 12.134
28 3.00125 4.54954 10.832 13.424
29 3.06636 4.55773 9.21 12.681
30 3.03495 4.6335 9.466 12.754
31 3.00643 4.60766 9.057 12.361
32 3.06936 4.63401 9.832 12.656
33 3.04465 4.59841 9.025 12.496
34 3.05714 4.60311 11.009 13.385

186

Federal Office for Information Security

Fully tested Linux Kernel Version: 5.0

Appendix C: Test Results on Linux Kernel 4.15
Documented Linux Kernel Version: 5.5

Time Stamp Lowest SP800- | Lowest SP800- Min-entropy Shannon
Position / Time |90B min-entropy | 90B min-entropy (AIS 20/31) of | Entropy of Time
delta estimate of 4 Bits | estimate of 6 Bits Time Delta Delta
Width Time Width Time
Stamp Stamp

35 3.06914 4.58282 9.403 12.407
36 3.05045 4.62894 9.304 12.28

37 3.04226 4.57772 8.86 11.86

38 2.73311 4.6436 9.602 12.348
39 3.0648 4.60765 8.662 12.248
40 3.03242 4.62036 11.947 14.33

41 3.0472 4.53828 10.778 13.622
42 3.05762 4.59815 12.21 14.618
43 3.06069 4.62506 11.14 13.657
44 3.04279 4.57562 11.284 13.831
45 3.05228 4.59675 11.073 13.281
46 3.03053 4.58534 12.21 14.423
47 3.03832 4.57619 10.947 13.38

48 3.03514 4.58071 11.14 13.444
49 3.0448 4.53612 11.362 14.143
50 3.00643 4.61314 11.14 13.543
51 3.02176 4.42257 11.073 13.171
52 3.04345 4.58944 11.21 13.162
53 3.03132 4.57507 10.947 13.053
54 3.05317 4.597 11.362 13.525
55 3.04889 4.54551 11.445 14.111
56 3.04587 4.55816 11.21 13.44

57 3.0331 4.5562 10.578 12.949
58 3.05636 4.47577 11.445 14.227

Federal Office for Information Security

187

Appendix C: Test Results on Linux Kernel 4.15
Documented Linux Kernel Version: 5.5

Fully tested Linux Kernel Version: 5.0

Time Stamp Lowest SP800- | Lowest SP800- Min-entropy Shannon
Position / Time |90B min-entropy | 90B min-entropy (AIS 20/31) of | Entropy of Time
delta estimate of 4 Bits | estimate of 6 Bits Time Delta Delta
Width Time Width Time
Stamp Stamp

59 3.03495 4.6093 11.073 13.56

60 3.05396 4.57878 11.21 13.409
61 3.07104 4.58559 11.009 13.418
62 3.0763 452918 10.947 13.375
63 3.04657 4.61301 11.445 13.872
64 3.09028 4.56918 11.832 14.275
65 3.07395 4.55906 11.284 13.732
66 3.04513 4.54165 11.362 13.791
67 3.07426 4.50302 11.947 14.674
68 3.05183 4.61546 11.832 14.072
69 3.06076 4.65317 11.725 13.953
70 3.07784 463118 11.626 14.058
71 3.07827 4.62089 11.362 13.919
72 3.0707 4.55758 11.532 14.173
73 3.07065 44188 11.725 14.477
74 3.07626 4.59021 10.626 13.526
75 3.0664 4.60811 10.674 13.531
76 3.08913 4.56159 10.832 13.897
77 3.07012 4.60421 11.362 13.918
78 2.74261 4.62105 11.445 14.195
79 3.09774 4.60541 11.832 14.68

80 3.00643 4.62689 11.073 13.594
81 3.06833 4.60641 10.362 13.236
82 3.05705 4.58138 10.21 13.354

188

Federal Office for Information Security

Fully tested Linux Kernel Version: 5.0

Appendix C: Test Results on Linux Kernel 4.15
Documented Linux Kernel Version: 5.5

Time Stamp Lowest SP800- | Lowest SP800- Min-entropy Shannon
Position / Time |90B min-entropy | 90B min-entropy (AIS 20/31) of | Entropy of Time
delta estimate of 4 Bits | estimate of 6 Bits Time Delta Delta
Width Time Width Time
Stamp Stamp

83 3.06582 4.58658 10.323 13.262

84 3.04987 44188 8.918 13.486

85 3.05821 4.49466 11.445 14.447

86 3.08443 4.56275 9.889 13.243

87 3.09235 4.61514 10.175 13.234

88 3.08204 4.29492 10.073 14.03

89 3.08035 4.58805 10.247 13.344

90 3.08538 4.60573 10.009 13.009

91 3.05802 462182 10.14 13.179

92 3.08441 4.6343 10.247 12.971

93 3.07596 4.63328 9.889 13.138

94 3.0574 4.6496 10.106 12.947

95 3.03691 44188 9.832 131

96 3.03466 4.57671 10.073 12.986

97 3.08159 4.62901 9.725 13.127

98 3.00643 44188 10.247 12.994

99 3.07623 462187 9.751 13.023

100 3.07669 451291 10.14 12.954

101 3.07097 4.48928 9.7 13.025

102 3.08403 4.56284 9.947 12.896

103 3.09169 4.64467 9.578 12.991

104 3.07497 4.6841 9.889 12.856

105 3.08712 4.59934 9.555 12.984

106 3.03786 4.58154 9.751 12.829

Federal Office for Information Security

189

Appendix C: Test Results on Linux Kernel 4.15
Documented Linux Kernel Version: 5.5

Fully tested Linux Kernel Version: 5.0

Time Stamp Lowest SP800- | Lowest SP800- Min-entropy Shannon
Position / Time |90B min-entropy | 90B min-entropy (AIS 20/31) of | Entropy of Time
delta estimate of 4 Bits | estimate of 6 Bits Time Delta Delta
Width Time Width Time
Stamp Stamp

107 3.08371 4.60841 9.555 13.074

108 3.10183 4.58294 9.86 12.907

109 3.06409 4.65171 9.725 13.146

110 3.09016 4.63152 9.947 12.89

111 3.08407 4.57259 9.343 13.026

112 3.07659 4.5871 9.778 12.763

113 3.05481 4.62262 9.424 12.981

114 2.74261 4.63858 9.21 12.706

115 3.07035 4.60136 9.403 12.903

116 3.08583 4.69585 9.304 12.682

117 3.07398 4.42257 9.383 12.763

118 3.05292 4.63643 9.323 12.614

119 3.07114 4.62449 9.21 12.669

120 3.04157 4.59885 9.229 12.642

121 3.07661 3.67807 8.041 12.857

122 3.08088 4.63655 9.751 13.272

123 3.07156 4.59839 8.466 12.77

124 3.07705 4.57344 9.445 12.873

125 3.08322 4.60368 9.123 13.762

126 3.08688 460518 9.532 12.762

127 2.74261 4.65792 9.009 12.427

128 3.10012 4.63142

Table 19: Interrupts: Early Boot SP800-90B Min-Entropy Measurements on Native Hardware

The interpretation of the table is identical to the table presented for the virtual environment boot time
measurements.

190

Federal Office for Information Security

Appendix C: Test Results on Linux Kernel 4.15
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

The different statistical entropy values calculated from the measurements of the first interrupt event time
stamps obtained by the Linux-RNG after boot on native hardware do not deviate significantly from the
same values obtained on a virtual environment. Thus, the mentioned contrary effects are concluded to
cancel each other out or are insignificant to the overall entropy present in the Linux kernel boot process.

A graphical representation of the values presented in the table is given in figure 24. It shows the histogram
of the delta between the first and the second interrupt event time stamp of each boot cycle recorded by the
Linux-RNG where the X-axis represents the number of ticks between the occurrence of both interrupts. As
discussed for the virtual environment, the 90% quartile is depicted.

Histogram

Se-04

4e-04

Je-04

Relative Frequency
2e-04

1e-04

0e+00
|

| T T]
2865000 2870000 2875000 2880000

Time Deltas

Figure 24: Histogram of Time Deltas for First and Second Interrupt in a Native Environment
The pattern of the histogram is very similar to virtual environments shown in figure 23.

With the obtained results, the same conclusions for the measurements in virtual environments given in
section Fehler: Verweis nicht gefunden can be drawn. The listing of the 4 bit width SP800-90B min-entropy
contains 9 entropy values that are below one bit. As the corresponding 6 bit width min-entropy values are
similar to all other values, the ones below 1 bit are considered statistical artefacts. Disregarding the
correlation problem, and considering that the Linux-RNG awards the time stamps from 64 interrupts only
one bit of entropy, the Linux-RNG is considered to massively underestimate the entropy present in the
interrupt time stamps during early boot.

Conclusions of Early Boot Entropy Measurements

The measurements of the entropy contained in the interrupt event time stamps recorded by the Linux-RNG
for the first 128 interrupts show that it amounts to significant values. The entropy per time stamp
considerably exceeds one bit.

When interpreting the entropy measurements with a safety margin to assume worst case scenarios by
cutting the measured values in half, the entropy values are still more than one bit of entropy per time

Federal Office for Information Security 191

Appendix C: Test Results on Linux Kernel 4.15
Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0

stamp. For the following discussion, one bit of entropy per time stamp is assumed. Thus, the measurements
show that collecting 128 interrupt event time stamps while booting is sufficient to cover the initial seeding
requirements set forth by the German BSI with [TR021021] as well as [SP800-131A] specified by the US NIST.

Applying the general Linux-RNG entropy heuristics, the Linux-RNG significantly underestimates the
available entropy. This finding is supported by the fact that the correlation problem between interrupts on
one side and HID / block device noise sources on the other side as discussed above is not in full effect during
early boot. The underestimation of the entropy is alleviated to some extent by injecting the first four sets of
received 64 interrupts into the ChaCha20 DRNG and marking this DRNG as initially seeded. Based on the
aforementioned measurements and applying the discussed safety margin where each time stamp is
considered to contain one bit of entropy, 256 bits of entropy are injected into the ChaCha20 DRNG state.
When reaching the state of being fully seeded and thus having the ChaCha20 DRNG seeded with 256 bits of
entropy from at least 256 interrupts and 128 bits of heuristically measured entropy from the noise sources,
the getrandom system call unblocks and generates random numbers. This allows the conclusion that
when the get random system call unblocks, sufficient entropy has been accumulated to be available for use
cases with strong cryptographic requirements.

The measurements of the available entropy during boot for virtual environments and native hardware
hardly differ. Thus, the conclusion is equally applicable to both environments.

[t is important to note that this conclusion is only applicable to environments with a high-resolution time
stamp. Hardware architectures with a low-resolution time stamp will not have significant amounts of
entropy after boot.

Even the get random system call is considered to always provide data from a sufficiently seeded DRNG.
This finding is not applicable to /dev/urandom or even the get random bytes in-kernel API, as
explained by the following observations:

* On the test system executed within a virtual environment, the kernel boot process completes after
around one second after boot. At that time, the user space from the initramfs is started. The first 128
interrupts are received at around this time when user space starts. Interrupts are collected in per-CPU
fast_pools and injected into the ChaCha20 DRNG only once one of the fast_pool received 64 interrupts.
Considering the presence of multiple CPUs where interrupts may be received by the different CPUs and
thus mixed into the respective CPU’s fast_pool the following pathological case must be considered.
Common systems have multiple CPUs, often 4 CPUs while in virtual environments there is no need for a
correspondence of a virtual CPU to a physical or hyperthreaded CPU to allow for an over-commitment
of CPUs. Assuming the presence of 4 CPUs, in a pathological case where each of the CPU processes
interrupts with an equal chance®, 256 interrupts are required before even one fast_pool is injected into
the ChaCha20 DRNG. Thus, at the time user space starts and data is obtained from /dev/urandom, the
ChaCha20 DRNG in a worst case may not be seeded with any data. Naturally, with more CPUs on the
system, the pathological case is more severe.

* Executing the Linux-RNG on native hardware shows that the kernel boot process is finished some two
seconds after boot. By that time it is likely but not guaranteed that 256 interrupts are received. Thus, the
outlined pathological case for /dev/urandom is still relevant for native hardware, though with a lesser
probability.

AIS 20/31 Test Procedure A for Entropy Pools

Using the test code input_pool/, the input_pool as well as the blocking_pool are observed. The SystemTap
test code takes a snapshot of the entropy pool after an amount of bytes has been mixed in that equals its size
in words. That means that a snapshot is taken of the input_pool after 128 bytes have been mixed in.

26 It is quite likely that such pathological case is present. When reviewing /proc/interrupts, for a number of
interrupt types a more or less even distribution of interrupts to CPUs can be seen.

192 Federal Office for Information Security

Appendix C: Test Results on Linux Kernel 4.15
Fully tested Linux Kernel Version: 5.0 Documented Linux Kernel Version: 5.5

Similarly, a snapshot of the blocking_pool has been taken after 32 bytes have been mixed into the
blocking_pool. After the mix-in of the stated amount of bytes, all words in the entropy pool have been
changed by the LFSR operation.

With the obtained data, a binary string can be obtained that shows whether the LFSR implementing the
state transition function of the entropy pools guarantees white noise in the entropy pool.

input_pool
After generating 1,000,000 snapshots with the test code and concatenating all data, a binary string is present
that can be analyzed as follows:

* The Chi-Squared value using the ent tool shows a value 0.03 (bit-wise) and 258.02 (byte-wise) which
indicates white noise.

e The test procedure A is passed by the bit string.

The test results for the input_pool confirm the test results obtained during the analysis presented in section
7.2.

blocking_pool
Similarly to the input_pool, the blocking_pool is analyzed after taking 100,000 snapshots. Again, the data can
be characterized:

* The Chi-Squared value provided with the ent tool shows the value of 0.06 (bit-wise) and 272.56 (byte-
wise) which indicates white noise.

* The test procedure A is also passed by the bit string.

This implies that the test results confirm the results obtained from the analysis provided in section 7.2.

Federal Office for Information Security 193

Reference Documentation

Documented Linux Kernel Version: 5.5

Fully tested Linux Kernel Version: 5.0

Reference Documentation

TR021021 BSI: BSI - Technical Guideline Cryptographic Mechanisms: Recommendations and Key
Lengths

AIS2031 Wolfgang Killmann, Werner Schindler: A proposal for: Functionality classes for random
number generators

RFC7539 Y. Nir, A. Langley: RFC 7539: ChaCha20 and Poly1305 for IETF Protocols

INTELDRNG Intel: Intel Digital Random Number Generator (DRNG) Software Implementation Guide

SP800-90B Meltem S6nmez Turan, Elaine Barker, John Kelsey, Kerry McKay: NIST Special
Publication 800-90B Recommendation for the Entropy Sources Used For Random Bit
Generation

SP800-90C Elaine Barker, John Kelsey: NIST Special Publication 800-90C Recommendations for
Random Bit Generator (RBG) Constructions

TO6 Theodore Ts'o: Re: /dev/random on Linux http://lkml.org/lkml/2006/5/16/300

GPRO6 Zvi Gutterman, Benny Pinkas, Tzachy Reinmann: Analysis of the Linux Random Number
Generator http://eprint.iacr.org/2006/086

FIPS180-4 NIST: FIPS PUB 180-4 Secure Hash Standard (SHS)

CHACHA20 Daniel J. Bernstein: ChaCha, a variant of Salsa20

SP800-38A NIST: Special Publication 800-38A Recommendation for Block Cipher Modes of
Operation

SP800-90A Elaine Barker, John Kelsey: NIST Special Publication 800-90A Recommendation for
Random Number Generation Using Deterministic Random Bit Generators

LRSV12 Patric Lacharme, Andrea Rock, Vincent Strubel, Marion Videau: The Linux
Pseudorandom Number Generator Revisited http://eprint.iacr.org/2012/251

P12 Benjamin Pousse: Short communication: An interpretation of the Linux entropy
estimator http://eprint.iacr.org/2012/487

LRNGVIRT Stephan Miiller: Analysis of Random Number Generation in Virtual Environments

SP800-131A Elaine Barker, Allen Roginsky: NIST Special Publication 800-131A Revision 1 Transitions:
Recommendation for Transitioning the Use of Cryptographic Algorithms and Key
Lengths

Fv17 David Fontaine, Olivier Vivolo: Proposal of primitive polynomials for Linux kernel
PRNG https://eprint.iacr.org/2017/726.pdf

194 Federal Office for Information Security

Fully tested Linux Kernel Version: 5.0

Keywords and Abbreviations
Documented Linux Kernel Version: 5.5

Keywords and Abbreviations

Abbreviations .197
add_random_ready_callback 43
blocking_pool 20, 22f.
L@ P14 o - 11 0O 20
ChaCRa20 DRNG....eeereesseses s sssssssssssssssssssessasessssssssassasssssassans 21,22
CPU RNGuooieesese et ssasssssssssssssssssssssssessssssssssssssssesassssssssasssssasassssssssesssssasassssssssesasssesessessssesassssssssesssssesssssssssasssaesssssssssesassssans
ATCH_GEL TANAOIM_INE.......oooeeeeeeeeeeeeeeeee e esseseesessssss s sssss s ssssssessssssssss s ssssss s e st ass s ssses s s ssss s sessms s s ssmsssenssssaenssens 67
ArCH_GEt_ TANAOIMNI_LOMIEG ... ittt sese s sssess s s ssssss s sssssess s s s e s b s s b bR s ssSR s e s bbbttt es 67
arch_get_seed_int .67
ATCH_GET_SEEA_LOMIG......oooeeeeereerretees sttt sesessssss s ss s s s RS ssRs RS SsRb AR sssnsbR s e 67
AM-CIYPL fULl AISK ENCTYPIION. ..ottt sveee st ssse s sse s ssss s ss s ssss s s s s sas st sa s ssss s s s sas s sansen 72
entropy estimator 29
EXETACT_BIIITODY ..ervereereerriereeeeesriesetssssssssssss st ssssssssssssssesssessssssssssesssssssssssssssssssssesasessesssesssessesssessssssssssessssssssssssssessssssesssesssssssssesssssssenssssssns 30
O X LT AT CIIITODY_USCT ...euieriueeneteiuseeneeeeesseesseusetssesasebse s bt ssesase st bbb et s s e bbbttt bbb et ase bbb ben 30
GO TANIAOIN_DYLES ..ottt sss s ssss s b s ss s bas s as SRR s R a s R s sn sttt e 43
GOE_TANIAOIM_UB2......ooooeeeeieeeeneeeeeeesssssssseesesssesssssssssssssssssssssssssssssssss s s s RS Ssss SRR SR RS SRR AR SRR SR e b0 43
GEE_TANIAOIN_UBA...oo..ooeeeeeveeseeveese et sseseessssesessssasesssssss s ssase s sass s ssse e s s b e bs SRR RA AR Re s bA Rt bbb et 43
GOETATIAOMNL. ..ooueevvvverneneseseessess s sessse s s ssss s s ssss s b ess b e s SA RS A RS RS R AR AR AR RS R R AR RS 42
IKE daemon 73
input_pool 20, 22f
LO T Lo e e s s e sseeessesesee e sesesese e s eease e s e s s s e e e e eesee e ee e e e e e e e e senesseseessenees s eseessssenssssesessessssessssesesessnne
RINDADDENTROPY ...t ssessessnsessssssssssessssssssssssssnsasssnssssssssssssssassassssssssssns 42
RNDADDTOENTCNT .42
RNDCLEARPOOI 42
RINDGETENTOC NTooeeeeeeteeetseeeesssesessasssssassssasssssssssssssssassssssssasssssassssssas 42
RNDZAPENTCNT 42
LESRu et sssossssssssasssssssssanssssssssansssssssssasesssasesssassssasessasssessans 25
VI ettt e et et st s e s s e s st s et aee e s e s st e s et e e s st s e e s et e e e e et e e eset e eseta s e e eetaseeseemeeassetasaeaetasteseeseeassesastsaseasesanaata 74
mix_pool_bytes 26
noise source 17
non-deterministic raNdOM NUMDET GENETALOTccomrrvreinrressesesssssssssssssssssssssssssssssssssssssssessssssssssssssssssssssssssssssssssssanss 17
RINDRESEEDING......o et ssense s sssssssssessssssssssssssssassssssssssasssssassssssssssasssnsassssssssssasssssesssmssssssasssssesssssssssasssnsesssmsssssessssssssanss 42
SMM 74
SSH NOSE REYS...ooumviierriiieseiiiessssisssssssessssssessessssssssssssssssssssssssssssssssssessssss s ssss s s s s S ss s ERR s RS R SRR SRR bR b st 72
SSH server daemon 73
Time stamp
CINTVCT _ELD.ooeeeeeseereseeeesesessassssssssssssssssasssassssssssassansen 58
COPTOCESSOT PL5....ooooeteeetesetee sttt saes sttt e e b b a e e a b a b e bbb e e a bbb et e e e st enen 58
IMETB.oo st ssssssssssssss s s s ssss s st s AR R R SRR SRR SRR SRR SRR SRR RS R AR R Rt n et 58
RDTSCoo ettt sass s sss s et sas s ass s e ess s bm S e b A S e SasS b s b st b em st b s as s bme st bees 58
STCK ettt sssssssssss s sssssssss s s ss s s AR SRR SRR SRS SRR SRR SRS AR SRR SR SRR SRR bR R Attt rnen 58
VATEIOTTTIS covevvrvvesrseeessesessessessessessssssssssesssssessssssssssesssssassssesssssesssssassssssssssasssssassssesssssassssssssssesssssassssssssssesssssassssssssssssssassssssssssasssssasssssessssessnssnnss 70
WAL fOT_TANAOIN_DYLES ...ttt see s ssa s ssse s st s sas s b as s s s s b s s sas s s s s sase s s san 44
_mix_pool_bytes 26
JACV/IIWITIG. ...oooeeeeeteeeeeeeeveeeeeseessessesseessss s ssssss s sssssss s st sas s s s sas s AR e SRR SRR SRR 8RR 2SR SRR R 68
Abbreviation Description
AES Advanced Encryption Standard (FIPS 197)
Federal Office for Information Security 195

Keywords and Abbreviations

Documented Linux Kernel Version: 5.5 Fully tested Linux Kernel Version: 5.0
Abbreviation Description

API Application Programming Interface

BSI Bundesamt fur Sicherheit in der Informationstechnik (Federal Office for
Information Security)

CTR Counter block chaining mode as defined in SP800-38A

DRNG Deterministic Random Number Generator

FIFO First-In First-Out

FIPS Federal Information Processing Standard

GCC GNU Compiler Collection — When referenced in this document, the C compiler
component is referred to

HID Human Interface Devices

HSM Hardware Security Module

11D Independent and identically distributed

IOCTL Input / Output Control (Linux kernel system call)

LFSR Linear Feedback Shift Register

LSR Longest Repeated Substring (as defined in SP800-90B)

LSB Least Significant Bit(s)

MSB Most Significant Bit(s)

NUMA Non-Uniform Memory Access

RNG Random Number Generator

UuID Universally Unique Identifier

196 Federal Office for Information Security

	Document history
	Table of Contents
	1 Introduction
	1.1 Authors
	1.2 Copyright
	1.3 BSI-Reference

	2 Architecture of Non-Deterministic Random Number Generators (NDRNGs)
	2.1 Terminology
	2.2 General Architecture

	3 Design of the Linux-RNG
	3.1 Historical Background
	3.2 Linux-RNG Architecture
	3.2.1 Linux-RNG Internal Design

	3.3 Deterministic Random Number Generators (DRNGs)
	3.3.1 Entropy Pools
	3.3.1.1 Entropy Pools State Transition Function
	3.3.1.2 Entropy Estimator
	3.3.1.3 Entropy Pool Output Function
	3.3.1.4 Initialization

	3.3.2 ChaCha20 DRNG
	3.3.2.1 ChaCha20 DRNG State Transition Function and Output Function
	3.3.2.2 ChaCha20 on Non-Uniform Memory Access (NUMA) Systems
	3.3.2.3 ChaCha20: Initially or Fully Seeded

	3.4 Interfaces to Linux-RNG
	3.4.1 Character Device Files
	3.4.1.1 random_poll
	3.4.1.2 Read and Write Operation
	3.4.1.3 Input/Output Controls (IOCTLs) Usable With /dev/random

	3.4.2 System Call
	3.4.3 In-Kernel Interfaces
	3.4.4 /proc Files

	3.5 Entropy Sources
	3.5.1 Timer State Maintenance for Entropy Sources
	3.5.2 Entropy Collection
	3.5.2.1 add_input_randomness
	3.5.2.2 add_interrupt_randomness
	3.5.2.3 add_disk_randomness
	3.5.2.4 add_device_randomness
	3.5.2.5 add_hwgenerator_randomness
	3.5.2.6 Latent Entropy GCC Plugin
	3.5.2.7 Mixing Entropy Source Data Into Entropy Pool

	3.6 Entropy Estimation
	3.6.1 Storing of “Superfluous” Entropy

	3.7 Generic Architecture and Linux-RNG
	3.8 Use of the Linux-RNG
	3.9 Hardware-based Random Number Generators
	3.9.1 CPU Hardware Random Number Generators
	3.9.1.1 Intel RDRAND and RDSEED Instructions

	3.9.2 Hardware Random Number Generator Framework
	3.9.2.1 IBM POWER Random Number Generator

	3.10 Support Functions for Other Kernel Parts
	3.11 Time Line of Entropy Requirements
	3.11.1 Installation Time
	3.11.2 First Reboot After Installation
	3.11.3 Regular Usage

	3.12 Security Domain Protecting the Linux-RNG

	4 Conducted Analyses of the Linux-RNG
	4.1 Attacks of Gutterman et al. And its Relevance
	4.1.1 Denial of Service Attacks
	4.1.2 Use of Diskless Systems
	4.1.3 Enhanced Backward Secrecy

	4.2 Lacharme’s Analysis
	4.2.1 Linux-RNG Without Input to the Entropy Pools
	4.2.2 Attacks on the Input
	4.2.3 Assessment of the Entropy Estimation

	4.3 Conclusions from [LRSV12] and [GPR06]

	5 Coverage of BSI Requirements NTG.1 and DRG.3
	5.1 /dev/random: NTG.1
	5.1.1 NTG.1.1
	5.1.2 NTG.1.2
	5.1.3 NTG.1.3
	5.1.4 NTG.1.4
	5.1.5 NTG.1.5
	5.1.6 NTG.1.6
	5.1.7 NTG.1 Properties on Different Environments

	5.2 ChaCha20 DRNG: DRG.3
	5.2.1 DRG.3.1
	5.2.2 DRG.3.2
	5.2.3 DRG.3.3
	5.2.4 DRG.3.4
	5.2.5 DRG.3.5

	6 Test Series: Raw Entropy
	6.1 Analyzed Noise Source Data
	6.1.1 Interrupt Noise Source
	6.1.2 Block Device Noise Source
	6.1.3 HID Noise Source

	6.2 Min-Entropy as per SP800-90B
	6.2.1 Interrupt Noise Source Min-Entropy Estimates
	6.2.2 Block Device Noise Source Min-Entropy Estimates
	6.2.3 HID Noise Source Min-Entropy Estimates
	6.2.4 Conclusion of SP800-90B Measurements

	6.3 Entropy During Early Boot
	6.3.1 Early Boot Entropy Testing in a Virtual Environment
	6.3.2 Early Boot Entropy Testing on Native Hardware
	6.3.3 Conclusions of Early Boot Entropy Measurements

	7 Test Series: State Transition Function of DRNG
	7.1 Properties of the LFSR Polynomials
	7.2 Standalone Operation of State Transition Functions
	7.2.1 LFSR State Transition Function
	7.2.1.1 input_pool
	7.2.1.2 blocking_pool

	7.2.2 ChaCha20 State Transition

	7.3 AIS 20/31 Test Procedure A for Entropy Pools
	7.3.1 input_pool
	7.3.2 blocking_pool

	8 Test Series: DRNG Output Functions
	8.1 Output of blocking_pool
	8.2 Output of ChaCha20 DRNG
	8.3 Conclusion of the Output Function Testing

	9 New Developments in Linux-RNG
	9.1 Linux Kernel 4.10
	9.1.1 Changes to the Linux-RNG Implementation
	9.1.1.1 File drivers/char/random.c
	9.1.1.2 File include/linux/random.h
	9.1.1.3 File include/uapi/linux/random.h
	9.1.1.4 File arch/x86/include/asm/archrandom.h

	9.1.2 Changes to Invocation of Entropy Gathering Functions
	9.1.2.1 add_input_randomness
	9.1.2.2 add_interrupt_randomness
	9.1.2.3 add_disk_randomness
	9.1.2.4 add_hwgenerator_randomness

	9.1.3 Definition and Use of new Interfaces

	9.2 Linux Kernel 4.11
	9.2.1 Changes to the Linux-RNG Implementation
	9.2.1.1 File drivers/char/random.c
	9.2.1.2 File include/linux/random.h
	9.2.1.3 File include/uapi/linux/random.h
	9.2.1.4 File arch/x86/include/asm/archrandom.h

	9.2.2 Changes to Invocation of Entropy Gathering Functions
	9.2.2.1 add_input_randomness
	9.2.2.2 add_interrupt_randomness
	9.2.2.3 add_disk_randomness
	9.2.2.4 add_hwgenerator_randomness

	9.2.3 Definition and Use of new Interfaces

	9.3 Linux Kernel 4.12
	9.3.1 Changes to the Linux-RNG Implementation
	9.3.1.1 File drivers/char/random.c
	9.3.1.2 File include/linux/random.h
	9.3.1.3 File include/uapi/linux/random.h
	9.3.1.4 File arch/x86/include/asm/archrandom.h

	9.3.2 Changes to Invocation of Entropy Gathering Functions
	9.3.2.1 add_input_randomness
	9.3.2.2 add_interrupt_randomness
	9.3.2.3 add_disk_randomness
	9.3.2.4 add_hwgenerator_randomness

	9.3.3 Definition and Use of new Interfaces

	9.4 Linux Kernel 4.13
	9.4.1 Changes to the Linux-RNG Implementation
	9.4.1.1 File drivers/char/random.c
	9.4.1.2 File include/linux/random.h
	9.4.1.3 File include/uapi/linux/random.h
	9.4.1.4 File arch/x86/include/asm/archrandom.h

	9.4.2 Changes to Invocation of Entropy Gathering Functions
	9.4.2.1 add_input_randomness
	9.4.2.2 add_interrupt_randomness
	9.4.2.3 add_disk_randomness
	9.4.2.4 add_hwgenerator_randomness

	9.4.3 Definition and Use of new Interfaces

	9.5 Linux Kernel 4.14
	9.5.1 Changes to the Linux-RNG Implementation
	9.5.1.1 File drivers/char/random.c
	9.5.1.2 File include/linux/random.h
	9.5.1.3 File include/uapi/linux/random.h
	9.5.1.4 File arch/x86/include/asm/archrandom.h

	9.5.2 Changes to Invocation of Entropy Gathering Functions
	9.5.2.1 add_input_randomness
	9.5.2.2 add_interrupt_randomness
	9.5.2.3 add_disk_randomness
	9.5.2.4 add_hwgenerator_randomness

	9.5.3 Definition and Use of new Interfaces

	9.6 Linux Kernel 4.15
	9.6.1 Changes to the Linux-RNG Implementation
	9.6.1.1 File drivers/char/random.c
	9.6.1.2 File include/linux/random.h
	9.6.1.3 File include/uapi/linux/random.h
	9.6.1.4 File arch/x86/include/asm/archrandom.h

	9.6.2 Changes to Invocation of Entropy Gathering Functions
	9.6.2.1 add_input_randomness
	9.6.2.2 add_interrupt_randomness
	9.6.2.3 add_disk_randomness
	9.6.2.4 add_hwgenerator_randomness

	9.6.3 Definition and Use of new Interfaces

	9.7 Linux Kernel 4.16
	9.7.1 Changes to the Linux-RNG Implementation
	9.7.1.1 File drivers/char/random.c
	9.7.1.2 File include/linux/random.h
	9.7.1.3 File include/uapi/linux/random.h
	9.7.1.4 File arch/x86/include/asm/archrandom.h

	9.7.2 Changes to Invocation of Entropy Gathering Functions
	9.7.2.1 add_input_randomness
	9.7.2.2 add_interrupt_randomness
	9.7.2.3 add_disk_randomness
	9.7.2.4 add_hwgenerator_randomness

	9.7.3 Definition and Use of new Interfaces

	9.8 Linux Kernel 4.17
	9.8.1 Changes to the Linux-RNG Implementation
	9.8.1.1 File drivers/char/random.c
	9.8.1.2 File include/linux/random.h
	9.8.1.3 File include/uapi/linux/random.h
	9.8.1.4 File arch/x86/include/asm/archrandom.h

	9.8.2 Changes to Invocation of Entropy Gathering Functions
	9.8.2.1 add_input_randomness
	9.8.2.2 add_interrupt_randomness
	9.8.2.3 add_disk_randomness
	9.8.2.4 add_hwgenerator_randomness

	9.8.3 Definition and Use of new Interfaces

	9.9 Linux Kernel 4.18
	9.9.1 Changes to the Linux-RNG Implementation
	9.9.1.1 File drivers/char/random.c
	9.9.1.2 File include/linux/random.h
	9.9.1.3 File include/uapi/linux/random.h
	9.9.1.4 File arch/x86/include/asm/archrandom.h

	9.9.2 Changes to Invocation of Entropy Gathering Functions
	9.9.2.1 add_input_randomness
	9.9.2.2 add_interrupt_randomness
	9.9.2.3 add_disk_randomness
	9.9.2.4 add_hwgenerator_randomness

	9.9.3 Definition and Use of new Interfaces

	9.10 Linux Kernel 4.19
	9.10.1 Changes to the Linux-RNG Implementation
	9.10.1.1 File drivers/char/random.c
	9.10.1.2 File include/linux/random.h
	9.10.1.3 File include/uapi/linux/random.h
	9.10.1.4 File arch/x86/include/asm/archrandom.h

	9.10.2 Changes to Invocation of Entropy Gathering Functions
	9.10.2.1 add_input_randomness
	9.10.2.2 add_interrupt_randomness
	9.10.2.3 add_disk_randomness
	9.10.2.4 add_hwgenerator_randomness

	9.10.3 Definition and Use of new Interfaces

	9.11 Linux Kernel 4.20
	9.11.1 Changes to the Linux-RNG Implementation
	9.11.1.1 File drivers/char/random.c
	9.11.1.2 File include/linux/random.h
	9.11.1.3 File include/uapi/linux/random.h
	9.11.1.4 File arch/x86/include/asm/archrandom.h

	9.11.2 Changes to Invocation of Entropy Gathering Functions
	9.11.2.1 add_input_randomness
	9.11.2.2 add_interrupt_randomness
	9.11.2.3 add_disk_randomness
	9.11.2.4 add_hwgenerator_randomness

	9.11.3 Definition and Use of new Interfaces

	9.12 Linux Kernel 5.0
	9.12.1 Changes to the Linux-RNG Implementation
	9.12.1.1 File drivers/char/random.c
	9.12.1.2 File include/linux/random.h
	9.12.1.3 File include/uapi/linux/random.h
	9.12.1.4 File arch/x86/include/asm/archrandom.h

	9.12.2 Changes to Invocation of Entropy Gathering Functions
	9.12.2.1 add_input_randomness
	9.12.2.2 add_interrupt_randomness
	9.12.2.3 add_disk_randomness
	9.12.2.4 add_hwgenerator_randomness

	9.12.3 Definition and Use of new Interfaces

	9.13 Linux Kernel 5.1
	9.13.1 Changes to the Linux-RNG Implementation
	9.13.1.1 File drivers/char/random.c
	9.13.1.2 File include/linux/random.h
	9.13.1.3 File include/uapi/linux/random.h
	9.13.1.4 File arch/x86/include/asm/archrandom.h

	9.13.2 Changes to Invocation of Entropy Gathering Functions
	9.13.2.1 add_input_randomness
	9.13.2.2 add_interrupt_randomness
	9.13.2.3 add_disk_randomness
	9.13.2.4 add_hwgenerator_randomness

	9.13.3 Definition and Use of new Interfaces

	9.14 Linux Kernel 5.2
	9.14.1 Changes to the Linux-RNG Implementation
	9.14.1.1 File drivers/char/random.c
	9.14.1.2 File include/linux/random.h
	9.14.1.3 File include/uapi/linux/random.h
	9.14.1.4 File arch/x86/include/asm/archrandom.h

	9.14.2 Changes to Invocation of Entropy Gathering Functions
	9.14.2.1 add_input_randomness
	9.14.2.2 add_interrupt_randomness
	9.14.2.3 add_disk_randomness
	9.14.2.4 add_hwgenerator_randomness

	9.14.3 Definition and Use of new Interfaces

	9.15 Linux Kernel 5.3
	9.15.1 Changes to the Linux-RNG Implementation
	9.15.1.1 File drivers/char/random.c
	9.15.1.2 File include/linux/random.h
	9.15.1.3 File include/uapi/linux/random.h
	9.15.1.4 File arch/x86/include/asm/archrandom.h

	9.15.2 Changes to Invocation of Entropy Gathering Functions
	9.15.2.1 add_input_randomness
	9.15.2.2 add_interrupt_randomness
	9.15.2.3 add_disk_randomness
	9.15.2.4 add_hwgenerator_randomness

	9.15.3 Definition and Use of new Interfaces

	9.16 Linux Kernel 5.4
	9.16.1 Changes to the Linux-RNG Implementation
	9.16.1.1 File drivers/char/random.c
	9.16.1.2 File include/linux/random.h
	9.16.1.3 File include/uapi/linux/random.h
	9.16.1.4 File arch/x86/include/asm/archrandom.h

	9.16.2 Changes to Invocation of Entropy Gathering Functions
	9.16.2.1 add_input_randomness
	9.16.2.2 add_interrupt_randomness
	9.16.2.3 add_disk_randomness
	9.16.2.4 add_hwgenerator_randomness

	9.16.3 Definition and Use of new Interfaces

	9.17 Linux Kernel 5.5
	9.17.1 Changes to the Linux-RNG Implementation
	9.17.1.1 File drivers/char/random.c
	9.17.1.2 File include/linux/random.h
	9.17.1.3 File include/uapi/linux/random.h
	9.17.1.4 File arch/x86/include/asm/archrandom.h

	9.17.2 Changes to Invocation of Entropy Gathering Functions
	9.17.2.1 add_input_randomness
	9.17.2.2 add_interrupt_randomness
	9.17.2.3 add_disk_randomness
	9.17.2.4 add_hwgenerator_randomness

	9.17.3 Definition and Use of new Interfaces

	Appendix A: Testing Aspects and Implementation
	Early Boot Test
	SystemTap Test Approach
	Test Execution

	Appendix B: Test Results on Linux Kernel 4.9
	Min-Entropy as per SP800-90B
	Entropy During Early Boot
	AIS 20/31 Test Procedure A for Entropy Pools
	input_pool
	blocking_pool

	Appendix C: Test Results on Linux Kernel 4.15
	Listing of Used Hardware and Software
	Min-Entropy as per SP800-90B
	Entropy During Early Boot
	AIS 20/31 Test Procedure A for Entropy Pools

	Reference Documentation
	Keywords and Abbreviations

