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Abstract—We investigate the security of privacy
enhancing techniques for biometric applications.

The fuzzy vault of Jules and Sudan is a technique that
allows error tolerant authentication, while preserving
the privacy of the reference data. Several publica-
tions have proposed its application to fingerprints
in order to implement privacy-enhanced biometric
authentication. While the heuristic security estimates
given are promising, no rigid security analysis has
been presented so far. We explore if and under what
circumstances a provably secure fuzzy fingerprint
vault can be implemented. Based on bounds on the
loss of entropy for the general fuzzy vault and re-
alistic models for minutiae distributions, we deduce
lower bounds for attacks that attempt to recover the
template. Furthermore, we show how to select opti-
mal parameters and evaluate both, minimum minu-
tiae match rates and minimum number of minutiae
needed to obtain an appropriate security level. Our
results indicate that a provable secure scheme is hard
to achieve with current fingerprint technology.

Keywords-biometric template protection; finger-
print; fuzzy vault

I. Introduction

The storage of biometric reference data (templates)
introduces considerable risks for biometric authentica-
tion systems and raises serious concerns regarding pri-
vacy and data protection. In order to solve this issue,
biometric template protection systems [1] use reference
data which reveal only very limited information on the
biometric trait. One of the most promising approaches
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is the fuzzy vault [2], which applies Reed-Solomon de-
coding to redundantly bind the biometric template to
a randomly selected secret polynomial. This scheme
only stores helper data that allow the recovery of the
polynomial from a query template that is sufficiently
“close” to the enrolled template.

Without any doubt, fingerprint minutiae are the bio-
metric traits most widely deployed for authentication.
On the other hand, the variety and extent of errors
in minutiae measurements, particularly, frequent inser-
tions, omissions and re-ordering of the measured minu-
tiae, pose a considerable challenge to template protection
schemes [3]. The fuzzy vault is able to tolerate such
errors and hence is particularly interesting for minutiae-
based authentication.

Several publications report successful implementation
of the fuzzy vault scheme based on minutiae: The con-
structions of [4], [5] and [6] use minutiae locations, while
[7] uses both location and orientation of the minutiae.
While the error rates reported seem promising, the level
of protection provided for the biometric data and the
secret key remains open: either template security is not
analyzed at all [6], or merely naive brute force attacks
are considered [4], [5], [7]. The subsequent publication of
more efficient attacks demonstrates that these security
assessments have been too optimistic [8], [9].

For the fuzzy vault, theoretical results are known
from which rigid security estimates could be deduced. In
particular, Dodis, et al. [10] proved lower bounds for the
loss of entropy which determines the maximum success
probability of an attack trying to guess the template
or the key from the helper data (see Section III-A for
details). In addition, an attacker’s success probability
depends on the original entropy of the biometric feature
vector - or, equivalently, its redundancy. Therefore, a re-
alistic estimation of the entropy of the biometric feature
vector is a key aspect for a sound security analysis.

In this publication, we explore if and under what
circumstances a provable secure fuzzy fingerprint vault
can be implemented. In particular, we generalize the
bounds of [10] to the case where the minutiae and chaff



points are chosen with a minimum distance to reduce
false matchings. We also give an exact estimate for
the entropy of a feature vector consisting of minutiae
location data. Furthermore, we show, how the param-
eters can be optimized with respect to the resulting
lower security bounds. Finally, we determine minimum
minutiae match rates for a desired security level of 250.

This article is structured as follows: In Section II,
we give a description of the scheme. In Section III, we
conduct a theoretical analysis of its security and error
robustness. Section IV presents methods for parame-
ter optimization with respect to the deduced security
bounds, and Section V provides results using empirical
data. A conclusion is given in Section VI.

II. The fuzzy vault for fingerprints

We give a brief description of the fuzzy vault for
fingerprints. The scheme uses minutiae locations and
essentially matches the constructions of [4], [5] and [6]
with minor modifications:

 According to [11], the minutiae of a single finger
do not provide sufficient entropy to extract a secure
cryptographic key. Therefore, we allow to use minu-
tiae from more than one finger. The minutiae of the
different fingers can be fused on a feature level.

 The polynomial is not evaluated on the biometric
information but on the indices of the minutiae in
the vault. More precisely, P is evaluated on the
encodings E i! of the indices i, where E is an
injective encoding function from 1, . . . , r " Z to Fq.
This modification minimizes the size of the function
values stored as helper data and thus the loss of
entropy (see Section III-A).

In addition, we assume that the query fingerprints is
correctly aligned to the stored minutiae and chaff points.
Furthermore, we do neither apply quantization to the
minutiae location as done in [6] and [7], nor do we rely
on minutiae matching by human experts like in [4] and
[5], but use a tolerance parameter δ for the Euclidean
distance between the matching points.

A. Enrollment

Let k # t # r $ q. For each user, a random polynomial
P of degree less than k over a finite field Fq is selected.
The coefficients of this polynomial represent the secret
key of the scheme. Then, a set T of t minutiae of the
user is determined. This set of minutiae is amended
by random chaff points, resulting in a set of r points,
containing t genuine minutiae and r % t chaff points.
A minimum distance of d is enforced among minutiae
and chaff points to reduce errors during verification.
Furthermore, in order to ensure that minutiae and chaff
points within the helper data are indistinguishable, they
are lexicographically ordered.

For all genuine minutiae mj , where j is its index after
applying the lexicographic order, yj & P  j! is computed.
For each chaff point mj , where j is its index in the
lexicographic order, a random value yj ' P  j! is chosen.
As helper data, the lexicographically ordered list of
minutiae and chaff points, paired with the corresponding
yj values, is stored in the database.

B. Authentication

We only consider an authentication in the verification
scenario, where the identity of the user is known a priori.

In order to verify the identity of a user, the minu-
tiae are measured from a query fingerprint. Then the
matches between these minutiae and the minutiae and
chaff points contained in the helper data are identified.
Precisely, for each minutiae in the query fingerprint, the
closest point in the helper data with Euclidean distance
smaller than a threshold δ is identified. The indices of
the matching minutiae and chaff points in the helper
data, along with the corresponding yi values, are used
to recover the secret polynomial P (see Section II-C). If
the number of genuine minutiae among the matches is
sufficiently high (see Section II-C for a discussion), the
polynomial can be recovered.

C. Recovery of the polynomial

The unlocking of the vault (during authentication)
requires the recovery of the secret polynomial from a set
of points  ji, yji!, some of which (those resulting from
matches with minutiae) lying on the polynomial P , while
others (resulting from matches with chaff points) do not.
For this task, an Reed-Solomon decoder is needed that
on input  j1, yj1!, . . . ,  jx, yjx! ( F
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e0, . . . , ek!1 ( *0, . . . , q % 1+, so that yji & P  ji! holds

for at least k of the  ji, yi! with P  x! &
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i, if
such a polynomial exists. We assume that the Peterson-
Berlekamp-Massey-decoder is used as suggested in [2].
(As pointed out in [4], this decoder degenerates to a
brute-force polynomial interpolation for x & k.) This
technique is successful if  x,k!-2 of the x points handed
over to the decoder are correct. Although there are
Reed-Solomon decoders that can decode with only

.

xk

correct points, they do not offer any advantage for the
fuzzy vault, because

.

xk is quite close to  x, k!-2 for
typical parameters, and they are computationally much
less efficient [2].

III. Security analysis

Throughout this article, let all logarithms be to the
base 2. Furthermore, let P X! denote the probability of
an event X and let Ea#A /f a!0 be the expectation of the
function value of a random variable A. The min-entropy

of a random variable A is given by

H
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and the average min-entropy of A given B is defined as
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For a biometric encryption scheme with feature vector
T and helper data Y , we call H

 

 T " $
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 T !Y " the
loss of entropy.

A. Minimum attack complexity

The following result shows that the security of the
fuzzy vault for fingerprints can be lower bounded by
the average min-entropy of the biometric feature vector
given the helper data. The result is a trivial adaptation of
Theorem 1 and Lemma 2 from [12], and holds (with ac-
cording notations) for any biometric encryption scheme,
in which the secret key and the helper data uniquely
determine the biometric feature vector.

Theorem 1. Any algorithm that takes as input the

helper data Y and tries to output the secret polynomial

P  x" #

%

i eix
i or the set of minutiae T has an average

success probability of at most 2"
 H
 

#T $Y &.

B. Loss of entropy

By definition, the average min-entropy of the biomet-
ric feature vector given the helper data is the difference
between the entropy of the feature vector and the loss
of entropy. We now turn to the estimation of the latter
quantity. Subsequently, let M be the set of all possible
minutiae locations and n # !M! the number of possible
values for a minutia or chaff point.

In [10], Lemma D.1, a lower bound for the loss of
entropy in the original fuzzy vault scheme has been
given. In the case d # 1, i.e., if the minimum distance
is trivial and the minutiae and chaff points only need
to be distinct, the result can be directly applied to our
implementation. The proof is a simple adaptation of the
proof of Lemma D.1 in [10].

Theorem 2. If d # 1, the loss of entropy is at most
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Proof: By Lemma 3.1 in [10]

 H
 

 T !Y " & H
 

 T, Y " $ λ,

where 2λ is the number of possible values that Y can
take. The information contained in T and Y is composed
of four parts: The set of minutiae T , the set of chaff
points, the yi-values for the minutiae, and the yi-values
for the chaff points. The entropy of the r$ t chaff points
is given by log

&

n"t
r"t

'

, because they are randomly selected
from all n$t potential points that are distinct from the t

minutiae. Given T , there is a one-to-one correspondence
between the yi-values for the minutiae and the random
polynomial P ; hence their entropy is k log q. Finally, the
yi-values for the chaff points are randomly selected from
Fq'(P  i"), and therefore their entropy is  r$t" log q $ 1.
This sums up to

H
 

 T, Y " # H
 

 T " % log

(

n$ t

r $ t

)

% k log q %  r $ t" log q $ 1".

On the other hand, since the minutiae and chaff points
in Y are in lexicographic order, we have 2λ #
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this yields the result.

This result can be interpreted as follows:

' The term  t $ k" log q represents the information
leaked by the redundantly encoded secret polyno-
mial. Precisely, this term is composed of the t log q"
bits of information revealed by the yi-values corre-
sponding to the genuine minutiae and the k log q"
of information contained in the secret polynomial.

' The term log
&

r
t

'

estimates the amount of secu-
rity contributed by “hiding” the t genuine minutiae
among the r chaff points.

' The term log
&

n
t

'

refers to the information leaked by
publishing T as part of the helper data.

Since H
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, the lower bound (1) is positive
(and hence meaningful) only if qt"k +
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qt, t!", which implies q -  t,e"t(k. The exponent t,k
defines the error correction capabilities of the scheme
and, according to our experiments, must be larger than
1.5 to achieve a satisfactory false rejection rate (FRR).
Therefore, we obtain a scheme with provable security
according to Theorems 1 and 2 only if q is considerably
greater than  t,e"1.5.

For the case d & 2, we have to analyze the effect
of the minimum distance to the number of possible
choices for the chaff points and the possible values for the
helper data Y . Subsequently, we will use the following
definitions.

For a point m . M let Bd m" denote the set of points
in M that have Euclidean distance to m smaller than d,
and let Vd # 1 % 4

%

 d"1!

i%1

*/

d2 $ i2
+

be the number of
integer points  x, y" . Z

2 with Euclidean norm smaller
than d. Obviously, !Bd m"! + Vd.

Since the minutiae and chaff points are selected with
minimum distance d, the d-sphere centered at a selected
point is excluded from the potential values for subse-
quent points. If the d-sphere neither juts out beyond
M nor intersects with the d-spheres of the previously
selected points, the number of possible choices for the
next point is reduced by exactly Vd; otherwise, the



reduction is smaller. On the other hand, if two selected
points have distance d 

 4d, additional points lying
between these points are excluded as potential choices
for the subsequent points.

These effects make an exact estimation of the number
of possible choices for the chaff points or the number
of possible values for Y virtually impossible. However,
for rVd ! n, the likelihood that a selected point is too
close to the boundary of M or to a previously selected
point is small. Furthermore, the effects of such cases
can influence the number of choices in both directions;
thus, the inaccuracies partially balance. Therefore, for
rVd ! n, the approximation that, on average, each
point reduces the number of choices for the subsequent
points by Vd is quite accurate. Consequently, we can
approximate the number of chaff points by V r!td

 

n"Vd!t
r!t

!

and the number of possible values for Y by V rd
 

n"Vd

r

!

.
Analogously to Theorem 2, we obtain the following
result:

Theorem 3. For rVd ! n, the maximal loss of entropy is

approximately "t#k$ log q#log
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C. Entropy of the feature vector

The entropy of the feature vector T is defined by
the maximum likelihood that it takes a certain instance
M . Since for the parameters of interest the number of
possible instances by far exceeds the number of persons
for which minutiae information is available, we can esti-
mate the entropy of T only by modeling its probability
distribution. Several publications have tried to estimate
the individuality of minutiae information in fingerprints,
e.g., [13] and [14]. However, their analysis already takes
into consideration the error tolerance of the minutiae
matching algorithm and is therefore not applicable for
the determination of the raw entropy H

#

"T $.
We model the probability distribution of T by a

random process Select T, where the t minutiae are
successively chosen. The first minutia m1 is selected
according to a distribution D defined over M. All subse-
quent minutiae mi are selected to the same distribution
D restricted to the areas in M not covered by the
d-spheres Bd"m1$, . . . , Bd"mi!1$ around the previously
chosen minutiae.

We do not assume any statistical dependency between
the locations of the individual minutiae, except that they
have the minimum distance d. Although it is known
that minutiae tend to overdisperse on a small scale
and to cluster on a large scale [15], we believe that

these phenomena are sufficiently addressed by enforcing
the minimum distance d and by the non-uniformity of
the distribution D. (The overdispersion observed in [15]
could be due to the a minimum distance enforced by
minutiae extraction algorithms, e.g., see [16].)

We can show the following result:

Theorem 4. If T is chosen according to the random pro-

cess Select T and the maximum likelihood of a minutiae

location is 1)ψ, then

H
#

"T $ ' log

#

ψ)Vd

t

$

% t log Vd

Proof: Let P"X$ denote the probability o random even
X. Furthermore, for i * 1, . . . , t letMi let be the random
variable of the i-th point output by Select T. By M we
denote the random variable chosen according to D. Then
by definition

2!H
 

$T %

* max "P "+M1, . . . ,Mt, * +m1, . . . ,mt,$$

- t! max "P "M1 *m1, . . . ,Mt *mt$$ , (2)

where the maximum is taken over all m1, . . . ,mt. The
latter probability P "M1 *m1, . . . ,Mt *mt$ can be ex-
panded to

t
%

i&1

P "Mi*mi & .j  i : Mj*mj$ .

The first term has an empty condition and is limited
by 1)ψ, while the other factors can be estimated as
follows:

P "Mi*mi &M1*m1, . . . ,Mi!1*mi!1$

* P "M*mi &M /Bd"m1$ 0 . . .0Bd"mi!1$$

*

P "M*mi 1M /Bd"m1$ 0 . . .0Bd"mi!1$$

P "M /Bd"m1$ 0 . . .0Bd"mi!1$$

-

P "M*mi$

1# P "M 2Bd"m1$ 0 . . .0Bd"mi!1$$

(3)

By assumption, the numerator is at most 1)ψ, while
the probability in the denominator is limited by the
term &Bd"m1$ 0 . . .0Bd"mi!1$& )ψ, which is at most
"i# 1$Vd)ψ. Consequently, with (2) we obtain

2!H
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ψ # i 3 Vd
.

The desired result now follows by elementary transfor-
mations.

By combining Theorem 3 with Theorem 4 we obtain
the following Theorem.



Theorem 5. For d  1,  H
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where 1%ψ is the maximum likelihood of a minutiae

location.

IV. Optimization of Parameters

In this section we try to determine criteria for the
optimal selection of parameters and to derive estimates
on the achievable security according to Theorem 1 and
Heuristic 5. We do this by estimating the maximum of
E over t, k and r for a given decoding complexity.

A. Minimizing the fields size

In order to maximize the approximate lower bound
for the remaining entropy according to Theorem 5, we
set q ( r. Furthermore, since n ) ψ * tVd, we have
#

n!Vd

t

$

%

#

ψ!Vd

t

$

$ !n%ψ#t. In general, we cannot assume
r * t; therefore, we use the approximation
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which is much tighter than
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$ rt%!t!#. With Stirling’s
approximation for t!, this results in the estimate
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B. Selecting the minimum distance for minutiae

In (4), the remaining entropy is independent of the
minimum distance d enforced for minutiae and chaff
points. However, the parameter d limits the maximum
number of chaff points to approximately ρn%Vd&t, where
ρ is the maximum packing density of d spheres in M. On
the other hand, d should not be smaller than δ, to pre-
vent false matchings of minutiae in the query fingerprint
with chaff points during authentication. Setting d ( 2δ
will already completely prevent such false matchings
with minutiae that are also present in T , but smaller
values might already reduce their number to a minimum.

C. Optimizing the degree of the polynomial

The parameter k must be set, so that with sufficient
probability the secret polynomial can be recovered effi-
ciently from a genuine query fingerprint. Subsequently
we analyze the expected complexity of this task. Let mc

denote the number of correct matches, i.e., the matches
between the query fingerprint and the genuine minutiae,
and let mf be the number of false matches, i.e., the
matches between the query fingerprint and the chaff
points. Obviously, decoding is only possible if mc  k.

It has been shown in [4] that, on average, the Reed-
Solomon decoding of the polynomial using x points
requires

!

mc 'mf

x
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min"x,mc#
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,x%mf #

!

mf
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"

)

*

+

%1

trials, where the parameter x must fulfill k , x ,

min!2mc & k,mc ' mf#. This expression is difficult to
analyze theoretically. Numerical evaluation shows that
for mc & k , mf , mc ' 2mc%!mc & k#, the decoding
complexity is minimized for x ( 2mc & k. In this case,
the sum collapses to the term for i ( mc and hence the
minimum decoding complexity is

Cmin!mc,mf , k# (

!

mc 'mf

2mc & k

"!

mf

mc & k

"

%1

. (5)

In the case mf ( mc & k, we have x ( 2mc & k (

mc 'mf and Cmin!mc,mf , k# evaluates to 1. For mf (

mc & k ' i with i ( 1, 2, . . . ,mc%!mc & k# & 1 equation
(5) yields

Cmin!mc,mf , k# (
!2mc & k ' 1# - - - !2mc & k ' i#

!mc & k ' 1# - - - !mc & k ' i#
.

This equation shows that, for mc & k , mf .

mc& k'mc%!mc& k#, the minimum decoding complex-
ity increases exponentially with i ( mf & mc ' k .

mc%!mc & k#. Numerical evaluation reveals that the
exponential growth continues (with slowing pace) for
mf &mc' k  mc%!mc& k#. Consequently, we find that
the decoding complexity is an exponential function in
mf &mc ' k.
On the other hand, the number mc of correct matches

will typically disperse considerably between different
authentications due to variations in the fingerprint image
quality. Thus, if k is larger than the expectation of
mc & mf , the fraction of cases in which decoding is
not feasible anymore, can become quite high. As a
consequence, we set k to the expectation of mc &mf in
order to optimize the remaining entropy while limiting
the decoding complexity.
Remark: Depending on the specific distribution of the
number of correct matches and the requirements on de-
coding complexity imposed by the application scenario,
it may be appropriate to select higher values for k.
We will investigate the impact of increasing k in our
numerical evaluation in Section V-C.
We estimate the mean values formc andmf as follows:

& It is reasonable to assume that the average number
of correct matches is a linear function of t, i.e.,mc (

µt, where µ is the average match rate independent
of t.

& If rVδ / n, the number of points in M covered
by the tolerance areas Bδ!mi# around the chaff



points mi can be estimated as  r ! t"Vδ. (Since
minutiae of the query fingerprint that lie within the
tolerance area of a chaff points can still be correctly
matched with a minutiae in T , this estimate is
even conservative.) Therefore, we can estimate the
average number mf of false matches by τ r!t"Vδ#n,
where τ is the average number of surplus minutiae
from the query fingerprints, i.e., the average number
of minutiae in the query fingerprints that do not
match with the stored minutiae.

As we set k to the expectation of mc ! mf , these
estimations yield

k $ tµ!  r ! t"
τVδ

n
. (6)

Using approximation (4) this yields E % f t, r" with

f t, r" $
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1

2
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D. Maximizing the Bound for the Entropy

For fixed δ, n, µ and s, we try to estimate the
maximum remaining entropy E by finding the maximum
of the function f t, r" over r. The maximum is assumed,

where the first derivation  f!t,r"

 r
is zero. It is easy to see

that this is equivalent to t2&a r"t&b r" $ 0 with a r" $

2µnr&τVδr 3&ln r"" and b r" $ !2τVδr
2
 ln r"&1". For

r ' 0, one of the two solutions is negative and can thus
be neglected. Consequently, for every r, f t, r" takes its
maximum at

t0 r" $ !a r"#2 &

"

a r"2#4 ! b r".

Consequently, the function f t0 r", r" upper bounds
E for a given r, and the maximum of f t0 r", r" over
r yields a general upper bound for E. Thus, we can
estimate the best provable security bound according to
Theorems 1 and 2 that can be achieved for given δ, n,
µ and s, by numerically determining the maximum of
f t0 r", r" over the relevant range of r. As argued in
Section IV-A, it is reasonable to set d ( δ; hence, the
relevant range is given by 1 ) r ) 0.45n#Vδ, where the
factor 0.45 represents the density of the random packing
by chaff points [4].

Since for fixed t, r ( 1, the value f t, r" is monotoni-
cally increasing with the match rate µ, we can determine
the minimum value µmin for which the maximum of
f t0 r", r" is greater than a certain security level S. Since
E % f t0 r", r", this value µmin is an approximate lower
bound for the average match rate required to obtain a
scheme with security 2S according to Theorem 1 and
Theorem 5, so that in the average case the polynomial
can be recovered with one trial.

Figure 1. Distribution of minutiae positions in 82800 fingerprints
and the ellipse E from where minutiae are considered. The bright-
ness of pixels corresponds to the frequency of minutiae occurrence
at this position.

V. Results

We evaluate whether and to what extend a (heuristi-
cally) provably secure fuzzy fingerprint vault is feasible.
In particular, for different values for δ and for typical
values for n, ψ, τ we determine the minimum match
rates required to achieve a security of 250 according to
Theorem 1 and Theorem 5. We compare these minimum
match rates with match rates observed in practice.

A. Evaluation of Minutiae Distribution

In order to estimate n and ψ, we have empirically
determined the statistical distribution of minutiae loca-
tions. We evaluated the location of 5.8 million minutiae
extracted from 82800 imprints that were taken from 9200
fingers with 3 different sensors having 500 DPI.1 For
this evaluation, the fingerprints had been pre-aligned,
so that the center of mass of all minutiae coincides with
the image center and the longest distance between two
minutiae locations was vertically aligned.

It turned out that 83% of all minutiae occurred in
an area defined by an ellipse that covers approximately
87000 pixels, which roughly corresponds to 2.25 cm2.
Outside this ellipse, the density of minutiae decreases
drastically. Therefore, it is reasonable to restrict the
fuzzy vault to minutiae and chaff points inside this area.
This gives an estimate n * 87000 + f , where f is the
number of fingers from which the minutiae are gathered.
The distribution of the minutiae positions and the ellipse
are shown in 1.

The maximum frequency of a minutiae location was
112, which corresponds to a maximum probability of

1The fingerprints were taken from a non-public database set up
in the course of a previous project of the Bundesamt für Sicherheit
in der Informationstechnik.



δ  5 δ  7 δ  10
s  20 82.2% 89.6% 97.0%
s  35 87.9% 95.5% -
s  50 91.7% 99,1% -

Table I
Minimum match rates required to achieve a provable

security of 50 bits.

a minutiae location inside the ellipse of approximately
112 5800000 0.83 ! 2 15.4. This results in an approx-
imation n ψ ! 2. This approximation is independent
from the number of fingers used for the fuzzy vault, as
both ψ and n scale linearly with the number of fingers.

B. Estimating the number of surplus minutiae

According to [3], a good-quality live-scan fingerprint
has 20–70 minutiae. Since f"t, r# decreases with an
increasing average number τ of minutiae from the query
fingerprints not matching with genuine minutiae, it
might be a good idea to use only the most reliable
minutiae of the query fingerprints, e.g., by evaluating
minutiae quality indices output by the feature extraction
algorithm. However, the extent of the filtering should be
carefully balanced with the match rates achieved with
the reduced number of minutiae. We will subsequently
assume that τ equals s $ f with s % 50, where s is the
average number of surplus minutiae from a single query
fingerprint, i.e., the average number of minutiae from
a single query fingerprint that are not matching with
genuine minutiae.

C. Numerical Parameter Optimization

In the previous Sections, we found the approximations
n ψ ! 2 and τ n ! s 87000 from empirical data. Using
these estimations and various values for δ and s, we ap-
plied the method described in Section IV-D to determine
the minimum match rate required to achieve a security
level of 250 according to Theorem 1 and Theorem 5. We
numerically computed the maximum value of the func-
tion f"t0"r#, r# over the range 1 % r % 0.45n Vδ using
the computer algebra system PARI/GP. The minimum
match rates, at which this maximum exceeds 250, are
listed in Table I for different values of δ and s. A “&”
denotes that a remaining entropy of 50 is not achieved
at all.

The security bounds are very sensitive to changes of
the match rate. For instance, for the parameters given in
Table I, a decrease of the match rate by only 2% results
in a reduction of the achievable security of 12 to 38 bits;
a larger reduction is observed for higher match rates.

As explained in Section IV-C, under specific circum-
stances it may be reasonable to select k greater than
our choice k0 :' tµ & "r & t#τVδ n, particularly if the

δ  5 δ  7 δ  10
s  20 0.67% 0.54% 0.41%
s  35 0.54% 0.38% -
s  50 0.45% 0.28% -

Table II
Linear factor, by which the minimum math rates given in

Table I decrease with increasing k.

dispersion of the number of correct matches is small,
or if a larger decoding complexity is acceptable. In these
cases, the match rate required for a certain security level
decreases. In particular, setting k ' k0 ( ǫ increases
the entropy estimation 4 by ǫ log"r#. For a given match
rate µ, this results in the same amount of entropy as
setting k ' k0 with match rate µ ( ǫ t. Thus, for a
given security level, decreasing k by ǫ compensates an
decrease of the match rate by ǫ t. As a consequence, the
minimum match rates required for a security level of 250

with k ' k0 ( ǫ can be estimated by subtracting ǫ tmax

from the values given in Table I, where tmax is the value
of t0"r#, for which f"t0"r#, r# is maximal. We give the
respective values of 1 tmax in Table II.

To get a feeling for the number of minutiae and thus
for the number of fingers needed for a provable secure
scheme, we evaluate the minimum value t for which we
still obtain a remaining entropy of 250 for a given µ. For
this evaluation we apply the following method:

First, we observe that t0"r# is continuous and un-
bounded for r ) 0 and is zero for 1 e. Thus, for every
t! ) 0 there is a r! with t! ' t0"r

!

#; by definition of
t0"r#, this pair "t

!, r!# maximizes the function f"t, r!# over
t. Consequently, it suffices to search through all pairs
"t0"r#, r# to find the minimal t with f"t, r# * 250.
On the other hand, the approximation of the remain-

ing entropy E by the continuous function f"t, r# will
result in an artificially smooth curve for the minimal t.
In particular, in the definition of f we have replaced k

by a real number, whereas in practice, k can only take
integer values. The small deviations in k implied by the
truncation result in significant variations of E and hence,
of the minimal t required for a certain value of E. To
obtain a more realistic estimation of the minimal t, we
set k0"r# '  t0"r#µ & "r & t0"r##τVδ n! and determine
the minimal t0"r# for that (4) yields at least a value of
E * 250 with t ' t0"r# and k ' k0"r#.

Fig. 2 shows the minimal number t of minutiae re-
quired for a security of 250 as a function of the average
match rate µ for various parameters δ and s.

These curves also allow estimating the impact of
selecting a larger k to the minimum value t of minutiae.
As explained above, selecting k ' k0"r#( ǫ compensates
a decrease of the match rate by ǫ t. Therefore, for small
ǫ, the minimum value of t yielding a security of 250 with
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Figure 2. Dependency of the minimal number t of minutiae on the average match rate µ for a security of E  250, for (a) δ ! 5 and (b)
δ ! 7, respectively, and different numbers s of surplus minutiae per finger.

k  k0!r" # ǫ and a match rate µ can be estimated as
the value of t indicated in Fig. 2 for µ # ǫ$t0, where t0
is the value of t indicated in Fig. 2 for µ.

VI. Conclusions

Our analysis shows that a provably secure fuzzy fin-
gerprint vault is not easy to achieve in practice.

 The minimum match rates required are quite high.
According to [3], matchings conducted by a human
expert results in rates of approximately 90%. Au-
tomatic matching algorithms only operating on the
minutiae data will yield considerably lower rates.
For instance, the distribution of the distance of
matching minutiae reported in literature (see [17])
implies that a tolerance below 10 pixels distance will
significantly reduce the match rate.

 The match rates can be greatly enhanced by apply-
ing a quality filter for the minutiae during enroll-
ment. However, this reduces the number of minutiae
available for the biometric feature vector and hence
the maximum value of the parameter t.

 The minimum number of minutiae needed for a
provable secure scheme is considerably higher than
the numbers used in previous implementations. If
quality filtering is applied during enrollment to
improve match rates, we should not expect more
than 30 reliable minutiae per finger. Thus, more
than two fingers must be used.

 Provable security can only be achieved at reason-
able match rates if the number of false matches,
i.e. matches with chaff points, is effectively reduced.
Therefore, it is imperative to apply minutiae quality
filtering during authentication to reduce the number
of surplus (non-matching) minutiae in the query

fingerprint. However, the filtering may reduce the
match rate and needs to be adjusted carefully.

 The storage of additional helper data (e.g., singular
points, ridge density, minutiae orientations) could
surely improve minutiae match rates. However, this
data potentially leaks information on the feature
vector and thereby decreases the remaining entropy.
(This is particularly true for minutiae orientations
that bear strong dependencies with their positions.)
A solution could be to apply another layer of bio-
metric encryption to protect this data, as suggested
in [18], but the amount of information leaked by this
layer should be carefully analyzed.

 The security can be increased by choosing higher
values for k. However, this may render the decoding
infeasible in many cases, resulting in higher false
rejection rates. The maximum value of k yielding
acceptable error rates should be carefully fine tuned
on the basis of practical tests.

As a summary, it is questionable whether a provably
secure fuzzy fingerprint vault can be achieved given the
limited minutiae detection reliability of current technol-
ogy. The minimum match rates and number of reliable
minutiae needed for this goal imply that several fingers
must be used, multiple concerted optimizations need to
be utilized and a very high quality of the fingerprint
images must be ensured.

Nevertheless, it is important to note that our analysis
is based on theoretical lower bounds for security that
are far from being tight. Practical attacks are not able
to exploit all information revealed by the helper data
(in particular, the yi values) and it is questionable if
they will ever be. The underlying computational problem
of the fuzzy vault scheme (Reed-Solomon decoding) is



believed to be hard for k 1 ! t !
"

rk, and it is known
that random instances of this problem are as hard as
the worst case, see [19]. (For very large fields sizes, it
is known to be NP-hard, see [20].) Therefore, practical
security may be achieved for a fuzzy fingerprint vault
scheme even though we are not able to prove it in terms
of information theory.

Finally, provably secure biometric template protection
schemes may still be achievable using completely differ-
ent constructions. For instance, there exist approaches to
apply the fuzzy commitment scheme to fingerprints, e.g.,
[21], [22] or [23]. As shown in [12], the entropy loss in the
fuzzy commitment is much lower than in the fuzzy vault.
However, we are not aware of any comprehensive security
analysis for these approaches based on estimations for
the feature vector’s entropy and the error correction
required without manual alignment of the fingerprints.
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