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Abstract: Biometric cryptosystems allow cryptographic privacy protection 
for biometric reference data without storing a secret key. However, their se­
curity is inherently limited by the discriminative information content of the 
biometric feature data. Given the currently exploitable entropy of biomet­
ric features, one of the most promising approaches to achieve high privacy 
levels is to combine several biometric modalities or several instances of the 
same biometric modality. In this contribution, we theoretically analyze multi­
biometric fusion strategies for biometric cryptosystems with respect to their 
impact on security and recognition accuracy. We also introduce hash level as 
a new fusion level. Furthermore, we give a more detailed analysis for the most 
prominent schemes, the Fuzzy Commitment Scheme and the Fuzzy Vault. 

1 Introduction 

Biometrics is increasingly used for secure identification throughout the world. How­
ever, biometric data that is collected and stored is, by definition, private and, there­
fore, demands rigorous protection from misuse. So-called biometric cryptosystems 
(also known as biometric encryption) are designed to combine the advantages of 
biometrics with proven cryptographic techniques so that biometric reference data, 
as in password-based authentication, is no longer stored in plain text but as a 
protected templates without the need to maintain secret keys for their decryption. 
The reconstruction of the biometric information from reference data is impossible 
unless a sufficiently similar feature data is provided for comparison. These schemes 
protect the biometric data by binding it to, or extracting from it, a secret string 
which is retrieved in case of successful verification and can, thus, also be used for 
biometrically protected key storage and release. Prominent examples of biometric 
cryptosystems are constructions based on the Fuzzy Commitment [JW99] or the 
Fuzzy Vault [JS02]. 

One factor limiting the security of biometric cryptosystems is the entropy of the 
biometric feature data. In most schemes, including the Fuzzy Commitment and the 
Fuzzy Vault, the private biometric data are recovered upon successful verification 
and, thus, an attacker can “decrypt” the protected template in an “FAR attack” by 



repeatedly simulating the verification with random biometric samples (taken from 
a database or generated artificially) in 1jFAR trials on average. For instance, if a 
biometric cryptosystem has a False Accept Rate of 10-5 and each verification (incl. 
sample acquisition and feature extraction) takes three seconds, the attack could 
uncover the biometric data from a protected template in less than four days. Since 
biometric cryptosystems operate on concealed data, achieving very low FAR values 
is more challenging than for conventional biometric systems [CS09], [YBdG+11]. 

One of the most promising approaches to achieve low FAR values and, thereby, 
high privacy levels is to combine the information of several biometric modalities 
(e.g. fingerprints with finger vein, or face with iris) or several instances of the 
same biometric modality (e.g. several fingerprints or both irises). Different fusion 
approaches exist, combining the biometric information on different levels of the 
verification process. In this contribution, we investigate, how multi-modal or multi­
instance fusion can be implemented for biometric cryptosystems and to what extent 
the recognition accuracy and privacy protection can be increased. 

This paper is structured as follows: In Section 2, previous work on multi-biometric 
fusion for biometric template protection is discussed. In Section 3 we present a 
general description of biometric cryptosystems, and the Fuzzy Commitment and 
the Fuzzy Vault as important examples. In Section 4, we present possible multi­
modal or multi-instance fusion approaches for biometric cryptosystems, and discuss 
their flexibility and impact on security in Section 5. Conclusions are drawn in 
Section 6. 

2 Previous Work 

Several publications proposed multi-biometric fusion for biometric template pro­
tection, e.g. [NJ08], [KBV+09], [KZB+09], [MNS+ 10], [YBdG+11], but did not 
provide an analysis of the impact of the fusion level on privacy protection. For 
instance, in [YBdG+11], Yang et. al. consider decision-level fusion for three tem­
plate protection methods, one of which is based on the Fuzzy Commitment, but 
limit their analysis to biometric performance. In [FYLH09], two fusion approaches 
- biometric level and cryptographic level, roughly corresponding to feature-level 
and hash-level in our terminology - are theoretically investigated with respect to 
privacy and recognition accuracy but the privacy analysis is limited to entropy 
estimations and does not consider the effort of actual attacks; as our analysis will 
show, an increase of the entropy does not necessarily imply an equivalent increase 
of the minimum attack complexity. In [NNJ12], Nagar et. al. were the first to 
observe that decision-level fusion is less secure against exhaustive search attacks 
than feature-level fusion, and the authors present a feature-level fusion framework 
comprising algorithms for transforming templates into a common metric space and 
for fusion of the (transformed) templates. 



3 Biometric cryptosystems 

As any biometric authentication methods, biometric cryptosystems comprise pro­
cedures for enrollment and authentication. 

•	 Enrollment. The biometric feature data X extracted from a reference sample 
are processed by the enrollment function of the biometric cryptosystem, which 
outputs a binary verification string R and helper data D to be used for 
error correction during verification. The verification string is hashed by a 
cryptographic one-way hash function. Both the helper data D and the hash 
value h of the verification string are stored as protected reference data. 

•	 Verification. The biometric feature data Y extracted from a live sample and 
the helper data D are processed by the verification function of the biometric 
cryptosystem, resulting in a candidate verification string S. Provided that 
X and Y are sufficiently similar, S equals R. The equality of these strings is 
checked using the stored hash value h. 

This high level work-flow for biometric cryptosystems is depicted in Figure 1. 
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Figure 1: Processing in a biometric cryptosystem. 

Prominent examples of biometric cryptosystems are the Fuzzy Commitment Scheme 
and the Fuzzy Vault. While the Fuzzy Commitment Scheme can correct errors that 
are bounded with respect to the Hamming metric, i.e. individual bit errors, the 
Fuzzy Vault works on an unordered set of features and is, thus, agnostic to per­
mutations and tolerant to omissions an insertions of features. Further examples 
are quantization schemes with correction vector (e.g. [LT03] and [BDH+10]). An 
exhaustive survey is given in [CS09]. 



Unlike traditional biometric authentication methods, the verification procedure of 
biometric cryptosystems does not return a similarity score but just a one-bit Ac­
cept/Reject decision. However, if error correcting decoding is used, upon successful 
verification of the bit string, the original biometric feature data used at enrollment 
is recovered, and thus, the distance (with respect to some metric) of the biometric 
data provided for verification to the original feature data can be output as similarity 
score. While this a posteriori quantification of similarity allows flexible adjustment 
of the error rates without the need to re-enroll individuals, it has no impact on 
the level of privacy protection as an attacker trying to recover biometric data from 
the template would have succeeded already as soon as the error correction was 
successful. 

Various types of attacks can be mounted on biometric cryptosystems, e.g. see [CS09] 
or [KKM+10]. In this publication, we only consider brute-force attacks on a single 
protected template resulting from multi-modal or multi-instance fusion. These 
include FAR attacks, which simulate the specified verification function, as well as 
attacks that directly exploit the information leakage from the helper data without 
simulating the verification function. 

4 Multi-modal and multi-instance fusion strategies 

In this section, fusion approaches for biometric template protection methods are 
described. For the ease of reading, we consider the case that two fingerprints are 
used, but the generalization to other modalities and more instances is straightfor­
ward. In Section 5, the impact on security and flexibility of the individual fusion 
strategies are discussed. 

Multi-biometric fusion methods can be categorized according to the level in the 
processing where the information from the features is combined. Typically, three 
levels are distinguished: feature level, score level and decision level.1 

The use of biometric template protection techniques, where reference data is only 
available in protected form, makes it necessary to reconsider how the data from 
different instances (of one or several modalities) can be combined. In particular, 
the usage of a hash value introduces a new level of fusion. 

Feature-level Fusion In feature-level fusion, two feature vectors X1 and X2 

obtained from two fingerprints during enrollment are combined to form a new 
feature vector X which is given as input to the enrollment function to compute 
the helper data D and the hash value h. Similarly, during verification, two feature 
vectors Y1 and Y2 are extracted from the two probe fingerprints and are combined 

1Some text books like [RNJ06] also mention sensor (or sample) level fusion where the raw data 
is fused before any feature extraction is performed. With respect to biometric cryptosystems, this 
type of fusion can be considered equivalent to feature level fusion, because the biometric data is 
fused before given as input to the enrollment and verification functions. 



to form a new feature vector Y . This feature vector Y , along with D, is given to 
the verification function, which computes the bit string S, which is then verified 
against the hash value h. 
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Figure 2: High-level processing of verification for feature level fusion 

In case of the Fuzzy Commitment Scheme, a simple way to fuse two feature vec­
tors, both represented as binary strings, is concatenation [KZB+09]. In the Fuzzy 
Vault, where feature vectors are represented as sets of attributes each encoding 
a feature component, the fusion can be most easily performed by either ordered 
concatenation of the sets [NJ08], or by appending to each attribute an index of 
the instance, and using the union of the sets of the individual instances [MNS+10]. 
For multi-modal fusion, it can be difficult to define feature representations for all 
instances and a fusion method so that the resulting feature vector can be processed 
by the biometric cryptosystem and the expected errors are bounded. In [NNJ12], 
several algorithms for transforming templates into a common metric space and for 
fusion of the (transformed) templates were proposed that facilitate feature level 
fusion for modalities with different error characteristics. 

Hash-level Fusion Since biometric cryptosystems base the success decision on 
an equality check of a hash value, the multi-biometric fusion can also be imple­
mented on the hash level. Precisely, the enrollment function is executed on the 
feature data of both instances individually, resulting in separate parts D1 and D2 

of the helper data and two bit strings S1 and S2, which are concatenated before 
hashing. During verification, the stored hash value h(S1IS2) is used to verify the 
correctness of the two strings S1

� and S2
� computed from the feature data from each 

instance and the corresponding part Di of the helper data. 

Score-level Fusion In score-level fusion, each instance is processed by the veri­
fication function separately (using separate helper data), resulting in two similarity 
scores which are then combined. For a biometric cryptosystem, score-level fusion is 
only possible if a score is computed by an a posteriori quantification of similarity of 
the feature vector (see Section 3). Since the score is only computed after successful 
verification of the string S, the bit strings for each instance can be either verified 
by separate hash values or a joint hash value. Thus, score-level fusion can be seen 
as a post-processing step after a match is achieved based on hash-level fusion or 
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Figure 3: High-level processing of verification for hash-level fusion 

decision-level fusion. 

Decision-level Fusion For fusion at the decision-level, for each instance, sepa­
rate helper data and hash values are stored. The binary results (“accept”or“reject”) 
of the hash string verifications of both instances are combined at the Boolean level 
to obtain the final decision. 
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Figure 4: High-level processing of verification for decision-level fusion 

5 Analysis of Fusion Strategies 

Ideally, the security level - expressed by the minimum expected run time of attacks 
- resulting from the fusion of several instances of one or more biometric modalities 
would be the product of the security levels achieved for each single instance, which 
would imply an exponential increase of security with the number of instances used. 
However, there are two factors that can reduce the security of the fusion: 

• The instances fused may not be statistically independent. For example, it is 



known that the patterns types (left/right loop, whorl, arch, etc.) of different 
fingers of an individual are correlated [Way04]. In this case, the total entropy 
of all instances can be much lower than the sum of the entropies of the 
individual instances. 

•	 Depending on the fusion approach taken and the biometric template pro­
tection method, an attacker may be able to attack each instance individu­
ally. Optimally, the success probability of an attacker trying to guess the 
features X1, . . . , Xn of all instances as x1, . . . , xn is the product over the con­
ditional probabilities P (Xi = xiIXi-1 = xi-1), and the average number of 
guesses needed by an exhaustive search attack is proportional to the inverse 
of the maximum of this product, which corresponds to the min-entropy of 
(X1, . . . , Xn) [DORS08]. However, if the features of the individual instances 
can be guessed separately, i.e. if the attacker can verify the correctness of a 
guess Xi = xi independent of the other features Xj with j = i, the average 
number of guesses needed is only the sum of the inverses of the conditional 
probabilities. Even if the statistical dependence of the features is sufficiently 
small so that the total entropy increases linearly with the number of instances, 
the security gain against exhaustive search is not exponential but only linear 
if the instances can be attacked separately. Therefore, the security of biomet­
ric template protection methods applied to multi-biometric features heavily 
depends on the approach taken for combining the feature data. 

In this section, the fusion approaches feature-level, hash-level, score-level fusion and 
decision-level are discussed with respect to their flexibility and impact to security 
for biometric cryptosystems. 

5.1 Feature-level Fusion 

Feature-level fusion does not allow an attacker to conduct an exhaustive search on 
a single instance, as the features are combined before the bit strings S are com­
puted on which basis the correctness of the feature data is verified. The search 
spaces comprises all potential combinations of feature vectors from all instances, 
and therefore, the level of privacy protection is maximally increased: if the statis­
tical dependencies of the instances are limited, feature-level fusion can induce an 
exponential increase of attack complexities with the number of instances. 

On the other hand, the impossibility to verify the contributing instances separately 
may be considered a disadvantage in some circumstances. For example, when fusing 
several fingerprints on the feature-level, it is not possible to perform a comparison 
with latent fingerprint of only one finger. However, this inseparability is exactly 
what prevents efficient attacks on single instances. 

Regarding maximum achievable recognition accuracy, in theory, combining feature 
vectors will lead to the best results. The high-dimensional combined feature space 
gives the optimal freedom to separate genuine feature vectors from impostor feature 



vectors. This optimization, however, requires an accurate model of the probability 
distributions and obtaining such an accurate model might turn out to be difficult for 
fused feature vectors due to an insufficient amount of sample data. An inaccurate 
estimate of the model parameters might lead to over-training resulting in reduced 
accuracy for measurements that were not in the training set [RNJ06]. However, 
in a practical situation the simplifying assumption of statistical independence of 
the instances to be fused can be used to generate the combined model from the 
individual models. For example, this approach has been used in [MNS+10] for a 
Fuzzy Fingerprint Vault based on minutiae locations, which were assumed to be 
independent among different fingers. The assumption of statistical independence 
is much less problematic if the instances are from different modalities. 

In schemes applying error correcting codes, feature-level fusion typically implies 
that the same code is applied to all instances. As compared to hash-level fusion 
or decision-level fusion, where different codes or even different schemes can be 
applied to each instance, this gives less flexibility in selecting the optimal error 
correction method with respect to the specific error distributions of the individual 
instances. This can be a particular disadvantage if the instances correspond to 
different modalities. As a special case, the Fuzzy Commitment Scheme could be 
implemented with a cascade of different codes, where at the first stage different 
codes are used to address the specific error distribution of each instance and the 
second stage applies a common code for the concatenated codewords of the first 
stage. However, such cascaded encoding has been shown to be vulnerable to attacks 
exploiting the logical structure of the individual codes used [SKvdV09]. 

5.2 Hash-level Fusion 

Regarding maximum achievable recognition accuracy, hash-level fusion can be com­
pared to decision-level fusion with the limitation that hash-level fusion inherently 
uses an AND rule which leaves less flexibility, and hence, may lead to a lower overall 
accuracy than decision-level fusion with other rules, or feature-level fusion. 

Hash-level fusion leaves maximum flexibility to the error correction codes used, 
and it is even possible to apply distinct biometric cryptosystems to the individual 
instances before the resulting bit strings are fused. In particular for multi-modal 
fusion, this flexibility allows tailoring an optimal error correction mechanisms for 
different modalities. For example, the coefficients of the polynomial P from a Fuzzy 
Vault applied to a fingerprint could be hashed together with the random string S 
used in the Fuzzy Commitment Scheme for an iris. 

The privacy protection of a biometric cryptosystem using hash-level fusion depends 
on the relation between feature vectors and helper data: for given helper data an 
attacker can therefor exclude those feature vectors that “do not fit” the helper data, 
i.e. from which the helper data could not have been computed. Since in hash-level 
fusion, the helper data is computed per instance, the exclusion of“unfitting” feature 
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vectors allows sequential attacking of the instances. For example, if the verification 
function returns an error for a large fraction of feature vectors, the attacker can 
drastically narrow the search space for each instance individually, which can result 
in an only linear increase of the attacker’s effort as compared to attacking only 
one instance. If on the contrary, an attacker has no other means to verify the 
correctness of a candidate feature vector of an individual instance but to check the 
hash value of the resulting bit string, hash-level fusion can result in an exponential 
increase of security (provided that the statistical dependence among the instances 
is small). 

In the Fuzzy Commitment Scheme, unless a perfect error correcting code (i.e. a code 
attaining the Hamming bound) is used, only a small fraction of possible strings can 
be decoded, which implies that an attacker systematically entering bit strings (e.g. 
extracted in an FAR attack from random biometric samples) to the verification 
function or directly to the decoder will in most cases observe a decoding failure 
indicating that the string does not match that one used during enrollment. There­
fore, the attacker can exclude most of the candidate strings without checking the 
hash value. Unfortunately, there are very few perfect codes, all of which are lim­
ited in their dimension [Rot06], and hardly any of them is suitable for biometric 
feature verification. Implementations of the Fuzzy Commitment Scheme for bio­
metric authentication, e.g. [TAK+05, KGK+07, KBV+09], often deploy BCH codes 
of length 127 - 511. As shown in Table 5.2, for these codes, the fraction of decod­
able bit strings can be negligible, which means that an attacker can exclude almost 
all incorrect candidate strings without considering the second finger, and thus, the 
security of a scheme using hash-level fusion only increases (at most) linearly with 
the number of instances. 

Ref. n k t Q 

[TAK+ 05] 
[TAK+ 05] 
[KGK+ 07] 
[KGK+ 07] 
[KBV+09] 
[KBV+09] 

511 
511 
127 
255 
255 
511 

85 
31 
36 
63 
21 
10 

31 
54 
15 
30 
55 
127 

2.710-79 

1.510-71 

5.410-9 

1.810-19 

1.710-14 

2.510-28 

Table 1: Code length n, message length k, number of correctable bits t and fraction Q 
of decodable words from the code space for BCH codes proposed for use with the fuzzy 
commitment scheme. 

The Fuzzy Vault also allows verification of candidate polynomials P , e.g. interpo­
lated from a subset of points in a polynomial reconstruction attack [MMT09] or 
in an FAR attack, without computing the hash value by checking if P is interpo­
lated by exactly t points in the vault corresponding to this instance. As shown by 
Clancy et. al. [CKL03], for reasonable parameters, there exists a k � δ � t so that 
the expected number of spurious degree k polynomials interpolated by more than 
δ points is less than one. This implies that with overwhelming probability, the 
attacker can check the correctness of candidate polynomials by checking if they are 



interpolated by δ (or t, if δ is unknown to the attacker) points in the vault. By this 
means, the attacker can apply the brute force attack to each instance individually 
and, hence, hash-level fusion can not result in an exponential increase of security. 

5.3 Score-Level Fusion 

Score-level fusion aims to separate the genuine and impostor scores in a low­
dimensional space, the dimension of which equals the number of instances fused. As 
compared to decision-level fusion, this approach allows greater freedom in choosing 
the classification boundary and will therefore lead to better recognition accuracy 
as compared to hash-level fusion or decision-level fusion [RNJ06]. 

Since an attacker trying to recover the biometric data from a protected template 
can simply omit the a posteriori quantification of similarity, the evaluation of the 
score does not contribute at all to the privacy protection. If for each instance 
a separate hash value is stored as in decision-level fusion, the instances can be 
attacked individually resulting in only a linear increase of security. If, on the 
contrary, all strings are concatenated before being hashed, the privacy protection 
equals that of hash-level fusion. In any case, the privacy protection is not influenced 
by the threshold(s) applied to the score. For example, the success probability of an 
FAR-attack is given by the FAR value resulting from the minimum security level 
where no thresholds are applied at all. 

5.4 Decision-level Fusion 

Decision-level fusion gives more freedom to the matching rule (AND, OR, majority, 
etc.) applied for fusion than hash-level fusion, where the AND rule is inherently 
implemented. Thus, it allows more flexibility for the separation of genuine com­
parisons from impostor comparisons. Also, decision-level fusion leaves maximum 
flexibility to the error correction codes used and even allows to use distinct bio­
metric cryptosystems for the individual instances. 

However, decision-level fusion does not essentially increase the level of privacy 
protection: since the template protection method is applied to each instance sepa­
rately, an attacker can determine the features of the individual instances separately, 
resulting in a running time that only grows linearly with the number of instances. 

6 Conclusions 

Our analysis has shown that score-level fusion and decision-level fusion only result 
in a linear increase of privacy and are, thus, not eligible for biometric cryptosystems 



Fusion level Security gain Implementation difficulty 

Feature level high 
can be high for 

different modalities 

Hash level 
high, if most inputs are 
decodable, else low 

low 

Score level low low 
Decision level low low 

Table 2: Summarizing comparison of feature levels 

unless sufficient protection is already achieved with a single modality/instance. The 
new hash-level fusion approach has the potential to combine exponential privacy 
gain with great ease of implementation, allowing even the combination of differ­
ent biometric cryptosystems. Unfortunately, for the most prominent biometric 
cryptosystems, the Fuzzy Commitment Scheme and the Fuzzy Vault, this fusion 
strategy does not yield an exponential gain of security. For these schemes, feature­
level fusion is the only method that can give an exponential increase of privacy. 
However, feature-level fusion implies that a common error correction method is 
used for all instances, which gives less flexibility in tailoring the system to the error 
distributions of the individual instances. This restriction can make implementation 
of multi-modal biometric cryptosystems, where completely different error distribu­
tions of the instances are expected, quite challenging. 
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