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Abstract 

As a key technology Artificial Intelligence (AI), especially in the form of deep neural networks, 
is already omnipresent in many digitization applications, including security and safety relevant 
applications in domains such as biometrics, healthcare and automotive. Despite its 
undisputed benefits, the use of AI also entails qualitatively and quantitatively new risks and 
vulnerabilities. Together with its increasing dissemination, this calls for audit methods that 
allow to give guarantees concerning the trustworthiness and that allow to operationalize 
emerging AI standards and AI regulation efforts, e.g. the European AI act. Auditing AI systems 
is a complex endeavour since multiple aspects have to be considered along the AI lifecycle 
that require multi-disciplinary approaches. AI audit methods and tools are in many cases 
subject of research and not practically applicable yet. To allow for a comprehensive inventory 
of the auditability of AI systems in different use cases and to allow for tracking its progress 
over time, we here propose to employ a newly developed “Certification Readiness Matrix” 
(CRM) and present the initial concept. By using the CRM concept as a frame to summarize the 
results of a one day workshop on auditing AI systems with talks covering basic research, 
applied AI auditing efforts and standardisation activities we demonstrate that audit methods 
for some aspects are already well developed while other aspects still require more research 
into and development of new audit technologies and tools. 
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1 Problem Statement 

Due to the increase in computing power and the availability of large data sets, the 
performance of AI systems has significantly improved in recent years, and they are now 
routinely used in an ever-increasing number of applications ranging from biometrics and 
healthcare to the automotive domain. In spite of the large opportunities offered by AI 
systems, they also bring up new challenges for auditing as compared to classical software [1]. 
Firstly, the input and state spaces of AI systems for common tasks are enormous, rendering 
exhaustive testing infeasible. Second, their behaviour strongly depends on the data used to 
train them, and inconsistencies or deliberate manipulations of these data can engender grave 
consequences. Third, most AI systems currently used have a complex inner structure which 
does not lend itself to human interpretation. This makes finding malfunctions and attacks and 
mitigating them a very hard task. In order to address these challenges and to facilitate the 
secure, robust and transparent application of AI, especially in security and safety-critical 
applications, it is necessary to have available technical requirements as well as concepts, 
methods and tools for auditing AI systems accordingly. However, such material is largely 
missing so far. 

This document focuses on connectionist AI systems, which are used in most complex 
applications (e.g. based on image processing) today. Connectionist AI systems are large data 
structures that contain millions of parameters. The currently most widespread examples are 
deep neural networks (DNNs), which consist of various layers of simple processing elements 
(neurons) that are highly interconnected. The life cycle of connectionist AI systems is complex 
and consists of different phases. After an initial planning phase, in which use case-specific 
requirements and ambient conditions are taken into account, data of sufficient quality and 
quantity are collected. These data are then used to train the parameters of a connectionist AI 
system to approximate the intended functionality on the data set. The performance of the AI 
system is then evaluated on a different data set not used for training to make sure it properly 
generalises. If the evaluation results are satisfactory, the AI system is then deployed and put 
into operation. In practice, the deployed AI system is not operating in a vacuum, but is 
embedded both in a complete (physical and) software system and in organisational processes 
and is interacting with the physical world in the context of the use case it addresses [2]. 

In April 2021, the European Commission published a draft regulation on AI (the AI act, AIA) 
[3], whose goal is to ensure that AI systems in use fulfil adequate requirements. The AIA 
pursues a risk-based approach, which bans some applications of AI altogether (e.g. social 
scoring schemes) and imposes comprehensive requirements on AI systems considered high-
risk. According to the AIA, high-risk applications include, among others, the use of AI in safety-
critical functions as well as in the health and justice sector and in law enforcement. The 
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requirements in the AIA are set out on a very high level. In order for the AIA to be 
operationalised, these requirements need to be underpinned on the technical level. As a 
result, it is necessary to develop audit schemes, methods and tools for all aspects mandated 
by the AIA across the relevant AI life cycle phases within the next two to three years, when 
the AIA will start to apply. 

The development of AI technology is highly dynamic, and many technical questions relating to 
the AIA requirements are the subject of research by academics and of new approaches 
developed by industry. As a consequence, the development of corresponding standards, audit 
schemes, methods and tools is likewise moving fast (cp. e.g. [4-13]). A periodic survey is thus 
needed to give an overview of the current status and progress in the auditability of AI 
systems, both for specific applications and in general. Based on the current status and the 
gaps identified, research and development must be guided and prioritised to systematically 
advance AI auditability until the concepts and tools are sufficiently mature to operationalise 
the AIA. 

The present document focuses on those requirements from the AIA that are related to IT 
security and safety, which are technical in nature and can be objectively assessed. These 
criteria include security, safety, performance, robustness, interpretability and explainability, 
and traceability of AI systems as well as risk management procedures. Further requirements 
from the AIA that address user-focused fundamental ethical questions relating to bias, data 
privacy and human oversight are out of the scope of the present document. Since these 
aspects are also very important, it is necessary for them to be covered elsewhere. 

2 Proposal of a Certification Readiness Matrix as a Tool to Monitor the 

Progress of AI Auditability1 

Assessing AI auditability is a complex problem since, on the one hand, it requires to take into 
account the whole life cycle of an AI system, many different technical aspects and use case-
specific ambient conditions and, on the other hand, both research and development in the 
field are highly dynamic. 

To capture this complexity while achieving a high level of transparency and comparability, we 
propose a two-dimensional “Certification Readiness Matrix” as a tool to monitor the progress 

                                                      

 

1 Please note that the "Certification Readiness Matrix" presented here is meant as a conceptual heuristic (e.g. it 
does not aspire to serve as a certification scheme specifically for BSIG §9 or the EU Cyber Security Act). 
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in AI auditability (for an example see Figure 1). The first dimension of the matrix covers the AI 
life cycle phases and the embedding of an AI system within organisational processes, in the 

context of its use case and in the physical world. The second dimension lists important 
technical and objectively assessable aspects related to IT security and safety, which are listed 
and defined hereafter: 

• security: IT security, i.e. passive and active robustness of the AI system against 
attacks, especially AI-specific attacks (adversarial, poisoning and privacy attacks) and 
with respect to the three security goals integrity, confidentiality and availability 

• safety: Protection of individuals, organizations and assets against (physical) harm 

• performance: Performance of the AI system with respect to relevant performance 
metrics 

• robustness: Passive and active robustness against natural variations of inputs 
(situations), including those, that were not covered during training 

• interpretability and explainability: Ability of humans to understand the decision 
process of the AI system, either through inherently interpretable models or post-hoc 

 Figure 1: An example of a certification readiness matrix is here shown for the aggregated results of the workshop, i.e. 
based on the workshop presentations it shows what is currently maximally possible with respect to auditing an AI system. 
One dimension (rows) represents the phases of the AI lifecycle and its embedding in the physical world, the use case and 
an organization. The other dimension (columns) represents those aspects of an AI system that were at the focus of the 
workshop, i.e. technical and objectively assessable aspects related to IT-security and safety. The auditability scoring scale 
below the matrix shows color and point scales that correspond to a scale from non-existing auditability (red, 0) to full 
auditability (green, 10). Since detailed scoring requirements have not been fully worked out so far, the scores shown here 
were derived by intuition drawing on the authors’ experience and technical knowledge and only give a rough 
approximation. The goal is to fully work out a scoring requirement scheme within the next year. 



 
 

Whitepaper | Towards Auditable AI Systems  7 

interpretation 

• traceability: Traceability of the AI system throughout the life cycle, e.g. of design 
decisions, boundary conditions, data, models, training algorithms and processes, 
evaluation and operation using e.g. technical documentation and logging 

• risk management: Identification, analysis and prioritization of risks and coordinated 
application of resources for a minimization of risk probability and/or impact; includes 
strategic and operational measures 

While we restrict our attention to these aspects, the matrix may be easily extended by further 
aspects such as bias and data privacy. Where applicable, our goal is to assign certification 
readiness scores for each entry in the matrix. This way, the degree of auditability can be 
compared between different applications and across time. 

While the matrix captures many important aspects and allows displaying the current status in 
a compact way, it does not cover every aspect that might be of importance for specific 
applications, e.g. ethical aspects are currently excluded. Since many aspects are partly 
overlapping and may be grouped in different ways, e.g. in a hierarchical tree-like structure, 
the proposed matrix is one of multiple possible views on certification readiness. 

The requirements for assigning specific scores have not been worked out in detail and further 
work in this direction is required. The current scores in the matrix are rough estimates based 
on experience and intuition of the authors. They only serve to illustrate the method and their 
informative value should not be overrated. Our goal is to develop a systematic list of scoring 
requirements for all entries of the matrix within one year and to update the matrix 
subsequently. Once this prerequisite is achieved, the matrix should serve to track the 
progress in auditability for both individual applications and AI systems in general. 

It is crucial to note that the technical challenges in reaching a sufficient degree of auditability 
vary massively between the different aspects considered and the life cycle phases. On the one 
hand, it is relatively straightforward to extend and audit requirements for classical risk 
management and for transparency and traceability. On the other hand, requirements and 
audit methods for IT security, safety, robustness and interpretability, especially with respect 
to DNNs, are the subject of current research and development efforts. Significant 
breakthroughs facilitating full auditability are unlikely to happen in the near future. 

In Figure 1 an example of certification readiness matrix is given: it has been derived by first 
assigning scores to individual applications based on the talks at the 2021 workshop and then 
aggregating the results by taking the maximum over all talks to reflect what is already possible 
in principle. 
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3 Summary of the Workshop 

During the workshop many AI auditability aspects of different AI lifecycle phases have been 
covered by 10 talks in a complementary way (cp. Figure 2), ranging from scientific challenges 

Figure 2: For each talk of the workshop, the coverage of aspects and life cycle phases are schematically indicated using 
the same matrix layout as in Fig. 1. Black cells indicate a focus aspect of the talk with good coverage, grey indicates an 
incomplete coverage and white indicates that the aspect was not covered by the talk. No single talk covered all aspects 
but the talks complemented each other well and together covered a wide range of aspects and many important aspects 
in detail. Note: The matrix layout was developed after the workshop. Neither did the speakers have access to it nor 
were they requested to cover as many aspects as possible. 
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and new approaches (Talks 1-3) to experiences gained in industry use cases (Talks 4-7) and 
finally to standardization of AI (Talks 8-10). The certification readiness results aggregated 
across all talks are shown in Figure 1. 

Since the scoring requirements have not been completely developed yet, the results derive 
from estimations based on experience and have to be treated with care. To avoid possible 
misunderstandings, individual score matrices for the talks / use cases are not shown here. As 
expected, the currently highest degree of auditability was visible with regard to the aspects of 
traceability, risk management and partly performance, as these may largely be derived from 
classical audit approaches. 

Most work is still open with respect to the aspects of security, safety, robustness and 
interpretability. Here the technical challenges are, in the authors’ opinion, the most 
demanding. 

4 Short Summary of the Talks and Contextualization with Regard to the 

Matrix2 

4.1 Talk #1: Federated Learning: Challenges for Security and Safety 

The first talk of the workshop discussed the security- and safety-related challenges of 
federated learning (FL), which is a newly established training paradigm for privacy-preserving 
collaborative optimization of AI models. Federated learning allows multiple parties to jointly 
train an AI model (e.g., a deep neural network) on their combined data, without any of the 
participants having to reveal their local data to a centralized server. Instead of exchanging 
data, in FL participants exchange “knowledge” derived from their local data in form of 
parameter updates. The local data remains at the clients at all times, which is advantageous 
wrt. privacy and ownership (other participants do not get access to local data), security (since 
learning is decentralized, there is no single point of failure), and efficiency (no need to move 
data around). 

However, despite these great advantages the distributed optimization of AI models leads to a 
set of new challenges, e.g., privacy, security, robustness, model personalization and data 
heterogeneity. The talk formulated four exemplary questions, which relate to important 
security and safety challenges: 

                                                      

 

2 Please note that the talk summaries reflect the opinions of the respective speakers and not necessarily those of 
all authors and the organizers (BSI, TÜV-Verband, Fraunhofer HHI). 
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1. What if a (group of) client is an adversary? 

2. What if we do not trust the server? 

3. Can we deploy FL on the blockchain? 

4. Can we ensure privacy of local data? 

New developments in the FL research were presented which (to some extend) address these 
four questions. First, the Clustered FL approach [14] was presented, a newly developed 
variant of FL which measures the similarities in the clients’ data distributions and thus allows 
to train personalized FL models. This approach has been showed to be able to identify 
adversarial clients, even in Byzantine settings where a subset of clients behaves unpredictably 
or tries to disturb the joint training effort. Then, very briefly homomorphic encryption has 
been presented as a potential technology to secure the connections between clients and the 
server. Since operations such as averaging (aggregation of model updates) and scalar product 
(cosine similarity) can be performed in the encrypted space, homomorphic encryption can be 
easily integrated within (Clustered) FL. Third, the recently proposed approach [15] to 
efficiently implement FL on a blockchain was discussed. The approach is based on 
communication-efficient federated distillation [16], which allows it to aggregate the heavily 
compressed (1-bit encoding) soft-label updates on a smart contract. A key feature of the work 
is also the incentive mechanism, which allows it to reward honest participation based on peer 
consistency in an incentive compatible fashion. Finally, a provably differentially private FL 
approach was presented and its performance was compared to other privatized and non-
private baselines. The talk concluded with a recap and a short discussion of other open 
challenges in FL. 

4.2 Talk #2: How may Minimalistic Neural Networks Improve Interpretability 

In this talk the results of an international research team from TU Wien (Vienna), IST Austria 
and MIT (USA) were presented: a novel biologically inspired AI-system that can control a 
vehicle with just a few artificial neurons [17]. The system has decisive advantages over 
previous deep learning models: It copes much better with noisy inputs, and, because of its 
simplicity, its mode of operation can be explained in detail. It does not have to be regarded as 
a complex “black box”, but it can be understood by humans. 

Biological inspiration comes from the brain of C. elegans, a threadworm, that possesses 302 
neurons and 8000 synapses and for which the connectome, i.e. the connectivity between all 
neurons, is completely mapped. From the connectome of C. elegans specific (feedback) policy 
motifs (or sensori-motor-circuit blueprints) are identified and used as building blocks for an 
artificial neural network. In contrast to the currently extremely popular deep neural networks 
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(DNNs) the networks presented here firstly consist of neurons which are based on slightly 
more complex biophysical models, secondly consist of only a small number of neurons and 
their connectivity is thirdly highly sparse, i.e. not every neuron is connected to every other 
neuron. Overall this massively reduces complexity and enhances interpretability of the neural 
network models. 

These models for example may be used for parallel parking or Autonomous Lane Keeping 
systems in vehicles: for autonomous lane keeping a modular system consisting of pre-
processing convolutional neural networks (CNNs) and a biologically inspired control network 
called neural circuit policy (NCP) is employed. Camera images of the road are fed into the 
CNNs which output 32 virtual sensor neurons which are in turn used as inputs for the NCP 
lane keeping network which automatically decides whether to steer to the right or left. The 
NCP only consists of 19 neurons. Both subsystems are stacked together and are trained 
simultaneously using many hours of traffic videos of human driving in the greater Boston 
area, together with the desired steering command. After learning the system can 
independently handle new situations. In comparison to todays state of the art deep learning 
lane keeping models with many millions of parameters the new modular approach allows to 
reduce the size of the control network by three orders of magnitude. 

The model was evaluated with respect to its attention focus during driving. Hereby, the role 
of every single cell in any driving decision could be identified and the function of individual 
cells and their behaviour understood. Achieving this degree of interpretability is impossible 
for larger deep learning models. It was also tested how robust NCPs are compared to previous 
deep learning models. The input images were perturbed and it was evaluated how well the 
agents can deal with the noise. The NCPs demonstrated strong resistance to input artifacts as 
a direct consequence of the novel neural model and the architecture. Using this new method 
training time is reduced and interpretability improved while retaining the power of employing 
AI technology. 

4.3 Talk #3: Cybersecurity Challenges in the Uptake of AI in Autonomous Driving 

In the automotive domain, AI systems, in particular deep neural networks, have largely 
contributed to advancing the automation of vehicles in recent years. The most widely used 
standard [18] in this context defines six different levels of increasing automation, ranging 
from no automation (level 0) up to full automation under certain (level 4) or all (level 5) 
environmental conditions. Typically, these automated vehicles include a perception module 
that is gathering input from various types of sensors (cameras, lidars, radars. etc.), upon 
which a planning module returns a sequence of actions to follow a calculated trajectory, 
which results in an adequate adjustment of the actuators. All of these modules make an 
increasing use of AI, in particular in the perception stage that heavily rely on computer vision 
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techniques. 

Even if AI led to significant advances in terms of automation, systems, in particular those 
based on machine learning (ML) models, are susceptible to novel attacks with potentially 
severe consequences [19]. This presentation is based on a report evaluating the new 
cybersecurity challenges that come with this uptake of AI in autonomous driving [20]. 
Attackers may for instance insert manipulated data in datasets to alter the integrity of the 
training phase of the models (poisoning attacks), or try to rebuild the model based on 
targeted queries in order to extract the logical mechanisms at play in the decision-making and 
steal company’s intellectual property (model stealing). Nowadays, adversarial attacks have 
received the most attention for their ability to deceive AI models at inference time into 
returning wrong outputs through the alteration of input data. Many methods to efficiently 

Figure 3: Attack scenario for autonomous vehicles: adversarial attacks on street markings. 1. A malicious actor applies an 
adversarial sticker with physical perturbations onto a stop marking. 2. The camera of the AV sees the stop markings and 
the adversarial sticker. 3. The markings recognition system is deceived into perceiving the stop marking. 4. The planning 
and control systems handle the situation as if there was no stop creating considerable safety risks for traffic actors. 
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perform such attacks have been proposed in the literature, but depending on the specific 
constraints (e.g. digital vs. physical domain, white-box vs. black-box access to model under 
attack, etc.), the challenges for running successful attacks can vary considerably in practice. 
The same is true for devising mitigation measures and defences, which usually can only 
secure models in a limited way. 

Both development of attacks and defences are part of the active research field of adversarial 
ML. Demonstration in laboratory and real-world conditions of successful attacks on 
perception systems in the context of autonomous vehicles suggests the relevance of the 
cyber threats targeting AI components. On this basis, the development of a range of typical 
attack scenarios constitutes a starting step for a more in-depth threat modelling of AI models 
in autonomous driving (see Figure 3). 

General recommendations to tackle the security challenges faced by AI systems include a 
systematic validation of the AI model and the associated data throughout the entire life cycle 
while properly integrating these measures with traditional cybersecurity. On a high level, it is 
also important to increase the capacity and the expertise on the cybersecurity aspects of AI 
within the automotive industry.  

4.4 Talk #4: Towards Trustworthy Camera-Based Sensing and Perception Systems 

The control of an automated driving system relies on a hierarchical and distributed control 
system which is embedded in a sense-plan-act loop and is subject to external disturbances 
and noise. The development of highly automated driving systems faces three overarching 
challenges that require proper tradeoffs: a) the technological challenge to build a safe car 
that perceives the environment and takes decision at least as good as a human driver, b) the 
regulatory challenge to build a functional car, accepted by society that fits into defined 
regulatory framework and c) the business challenge to build a cost-effective car that 
consumers are willing to use. 

Furthermore, the trustworthiness of the system hereby is defined as: the users can trust such 
a system if a) it has been certified by a certification authority after development and before 
release and b) any of its behavior can be well explained throughout its lifetime. Two relevant 
standards – supporting the development and the certification process are: the ISO 26262 [21] 
functional safety standard, which deals with the question of how the system should detect 
and respond to failures, and the ISO 21448 [22] complementing standard “SOTIF safety of the 
intended functionality”, which covers the situations like how the system should detect and 
respond to functional insufficiencies of the intended functionality or by reasonably 
foreseeable misuse by persons. Further relevant standards in this context are e.g. ISO/TR 
4804 [23] and ISO/DIS 22737 [24]. 
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The objectives of these standards are to support the validation and certification process of 
the automated function in all relevant scenarios, especially in difficult conditions for both 
sensors and algorithms. Since even the best sensing and perceptions system will eventually 
fail a sensing architecture with fault detection or even fault tolerance is highly recommended. 
Therefore, robust and reliable sensing and perception systems are often based on the fusion 
of the information of multiple sensors, e.g. camera, radar and lidar. Such a system is expected 
to operate properly in the system’s operational design domain (ODD) which includes different 
environmental conditions (e.g. city vs. highway and daytime vs. nighttime). 

One of the technical challenges is how to develop and certify robust and reliable sensing and 
perception systems? Robustness is the ability of a system to resist change without adapting 
its initial configuration. Its relevance becomes obvious with the increasing prevalence of 
neural networks in the sensing and perception systems. Especially in safety critical 
applications it is of high importance to verify their behavior, but there is no generally agreed 
methodologies and procedures to assess robustness. Often, definitions of robustness 
assessment focus on the worst-case (adversarial inputs), which might be too conservative. 
One of the key questions is: how big is the tolerable uncertainty? Uncertainty may be divided 
in aleatoric uncertainty, which is due to randomness, and epistemic uncertainty which can be 
divided in model uncertainty and parametric uncertainty. All types of uncertainty may be 
observed along the image processing pipeline and they may be quantified using the p-norm. 
For example, aleatoric uncertainty is caused by hardware faults and targeted as well as 
untargeted adversarial attacks. Parametric uncertainty is mainly due to parameters variations 
due to external variations (e.g. temperature, humidity, etc.) as well as aging. 

Figure 4: Methodology to assess the robustness of deep neural networks 
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To improve robustness, including robustness against adversarial attacks, during the training 
phase an inclusive dataset design, data normalization and data augmentation (e.g. flipping & 
rotating) are used. To assess efficiently the robustness of Deep Neural Networks (DNNs), data 
sets with variable uncertainty need to be efficiently generated and, metrics to measure the 
uncertainty and network performance shall be in place – the methodology is briefly illustrated 
in Figure 4. 

As conclusion, defining and widely accepting a unified methodology to assess the robustness 
of deep neural network could significantly accelerate the development and certification of 
highly automated driving systems. 

4.5 Talk #5: Data Quality Requirements for the Development and Validation of Automated 
Vehicles 

Automated vehicles contain a large number of sensors and cameras monitoring the 
environment of the vehicle and providing the input data for decision processes of the control 
software (e.g. steering commands, speed control etc., Figure 5). The majority of the sensor and 
camera modules provide object detection and classification and rely on ML based techniques. 
Therefore, validation of these functionalities and evaluation of the underlying data quality are 
crucial aspects for safety and relevant for homologation processes in the automotive industry.  

The effort for validation and requirements to the used data are strongly depend on the 
autonomous level. The shift of liability from driver to the manufacturer (from level 3) 
demands a high effort which increases disproportionately up to the level 5. In principle, the 
quality of the validation data can be defined in three dimensions: 

• Volume: The amount of data used for validation. E.g. the amount of driven kilometers 
within a variety of traffic situations and acquired objects (other cars, pedestrians, 
traffic signs etc.) 

• Accuracy: The accuracy of the labels of the detected objects surrounding the vehicle. 
As the labeling process is based on the sensor and camera inputs of the vehicle, the 
accuracy of the labels is strongly depended on the setup of these systems. 

Figure 5: Basic principle of information processing in automated vehicles 
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Consequently, there will be always some ambiguity at the decision boundaries. 

• Right Data: Selection of relevant objects and labels. Distinguish between relevant and 
not relevant objects for the current traffic scene. Typically, not so relevant objects are 
hard to label. 

All these aspects are crucial for safety considerations and therefore subject of evaluation within 
homologation processes (Figure 6). To assess the safety aspects of automated vehicles, the 
above-mentioned validation data can be embedded in homologation frameworks, which 
comprise several steps and strategies to create suitable test scenarios for automated vehicles. 

4.6 Talk #6: Challenges for AI Service Providers 

Service providers for AI either develop or operate AI systems on behalf of their customers. 
This relationship is independent from the organizational affiliation of the service provider, i.e. 
an AI- department inside the same company providing AI-services to a market going business 
unit of the same corporation has to be treated the same as an external customer and hence, 
the same quality and documentation standards shall apply. Naturally and depending on the 
use-case, such services can be different, as can the underlying technology. Therefore, on top 
of mastering the technology, important quality criteria for an AI service provider are to 
properly manage the development, deployment and operations process of AI-systems, as well 
as the risks associated with it in a repeatable and replicable fashion. 

Quality management and risk management are nothing new in software development and the 
associated best practices have been widely published and embraced. However, the quality of 
AI-systems is determined at least as much by the quality of the data used for training and 
validation as by the quality of the software per se. Hence, the challenge for ML or AI is how to 
fuse the well understood software-devops process, which manages the software lifecycle with 
the new data-lifecycle, which manages everything from data provenience, wrangling, 
labelling, re-purposing the data as well as meta-data but also possible re-use application 
specific data, e.g. weights of a trained model. Therefore, a new term has been minted – ML 
Ops for ML Ops processes, which are not limited to ML, but also expand to other domains of 
AI, such as neural networks. A proper ML Ops process does not only allow better 
reproducibility and auditability, but, if done right, also increases velocity of 

Figure 6: Most important steps of the assessment within homologation processes 
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development/deployment and security of AI applications. 

Microsoft responsible AI Principles embrace the management of audit trails (tracking of end 
to end lineage) & datasheets (document metadata) of a ML model along its entire lifecycle as 
a key component. It also introduces MLOps Maturity stages, which reflect an organizations 
ability to tightly and replicable manage AI-development and operation, including retraining 
and versioning/release management (Figure 7). 

How does this approach stack up against the requirements of the proposed certification 
readiness matrix? Obviously, only a subset of categories can be addressed directly by an ML 
Ops process, namely the dimensions traceability and risk management. Others, e.g. Security, 
Robustness or Explainability can be indirectly addressed via specific parameters or acceptance 
criteria, though. In the current definition of MLOps maturity stages, mainly procedural 
parameters are tracked, i.e. if run results and model artifacts are captured and how they are 
tracked. The requirements to do this in a repeatable and standardized way and the 
appropriate metrics for model retraining are a precondition to reach maturity level on the ML 
Ops process. This implies that such performance indicators are there and can be quantified. 
Guidance, exactly which results and artifacts have to be documented and in which granularity 
this needs to happen still needs to be made explicit, bound to the industry and the severity of 
influence it can put a human's life. This type of severity can be standardized through an 
MLOps approach to make sure that local regulation can be audited in the correct way. 
Furthermore, an agreed upon taxonomy and ways to describe datasets needs to be used as 
the basis for documentation. The foundation and possible pathway is outlined in “Datasheets 

Figure 7: Microsoft MLOps maturity model 
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for Datasets’, which now needs to be operationalized, refined and subsequently translated 
into generally accepted best practice [25]. 

4.7 Talk #7: Developing and Certifying Trustworthy and Reliable Telemedical Systems 

AI has become a strong trend in IT in recent years, both at the customer and enterprise level. 
The AI sub-discipline ML in particular contributes to the lasting success of AI systems. With ML 
techniques and sufficiently large data sets, it is possible to find correlations and hidden 
patterns that humans would not be able to detect on their own. ML prediction models based 
on object recognition systems in the field of computer vision, for example, are already 
autonomously making decisions with, in cases like autonomous driving or medical decision 
support systems, far-reaching effects. 

Compared to previous technologies, however, due to its complexity the decision-making 
process of AI, and specifically (deep) ML models, is often difficult or even impossible to 
comprehend. 

In order to increase trust in AI systems, questions such as "can an AI system be responsible?", 
"how can or should AI developers take responsibility?" and, "what ethical principles should 
guide responsible AI?" need to be clarified. Answers to these questions could be derived 
from, for example, biomedical ethics, which provides a starting point for ethical AI with 
requirements like respect for autonomy, beneficence, nonmaleficence, justice, and 
"explicability". These principles, their implementation in the development process and the 
verification of the chosen answers must be worked on in a multidisciplinary manner. Experts 
from Computer Science, Engineering, Sociology, Philosophy, Psychology, and Law must be 
involved as well as those stakeholders who use and are affected by the AI systems to be 
developed. 

TÜV certification plays a central role as a trustworthy assessment. In the context of the use 
case "Skin Lesion App", a mobile application for skin cancer detection based on ML 
technology and secure telemedicine platform for dermatology, the TÜV AUSTRIA Trusted AI 
Audit Catalog will be presented, which was developed together with Prof. Sepp Hochreiter 
from the Machine Learning Institute of the Johannes Kepler University Linz. The Trusted AI 
Audit Catalog and the audit process itself, are based on three pillars, which support the areas 
of "Secure Software Development", "Functional Requirements" for ML and "Ethics and 
Privacy". In addition, the catalog assesses the risk potential of an AI application and adapts 
the different sets of questions accordingly. 

Currently, the catalog allows supervised ML application with low risk to be assessed and 
certified. For example, with the help of the catalog, critical issues of the "Skin Lesion App" 
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related to privacy-related data and data bias were identified and highlighted at multiple levels 
in the audit catalog modules "Functional Requirements" and "Ethics and Privacy". As a result, 
the Trusted AI Audit Catalog for the certification of ML applications was able to demonstrate 
that ethics by design were consistently applied in the development of the "Skin Lesion App" 
and that it is responsibly embedded in the telemedical context. 

4.8 Talk #8: Risk Classes as the Basis for AI Auditing 

The AI Act proposal of April 2021 is a pioneering attempt of defining a legal framework for AI 
regulation. In its essence, it follows a risk-based approach with four AI risk classes ranging 
from minimal over low and high to unacceptable. The risk class assesses what level of risk an 
AI application poses to people, organizations or society as a whole. Depending on the risk 
classification, different regulatory requirements for AI operators apply. 

It is assumed that most AI applications on the market will be classified as minimal risk. This 
space is intended to be entirely unregulated with no legally binding obligations for operators. 
An example application that falls into this category would be a common product 
recommender system as applied in various forms by many e-commerce platforms. 
Unacceptable risks applications are conflicting with European values and define the other 
extreme of the spectrum. The operation of these applications is prohibited entirely. An 
example for such an application would be a social scoring system that rates citizens based on 
their beliefs and actions in order to control their access to aspects of society. 

The AI Act proposal distinguished between two categories of AI systems, component and 
stand-alone. An AI component is defined as a part or module of a system that is already 

Figure 8: Two-dimensional AI risk space with subdivision in four risk classes and example applications for each class. 
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subject to existing regulations. These components are automatically classified as high risk. AI 
systems that are deployed outside of an existing regulatory framework are called stand-alone 
AI systems. 

One question that arises might be the following. What is AI risk and how is the risk class of a 
given application determined? [26] proposes a two-dimensional scheme for assessing AI risk. 
One axis denotes the damage potential of an AI system, or how impactful bad AI decision 
making can be. The other axis denotes dependence, or to what extend a human depends or 
subordinates on AI decisions. Fig. 8 shows a visualization of that space along with some 
example applications. 

For unacceptable risks, the definition in the AI Act is quite clear leaving little room for 
interpretation. The class of high risk systems is defined via a list of concrete applications in the 
appendix, where an actual risk has materialized in the past. The AI Act appears to follow a 
reactive approach for classifying a system as high risk rather than a proactive one. With every 
new application that poses a high risk, that list needs to be updated. On the other hand, 
applications can slightly be altered specifically for avoiding a high-risk classification, which 
may lead to a cat-and-mouse game between AI operators and legislation. To facilitate the 
operationalization of the AI Act, a clear methodology of set of rules for systematically 
determining the risk class of an AI application is required. 

4.9 Talk #9: Standardized AI/ML Model Validation in Healthcare: The ITU/WHO Focus 
Group on "AI for health" 

AI and ML offer a large potential for clinical and public health, with a wide range of use cases 
that can benefit from AI/ML-powered automation. Typical application examples include 
medical image classification, segmentation, or reconstruction, as well as systems for lab data 
analysis, decision support, or disease risk assessment. Prior to and during the usage of a given 
AI/ML tool in practice, it must be assured that the method and its implementation are safe 
and effective, and can be applied with good faith for the intended use. Forthcoming standards 
for health AI are expected to play a crucial role in facilitating the responsible use of the 
promising AI/ML technology. Standards will need to cover both qualitative as well as 
quantitative quality control procedures along the entire AI life cycle that can assure that the 
tools are accurate, robust, fair, and overall trustworthy. In 2018, the International 
Telecommunication Union (ITU) and the World Health Organization (WHO) have established a 
joint focus group on AI for health (FG-AI4H), as collaborative initiative to explore 
standardization needs and possibilities. FG-AI4H members and leadership include experts 
from different disciplines from around the globe that are engaging in a steady and well 
documented dialogue. Numerous topic groups tackle specific health use cases, e.g., to fight 
Tuberculosis, Malaria or cardiovascular diseases with the help of AI/ML, and aim at proposing 
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standardized procedures to benchmark AI models for a given task, on undisclosed, 
reproducible test data, as technical validation step prior to the eventual clinical evaluation 
following best practices. The regulatory, ethical and technical perspectives are considered by 
several FG-AI4H working groups that are dedicated to overarching themes, which affect all 
topic groups. FG-AI4H establishes processes and related policies, and creates reference 
documents with best practices. The processes and documents are being mirrored in open-
source reference implementations, that will support the entire assessment process, including, 
e.g., ground truth annotation tools and a benchmarking platform for health AI, which makes 
possible the auditing of AI technology taking both quantitative and qualitative criteria into 
account.  

4.10 Talk #10: ML Based Biometrics: Challenges and Extension of Existing Audit Schemes as 
a Basis for Standardization 

Biometric systems are increasingly used in a wide range of applications (Figure 9). Whether 
smartphones, banking applications or border control within airports, the use of unique 
features of individuals (e.g. face, fingerprint or retina) replaces classic authentication 
techniques like passwords and provides a higher usability. ML has become an indispensable 
part of Biometric systems extracting and recognizing the features of the raw image data.  

Despite the relatively high fault tolerance and performance of ML techniques, every ML based 
biometric application suffers from specific vulnerabilities evoked from the robustness issues 
of ML. E.g. Adversarial Attacks can be applied to spoof the system. As biometric systems are 
commonly embedded in security critical areas and applications, the authentication process 
shall comprise a zero or relatively small False Acceptance Rate (FAR) to avoid unauthorized 
access to the system. Thus, current standards and schemes (e.g. Fido, NIST/ISO, Common 
Criteria) for biometric systems define certain countermeasures, FAR values and mitigations to 
keep the required security levels. 

Figure 9: Basic functionality of a biometric system 
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Unfortunately, the ML specific issues are not completely in scope of the existing standards 
and schemes. Even if low FAR values are measured by performance testing and anti-spoofing 
techniques are implemented, the system can be still vulnerable against adversarial attacks or 
similar attack vectors targeting the underlying ML Model. To close this gap, current or future 
schemes shall extend or add requirements in order to address such ML specific vulnerabilities 
(Figure 10). Relevant aspects could be comprising the evaluation regarding adversarial 
robustness of the model and mitigation strategies against adversarial examples. Other aspects 
may cover requirements for “feature checks” and “model stealing”. Feature checks address 
the need of checking the features taken into account for the classification process and 
conducting plausibility checks to avoid the influence of non-relevant features (e.g. 
background, noise etc.). In case of model stealing, an attacker might try to extract and re-
build the used ML Model (victim) in order analyze the extracted model within an unprotected 
environment and eventually to craft attacks “white box” transferable to the victim model. 

Figure 10: Possible extension of an existing scheme: ML specific issues. 
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5 Conclusion, Future Challenges and Next Steps 

Due to the complex lifecycle of connectionist AI systems embedded in applications, physical 
systems and organizations, due to the multitude of interdependent aspects that need to be 
considered for security and safety relevant AI systems [2] and as a prerequisite for the 
operationalization of AI regulations such as the EU AI Act, requirements, audit methods and 
audit tools have to be available for practical use for all relevant aspects and for all relevant 
lifecycle phases of AI systems. As of now the requirements, audit methods and audit tools are 
not available to a sufficient degree but the development in the field is highly dynamic as 
illustrated by the strong increase in practically oriented approaches to auditing AI systems (cf. 
e.g. the approaches presented during this workshop). Strong efforts in research and 
development are required but these efforts have to be focused and prioritized. As a basis, the 
state of the art and the progress of auditability for relevant applications and for AI systems in 
general have to be periodically assessed and presented in a comprehensive way. 

In this whitepaper we propose a “Certification Readiness Matrix” (Figure 1) as a tool to assess 
and present the state of the art in a comprehensive, comparable and dynamically traceable 
way. Based on the results from 10 talks throughout the workshop that each focused on a 
unique combination of aspects, life cycle phases and use cases (Figure 2), we aggregated the 
results and estimate that, despite substantial progress, a lot of work has yet to be done. This 
is especially the case for the technically challenging aspects IT-security, safety, robustness and 
interpretability while aspects such as traceability and risk management may be, to a large 
extent, dealt with using variations of existing methods and tools. In our view it is desirable to 
further develop the certification readiness matrix presented above: in order to make it an 
reliable basis for tracking developments and for prioritizing and coordinating future work in 
research and development, score requirements have to be developed and formulated in a 
comprehensive way for all cells of the matrix. Subsequently, the matrix should be applied to 
important use cases and updated over time until the AI Act may finally go into operation.  
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