
A Proposal for Functionality Classes for Random
Number Generators

Version 2.35 - DRAFT

Matthias Peter
Bundesamt für Sicherheit in der Informationstechnik (BSI)

Werner Schindler
Bundesamt für Sicherheit in der Informationstechnik (BSI)

September 2, 2022

Abstract

This document proposes an evaluation methodology for true and deterministic random
number generators. This document is updating the mathematical-technical reference of
both, the AIS 20 (Funktionalitätsklassen und Evaluationsmethodologie für deterministische
Zufallszahlengeneratoren. Version 3.0, May 15, 2013) and AIS 31 (BSI. Funktionalität-
sklassen und Evaluationsmethodologie für physikalische Zufallszahlengeneratoren. Version
3, May 15, 2020), which define the evaluation methodology for true and deterministic ran-
dom number generators in the German Common Criteria certification scheme.

ii A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

Acknowledgments

The authors wish to express their thanks for the numerous comments, suggestions, and notes
that have been incorporated into this document.

Our special thanks to

Adrian Gabriel (Bundesamt für Sicherheit in der Informationstechnik (BSI)), Elaine Barker
(National Institute of Standards and Technology (NIST)), Markus Dichtl, Jonas Fiege (Bun-
desamt für Sicherheit in der Informationstechnik (BSI)), Viktor Fischer (Hubert Curien Labo-
ratory, Jean Monnet University Saint-Étienne), Aron Gohr, John Kelsey (National Institute of
Standards and Technology (NIST)), Wolfgang Killmann, Kerry McKay (National Institute of
Standards and Technology (NIST)), Johannes Mittmann (Bundesamt für Sicherheit in der In-
formationstechnik (BSI)), Stephan Müller (atsec), Jean-Renè Reinhard (Agence nationale de la
sécurité des systèmes d’information (ANSSI)), Ernst Schulte-Geers (Bundesamt für Sicherheit in
der Informationstechnik (BSI)), Torsten Schütze (Rohde & Schwarz), Meltem Turan (National
Institute of Standards and Technology (NIST)).

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

iii

Contents

Contents

1 Introduction 1

1.1 Foreword . 1

1.2 Character of this Document . 1

1.3 Structure of this Document . 2

2 AIS 20 and AIS 31 — Scope, Limits, RNG Classes, and Concepts 4

2.1 Scope and Limits of the AIS 20 and AIS 31 . 4

2.2 RNG classification and functionality classes . 5

2.3 Stochastic model for PTRNGs . 7

2.4 Other random number generator (RNG) standards 10

3 Functionality classes 12

3.1 Evaluation of the RNG: General aspects . 12

3.2 Overview over the functionality classes . 13

3.3 DRNG: Functionality classes . 15

3.3.1 DRNG: Main Differences from [AIS2031An_11] 16

3.3.2 DRG.[2,3,4]: Definitions, requirements, and justification 17

3.3.3 Functionality Class DRG.2 . 27

3.3.4 Functionality Class DRG.3 . 30

3.3.5 Functionality Class DRG.4 . 34

3.4 PTRNGs: Functionality classes . 38

3.4.1 PTRNG: Main Differences from [AIS2031An_11] 39

3.4.2 PTG.[2,3]: Definitions, requirements, and justification 40

iv A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

Contents

3.4.3 Functionality Class PTG.2 . 44

3.4.4 Functionality Class PTG.3 . 52

3.5 NPTRNG: Functionality classes . 60

3.5.1 NPTRNG: Main Differences to [AIS2031An_11] 61

3.5.2 NTG.1: Definitions, requirements, and justification 61

3.5.3 Functionality Class NTG.1 . 64

3.5.4 Security functional requirements for the non-physical true RNG (NPTRNG)
class NTG.1 . 64

3.6 Cross-class Topics . 67

4 Mathematical Background 70

4.1 Randomness and Random Experiments . 70

4.2 Probability, stochastics, random variables . 71

4.2.1 Definitions and basic concepts . 71

4.2.2 Useful theorems and facts . 80

4.3 Entropy and Guess Work . 86

4.3.1 Entropy . 86

4.3.2 Guess Work and Work Factor . 92

4.4 Random mappings . 94

4.4.1 Iteration of random mappings: statistical properties 95

4.4.2 Impact on the work factor and on the entropy 95

4.5 Stochastic model, online test, total failure test, start-up test 111

4.5.1 Stochastic model: motivation and definition 112

4.5.2 Example: Stochastic model for coin tossing 117

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

v

Contents

4.5.3 Online test . 119

4.5.4 Total failure test . 124

4.5.5 Start-up test . 126

4.6 Evaluator Blackbox Test Suites . 126

4.6.1 Specification of Statistical Tests . 128

4.6.2 The test suite Trrn . 133

4.6.3 The test suite Tirn . 135

5 Examples 137

5.1 Examples of Algorithmic Post-processing . 137

5.1.1 Fixed compression rate . 138

5.1.2 Von Neumann unbiasing . 141

5.1.3 Thinning out . 142

5.2 Evaluation of DRNGs: Miscellaneous aspects . 142

5.2.1 AES in Output feedback (OFB) mode . 143

5.2.2 Pure and hybrid DRNGs and a (too) simple state transition function . . . 145

5.2.3 One-way functions derived from the advanced encryption standard (AES)
block cipher . 148

5.3 NIST Approved Designs [SP800-90A]: Conformity analysis with regard to DRG.3
and DRG.4 . 148

5.3.1 Security Evaluation of the Hash− DRBG [SP800-90A] 150

5.4 Noise Sources and Stochastic Models . 161

5.4.1 Examples of physical and non-physical noise sources 162

5.4.2 PTRNG with two noisy diodes . 163

vi A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

Contents

5.4.3 Sampling events with iid intermediate time intervals – Design A 173

5.4.4 Sampling events with iid intermediate time intervals – Design B 186

5.4.5 PTRNG exploiting radioactive decay . 188

5.4.6 A PLL-based physical noise source . 192

5.5 Online tests . 195

5.5.1 A look at single statistical tests . 196

5.5.2 A more sophisticated online test procedure 199

5.6 Linux /dev/random and /dev/urandom . 207

Glossary 211

Acronyms 218

Abbreviations from Common Criteria 219

Symbols 220

References 223

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

vii

List of Tables

List of Tables

1 work factor wλ(X⃗ = (X1, . . . , Xn)) for several success probabilities λ: X1, . . . , X128
are independent and identically distributed (iid) B(1, p)-distributed; the top row
describes the ideal case. 94

2 Statistics of random mappings on A, |A| = n; cf. [Flod89] 96

3 Statistics of random permutations on A, |A| = n, cf. [Golo64; PuWi68] 97

4 Case γ
m log(2) −→ ∞ (cf. par. 595): Min-entropy defect per output bit for different

parameters, hmin,(n,m,z), computed with formula (4.162) 108

5 Statistical tests: error types . 128

6 Coron’s entropy test; assumption: B1, B2, . . . are iid uniformly distributed on
{0, 1}; cf. [Coro99], Table 1 . 132

7 Coron’s entropy test: exemplary values for σC =
√

Var(C5); L = 8, B1, B2, . . .
are iid uniformly distributed on {0, 1} . 132

8 Simulation experiments (design type A): Tj ∼ N(µ, σ2), µ = 1.0, sample size
N = 10, 000, 000 . 180

9 Simulation experiments (design type A): Tj ∼ N(µ, σ2), µ = 1.0, subsetsA[0.9,1.1,0.9,1.1(µ, σ),
the index ‘(A)’ indicates that sets are considered. The values in the upper
line denote the average, the values in the lower line the worst case, sample size
N = 10, 000, 000, . 180

10 Simulated probabilities for false positives and false negatives: Tj ∼ N(µ, σ2),
µ = 1.0, test sample size m, number of simulated test values N = 10, 000, 000. . . 186

11 Simulation experiments (design type B): Tj ∼ N(µ, σ2), µ = 1.0, sample size
N = 10, 000, 000 . 189

12 χ2 goodness-of-fit test on 4-bit words: simulation results for iid raw random num-
bers (Rj ∼ B(1, p)); Ns = 106 or 220 . 198

13 χ2 goodness-of-fit test on 4-bit words: simulation results for iid raw random num-
bers (Rj ∼ B(1, p));Ns = 106 . 199

viii A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

List of Tables

14 The first row provides the average number of basic tests until 5 consecutive basic
test values exceed 34.0 (event A5). The second row quantifies the probability that
a noise alarm is triggered by evaluation criterion (ER 1a,b) or (ER 2), while the
third row contains the probabilities the (ER 3) causes a noise alarm. Both row 2
and row 3 refer to a single online test suite. 205

15 The first row provides the average number of basic tests until 4 consecutive basic
test values exceed 34.0 (event A4). The second row quantifies the probability that
a noise alarm is triggered by evaluation criterion (ER 1) or (ER 2), while the third
row contains the probabilities the (ER 3) causes a noise alarm. Both row 2 and
row 3 refer to a single online test suite. 206

16 Conformity of /dev/random to NTG.1 and DRG.3; see [Linux_RNG_overview] . 210

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

ix

List of Figures

List of Figures

1 Functionality classes DRG.2 and DRG.3 (exemplary schematic designs) 13

2 Functionality class DRG.4 (exemplary schematic design) 14

3 Functionality classes PTG.2 and PTG.3 (exemplary schematic designs) 14

4 Functionality classes NTG.1 (exemplary schematic design) 15

5 min-entropy, collision entropy and Shannon entropy for binary-valued random
variables . 87

6 ideal online test: never fails if the true parameter(s) is in Agood but always fails
otherwise . 120

7 more realistic online test: significant failure probability near the border between
Agood and Abad, and large failure probability outside Agood 120

8 appropriate online test: low failure probability on Areal and large failure proba-
bility on Abad . 121

9 Relation between Areal, Agood, and Abad . 121

10 DRBG functional model of the National Institute of Standards and Technology
(NIST) approved DRBGs; source: [SP800-90A], Sect. 7, Figure 1 149

11 PTRNG with two noisy diodes (schematic design), created by W. Killmann . . . 164

12 Hardware setup of the physical true RNG (PTRNG) [KiSc08], Fig. 2 165

13 Empirical distribution of the time intervals between successive 0-1-crossings (in
ns) [KiSc08], Fig. 3 . 167

14 Percentiles of the Gamma distribution (curve) vs. the observed percentiles (circles)
of the time intervals between successive 0-1-crossings (in ns) [KiSc08], Fig. 3 . . . 167

15 Mean power spectrum of the output of the amplifier (low amplification), created
by W. Killmann . 168

16 Autocorrelation of the amplified difference of noise voltages (maximum amplifica-
tion, time in ns), created by W. Killmann . 168

17 Output signal of the operational amplifier (low amplification), time-scale in ns,
created by W. Killmann . 169

x A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

List of Figures

18 Output signal of the operational amplifier (maximum amplification), time-scale in
ns, created by W. Killmann . 169

19 Tj ∼ N(µ = 1, σ2). The black dots belong to parameters with Hmin(Y ′
2 | Y ′

1) = 0.98184

20 Tj ∼ N(µ = 1, σ2). The variance Var(Rn) separates Areal from Abad. 185

21 Tj is Gamma-distributed. The black dots belong to parameters with Hmin(Y ′
2 |

Y ′
1) = 0.98 . 187

22 PLL (Phase-locked loop); source: [FiBB19], Fig. 2 192

23 Sampling mechanism of a PLL-based physical noise source (schematic design);
source: [FiBB19], Fig. 3 . 193

24 Functional design of the Linux NPTRNG (as of kernel version 5.6); source: [Linux_RNG_2022]208

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

xi

List of Figures

xii A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

1 Introduction

1.1 Foreword

1 Random numbers are required by most cryptographic applications. Random numbers are used
to generate session keys, signature parameters, nonces, challenges, blinding, and masking values
(in order to prevent implementation attacks) to name just a few applications.

2 Weak RNGs can decisively weaken cryptographic applications. This establishes the need for
reliable and trustworthy security evaluations of RNGs.

3 In the German Common Criteria (CC) scheme for about two decades, the AIS 20 [AIS20] and
AIS 31 [AIS31] have specified how RNGs shall be evaluated. Above all they define functionality
classes for different types of RNGs. To be compliant to a particular functionality class, an RNG
must fulfill all class-specific requirements. Furthermore, the AIS 20 [AIS20] and AIS 31 [AIS31]
outline an evaluation methodology for deterministic RNGs (DRNGs) and true RNGs (TRNGs).

4 This document is the mathematical-technical reference of both AIS 20 [AIS20] and AIS 31 [AIS31].
It is intended for developers, evaluators, and certifiers.
Note: This document itself is often loosely referenced as AIS 20 [AIS20] or AIS 31 [AIS31],
respectively. Below, we follow this convention.

5 The first versions of this mathematical-technical reference were published in 1999 [AIS20An_99]
and in 2001 [AIS31An_01] (mathematical-technical references to AIS 20 [AIS20] and AIS 31 [AIS31],
respectively) when the CC still were new and no guidelines for the evaluation of RNGs existed.
Its practical evaluation criteria have been field-tested and modernized ever since. In 2011 the
mathematical-technical reference was updated [AIS2031An_11]. This is the predecessor of this
document.

6 This document distinguishes between DRNGs, PTRNGs, and NPTRNGs. In Chapter 3 six
functionality classes are defined (DRG.2, DRG.3, DRG.4, PTG.2, PTG.3, NTG.1). Each func-
tionality class specifies requirements that an RNG has to fulfill to be compliant to that class.
Most of these functionality classes are hierarchically ordered with regard to their requirements
and thus with regard to their security strength. The overall strongest class is PTG.3.

7 Compared to its predecessor [AIS2031An_11] two functionality classes have been cancelled,
namely DRG.1 and PTG.1. The definitions of the remaining functionality classes are similar to
those in [AIS2031An_11] (which justifies maintaining their class names), but they are different
in detail. An in-depth explanation of the differences to the specifications in [AIS2031An_11] can
be found in the Subsections 3.3.1, 3.4.1, and 3.5.1.

1.2 Character of this Document

8
A Proposal for Functionality Classes for Random Number Generators

Version 2.35 - DRAFT
1

1 Introduction

The specification of the functionality classes takes into account that consuming cryptographic
applications have different security requirements and may run on devices with different resources
and limitations. This document does not assign functionality classes to the cryptographic appli-
cations. This is part of the security evaluation of the devices that consume random numbers.

9Part 1 of the technical guideline TR 02102 [TR-02102] recommends cryptographic mechanisms,
including appropriate functionality classes for the employed RNG. The same applies to the elliptic
curve document of the AIS 46 [AIS46_ECC] but there the focus is on Elliptic-curve cryptography
(ECC).

10Apart from this document, the Bundesamt für Sicherheit in der Informationstechnik (BSI) also
provides other documents on the security of RNGs (e.g., [Linux_RNG_2016], [Linux_RNG_2020],
[Linux_RNG_2022], and [RNG_virtual_env]). They can be found here.

11This document does not contain a complete evaluation methodology (which would precisely
describe the tasks of the developer, the evaluator, and the certifier), but it specifies for each
functionality class a list of deliverables (including security proofs) that an applicant of a certificate
has to provide to the evaluator. The complete evaluation methodology is specified by separate
documents to which the AIS 20 [AIS20] and AIS 31 [AIS31] refer. This approach has the
advantage that this document can easily be applied to evaluation schemes other than the CC
(Common Criteria).

12This document does not make any statements about the patent situation of mechanisms described
here.

1.3 Structure of this Document

13This document consists of five chapters.

14Chapter 1 places this document in the overall context.

15Section 2.1 explains the scope and the limits of this document. These explanations are relevant
for the overall evaluation of the device in which the RNG is implemented. Sections 2.2 and 2.3
give a brief introduction and motivation for readers who are not yet familiar with AIS 20 and
AIS 31. Both sections may be skipped by experienced readers without loss of information.
Finally, Section 2.4 briefly addresses other RNG standards.

16Chapter 3 is the core of this document. Six functionality classes for DRNGs (DRG.2, DRG.3,
DRG.4), PTRNGs (PTG.2, PTG.3) and NPTRNGs (NTG.1) are defined and application notes
explain how to apply the particular requirements. One subsection addresses cross-class aspects.
Furthermore, in Chapter 3 background information is explained, definitions are introduced, and
the specification of the functionality classes is motivated. Chapter 3 refers at various places to
sections, subsections, paragraphs and concrete examples of Chapter 4 and Chapter 5. These
references may be normative or informative.

17
2 A Proposal for Functionality Classes for Random Number Generators

Version 2.35 - DRAFT

https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Informationen-und-Empfehlungen/Kryptografie/Zufallszahlengenerator/zufallszahlengenerator_node.html

1.3 Structure of this Document

Chapter 4 provides central mathematical concepts that are important or at least helpful for the
evaluation of RNGs according to AIS 20 and AIS 31. Chapter 4 also serves as a reference for
different questions that commonly arise during the evaluation of an RNG. In Section 4.5 the
concept of a stochastic model and the purpose of the online test and of the total failure test
are explained in detail and illustrated by simple examples. To be compliant to the functionality
classes PTG.2 and PTG.3, PTRNGs need to apply effective online tests and total failure tests
while the stochastic model is the core of an evaluation of a PTRNG. In Section 4.6 the statistical
tests are specified that the evaluator has to apply to the raw random numbers of PTRNGs.

18 Chapter 5 illustrates the concepts of Chapter 4 by more complex examples. This may be useful
for both the design and the evaluation of cryptographic post-processing and non-cryptographic
post-processing algorithms, the evaluation of noise sources, and online tests. Exemplary veri-
fications of the requirements of the functionality classes are intended to make developers and
evaluators familiar with the subject matter. In Section 5.3 the conformity of the approved designs
in [SP800-90A] to the functionality classes DRG.3 and DRG.4 is analyzed. Developers (appli-
cants for certificates) may refer to Section 5.3, which disburdens them from having to produce
security evidence themselves. Section 5.6 summarizes the results from a long-term study on the
Linux RNGs, /dev/random and /dev/urandom, commissioned by the BSI. These results can be
referenced by the developers.

19 A glossary, lists of acronyms, abbreviations from Common Criteria, and of symbols, and the
references conclude the document.

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

3

2 AIS 20 and AIS 31 — Scope, Limits, RNG Classes, and Concepts

2 AIS 20 and AIS 31 — Scope, Limits, RNG Classes, and
Concepts

20Chapter 2 is informative. Section 2.1 outlines the scope and the limits of AIS 20 and AIS 31,
while Sects. 2.2 and 2.3 explain the fundamental concepts of this document. In particular, the
classification of RNGs is motivated. The Sections 2.2 and 2.3 are written for readers who are
not yet or only slightly familiar with the AIS 20 and AIS 31. These sections are intended to
facilitate the introduction to the subject area. We do not provide detailed definitions there as
they are stated and explained in the subsequent chapters. Furthermore, the text is linked to the
glossary. The Sections 2.2 and 2.3 may be skipped by experienced readers.

2.1 Scope and Limits of the AIS 20 and AIS 31

21This document treats DRNGs (deterministic RNGs), PTRNGs (physical RNGs), and NPTRNGs
(non-physical true RNGs). In Chapter 3 six functionality classes are defined. Generic require-
ments are formulated that an RNG has to fulfill to be conformant to a particular functionality
class. The requirements are technology neutral and thus leave room for new designs. This shall
encourage research and new developments in this field. Whether a particular RNG actually
fulfills these requirements has to be verified in a security evaluation.

22Besides the requirements of the functionality class, further aspects and features exist, which are
also relevant for the security of random number generation, but that are largely outside the scope
of this document. An RNG is usually not the Target of Evaluation (TOE) of a CC evaluation
but a component of a larger device (e.g., of a smart card or software product) that employs the
RNG. Depending on the threats, assumptions, and security objectives formulated in the Security
Target (ST), there are additional requirements that have to be covered by the overall security
evaluation of the product. Below we briefly address several aspects. We do not claim that this
list is exhaustive.

23As a rule, the vulnerability analysis of smart cards is performed according to the requirements of
the highest class, AVA−VAN.5. In particular, if an RNG is a component of a smart card (which is
usually the case for PTRNGs), the RNG implementation shall be secured against implementation
attacks (par. 26) and attacks on the memory and data channels (par. 27), all against high attack
potential.

24A developer of a cryptographic application has to select an RNG belonging to an appropriate
functionality class. This document contains advice and informative examples for what purpose
RNGs from different functionality classes can be used. However, it does not assign functionality
classes to cryptographic applications. Whether a particular functionality class is suitable for a
cryptographic application is part of the security evaluation of this application. Furthermore, con-
siderations regarding resilience or redundancy in order to satisfy safety requirements or provide
additional security are out of scope.

25The output values of RNGs treated in this document behave (in a certain sense and to a par-
ticular degree) similarly to values assumed by independent random variables that are uniformly

4 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

2.2 RNG classification and functionality classes

distributed on {0, 1} or on {0, 1}k for some integer k > 1. For many applications (e.g., generating
a key for a block cipher), the generation of bit strings of an appropriate length usually suffices.
But other applications require random values with special properties (e.g., uniformly distributed
values in {0, 1, . . . , q − 1} for Elliptic Curve Digital Signature Algorithm (ECDSA) or prime
numbers of a certain size for Rivest–Shamir–Adleman cryptosystem (RSA)). The transformation
from random bit strings to application specific random values is not part of a general-purpose
RNG and thus not considered in this document. Instead, this is part of the evaluation of the
respective cryptographic application. In the case of using a DRNG, this evaluation also needs
to consider whether the security level (of cryptographic mechanisms) provided by the random
numbers is sufficient. The technical guideline [TR-02102] proposes appropriate transformations
for the above-mentioned applications.

26 Devices intended for high security applications are usually required to be resistant to implemen-
tation attacks. In particular, this comprises hardware attacks, side channel attacks, and fault
attacks. In this case, the noise source as well as the algorithmic components of an RNG need to be
protected against attacks that might compromise or allow the manipulation of random numbers.
Such attacks are not discussed in this document but have to be covered by the overall security
evaluation of the product. While fault attacks are outside the scope of this document, accidental
failures and unintended weaknesses of the noise source are considered in the functionality classes
for PTRNGs (cf. online test and total failure test).

27 Memory and data channels containing sensitive data should be protected against unauthorized
access and manipulation during operation and memory should be securely erased after use. This
may comprise physical security measures, restrictions regarding logical access and attacks, or
protection against cloning due to virtualization. Examples of sensitive memory areas include the
internal state of a DRNG instance, a ring buffer of a PTRNG, or registers used for cryptographic
post-processing. Furthermore, it might be necessary to establish replay-protected secure channels
to guarantee authenticity, integrity, and confidentiality of messages between components of the
RNG and applications requesting random numbers. These considerations should be taken into
account in the overall system design and are outside the scope of this document.

28 The online tests and total failure tests treated in this document focus on asserting a proper
working condition of a noise source. Other tests that are not directly used to assess the quality
or the strength of the RNG are out of scope. For example, known-answer tests (KATs) or other
self tests in order to ensure the correct basic working of a device (e.g., algorithmic parts of
an RNG) are not covered by this document. Whether the RNG applies such tests should be
explained in the ST of the TOE.

2.2 RNG classification and functionality classes

29 The random number generators (RNGs) considered in this document output random bit strings,
i.e., digital binary-valued random sequences. We point out that this constraint does not exclude
constructions having analog intermediate values. In this section we illuminate and explain funda-
mental concepts behind the AIS 20 and AIS 31. The following explanations shall ease the reading
of this document. They are informative and do neither replace or supersede the requirements of
the particular functionality classes defined in Chapter 3 nor the corresponding application notes.

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

5

2 AIS 20 and AIS 31 — Scope, Limits, RNG Classes, and Concepts

30The crucial question when evaluating random generators is: which properties constitute a secure
RNG? A ‘natural’ requirement would be the following: The RNG should output all admissible
values with the same probability and independently from predecessors and successors. This
characterizes an ideal RNG, which is easy to define in terms of random variables. However, it
is a purely mathematical construct. In the real world it is virtually impossible to build an ideal
RNG, at least in a strict mathematical sense. Furthermore, even if an ideal RNG existed it would
be infeasible to prove or verify ideal randomness.

31Instead, the best one can do is to aim for RNGs that are ‘close’ to an ideal RNG in a certain sense.
The rationale is that IT security applications usually demand ‘secure’ random numbers, which
can neither be predicted nor determined later. For TRNGs this ‘security’ can be measured in
terms of entropy, while for DRNGs a computational equivalent is needed. This document divides
RNGs into three main classes.

32The first class contains the deterministic RNGs (DRNGs) a.k.a. pseudorandom number gen-
erators (PRNGs). DRNGs ‘extend’ short random sequences (seeds) from an entropy source to
(possibly) very long output sequences of random bits in a deterministic way. These output se-
quences look random, but the total entropy cannot be larger than that of the seed. Sometimes
additional input is provided during the life cycle of the DRNG. Well-known examples of DRNGs
are the approved designs in [SP800-90A].

33The second class comprises the physical true RNGs (PTRNGs). PTRNGs produce high-entropy
random bits from a physical noise source based on a randomness-exhibiting physical phenomenon.
This phenomenon may be realized by a physical experiment or by an electronic circuit. Usually,
this allows precise entropy estimates. Examples of PTRNGs include constructions based on ring
oscillators whose random behavior may be traced back to thermal noise or constructions based
on Zener diodes.

34Finally, the third class consists of non-physical true RNGs (NPTRNGs). NPTRNGs also deliver
true random bits but gather their entropy from non-physical noise sources for which a precise
entropy estimate is usually impossible because the NPTRNG may run on completely differ-
ent platforms which are not under the control of the designer. A well-known example are the
implementations of /dev/random in certain versions of the Linux kernel.

35It is not always possible to sharply distinguish between these three classes because RNGs may
have design features from both DRNGs and TRNGs. For instance, DRNGs may get additional
input during their life cycle, and TRNGs may apply a cryptographic post-processing.

36For the evaluation we conceptually divide RNGs into a deterministic part and a non-deterministic
part.

37A hybrid RNG is a RNG that has security properties of both DRNGs and TRNGs. This requires
a cryptographic post-processing (with memory).

38This document aims at being as open as possible regarding RNG designs and keeping require-
ments to a minimum. Apart from mild assumptions on the format of the random numbers and

6 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

2.3 Stochastic model for PTRNGs

on the minimum (average) entropy per bit (for TRNGs), there are almost no restrictions as to
what technology or constructions may be used to build an RNG that can be evaluated according
to this document. Instead of approved designs, the functionality classes in Chapter 3 formulate
technology-independent requirements and specify evidence that the developer needs to provide.
This does, however, exclude constructions for which the developer is not able to provide sufficient
evidence, maybe due to lack of a clear design rationale or access to intermediate values.

39 This document defines six functionality classes (DRNGs: DRG.2, DRG.3, DRG.4, PTRNGs:
PTG.2, PTG.3, NPTRNGs: NTG.1). The functionality classes DRG.4, PTG.3, and NTG.1
define hybrid RNGs. Precise definitions of these functionality classes are given in Chapter 3.

2.3 Stochastic model for PTRNGs

40 The key property of TRNGs is their ability to deliver random numbers which, prior to leaving the
device, contain a certain amount of entropy. That means that any entity observing the TRNG
from the outside, irrespective of its knowledge about the design of the TRNG, its computational
power, or cryptanalytic abilities, is uncertain about the value of the next random number to
the degree specified by the entropy claim. This advantage over DRNGs comes at the price of
being, in general, more difficult to evaluate. A DRNG’s computational security can be evaluated
independently of its implementation, and approved standard DRNG mechanisms exist. This is
not true for TRNGs, however, where the same design may behave completely different when using
different hardware. Due to a lack of standards, TRNGs can take on many different forms and
utilize various physical phenomena or properties of the underlying technology. A standardized
evaluation approach for TRNGs must be able to cope with this diversity and provide a method
for establishing, in each case, with a very high degree of assurance that the output does indeed
contain the claimed amount of entropy.

41 A common approach to establish a baseline of assurance is subjecting a TRNG’s noise source to
a pre-defined series of statistical tests. The idea behind this approach is the following. Entropy
is a property of the noise source itself and not the random data produced by it. In mathemat-
ical terms, random numbers are a realization of a sequence of random variables describing the
behavior of the noise source. The entropy of the random numbers (prior to observing them)
depends on the properties of the sequence of random variables. An empirical analysis of the
random numbers may allow a determination of the properties of the random variables and thus,
the entropy.

42 Such statistical tests analyze input data for certain properties or attempt to find regularities or
patterns that allow a partial prediction of the input stream. Indeed, if a TRNG is consistently
found to behave less random than expected, it can be safely assumed that this TRNG does not
meet its claim. Unfortunately, the converse is not true. The property of a sequence of random
variables having a certain entropy means that is it not completely determined by patterns.
However, there are infinitely many ways to completely or partly prescribe a stream of output
values. Statistically verifying an entropy claim would therefore require demonstrating the absence
of any (characteristic) pattern. Then again, any finite collection of statistical tests can only check
for finitely many types of patterns.

43
A Proposal for Functionality Classes for Random Number Generators

Version 2.35 - DRAFT
7

2 AIS 20 and AIS 31 — Scope, Limits, RNG Classes, and Concepts

Another problem with solely relying on statistical testing is that entropy depends on one’s knowl-
edge. Blackbox tests, in the sense that they are not tailored to the design of the noise source,
will perceive all information in their input as random. But, while interference from a nearby
data bus or power supply can provide additional entropy, this information may also be available
to an outside observer. Furthermore, an adversary who is very acquainted with the design of the
noise source, may have a much higher chance of predicting the random number than a generic
algorithm. Therefore, a blackbox statistical evaluation of a noise source without considering its
nature is prone to overestimate the quality of a TRNG.

44This document describes a practical approach that is applicable to most PTRNGs (and also
some NPTRNGs). The relevant portions of the possibly extremely complex behavior of the
noise source are taken into account to construct a stochastic model that approximates the true
behavior. Taking the stochastic model as a postulate, suitable statistical tests can be chosen
to empirically determine relevant parameters and finally calculate the entropy. This approach
has been field-tested and successfully applied to many PTRNGs. The working definition of a
stochastic model is as follows.

45A stochastic model provides a partial mathematical description (of the relevant properties) of
a (physical) noise source using random variables. It allows the verification of a (lower) entropy
bound for the output data (internal random numbers or intermediate random numbers). For-
mally, a stochastic model consists of a family of probability distributions that contains the true
distribution of the noise source output (raw random number) or of suitably defined auxiliary
random variables during the lifetime of the physical RNG, even if the quality of the digitized
data goes down. The stochastic model is based on and justified by the understanding of the
(physical) noise source.

46In quintessence, a stochastic model is a mathematical formulation of the idea from which the
TRNG was designed and how it actually works. Much of the work necessary to construct a
stochastic model should already have been done when the TRNG was conceptually designed.
Formulating the stochastic model requires an understanding how the TRNG functions. It then
enables the evaluator to also understand the idea behind it. It is for a TRNG what annotated
pseudocode is for a piece of software and, therefore, a very natural requirement for the evaluation
of a TRNG. It allows the evaluation of different TRNGs using different kinds of noise sources to
have the same level so that each submission can be treated in the same way.

47Once the relevant properties of the raw random numbers have been identified, they can be
analyzed and estimated with customized statistical tests. While blackbox statistical tests have
to consider all possible patterns, the stochastic model reveals which pattern a test needs to look
for. This means that using a stochastic model is not the opposite of statistical testing. The
stochastic model is a catalyst to make statistical testing meaningful and practical. In most
cases, a stochastic model states a class of mathematical distribution of an intermediate value,
but not its precise parameters. Using the model, those parameters can be efficiently empirically
determined for a certain device and for certain environmental conditions.

48Knowing the range in which the true parameters for devices of certain type of TRNG lie allows
the calculation of the effect of post-processing and a final determination of the entropy of the
internal random numbers. Analyzing the relationship between parameters and the entropy of
the output also allows a classification of a desired range, a tolerable range, and a non-tolerable

8 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

2.3 Stochastic model for PTRNGs

range for the parameters. Then a lean online test can be chosen to monitor the parameters and
thus determine whether the entropy claim still holds while the RNG is in operation.

49 Section 4.5 explains the concept of a stochastic model in detail.

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

9

2 AIS 20 and AIS 31 — Scope, Limits, RNG Classes, and Concepts

2.4 Other RNG standards

50Par. 57 provides a list of several RNG standards. The list does not claim to be exhaustive. Here
are some short remarks on these documents.

51The ISO standard [ISO_18031] specifies properties under which RNGs are compliant to this ISO
standard.

52The ISO standard [ISO_20543] considers the evaluation of RNGs. Like the AIS 20 and AIS 31
this standard distinguishes between the evaluation of PTRNGs and NPTRNGs. The core of a
PTRNG evaluation is a stochastic model. Furthermore, PTRNGs require efficient online tests
(health tests) and total failure tests.

53The NIST standard [SP800-22] provides a collection of statistical tests for RNGs.

54The NIST standard [SP800-90A] contains three approved designs (DRNGs). In Section 5.3 of the
present document the Hash_DRBG is analyzed. It is shown that (for specified hash algorithms)
the Hash_DRBG is compliant to the functionality class DRG.3 or even to DRG.4, provided that
the seeding procedure, reseeding procedure, and high-entropy additional input are appropriate.
Note: The document [SP800-90A] is under revision.

55The NIST standard [SP800-90B] considers entropy sources. It requires that the developer justifies
his entropy claim. Currently, a stochastic model is not mandatory, but can be used to support
the justification of the entropy claim.

56The NIST standard [SP800-90C] defines several RNGs constructions.
Note: A draft of [SP800-90C] will be published soon.

57
• [ISO 18031] ISO / IEC 18031: Information technology – Security Techniques. Random Bit

Generation. 2011 / Cor 1: 2014 / A1: 2017.

• [ISO 20543] ISO / IEC 20543: Information technology – Security Techniques. Test and
Analysis Methods for Random Bit Generators within ISO / IEC 19790 and ISO / IEC
15408. 2019.

• [SP 800-22] NIST, SP 800-22, Revision 1a: A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E.
Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, S. Vo, (revision)
L. Bassham : A Statistical Test Suite for Random and Pseudorandom Number Genera-
tors for Cryptographic Applications, April 2010. https://nvlpubs.nist.gov/nistpubs/
legacy/sp/nistspecialpublication800-22r1a.pdf

• [SP 800-90A] NIST, SP 800-90 A, Revision 1: E. Barker, J. Kelsey: Recommendation for
Random Number Generators Using Deterministic Random Bit Generators. June 2015.
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf

• [SP 800-90B] NIST, SP 800-90 B: M. Turan, E. Barker, J. Kelsey, K. McKay, M. Baish,
M. Boyle: Recommendation for the Entropy Sources Used for Random Bit Generation.

10 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-22r1a.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-22r1a.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf

2.4 Other RNG standards

January 2018. https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.
800-90B.pdf

• [SP 800-90C] NIST, SP 800-90 C, Second Draft: E. Barker, J. Kelsey: Recommendation
for Random Bit Generator (RBG) Constructions. April 2016. http://csrc.nist.gov/
publications/drafts/800-90/sp800_90c_second_draft.pdf

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

11

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90B.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90B.pdf
http://csrc.nist.gov/publications/drafts/800-90/sp800_90c_second_draft.pdf
http://csrc.nist.gov/publications/drafts/800-90/sp800_90c_second_draft.pdf

3 Functionality classes

3 Functionality classes

58In Sects. 3.3 (DRNG), 3.4 (PTRNG), and 3.5 (NPTRNG) six functionality classes are defined.
Within each subsection the functionality classes are hierarchically ordered: the classes with
greater numbers provide more security capabilities.

59To keep redundancies low, general explanations are placed before the subsections that define the
functionality classes. The reader is often referred to Chapter 4 and Chapter 5.

60The definitions of the functionality classes use security functional requirements of the CC com-
ponent FCS_RNG.1. The definition of the functionality classes is accompanied by application
notes explaining their security capabilities and quality metrics.

61The requirements of the functionality classes do not depend on the targeted assurance level (EAL
level) of the CC certification process. This also applies to the depth of the evidence.

62Section 3.6 considers cross-class aspects.

3.1 Evaluation of the RNG: General aspects

63Implementation attacks (e.g. side-channel attacks or fault attacks) constitute serious threats
against cryptographic implementations. This also applies to RNGs.

64As explained in Subsect. 2.1, in particular pars. 26 and 27, implementation attacks are not
covered by AIS 20 [AIS20] and AIS 31 [AIS31]. Consequently, implementation attacks must be
part of the vulnerability analysis of the TOE to verify that successful implementation attacks on
the RNG are impractical.

65The most fundamental security requirements for RNGs are backward secrecy and forward secrecy.
They formally describe the property of an RNG to be unpredictable, i.e., that knowledge of
a subsequence of random numbers does not enable an adversary to determine or to guess the
successor or predecessor of this subsequence with non-negligibly greater probability than without
the knowledge of this subsequence.

66More secure RNGs also provide enhanced backward secrecy and enhanced forward secrecy. These
properties aim to lessen the impact of a compromise of the internal state. Enhanced backward
secrecy means the following: It is not practically feasible to determine previous random numbers
or to guess them with non-negligibly greater probability from the current internal state than
without this knowledge. Analogously, enhanced forward secrecy means that is not practically
feasible to determine random numbers that are generated after the next (high-entropy) data has
been mixed into the internal state, either by the seeding procedure, the reseeding procedure or
by the state transition function.

67In case of DRNGs, the requirements backward secrecy, forward secrecy, and enhanced backward

12 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

3.2 Overview over the functionality classes

secrecy shall be ensured by algorithmic properties (i.e., aiming at computational security). In
case of TRNGs they shall be ensured using fresh entropy (i.e., aiming at information-theoretic
security). The requirement enhanced forward secrecy can only be achieved using fresh entropy.

68 The DRNG functionality classes defined in Section 3.3 use the above security requirements. The
classes DRG.2 through DRG.4 gradually increase in security by including more of them. While
this is done explicitly for DRNGs, the functionality classes for TRNGs defined in Sections 3.4
and 3.5 shall satisfy them implicitly as a result of the entropy requirements.

3.2 Overview over the functionality classes

69 Figures 1, 2, 3, and 4 illustrate schematic designs of RNGs that are compliant to the particular
functionality classes defined below. We point out that these designs are exemplary and that
other technical realizations of the class requirements are possible.

70 Fig. 1 illustrates pure DRNG designs. For simplicity, in Figs. 1 and 2 we assume that requests
are limited to a single random number (in particular Sreq = S and ϕ = ϕ0, see pars. 135 and 139).
Internal random numbers denote the final stage of the random numbers of an RNG that are ready
to be output. We use the following notation:

• ϕ = state transition function

• ψ = output function

• A B = symbol for a one-way function

DRG.2

Seed

Internal state

Internal random
numbers

DRG.3

Seed

Internal state

Internal random
numbers

Figure 1: Functionality classes DRG.2 and DRG.3 (exemplary schematic designs)

71 Figure 3 illustrates PTRNG designs. Online tests are indicated with a red background and total
failure tests with a pink background.

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

13

3 Functionality classes

DRG.4

Seed / Reseed

Internal state Input
Additional

Internal random
numbers

Figure 2: Functionality class DRG.4 (exemplary schematic design)

Physical
noise source

Post-
processing

Raw random
numbers

PTG.2

Online test of raw
random numbers

Total failure test
of the source

Internal random
numbers

DRG.3

Internal random
numbers

Raw random
numbers

PTG.3

Online test of raw
random numbers

Physical
noise source

Total failure test
of the source

Figure 3: Functionality classes PTG.2 and PTG.3 (exemplary schematic designs)

14 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

3.3 DRNG: Functionality classes

72 Figure 4 illustrates a typical NPTRNG design.

noise source 2

Entropy
Collection

Entropy pool
(DRG.3)

NTG.1

Entropy counter and
check before output

Internal random
numbers

noise source 1
Non-physical Non-physical

noise source n
Non-physical

Entropy estimation
of the input

Raw random
numbers

Figure 4: Functionality classes NTG.1 (exemplary schematic design)

3.3 DRNG: Functionality classes

73 Subsections 3.3.3, 3.3.4, and 3.3.5 define the functionality classes DRG.2, DRG.3, and DRG.4.
The differences to the previous versions of the AIS 20 [AIS2031An_11] are explained in Sub-
sect. 3.3.1. Subsect. 3.3.2 contains explanations that are relevant for all DRNG classes. We begin
with general remarks.

74 A DRNG is called a pure DRNG if it does not receive any external input data except by the
seeding procedure or possibly by an (externally triggered) reseeding procedure. A DRNG is
called hybrid DRNG if it accepts additional input (regardless of its entropy) or if it is able to
trigger a seeding procedure or a reseeding procedure. The second condition requires that the
DRNG has access to a true RNG.

75 Originally, the functionality classes DRG.2 and DRG.3 were designed for pure DRNGs, but this
document also covers hybrid DRNG designs.

76 A DRNG that is compliant to the functionality class DRG.2 provides backward secrecy and
forward secrecy.

77 If the DRNG is compliant to the functionality class DRG.3, it additionally provides enhanced
backward secrecy; cf. requirements DRG.3.7 (and DRG.4.7).

78 Enhanced backward secrecy can be achieved by a state transition function ϕ that has the one-
way property (i.e., a one-way function). For the functionality classes DRG.3 and DRG.4, it is
required that the state transition function is a one-way function.

79
A Proposal for Functionality Classes for Random Number Generators

Version 2.35 - DRAFT
15

3 Functionality classes

For hybrid DRNGs the security requirements backward secrecy, forward secrecy, and enhanced
backward secrecy presume that the adversary knows all additional input values. In other words:
backward secrecy, forward secrecy, and enhanced backward secrecy shall be ensured by the
algorithmic properties of the DRNG alone and without relying on any entropy in the additional
input data.

80A DRG.4 compliant DRNG is compliant to the functionality class DRG.3, too. Additionally, it
provides enhanced forward secrecy.

81The DRG.4-specific security requirement enhanced forward secrecy cannot be met by pure
DRNGs, because without fresh entropy, introduced as additional input or by a reseeding pro-
cedure, knowledge of the internal state (and further additional input values) reveals all future
random numbers. Enhanced forward secrecy requires a hybrid DRNG that, at least from time
to time, is reseeded or gets additional input with sufficiently large entropy.

82It should be noted that the definitions of the functionality classes DRG.2, DRG.3, and DRG.4
as well as their objectives have been reworked in this version of the document. The definitions
are similar to those in [AIS2031An_11] (which justifies maintaining the class names), but they
are different in detail. An in-depth explanation of the differences to the previous definitions in
[AIS2031An_11] can be found in Section 3.3.1.

3.3.1 DRNG: Main Differences from [AIS2031An_11]

83The requirements on the seeding procedure, the reseeding procedure, and the size of the internal
state (or rather, the effective internal state) have significantly increased (cf. par. 120).

84The document [AIS2031An_11] defines a further functionality class DRG.1 that is weaker than
DRG.2, because it only requires forward secrecy. The class DRG.1 has been removed, as it did
not turn out to be relevant in certification practice.

85This document introduces the concept of requests, see pars. 114 to 118.

86The definition of a request is new in AIS 20. It was not specified in [AIS2031An_11].
Remark: Of course, the situation in [AIS2031An_11] can be interpreted that only requests are
allowed for which the number of requested bits coincides with the bit length of a single internal
random number.

87The introduction of a request in the AIS 20 is part of the harmonization of AIS 20 and AIS 31
with the NIST documents SP 800-90[A,B,C].

88Under suitable conditions, AIS 20 now allows seeding or reseeding a DRNG by another DRNG;
cf. pars. 144 to 148.

89In [AIS2031An_11] the functionality classes DRG.2, DRG.3, and DRG.4 demand that the evalua-
tor applies statistical tests (at least several specified blackbox tests) to the output of the DRNG

16 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

3.3 DRNG: Functionality classes

(deprecated requirements in terminology of [AIS2031An_11]: DRG.2.5, DRG.3.5, DRG.4.7).
This mainly had ‘historical reasons’ because [AIS20An_99] contained two functionality classes
(K1 and K2) which allowed non-cryptographic DRNGs.

90 The requirements concerning the application of statistical test suites within the evaluation have
been relaxed.

91 In the previous version [AIS2031An_11] the compliance to the functionality classes DRG.2 or
DRG.3 requires that the state transition function and / or the output function shall be crypto-
graphic, while DRG.4 demands that both the state transition function and the output function
shall be cryptographic. In the new version of the AIS 20, both the functionality classes DRG.3
and DRG.4 require that the state transition function and the output function are cryptographic.

92 The previous versions of AIS 20 ([AIS20An_99; AIS2031An_11]) contained a security require-
ment that says that within the life cycle of a DRNG instance, high-dimensional random bit
vectors shall be mutually disjoint with very large probability; see the requirements DRG.1.3,
DRG.2.4, DRG.3.4, DRG.4.6 in [AIS2031An_11]. These requirements are not demanded in this
document.

93 The requirement of mutual disjointness in [AIS20An_99; AIS2031An_11] was motivated by the
fact that in the past, the internal states of the DRNG implementations on resource-limited devices
like smart cards usually were smaller than today. Furthermore, [AIS20An_99] also permitted
non-cryptographic DRNGs (compliant to the functionality classes K1 or K2), which could be
used for non-sensitive applications. The main reason for this requirement was to prevent too
many random numbers being generated within a life cycle of the DRNG instance relative to the
size of the internal state.

94 In this version of AIS 20, par. 120 formulates high requirements on the effective internal state
and on the entropy of its initial state. Thus, considering the new upper bound of random bits
per life cycle of a DRNG instance, the requirement of mutual disjointness has been dropped.

95 Compared to [AIS2031An_11] (cf. Table 12) the minimal size of the effective internal state and
of its entropy after the seeding procedure / reseeding procedure has become much larger (cf.
pars. 120, 122).

96 The describing 6-tuple in [AIS2031An_11] (cf. par. 111 ff.) is replaced by a describing 9-tuple
(par. 135). This is mainly due to the introduction of the concept of requests (cf. pars. 114 to
118). Furthermore, describing 5-tuples for the seeding procedure and reseeding procedure have
been introduced (pars. 151 and 155).

97 The previous version [AIS2031An_11] distinguishes between different attack potentials; cf. Ta-
ble 1, Table 2, Table 12, Table 13, and the corresponding paragraphs. In this document the
assumed attack potential is always high.

3.3.2 DRG.[2,3,4]: Definitions, requirements, and justification

98
A Proposal for Functionality Classes for Random Number Generators

Version 2.35 - DRAFT
17

3 Functionality classes

The seedlife of a DRNG instance begins with the seeding procedure or with the reseeding pro-
cedure, respectively. It ends with the next reseeding procedure or when the DRNG is uninstan-
tiated. The uninstantiation causes that this instance does no longer exist. In particular, the
internal state and secret parameters are deleted.

99Knowledge of the (entire) internal state of a DRNG allows the prediction of future outputs
until fresh entropy is mixed into the internal state (by additional input or by the reseeding
procedure). Pure DRNGs do not receive fresh entropy until uninstantiation or before the next
reseeding procedure, respectively.

100Consequently, it is a minimum requirement for the security of a DRNG that it must not be
possible to guess the entire internal state with non-negligible probability.

101Depending on the DRNG design, it may be possible that an adversary knows or is able to learn
parts of the internal state. This, in particular, refers to publicly known parameters and values. In
Subsection 5.2.1, for example, a DRNG that applies the AES-256 in OFB mode is discussed. A
part of the internal state (128 bits) coincides with the next random number. Of course, this part
of the internal state does not help to prevent pure guessing attacks. Nevertheless, these parts
may have positive impact on the security of the DRNG, e.g., against pre-computation attacks
(unless these parts are always the same) and multi-target attacks; cf. par. 122.

102We refer to the security-critical part of the internal state of a DRNG that an adversary does
not know and which he cannot determine or guess (with probability that is significantly greater
than indicated by its size; we always assume optimal encoding) as the effective internal state;
cf. par. 103. For the class DRG.2 the notion of the effective internal state applies to backward
secrecy and forward secrecy, but for class DRG.3 it it applies backward secrecy, forward secrecy,
and enhanced backward secrecy. Par. 111 provides an illustrating example.

103The definition of the effective internal state in par. 102, of course, does not take an adversary with
unlimited computational power into account, because an adversary with unlimited computational
power could determine the complete internal state from a few random numbers. Instead, our
definition aims at computational security. This is reasonable because an adversary with unlimited
computational power would be able to break any DRNG.

104The effective internal state and its size shall be determined under the assumption that the
adversary knows a large number of internal random numbers (limited by the maximum number
of random numbers between subsequent seeding procedures/reseeding procedures); cf. par. 180.

105The uncertainty of the effective internal state from the view of an adversary shall be based on
the seed. The security of the effective internal state shall not be based on a personalization
string, secret parameters, etc. (Kerckhoffs’s principle) although, of course, these measures may
support security. If it possible to assign entropy to the secret parameter(s), e.g. because they
were generated by a strong TRNG, they may be counted to the effective internal state.

106The applicant has to provide evidence that their DRNG design fulfills the class-specific require-
ments.

107

18 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

3.3 DRNG: Functionality classes

AIS 20 does not prescribe approved DRNG designs. However, it is strongly recommended to use
widely recognized cryptographic primitives and techniques. Otherwise, the evaluation and the
verification of algorithmic properties of the DRNG like backward secrecy, forward secrecy, and
enhanced backward secrecy may become impractical.

108 Cryptographic primitives are considered to be widely recognized cryptographic primitives if they
have undergone diversified scientific review from many researchers and if the cryptographic com-
munity has no serious doubts concerning their strength in relevant operational circumstances.
Examples: the AES block cipher, and the SHA -2 and SHA -3 families of hash functions.
Note: AIS 20, in particular, views cryptographic algorithms as widely recognized that are rec-
ommended in the technical guideline [TR-02102]. Further cryptographic primitives are possible
if accepted by the certification body.

109 If widely recognized cryptographic primitives are used, the applicant may claim the generally
accepted properties of these primitives in the security proofs of the class specific requirements.

110 Examples of generally accepted security properties of cryptographic primitives are the following:
(i) The AES is not susceptible to chosen-plaintext attacks (cf. Subsect. 5.2.1, pars. 815 and 817).
(ii) The one-way function property, second pre-image resistance, and collision resistance of
SHA -256.

111 Example: AES-256 in OFB mode (cf. Subsection 5.2.1): The internal state comprises 384 bits
(128-bit vector plus the long-term key). Since the first 128 bits of the internal state equal the
next random number, the effective internal state only comprises 256 bits. In order to claim that
an observer cannot practically determine bits of the long-term key from the output (random
numbers), the applicant may present security proofs relying on well-established properties of
AES; cf. Subsection 5.2.1.

112 We refer to state transition functions and output functions as cryptographic if they are composed
of cryptographic primitives (e.g., block ciphers or hash functions). Incrementation by 1, simple
XOR-additions, additions and multiplications in small moduli, linear-feedback shift registers
(LFSRs), and projections, for example, are not viewed as cryptographic. The composition of
cryptographic primitives with a non-cryptographic operation usually remains cryptographic.
Example: s 7→ SHA -256(s) + 1 mod 2256.

113 It should be noted that cryptographic functions are not automatically suitable. The output
function s 7→ SHA -256(s) + SHA -256(s) mod 2256, for instance, is cryptographic but obviously
weak because the least significant bit is always 0. Furthermore, consider par. 124.

114 [Definition of a request] Upon receiving an external request the DRNG outputs the desired
number of random bits. Depending on the bit size of the internal random numbers, the DRNG
generates one or several random numbers. It may happen that the last internal random number
is only partially output.

115 The RNG shall employ an atomic (i.e., non-interruptible) generate operation whereby a request
is completed by the application of the state transition function before using any of the requested
bits.

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

19

3 Functionality classes

116[justification of the atomicity condition (par. 115)] The functionality classes DRG.3 and DRG.4
ensure enhanced backward secrecy in the granularity of requests. This protects internal random
numbers generated for previous requests even if the current internal state has been compromised.
But if the internal state or the request state would be compromised within a request and if some
internal random numbers of this request had already been used by an application, then an
adversary might be able to determine these internal random numbers. This is the reason why
atomicity is required, and it is strongly recommended to terminate a request within a short time
period, e.g., within a second.
Note: Time restrictions may be hard to guarantee for devices without their own power supply
and clock.

117[atomicity condition (par. 115)] The atomicity condition can be satisfied by outputting all random
numbers of a request only after the processing for the request has been terminated. Smart cards
usually write the internal random numbers to the target memory location while they are being
generated. Here, the atomicity condition is fulfilled if the consuming application waits until the
request has been terminated before processing any of the generated bits. This does, of course,
limit the maximal size of a request to the size of the memory available to buffer generated data.

118[atomicity condition (par. 115); exception] If the DRNG provides enhanced backward secrecy
within requests, i.e., in the granularity of internal random numbers, the atomicity condition can
be dropped. More precisely, it then suffices that the request state is updated after an internal
random number has been generated. At the end of each request, of course, the internal state has
to be updated, too.
Note: The Hash− DRBG (cf. Subsect. 5.3.1), for example, provides enhanced backward secrecy
in the granularity of requests but not within requests.

119The next paragraph contains an informative summary of the requirements on the maximum
number of random bits within a life cycle, the minimum size of the effective internal state, and
its minimal entropy after the seeding procedure (or reseeding procedure) for functionality classes
DRG.2, DRG.3, or DRG.4. The normative requirements are contained in the definitions of the
functionality classes below.

120[DRNG: Minimal requirements]; cf. the requirements DRG.x.2, DRG.x.3, DRG.x.4 (x ∈ {2, 3, 4})
and DRG.4.10

• Within a life-cycle of a DRNG instance at most 248 requests may be output. Each request
shall comprise at most 219 bits.

• The effective internal state shall comprise at least 252 bit.

• The min-entropy of the initial effective internal state after the seeding procedure, resp.
after the reseeding procedure, shall be at least 240. Alternatively, 250 bits of Shannon
entropy suffice, provided that the raw random numbers of the true RNG are stationarily
distributed.

121We set the minimal size of the effective state to 252 bits. This choice might be surprising because
a typical size for cryptographic primitives in this order of magnitude is 256 bits. There are several

20 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

3.3 DRNG: Functionality classes

reasons for this choice: This small ‘bit reserve’ of four bits is unlikely to weaken the strength
of a DRNG in practice, but can simplify conformity proofs to requirement DRG.2.3, DRG.3.3,
DRG.4.3, respectively. This choice also tolerates possible small defects of the cryptographic
primitives that might be discovered by future cryptanalytical attacks.

122 The lower bounds for the minimal size of the effective internal state and for its entropy after
the seeding procedure / reseeding procedure defined in par. 120 shall repel, among other things,
potential threats by quantum computers and by multi-target attacks. It should be noted that for
the prevention of multi-target attacks, it would suffice to increase the internal state accordingly
(instead of the effective internal state), provided that all parts of the internal state affect the
internal random numbers.

123 If the applicant claims Shannon entropy for the seeding procedure or the reseeding procedure
with a PTRNG, an additional condition has to be met, namely the stationarity (time-local
stationarity) of the raw random numbers; cf. DRG.2.4, DRG.3.4, DRG.4.4, and application note
par. 181). The stationarity condition shall prevent well-known pathologies that may arise when
probability distributions are (extremely) unbalanced; cf. par. 535, for example.

124 In the presence of quantum computers, DRNG designs whose security relies on the hardness
of factoring or on the discrete log problem will likely become irrelevant. Until then such de-
signs may be used but, of course, parameter(s) shall be selected so that the instances resist all
known factoring algorithms or algorithms that compute the discrete logarithm. This document
discourages using DRNG designs that are based on the hardness of factoring or the discrete log
problem.

125 The entropy of the initial effective internal state is an upper bound for the overall entropy of the
generated random numbers or subsets thereof if no fresh entropy is mixed into the internal state.

126 As already explained in par. 103, DRNGs would be ineffective against an adversary with unlim-
ited computational resources. Relative to an adversary with unlimited computational resources,
of course, the effective internal state would contain entropy only if the adversary did not know a
few random numbers (information-theoretic security) or had not otherwise observed information
about the seed. But if the DRNG is computationally secure, then a resource-limited adversary
observing random numbers will still be unable to determine the information that is contained in
the (effective) internal state.

127 There are two generic attacks to guess an unknown k-bit output string x of a DRNG, namely blind
guessing of x and blind guessing of the initial internal state. If an adversary guesses the initial
internal state correctly, this adversary can compute all random numbers from then on (provided
that he knows possible additional input data). Requirements DRG.2.4, DRG.3.4, DRG.4.4,
respectively, ensure that the second attack is (at least approximately) a 240-bit problem. For an
‘ideal’ DRNG, the first attack i.e., guessing x would then be a k-bit problem if k < 240 and (at
least) a 240-bit problem, otherwise.

128 In the context of forward secrecy, backward secrecy, and enhanced backward secrecy, for k-bit
output strings the security strength shall not be significantly lower than for the ideal case (cf.
par. 126). Furthermore, the security strength of the DRNG shall not significantly decrease over
the time.

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

21

3 Functionality classes

129The entropy of the internal state can decrease during the life cycle of a DRNG instance if the
state transition function ϕ is not bijective. To be compliant to the functionality class DRG.3, ϕ
must be a one-way function. The effective internal state shall contain sufficient entropy within
the whole life cycle of the instance to prevent successful guessing attacks.

130Ideally, after the seeding procedure/reseeding procedure, the probabilities of all possible values of
the effective internal state would be the same. From an adversary’s point of view (trying to guess
the effective internal state), this represents the worst case as every value would be equally likely.
Since the state transition function ϕ is usually not bijective, the probability distributions of the
internal states (or rather, the effective internal states) might become more and more imbalanced
over the time, thereby reducing the entropy of the internal state. If an adversary had precise
knowledge of these distributions, it could be leveraged to speed up guessing attacks by selecting
the most probable internal states after n iterations of ϕ.

131However, such a deep understanding of the iterated application of ϕ would likely also allow ana-
lytical attacks on the forward secrecy property. If theoretical statements on the distributions of
future internal states are possible, this shall be considered in the security proofs of the algorith-
mic properties of the DRNG.
Note: Sect. 4.4 treats random mappings.

132An adversary without such deep understanding (of the distributions of the internal state / of
the effective internal state after the iterated application of ϕ could only try to mount a generic
guessing attack to exploit a growing imbalance of the distribution of the (effective) internal states.
For example, to obtain a guess of the internal state s after the nth iteration of ϕ, the adversary
could randomly select an element of S and apply the state transition function ϕ n times. In
this case, each single guess is much more costly than a single ‘blind’ guess of the internal state
after n iterations of ϕ. For a hash functions that is a widely recognized cryptographic primitive
(e.g., for SHA -256), it is assumed that even with precomputations, the entropy loss due to the
iterated application is not practically exploitable.

133If the DRNG design allows a computation of the n-fold composition of ϕ which is significantly
faster than a step-by-step evaluation of ϕ or other ways to speed up guessing, this shall be
considered in the evaluation.

134DRNGs usually have a core function that generates blocks of internal random numbers of a size
prescribed by the chosen cryptographic primitive (e.g. designs based on AES usually generate
blocks of 128 bits). For simple DRNG designs this core function coincides with the output
function (which means that the DRNG can only generate random numbers of a fixed size). But
in practice the logic to generate random numbers of a requested length is often already integrated
into the DRNG. In order to formulate security requirements, we use the following formal model.

135The algorithmic structure of a DRNG can be described by a 9-tuple

(S, Sreq, R,A, I, ϕ, ϕreq, ϕ0, ψ) (describing 9-tuple of the DRNG) (3.1)

The components of (3.1) have the following meaning:

22 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

3.3 DRNG: Functionality classes

• S = set of admissible internal states (typically, S = {0, 1}n)

• Sreq = set of admissible (temporary) internal request states

• R = set of admissible output values (internal random numbers), R = {0, 1}k for some
k ∈ N.

• A = set of admissible additional input (typically, A = {0, 1}∗, where o denotes the empty
string (= no additional input))

• I = set of admissible request lengths, counted in bits

• ϕ : S ×A → S (state transition function, logically computed at the end of a request)

• ϕreq : S ×A → Sreq (generates the internal request state)

• ϕ0 : Sreq ×A → Sreq (request state transition function)

• ψ : Sreq → R (output function)

136 If public parameters and / or secret parameters affect any of the mappings ϕ, ϕreq, ϕ0, ψ, then
these data items are part of S.

137 If the request requires the generation of p ∈ I bits, then m := ⌈ p
k ⌉ internal random numbers are

generated. In pseudocode, the DRNG works as follows:

sreq := ϕreq(s, a)
for j := 1 to m do {

rj := ψ(sreq);
sreq := ϕ0(sreq);

}
s := ϕ(s, a) (3.2)

Depending on p, themth internal random number may be truncated when output. More precisely,
the right-most k⌈ p

k ⌉ − p bits of the last internal random number are not output.

138 If the DRNG does not allow additional input, then A = {o} and ϕ, ϕreq, and ϕ0 actually do not
depend on A.

139 The 9-tuple describes the conceptual structure of the DRNG. In particular, in practice, the in-
ternal request state Sreq may coincide with the internal state S at the time when the internal
random numbers are generated. For the approved DRBG designs in [SP800-90A] (cf. Sub-
sect. 5.3), for example, the state transition function ϕ can be expressed by a composition of two
mappings ϕA, ϕB : S → S, namely ϕ = ϕB ◦ ϕA (i.e., ϕ(s) = ϕB(ϕA(s))). Here, the value sreq

coincides with the internal state s after ϕA has been applied, and ϕreq is included in the output
function.

140 Consider a pure DRNG that only allows requests of ≤ k bits. Since only one internal random
number is generated per request the space Sreq is not really needed. This scenario can be modeled
as follows: Sreq = S, and ϕreq : S → Sreq denotes the identity mapping.

141 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

23

3 Functionality classes

Example: see Subsection 5.2.1 (pure DRNG, request length ≤ k).

142A DRNG gets its initial internal state from a randomly selected seed. The ‘seed entropy’, that is,
the entropy contained in the bit string used for the seeding procedure, the reseeding procedure (if
applicable), and a description of how the seed was generated must be covered by the deliverables
from the applicant; cf. pars. 174, 191, and 209.

143If the seed (for the seeding procedure or reseeding procedure) is generated by a PTRNG (compli-
ant to PTG.2 or PTG.3) or by an NPTRNG (compliant to NTG.1), the requirements PTG.2.3,
PTG.3.4 or NTG.1.5 guarantee lower entropy bounds per internal random number bits. The re-
quirements PTG.2.3 and PTG.3.4 allow claims in both Shannon entropy and min-entropy while
NTG.1.5 prescribes min-entropy.

144There are scenarios in which no TRNG is available to seed a DRNG. Typically, this affects
software implementations on PCs, servers, etc. for which no TRNG exists, which might be
called by the applications. One example is the following: The DRNG of the operating system
has been seeded by an NPTRNG, and the applications call this DRNG for seed material to seed
their own DRNG.

145For these reasons, a DRNG may optionally also be seeded / reseeded by another DRNG. Loosely
speaking, this requires that the origin and entropy of the first DRNG’s seed as well as its security
properties are known to an evaluator in order to verify the security requirements for the second
DRNG.

146Compared to the usual way of (re-)seeding a DRNG with a TRNG, (re-)seeding with a DRNG
bears additional security risks. When (re-)seeding with a TRNG it suffices that the TRNG
works properly at this time. Possible entropy defects or successful attacks in the past (or in
the future) are not relevant. When (re-)seeding with a DRNG an (undetected) compromise of
the internal state of the (re-)seeding DRNG would affect all DRNGs that are seeded after this
event. Furthermore, the state transition functions and output functions of the DRNGs might
interact in unexpected ways. For (re-)seeding chains of more than two DRNGs the whole chain
has to be considered. In particular, ’seed cycles’ shall be prevented because then a DRNG would
transitively seed itself. The application notes to class DRG.3 contain clearly defined, narrow
boundary conditions under which ’DRNG seeds DRNG’ is permitted. Due to the sketched
security problems, we strictly recommend to use a TRNG for (re-)seeding if it is available.

147’DRNG seeds DRNGs’ is not allowed for the functionality class DRG.2 because there, the state
transition function or the output function can be rather simple, which might cause unwanted
(dangerous) interaction between different DRNGs. For class DRG.4 ’DRNG seeds DRNGs’ is
not allowed because DRG.4 defines a high-security class.

148In order to not overload the application notes with definitions and concepts, we provide them
here and refer to them in the application notes.
DRNG B is called direct seed successor of DRNG A if DRNG B has been seeded by DRNG A.
Vice versa, DRNG A is called a direct seed predecessor of DRNG B. DRNG C is a seed successor
of DRNG A, if a chain of direct successors exists from DRNG A to DRNG C. Then DRNG A is
a seed predecessor of DRNG C.

149

24 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

3.3 DRNG: Functionality classes

An optional input parameter to the seeding process is a personalization string. This denotes a
freely chosen value, often derived from information related to a specific DRNG instance. Unique
personalization strings can inhibit side channel analysis and may prevent an adversary in control
of the seed from identifying the DRNG algorithm. Furthermore, if the personalization string is
kept secret, it may be the last resort if the seed material (cf. pars. 151 to 152) is compromised.

150 The 9-tuple (3.1) describes the algorithmic structure of the DRNG when it is in operation.
Similarly, the seeding procedure and the reseeding procedure can be formally described.

151 The following 4-tuple describes the algorithmic aspects of the seeding procedure:

(SM,PS, S, ϕseed) (describing 4-tuple of the seeding procedure) (3.3)

The components of (3.3) have the following meaning:

• SM = set of admissible values of the seed material (typically, SM = {0, 1}s)

• PS = set of personalization strings (may contain public and secret parts)

• S = set of admissible internal states

• ϕseed : SM × PS → S (seeding procedure)

152 The security of the seeding procedure shall not be based on the entropy of the personalization
string (even if it contains secret parameters). The seed material itself shall contain enough
entropy to meet the requirements (DRG.2.4, DRG.3.4, DRG.4.4).

153 Simple seeding procedures are:
(i) ϕseed(sm, o) := sm. The seed is copied into the internal state.
(ii) ϕseed(sm, o) := ϕ(sm, o). The seed is copied into the internal state and the state transition
function ϕ is applied once.

154 Other, more complex seeding procedures exist, cf. the approved DRBG designs in [SP800-90A],
for example.

155 The following 4-tuple describes the algorithmic aspects of the reseeding procedure:

(SM,PS, S, ϕreseed) (describing 4-tuple of the reseeding procedure) (3.4)

The components of (3.4) have the following meaning:

• SM = set of admissible seed values (typically, SM = {0, 1}s)

• PS = set of personalization strings (may contain public and secret parts)

• S = set of admissible internal states

• ϕreseed : S × SM × PS → S (reseeding procedure)

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

25

3 Functionality classes

156The security of the reseeding procedure shall not be based on the entropy of the current internal
state or on the personalization string (even if it contains secret parameters). The seed itself shall
contain enough entropy to meet the requirements (DRG.2.4, DRG.3.4, DRG.4.4). However, using
the current internal state as an additional parameter is recommended.

157Calculating the precise probability distribution of the effective internal state after the seeding
procedure and the reseeding procedure allows the determination the resulting entropy. Except
for a very simple seeding procedures (e.g. when using bijections, as in par. 153), this will in
general be practically infeasible.

158In order to verify requirements concerning the entropy of the initial effective internal state
(DRG.2.4, DRG.3.4, DRG.4.4), specifying the precise probability distribution is not demanded.
Instead, it suffices to specify a lower entropy bound. The developer shall present a justified
estimate, e.g. by modeling widely recognized cryptographic primitives such as hash functions
or block ciphers as random bijections or random mappings. The evaluator decides whether
simplifications made in this model are acceptable and whether properties of random mappings
and random bijections can be used as assumptions. Section 4.4 collects properties of random
mappings and random bijections.

159Characteristics of random mappings usually cannot be applied if the definition range is too
small. To give an extreme example: It is not permitted to model a randomly selected mapping
{0, 1}16 → {0, 1}16 as a random mapping and to draw conclusions from Section 4.4.

160In Subsect. 5.2.2, pars. 835 to 837, it is shown that if the state transition function of a hybrid
DRNG is too simple, an adversary who is able to manipulate additional input data might be
able to control the evolution of the internal state. This may may weaken a DRNG completely.

161Subsect. 5.2.2, par. 839 provides an example for disastrous interaction of the state transition
function and the output function. A related example that accepts additional input data is
ϕ(s, a) = SHA -256(s) + 1 + a mod 2256, ψ(s) = SHA -256(s). This feature weakens the DRNG
completely.

162If additional input is permitted, it shall not weaken the algorithmic strength of the DRNG. The
hybrid DRNG version shall not be less secure than the pure DRNG version of the DRNG that
does not allow additional input (DRG.2.7, DRG.3.8, DRG.4.8). The hybrid DRNG mentioned
in par: 161 does not meet these requirements.

163A reasonable design strategy to prevent (chosen) additional input from weakening the DRNG
certainly is to select a state transition function whose ‘core’ is a hash function and use it to mix
the additional input into the internal state. However, depending on the DRNG design, simpler
state transition functions may also be appropriate. Pitfalls where additional input weakens the
DRNG should primarily be an issue for DRG.2-compliant DRNGs.

164To ensure enhanced forward secrecy, high-entropy additional input data or a reseeding procedure
is needed (cf. requirement DRG.4.10). One-time high-entropy input cannot be compensated by
many low-entropy additional inputs within several requests.

26 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

3.3 DRNG: Functionality classes

Example: Assume that a random byte is mixed into the internal state of the DRNG in each iter-
ation, i.e., whenever an internal random number is generated. Assume further that an adversary
knows the current internal state and that the DRNG generates 128-bit internal random num-
bers which the application uses as AES keys. Provided that he knows a plaintext / ciphertext
pair for each AES key an adversary could successively guess, e.g., the next 210 AES keys with
≤ 210 · 28 = 218 guesses.

165 It shall not be possible to distinguish sequences of internal random numbers that are generated
by a DRNG that is compliant to the DRG.2, DRG.3, or DRG.4 functionality class from output
sequences of ideal RNGs by statistical tests. Of course, ‘unfair’ statistical tests that exploit
knowledge of the internal state of the DRNG are excluded.

166 Widely recognized cryptographic primitives should not show any statistical weaknesses.

167 Example: AES, CBC mode: ciphertext blocks (interpreted as a bit sequence) of arbitrary plain-
texts should not show any statistical weaknesses.

168 Usually, evidence that the DRNG fulfils the requirement DRG.2.9, DRG.3.10, or DRG.4.11, can
be given by theoretical considerations about the cryptographic primitives. Then, the application
of statistical (blackbox) tests to the output of the DRNG is not necessary.

169 Note that in the presence of implementation or design flaws, the use of widely recognized cryp-
tographic primitives alone does not preclude the existence of statistical weaknesses. Extreme
examples: The output of a hash function is (accidently) concatenated with itself or arrays are
filled up with zeroes.

170 If the evaluator suspects that a given DRNG design might output statistically conspicuous ran-
dom numbers, they should apply targeted statistical tests to test for these possibilities.

3.3.3 Functionality Class DRG.2

171 The class DRG.2 defines requirements for deterministic RNGs (DRNG).

172 DRG.2-compliant DRNGs are suitable for cryptographic applications for which the disclosure
of previous random numbers due to a compromise of the internal state is not an issue (e.g. for
challenges in challenge-response protocols).

173 The TOE Security Functionality (TSF) has to protect the internal state of the RNG from being
compromised.

174 DRG.2-specific deliverables by the applicant The security architecture description and
developer evidence shall contain at least

• a formal description of the algorithmic behavior of the DRNG by a 9-tuple (3.1),

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

27

3 Functionality classes

• a formal description of the seeding procedure (3.3) and (if applicable) the reseeding proce-
dure (3.4),

• a description of how the seed material and (if applicable) the reseed material is generated
(DRG.2.1),

• proofs that the DRNG design fulfills the requirements DRG.2.2, DRG.2.3, DRG.2.4, DRG.2.5,
DRG.2.6, DRG.2.7, DRG.2.8,

• evidence that DRG.2.9 is fulfilled.

175DRG.2: Security functional requirements Security functional requirements of the class
DRG.2 are defined by component FCS_RNG.1 with specific operations as given below.

176FCS_RNG.1 Random number generation (Class DRG.2)

FCS_RNG.1.1 The TSF shall provide a deterministic random number generator that imple-
ments:

(DRG.2.1) The seed material and the reseed material are generated by a TRNG. The
TRNG [selection: is a PTRNG of class PTG.2, is a PTRNG of class PTG.3, is
an NPTRNG of class NTG.1, generates random bits with an average [selection:
min-entropy, Shannon entropy] of [assignment: amount of entropy] per bit].

(DRG.2.2) Between consecutive seeding procedures and reseeding procedures, at most 248

requests (cf. par. 114 to par. 118) shall be output. The length of a single
request is limited to 219 bits. For class DRG.2, requests need not satisfy the
atomicity condition.

(DRG.2.3) The effective internal state comprises at least 252 bits.

(DRG.2.4) The initial effective internal state (after the seeding procedure or the reseeding
procedure) has [selection: min-entropy ≥ 240 bits, Shannon entropy ≥ 250
bits]. If Shannon entropy is claimed, the seed-generating TRNG shall be a
PTRNG with stationarily distributed raw random numbers.

(DRG.2.5) The DRNG provides forward secrecy in the granularity of the internal random
numbers.

(DRG.2.6) The DRNG provides backward secrecy in the granularity of internal random
numbers.

(DRG.2.7) If applicable: additional input does not weaken the strength of the DRNG even
if an adversary is able to control the additional input.

(DRG.2.8) The state transition function ϕ, the output function ψ, or both shall be cryp-
tographic.

FCS_RNG.1.2 The TSF shall provide random numbers that meet:

28 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

3.3 DRNG: Functionality classes

(DRG.2.9) There is strong evidence that statistical test suites cannot practically distin-
guish the internal random numbers from the output sequences of an ideal RNG.
This conclusion is based on [selection: theoretical considerations, theoretical
considerations supported by statistical tests, statistical tests with justification
of the choice].

Application notes

177 [DRG.2.1] Usually, the seeding procedure and the reseeding procedure use a PTRNG that is
compliant to PTG.2, PTG.3, or an NPTRNG that is compliant to NTG.1.

178 [DRG.2.1] It is permitted to use a TRNG that is not compliant to these functionality classes.
Of course, the verification of Requirement DRG.2.1 usually requires significantly greater effort
than if a certified TRNG is used that is compliant to the class PTG.2, PTG.3, or NTG.1. In
particular, the applicant has to give evidence that the seed material / reseed material indeed
contains the claimed amount of entropy. This includes a comprehensible verification that the
TRNG is working properly at the time of the seeding procedure/reseeding procedure. For the
functionality classes DRG.2 and DRG.3, a formal stochastic model is not mandatory. Blackbox
tests are not sufficient. By default, min-entropy has to be claimed. Claiming Shannon entropy
requires a stochastic model, and the raw random numbers need to be stationarily distributed (to
be precise: time-local stationarity suffices).

179 [DRG.2.2] For further explanations regarding requests, see pars. 114 to 120. For class DRG.2
the atomicity condition is waived because the class DRG.2 only ensures backward secrecy and
forward secrecy on the level of the internal random numbers (cf. the requirements DRG.2.5 and
DRG.2.6). The atomicity of a request is not relevant for these security properties because the
class DRG.2 assumes that an adversary has access to previous or future internal random numbers
(but not to the internal state or to the request state).

180 [DRG.2.3] The effective internal state and its size shall be determined under the assumption that
the adversary knows a large number of internal random numbers. In particular, the following
(conceivable) reasoning will not be accepted for the verification of requirement DRG.2.3: Since
immediately after the seeding procedure / reseeding procedure an adversary did not have a
chance to collect any information about the DRNG, any part of the internal state (apart from
publicly known input) is unknown and thus effective.

181 [DRG.2.4] If a certified TRNG that is compliant to class PTG.2, PTG.3, or NTG.1 is used for
the seeding procedure or reseeding procedure, usually the verification of requirement DRG.2.4
is an easy task. For the class PTG.2, requirement PTG.2.3 ensures that the Shannon entropy
per bit exceeds 0.9998, and if a min-entropy claim has been certified, the min-entropy per bit
exceeds 0.98. For class PTG.3, the applicant has several options to claim entropy, either in
terms of Shannon entropy, min-entropy, or both. In particular, for the class PTG.3 PTRNG-
specific entropy bounds can be claimed (cf. requirement PTG.3.4). If the seeding procedure
or the reseeding procedure applies a PTG.3-compliant PTRNG without specific entropy claim
(corresponding to the first two selections in requirement PTG.3.4), the entropy claims of the
intermediate random numbers are used instead (although the cryptographic post-processing may
increase the entropy defect per bit). For class NTG.1 the min-entropy is applied to quantify a
lower min-entropy bound per internal random number bit; cf. requirement NTG.1.5. If TRNGs

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

29

3 Functionality classes

are used for the seeding procedure or the reseeding procedure that are not compliant to PTG.2,
PTG.3, or NTG.1, the entropy per seed bit can be lower. It is crucial to verify that the seeding
procedure and reseeding procedure (under consideration of the seed-generating TRNG) fulfills
requirement DRG.2.4. This may require (at least a partial) evaluation of the TRNG to derive a
reliable lower entropy bound per bit. For the reseeding procedure the least favorable case shall
be assumed where an adversary knows the previous internal state.

182[DRG.2.4] For PTRNGs that belong to the functionality classes PTG.2 or PTG.3 the raw random
numbers satisfy the time-local stationarity condition; cf. requirements PTG.2.1 and PTG.3.1.

183[DRG.2.[5,6,7]] The requirements DRG.2.5, DRG.2.6, and DRG.2.7 shall be guaranteed by the
algorithmic properties of the DRNG, i.e., by the interaction of the state transition function
and the output function. A lack of algorithmic properties cannot be compensated for by other
measures, e.g., by high-entropy additional input.

184[DRG.2.[5,6]] The DRNG may support generating output of variable length (by concatenating
internal random numbers, cf. par. 137). Irrespective of that, DRG.2.5 and DRG.2.6 only require
forward secrecy and backward secrecy in the granularity of the internal random numbers. This
means the following: Assume that an adversary knows a sequence of internal random numbers
that have been generated within one or several requests. The sequence need not start nor
terminate a request. The task of the adversary is to compute or to guess the internal random
number that follows or precedes this sequence. The bit security should be considered as explained
in pars. 127 and 128.

185[DRG.2.[5,6]] The focus on internal random numbers in DRG.2.5 and DRG.2.6 (instead of consid-
ering strings of internal random numbers bits of arbitrary length) shall simplify the evaluation.
It is motivated by the fact that the internal random numbers are the basic building blocks of
a request. Thus, forward secrecy and backward secrecy should extend from the granularity of
internal random numbers to the level of strings of internal random numbers bits of arbitrary
length with corresponding computational security strength. It is part of the evaluation to iden-
tify ‘pathological’ DRNG designs for which this is not the case.

186[DRG.2.8] In case of doubt, the certification body decides whether a function is considered
cryptographic.

187[DRG.2.9] Regarding DRG.2.9 we refer to pars. 165 to 170.

3.3.4 Functionality Class DRG.3

188The class DRG.3 defines requirements for deterministic RNGs. The differences to the class
DRG.2 are explained in par. 196.

189DRG.3-compliant DRNGs are suitable for all cryptographic applications except for those that
require guaranteed fresh entropy.

190
30 A Proposal for Functionality Classes for Random Number Generators

Version 2.35 - DRAFT

3.3 DRNG: Functionality classes

The TSF has to protect the internal state of the RNG from being compromised.

191 DRG.3-specific deliverables by the applicant The security architecture description shall
contain at least

• a formal description of the algorithmic behavior of the DRNG by a 9-tuple (3.1),

• a formal description of the seeding procedure (3.3) and (if applicable) the reseeding proce-
dure (3.4),

• a description of how the seed material and (if applicable) the reseed material is generated
(DRG.3.1),

• proofs that the DRNG design fulfills requirements DRG.3.2, DRG.3.3, DRG.3.4, DRG.3.5,
DRG.3.6, DRG.3.7, DRG.3.8, and DRG.3.9.

• evidence that DRG.3.10 is fulfilled.

192 DRG.3: Security functional requirements

Security functional requirements of the class DRG.3 are defined by component FCS_RNG.1 with
specific operations as given below.

193 FCS_RNG.1 Random number generation (Class DRG.3)

FCS_RNG.1.1 The TSF shall provide a deterministic random number generator that imple-
ments:

(DRG.3.1) The seed material and the reseed material are generated by a TRNG or DRNG.
If a TRNG is used, the TRNG [selection: is a PTRNG of class PTG.2, is a
PTRNG of class PTG.3, is an NPTRNG of class NTG.1, generates random
bits with an average [selection: min-entropy, Shannon entropy] of [assignment:
amount of entropy] per bit]. If a DRNG is used it shall fulfill the conditions
that are stated in the application notes below.

(DRG.3.2) Between consecutive seeding procedures and reseeding procedures, at most 248

requests (cf. par. 114 and par. 115) shall be output. The length of a single
request is limited to 219 bits.

(DRG.3.3) The effective internal state comprises at least 252 bits.

(DRG.3.4) The initial effective internal state (after the seeding procedure or the reseeding
procedure) has [selection: min-entropy ≥ 240 bits, Shannon entropy ≥ 250
bits]. If Shannon entropy is claimed, the seed-generating TRNG shall be a
PTRNG with stationarily distributed raw random numbers.

(DRG.3.5) The DRNG provides forward secrecy in the granularity of internal random
numbers.

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

31

3 Functionality classes

(DRG.3.6) The DRNG provides backward secrecy in the granularity of internal random
numbers.

(DRG.3.7) The DRNG provides enhanced backward secrecy in the granularity of requests.

(DRG.3.8) If applicable: additional input does not weaken the strength of the DRNG even
if an adversary is able to control the additional input.

(DRG.3.9) Both the state transition function ϕ and the output function ψ shall be cryp-
tographic. The state transition function shall be a one-way function.

FCS_RNG.1.2 The TSF shall provide random numbers that meet:

(DRG.3.10) There is strong evidence that statistical test suites cannot practically distin-
guish the internal random numbers from the output sequences of an ideal RNG.
This conclusion is based on [selection: theoretical considerations, theoretical
considerations supported by statistical tests, statistical tests with justification
of the choice].

Application notes

194[DRG.3 vs. DRG.2] The class DRG.3 includes the requirements of class DRG.2. The require-
ments DRG.2.2 and DRG.3.2, DRG.2.3 and DRG.3.3, DRG.2.4 and DRG.3.4, DRG.2.5 and
DRG.3.5, DRG.2.6 and DRG.3.6, DRG.2.9 and DRG.3.10 coincide. Requirement DRG.3.1 is
a superset of DRG.2.1. As far as a seeding procedure/reseeding procedure with a TRNG is
concerned its requirements coincide with DRG.2.1. The additional case of a seeding proce-
dure/reseeding procedure with a DRNG is specified by pars. 197 to 200.

195[DRG.3 vs. DRG.2] Therefore, the corresponding application notes 177, 178, 180, 181, 182, 183,
184, 185, and 187 are valid for DRG.3.y instead of DRG.2.x as well, where x and y correspond
as described in par. 194.

196[DRG.3 vs. DRG.2] In addition to the DRG.2 requirements, the functionality class DRG.3
requires enhanced backward secrecy (DRG.3.7), and DRG.3.9 extends DRG.2.8.

197[DRG.3.1] (DRNG seeds DRNG) Under certain conditions (specified in pars. 198 to 199) a
DRNG can be seeded by another DRNG. These conditions shall prevent additional security
threats and risks (exemplarily addressed in par. 146) that are caused by the fact that the seeding
procedure/reseeding procedure does not use a TRNG. Below, we use the definitions that were
introduced in par. 148.

198[DRG.3.1] (DRNG seeds DRNG, tree structure) There shall exist a ’root DRNG’ that is ex-
clusively (re-)seeded by a TRNG. If certain conditions are fulfilled (specified in par. 199), the
root DRNG may seed other DRNGs, and this right ’inherits’ transitively to its (not necessarily
direct) seed successors. The seed-succession relation introduced in par. 148 allows building a
tree structure (‘seed tree’). The root DRNG is the root of the seed tree. If DRNG B is a direct
seed successor of DRNG A (i.e., if DRNG B has been seeded by DRNG A) it is a child node of
DRNG A in the seed tree. In particular, apart from the root DRNG, each DRNG in the seed
tree has been seeded by a DRNG (to be precise, by its direct seed predecessor at that time). As

32 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

3.3 DRNG: Functionality classes

usual, the height of a seed tree is the length of the longest path from the root DRNG to a leaf
DRNG. In particular, a seed tree that consists only of a root DRNG has height 0.

199 [DRG.3.1] (DRNG seeds DRNG, specific requirements) This paragraph summarizes ((re-)seed
type-specific) requirements.

(i) The root DRNG shall be compliant to the functionality class DRG.3 or DRG.4. The root
DRNG shall exclusively use a TRNG for the seeding procedure/reseeding procedure.

(ii) All (direct or indirect) seed successors of the root DRNG shall algorithmically be compliant
to class DRG.3, i.e., these DRNGs shall fulfill the requirements DRG.3.1 – DRG.3.3 and
DRG.3.5 – DRG.3.10.

(iii) If a DRNG is instantiated and seeded by some DRNG in the seeding tree, this DRNG
is added to the tree (child node of the seeding DRNG). If a DRNG from the seed tree is
uninstantiated, it shall be removed from the tree (because they cannot have any successor).
If the overall design limits the maximum height of the seed tree to 1, i.e., if only the root
DRNG is allowed to (re-)seed further DRNGs, uninstantiated DRNGs need not explicitly
be removed from the seed tree.

(iv) Each DRNG in the seed tree may only be reseeded by its direct predecessor in the seed
tree.

(v) A (re-)seeded DRNG shall use the requested random numbers only for the seeding pro-
cedure/reseeding procedure. After the seeding procedure/reseeding procedure has been
completed all received random bits shall be deleted.

(vi) The applicant shall provide describing 9-tuples for all types of DRNGs that may occur in
the seed tree. Furthermore, the applicant shall provide evidence that the state transition
functions and the output functions of the DRNGs in the seed tree do not negatively affect
each other.

(vii) All DRNGs within the seed tree shall belong to a common security domain. This need not
apply to the TRNG that (re-)seeds the root DRNG.

(viii) The seed material shall not leave the security boundary of the DRNG.

(ix) If it has been detected that the internal state of a DRNG has been compromised, this DRNG
and all its successors in the seeding tree shall immediately be (re-)seeded or uninstantiated.

(x) At any time, the height of the seed tree is limited by 5. Compared to the ‘usual scenario’
((re-)seeding by a TRNG) the maximum number of internal random number bits per DRNG
decreases by factor 2−10. This also applies to the root DRNG.

It is possible to evaluate and certify only a subtree that contains the root. This could be, for
example, a node in the tree consisting of all its predecessors up to the root and all successors.
The criteria apply accordingly to the subtree.

200 [DRG.3.1] (DRNG seeds DRNG) If all requirements from par. 199 are fulfilled (during their life
time) all nodes of the seed tree are viewed to be compliant to class DRG.3.

201 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

33

3 Functionality classes

[DRG.3.[5,6,7,8]] Same as in par. 183, the requirement DRG.3.5 to DRG.3.8 shall be guaranteed
by the algorithmic properties of the DRNG, i.e., by the interaction of the state transition func-
tion and the output function. Missing algorithmic properties cannot be compensated by other
measures, e.g. by high-entropy additional input.

202[DRG.3.7] Enhanced backward secrecy (DRG.3.7) is an algorithmic property. It cannot be com-
pensated for or supported by technical security measures that (are claimed to) prevent the
internal state from being compromised or modified. Clause DRG.3.7 essentially requires a state
transition function that is a one-way function to an adversary who knows the internal state and
(if relevant) the last additional input. The security strength should be as explained in pars. 127
and 128.

203[DRG.3.7] The DRNG may support output of variable length (by concatenating internal random
numbers, cf. par. 137). Clause DRG.3.7 requires enhanced backward secrecy in the granularity
of requests. (If the DRNG outputs requests that do not comprise more than one internal random
number, then DRG.3.7 trivially guarantees enhanced backward secrecy in the granularity internal
random numbers.) This means the following: Assume that an adversary gains access to the
current internal state and (if applicable) to the additional input during the previous request.
Then requirement DRG.3.7 prevents an adversary from computing or guessing internal random
numbers from previous requests. However, requirement DRG.3.7 does not prevent an adversary
who has learned the internal state before the state transition function has been applied (thereby
terminating a request) to compute or to guess all internal random numbers of this request. The
impact of this attack is mitigated by the atomicity condition (primarily) and by the length
restriction of a request.

204[DRG.3.9] For class DRG.3 both the state transition function ϕ and the output function ψ
shall be cryptographic. Additionally, ϕ shall be a one-way function. We refer the reader to the
pars. 107 to 113. In case of doubts the certification body decides whether a function is considered
cryptographic.

3.3.5 Functionality Class DRG.4

205The class DRG.4 defines requirements for deterministic DRNG. These requirements can only be
fulfilled by hybrid DRNGs. The differences to class DRG.3 are explained in pars. 213 and 215.

206DRG.4-compliant DRNGs are suitable for all cryptographic applications except for those that
require a TRNG.

207DRG.4-compliant DRNGs have access to a PTRNG during the seeding procedure, the reseeding
procedure, and maybe to obtain high-entropy additional input. Furthermore, the additional
input may also include data from sources without an entropy guarantee. These sources neither
need entropy claims nor provide additional security guarantees. However, DRG.4.8 requires that
these additional input data shall not weaken the security of the DRNG.

208The TSF has to protect the internal state of the RNG from being compromised.

209
34 A Proposal for Functionality Classes for Random Number Generators

Version 2.35 - DRAFT

3.3 DRNG: Functionality classes

DRG.4-specific deliverables by the applicant The security architecture description shall
contain at least

• a formal description of the algorithmic behavior of the DRNG by a 9-tuple (3.1),

• a formal description of the seeding procedure (3.3) and (if applicable) the reseeding proce-
dure (3.4),

• a specification of the internal PTRNG and the mechanisms to trigger a seeding procedure
and / or a reseeding procedure, and / or to obtain high-entropy additional input,

• a description of how the seed material and (if applicable) the reseed material is generated
(DRG.4.1),

• proofs that the DRNG design fulfills requirements DRG.4.2, DRG.4.3, DRG.4.4, DRG.4.5,
DRG.4.6, DRG.4.7, DRG.4.8, DRG.4.9, and DRG.4.10

• evidence that DRG.4.11 is fulfilled.

210 DRG.4: Security functional requirements

Security functional requirements of the class DRG.4 are defined by component FCS_RNG.1 with
specific operations as given below.

211 FCS_RNG.1 Random number generation (Class DRG.4)

FCS_RNG.1.1 The TSF shall provide a hybrid deterministic random number generator that
implements:

(DRG.4.1) The seed material and the reseed material are generated by a PTRNG. The
PTRNG [selection: is a PTRNG of class PTG.2, is a PTRNG of class PTG.3,
generates random bits with an average [selection: min-entropy, Shannon en-
tropy] of [assignment: amount of entropy] per bit].

(DRG.4.2) Between consecutive seeding procedures/reseeding procedures, at most 248 re-
quests (cf. par. 114 and par. 115) shall be output. The length of a single
request is limited to 219 bits.

(DRG.4.3) The effective internal state comprises at least 252 bits.

(DRG.4.4) The initial effective internal state (after the seeding procedure or the reseeding
procedure) has [selection: min-entropy ≥ 240 bits, Shannon entropy ≥ 250
bits]. If Shannon entropy is claimed, the raw random numbers of the seed-
generating PTRNG shall be stationarily distributed.

(DRG.4.5) The DRNG provides forward secrecy in the granularity of internal random
numbers.

(DRG.4.6) The DRNG provides backward secrecy in the granularity of internal random
numbers.

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

35

3 Functionality classes

(DRG.4.7) The DRNG provides enhanced backward secrecy in the granularity of requests.

(DRG.4.8) If applicable: additional input does not weaken the strength of the DRNG even
if an adversary is able to control the additional input.

(DRG.4.9) The state transition function ϕ and the output function ψ shall be crypto-
graphic. The state transition function shall be a one-way function.

(DRG.4.10) The DRNG provides enhanced forward secrecy [selection: on demand, on con-
dition [assignment: condition], after [assignment: time]]. This is achieved by
the seeding procedure (cf. DRG.4.4), the reseeding procedure (cf. DRG.4.4) or
by high-entropy additional input generated by a PTRNG such that the effective
internal state has [selection: min-entropy ≥ 240 bits, Shannon entropy ≥ 250
bits]. The DRNG may apply different methods. Minimum requirement: Until
the next reseeding procedure or the next high-entropy additional input at most
500 internal random numbers can be generated.

FCS_RNG.1.2 The TSF shall provide random numbers that meet:

(DRG.4.11) There is strong evidence that statistical test suites cannot practically distin-
guish the internal random numbers from the output sequences of an ideal RNG.
This conclusion is based on [selection: theoretical considerations, theoretical
considerations supported by statistical tests, statistical tests with justification
of the choice].

Application notes

212[DRG.4 vs. DRG.3 vs. DRG.2] The class DRG.4 includes the requirements of class DRG.3 and
thus also of DRG.2. The requirements DRG.2.2 and DRG.4.2, DRG.2.3 and DRG.4.3, DRG.2.4
and DRG.4.4, DRG.2.5 and DRG.4.5, DRG.2.6 and DRG.4.6, DRG.2.7 and DRG.4.8, DRG.2.9
and DRG.4.11 coincide. Furthermore, DRG.3.7 and DRG.4.7, DRG.3.9 and DRG.4.9 coincide.

213[DRG.4 vs. DRG.3 vs. DRG.2] Requirement DRG.4.1 limits the selection of a TRNG in DRG.2.1
and the selection of a TRNG or DRNG in DRG.3.1 to PTRNGs for class DRG.4.

214[DRG.4 vs. DRG.3 vs. DRG.2] Thus, the application notes 179, 180, 181, 182, 183, 184, 185,
and 187 remain valid if we replace DRG.2.x by DRG.4.y with regard to the correspondences
from par. 212. Moreover, the application notes 202, 203, and 204 remain valid if one substitutes
DRG.3.x by DRG.4.x (here, x ∈ {7, 9}).

215[DRG.4 vs. DRG.3] The class DRG.4 includes the requirements of class DRG.3. Addition-
ally, DRG.4 requires that the DRNG has the capability to ensure enhanced forward secrecy
(DRG.4.10).

216[DRG.4.1] The functionality class DRG.4 requires a PTRNG for the seeding procedure, the
reseeding procedure (DRG.4.4), and for high-entropy additional input (DRG.4.10). Unlike
DRG.2.1 and DRG.3.1 this excludes NPTRNGs and DRNGs. This is justified by the fact that
for NPTRNGs the environment, the platform etc. are not under the control of the designer or
evaluator. Moreover, the devices on which NPTRNGs run (PCs, server, mobile devices, etc.) are

36 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

3.3 DRNG: Functionality classes

usually more vulnerable to implementation attacks than, e.g., smart cards; cf. Subsect. 3.5.2.
For these reasons, in general our trust in NPTRNGs is lower than our trust in PTRNGs.

217 [DRG.4.1] Usually, the seed material, the reseed material, and high-entropy additional input is
generated with a PTRNG that is compliant to the classes PTG.2 or PTG.3.

218 [DRG.4.1] It is permitted to use a PTRNG that is not compliant to PTG.2 or PTG.3. The
verification of Requirement DRG.4.1 usually requires significantly greater effort than if a certified
PTRNG is used that is compliant to the class PTG.2 or PTG.3. In this case the verification of
Requirement DRG.4.1 usually requires significantly greater efforts. In particular, the applicant
has to give evidence that the seed material / reseed material contains the claimed amount
of entropy. This includes evidence that the PTRNG is working properly at the time of the
seeding procedure/reseeding procedure. Unlike for the functionality classes DRG.2 and DRG.3,
a stochastic model of the PTRNG is mandatory. Claiming Shannon entropy requires that the
raw random numbers are (time-locally) stationarily distributed.

219 [DRG.4.10] Enhanced forward secrecy can only be achieved for internal random numbers that
are generated after the next seeding procedure, after the next reseeding procedure, or after high-
entropy additional input data have been mixed into the internal state by the state transition
function. If high-entropy additional input is used, in general the internal random numbers of
the current request do not provide enhanced forward secrecy. Exceptions are possible, if the
output function ‘mixes’ the high-entropy additional input suitably into the generation of internal
random numbers. Such an example is the Hash− DRBG; see (5.37), (5.38), and (5.39).

220 [DRG.4.10, high-entropy additional input] Whether enhanced forward secrecy is already guaran-
teed for the internal random numbers of the current request or not may be of minor importance
if the high-entropy additional input has been mixed into the internal state ‘on condition’ (e.g.,
because 500 internal random numbers have been generated after the last reseeding procedure or
high-entropy additional input) or ‘on time’ (because a pre-defined amount of time has elapsed).
However, if fresh entropy has been introduced ‘on demand’ (by an application), enhanced forward
secrecy shall be guaranteed for all outputted internal random numbers. This can be achieved
in two ways: Either the output function is appropriate (mixing the entropy of the additional
input into the internal random numbers, cf. par. 219), or the DRNG generates a ‘pre-request’
(simplest consisting of a single internal random number) that is not output, followed by the ‘real
request’, providing internal random numbers for the consuming application.

221 [DRG.4.10, high-entropy additional input] If requirement DRG.4.10 is intended to be achieved
by high-entropy additional input the applicant shall describe the applied PTRNG (as for seeding
and reseeding). This is unlike for ‘arbitrary’ additional input, which is covered by DRG.4.8. If a
CC certificate confirms the compliance of the PTRNG to PTG.2 or PTG.3, it suffices that the
developer refers to this fact. Additional input strings derived from both reliable RNGs (e.g. from
a PTG.2-compliant PTRNG) and ‘arbitrary’ noise sources (e.g., time stamps) are permitted. Of
course, additional input from ‘arbitrary’ noise sources may also contribute some entropy but this
cannot be taken into account for the evaluation of requirement DRG.4.10.

222 [DRG.4.10, high-entropy additional input] When achieving enhanced forward secrecy by high-
entropy additional input, the requirements are rather similar to that for the reseeding procedure
although, of course, the state transition function is applied in place of the (re-)seeding procedure.

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

37

3 Functionality classes

223[DRG.4.10] Like the seed string in the seeding procedure and reseeding procedure, also the high-
entropy additional input data (DRG.4.10) must be protected to ensure secrecy, integrity, and
authenticity; cf. application note 323. The verification of these properties is part of the overall
evaluation of the TOE.

224[DRG.4.10] Enhanced forward secrecy ‘on demand’ is triggered by the requesting application.
‘On condition’ may be a specified maximum quantity of generated internal random numbers
after the previous high-entropy additional input, the previous seeding procedure, or the previous
reseeding procedure, while ‘after time’ requires that a reliable time measurement is available.

225[DRG.4.10] It is not necessary to interrupt an ongoing request when 500 internal random numbers
have been generated since the previous high-entropy additional input or since the previous seeding
procedure/reseeding procedure. The current request can be completed, but the DRNG shall
receive fresh high-entropy additional input before it generates further output.

3.4 PTRNGs: Functionality classes

226The Subsects. 3.4.3 and 3.4.4 define the functionality classes PTG.2 and PTG.3, respectively.
The differences from the previous versions of the AIS 31 [AIS2031An_11] are pointed out in
Subsect. 3.4.1. Subsect. 3.4.2 contains explanations that are relevant for both PTG.2 and PTG.3.
We begin with general remarks.

227We distinguish between pure PTRNGs and hybrid PTRNGs. Roughly speaking, the security
of pure PTRNG is essentially based on the entropy of the raw random numbers (to which an
appropriate post-processing algorithm needs to be applied (the identity mapping is principally
possible)), whereas hybrid PTRNGs have two security anchors, namely entropy and computa-
tional security, the latter provided by a cryptographic post-processing algorithm that by itself is
a DRNG.

228This classification is not sharp (and not relevant for the evaluation). Usually, pure PTRNGs apply
non-cryptographic post-processing (e.g. algorithmic post-processing to increase the entropy per
data bit), but cryptographic post-processing is also allowed. PTRNGs that use cryptographic
constructions for their post-processing algorithm but not with memory (i.e., those constructions
are not DRNGs) are generally considered to be pure PTRNGs, because they become practically
insecure if the noise source becomes weak or breaks down completely. Hybrid PTRNGs apply
cryptographic post-processing, which according to the definition in this document, always means
with memory. By data compression, at the cost of performance, it may also serve to increase
the entropy per bit, but usually its main purpose is to add an additional security layer that is
based on computational security.

229A PTRNG that is compliant to the functionality class PTG.2 is basically a well-understood
physical noise source that exploits physical phenomena that provide a quantified amount of
entropy with very high assurance. Together with a total failure test and an online test this
allows the generation of internal random numbers with an entropy per bit that is very close
to 1. The functionality class PTG.3 is basically a PTG.2-compliant PTRNG and combined

38 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

3.4 PTRNGs: Functionality classes

with a DRG.3-compliant cryptographic post-processing. A pure PTRNG can be compliant to
functionality class PTG.2 but cannot be compliant to class PTG.3 because of the requirement
for the cryptographic post-processing.

230 For both functionality classes PTG.2 and PTG.3, high assurance shall be established by a stochas-
tic model of the raw random numbers. The stochastic model describes the stochastic behavior
of the raw random numbers and traces it back to physical randomness. The stochastic model
enables statistical analysis and the quantification of the entropy of the raw random numbers.
Furthermore, it allows the verification of the effectiveness of the algorithmic post-processing with
regard to the entropy per internal random number bit.

231 In order to maintain this high assurance over the entire lifecycle, a PTRNG compliant to PTG.2
or PTG.3 is required to have total failure tests that detect total failures so quickly that no
internal random numbers are output that were generated after the total failure has occurred.
The concrete PTRNG design may allow relaxations (e.g. due to buffering, in particular for
PTG.3-compliant PTRNGs); cf. Subsect. 4.5.4. Furthermore, non-tolerable deviations from the
desired behavior shall be detected sufficiently soon by online tests.

232 A PTRNG compliant to the functionality class PTG.2 or PTG.3 delivers output with entropy
per data bit very close to 1 with a high level of assurance; cf. par. 267 for justification.

233 A PTRNG compliant to the functionality class PTG.3 additionally has the security properties
of DRG.3.

234 It should be noted that the definitions of the functionality classes PTG.2 and PTG.3 (as well as
DRG.3) have been reworked in this version of the document. The definitions of the functionality
classes PTG.2 and PTG.3 and their objectives are similar to that in [AIS2031An_11] (which jus-
tifies maintaining the class names) although they are different in detail. An in-depth explanation
of the differences to the previous definitions in [AIS2031An_11] can be found in Section 3.4.1
(for DRG.3: see Section 3.3.1).

3.4.1 PTRNG: Main Differences from [AIS2031An_11]

235 The document [AIS2031An_11] defines an additional functionality class PTG.1. The function-
ality class PTG.1 claims only statistical properties but not any minimum entropy bound. The
class PTG.1 has been withdrawn due to the lack of interest by the applicants.

236 In [AIS2031An_11] the functionality class PTG.3 requires that the evaluator applies statistical
tests (at least several specified blackbox tests) to the output of the cryptographic post-processing.
This requirement (as well as the corresponding requirement in functionality class DRG.3) has
been relaxed.

237 Compared to [AIS2031An_11] for PTG.2-compliant PTRNGs the tolerated entropy defect has
become significantly smaller. This change was motivated by the fact that the certified PTRNGs
show significantly smaller entropy defects than allowed in [AIS2031An_11]; cf. also par. 272.
Moreover, this document also allows min-entropy claims.

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

39

3 Functionality classes

238Unlike in [AIS2031An_11] the class PTG.3 allows individual entropy claims (with small entropy
defects) in both, Shannon entropy and min-entropy.

239The modifications of the functionality class DRG.3 (compared to [AIS2031An_11]) also affect
the functionality class PTG.3. See Section 3.3.1.

3.4.2 PTG.[2,3]: Definitions, requirements, and justification

240PTRNGs use physical noise source (whereas NPTRNGs use non-physical noise sources).

241The ‘core’ of a PTRNG is its physical noise source. The physical noise source extracts randomness
from a physical phenomenon (or several). The digitization mechanism generates raw random
numbers from the (typically) analog signals derived from the physical phenomenon (or several).
The digitization mechanism is considered to be a part of the physical noise source.

242Physical noise sources exploit physical phenomena (thermal noise, shot noise, jitter, metastability,
radioactive decay, etc.) from dedicated hardware designs (using diodes, ring oscillators, etc.) or
physical experiments to produce digitized random data. The dedicated hardware designs can use
general-purpose components (like diodes, logic gates, etc.) if the designer is able to understand,
describe, and quantify the characteristics of the design that are relevant for the generation of
random numbers.

243Usually, the physical noise source of a PTRNG is part of an electronic circuit or is realized as a
physical experiment. When integrated into an electronic circuit (e.g. a microchip), the physical
noise source consists of dedicated hardware design that has been designed for this purpose.

244Examples: The physical noise source may employ Zener diodes, noisy oscillators, or ring oscilla-
tors. Or it may exploit chaotic behavior, radioactive decay, or other quantum effects. This list
of possible phenomena and design principles is not complete. We refer the reader to Sect. 5.4 for
a more detailed treatment.

245The central task of both PTRNG evaluations and NPTRNG evaluations is the verification that
the (average) entropy per internal random number bit exceeds a specified lower bound.

246While the physical noise source of a PTRNG is ‘under the control’ of the RNG designer the
non-physical noise source of a NPTRNG usually cannot be controlled by the RNG designer (cf.
Subsec. 3.5.2). This is an important difference between PTRNGs and NPTRNGs, which has an
impact on the depth of the evaluation.

247The fact that the physical noise source is based on a dedicated hardware design allows (at least in
principle) precise modeling because one may assume that the physical noise sources in different
devices behave similarly. However, the noise sources generally do not behave identically in a strict
sense because even digital noise sources usually consist of analog components. Differences may,
for example, be caused by component variance (inside certain tolerance levels), aging effects, or

40 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

3.4 PTRNGs: Functionality classes

different environmental conditions; cf. pars. 261 to 262.

248 The analog values produced by the physical noise source are digitized at some point, providing
the raw random numbers (a.k.a. das random numbers where ‘das’ stands for ‘digitized analog
signal’). The digitization mechanism can involve simple transformations (e.g. dropping bits) and
the raw random numbers may undergo several separated post-processing operations. For this
reason, there may be some ambiguity as to what intermediate product should be referred to as
the raw random numbers.

249 The developer / applicant decides which data are to be called the raw random numbers. Both
PTG.2 and PTG.3 require a verifiable stochastic model for the raw random numbers that traces
their stochastic behavior back to a physical phenomenon / several physical phenomena). It is
therefore strongly recommended to choose the earliest possible stage. The evaluator accepts or
rejects the stochastic model and the corresponding rationale.

250 Examples

• The physical noise source samples noisy voltage at a high frequency and these values are
digitized to 8 bits. In order to reduce statistical dependencies, the developer decides to
discard every second byte. The developer then declares the remaining bytes to be the
raw random numbers and provides a stochastic model describing their bias and statistical
dependency as well as how they relate to the physical phenomenon causing the noise. This
approach is principally permitted.
Note: This operation lowers the output rate by a factor of 2. Alternatively, the unmodified
sequence can be chosen as the raw random numbers, and discarding every second byte may
be viewed as algorithmic post-processing.

• A battery of ring oscillators is sampled and their output fed into a (cryptographic) hash
function with a large compression factor. The developer declares the resulting hashed bits
to be the raw random numbers and claims statistical independence and uniform distribution
as a stochastic model. This approach is not permitted because the stochastic properties of
the raw random numbers cannot be traced back to a physical phenomenon.

251 Viewed as a mathematical function, an algorithmic post-processing usually has a small domain
and a small range.

252 Examples (of algorithmic post-processing algorithms): XORing bits or binary vectors, modular
addition, linear feedback shift registers, and identity mapping.

253 The raw random numbers may or may not undergo algorithmic post-processing and / or cryp-
tographic post-processing (finally resulting in the internal random numbers, i.e., the data ready
for output). If the raw random numbers already ‘contain’ sufficient entropy per data bit to meet
the PTG.2 requirements, then the designer may choose to resign on a post-processing algorithm.
In this case, the raw random numbers coincide with the internal random numbers. Formally, a
nonexistent post-processing algorithm can be interpreted as the identity mapping. Examples of
mathematical post-processing algorithms are discussed in Sect. 5.1; cf. also par. 252.

254
A Proposal for Functionality Classes for Random Number Generators

Version 2.35 - DRAFT
41

3 Functionality classes

[PTG.3] PTG.3 is the strongest functionality class in AIS 20 and AIS 31.

255[PTG.3] The usual technical realization of a PTG.3-compliant PTRNG is to use a PTG.2-
compliant PTRNG whose internal random numbers are fed into a DRG.3-compliant crypto-
graphic post-processing algorithm. The PTG.2-compliant PTRNG then is the central compo-
nent of the PTG.3-compliant PTRNG. However, it is not mandatory to have a clear-cut ‘PTG.2-
boundary’ within the PTRNG. Of course, the lack of a clear PTG.2-boundary does not waive
or relax any requirements on the raw random numbers and on the entropy verification of the
internal random numbers.

256[PTG.3] The data that are input to the cryptographic post-processing algorithm are called in-
termediate random numbers. If the PTRNG has a PTG.2-compliant core (the usual design,
cf. par. 255), the intermediate random numbers of the PTG.3 design are the internal random
numbers of the PTG.2-compliant PTRNG.

257[PTG.3] The cryptographic post-processing algorithm shall not ‘extend’ its input data, the in-
termediate random numbers. This means that the average output rate in bits of cryptographic
post-processing algorithm shall not be larger than its input rate (in bits). That is, the ratio
between the number of intermediate bits (required for one internal random number) and the bit
length of an internal random number shall be ≥ 1. This is called compression rate crate in the
following. To increase the entropy per bit the compression rate must be > 1. If the compression
rate is < 1, the PTRNG cannot be compliant to class PTG.3 (but compliance to class DRG.4 is
possible).

258[PTG.3] Of course, cryptographic post-processing can only increase the entropy per bit if it
compresses the input data. If the cryptographic post-processing algorithm can be modeled by
a random mapping, the difference cdiff = (#number of input bits - #number of output bits) is
significantly more relevant for the increase of entropy in the output than the compression rate
crate. This might be surprising at first sight, but the reason is that the ratio between the sizes
of the domain and of the image space equals 2cdiff . Section 4.4 treats this topic intensively.

259[PTG.3] If the cryptographic post-processing of a PTG.3-compliant PTRNG would run au-
tonomously, it would be compliant to the functionality class DRG.3. That means, even if the
PTG.2-compliant part of a PTG.3 (assuming the usual PTG.3 design) were suddenly to deliver
predictable output, then the PTRNG would still have the security features of a DRG.3 compliant
DRNG (because of the cryptographic post-processing). This does hold, of course, only under the
assumption that the internal state of the cryptographic post-processing algorithm has already
received enough entropy, i.e., the DRNG part of the PTG.3 has been properly seeded.

260[PTG.3] Note that the ‘DRNG fallback’ in the previous paragraph is an additional security
layer. The requirements for PTG.2 and PTG.3 dictate a reliable online test (health testing)
and a reliable total failure test that shall prevent undetected degradation of the entropy of
the internal random numbers or an undetected total breakdown of the physical noise source
(par. 266). Further beneficial effects of cryptographic post-processing are described in pars. 270
and 271.

261Raw random numbers, intermediate random numbers, and internal random numbers are inter-
preted as realizations (i.e., of values taken on) of random variables. For the concept of random-

42 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

3.4 PTRNGs: Functionality classes

ness, random variables, and realizations we refer the interested reader, e.g., to Sect. 4.1.

262 For PTRNGs the entropy analysis shall be based upon a so-called stochastic model. The stochas-
tic model takes the concrete design of the physical noise source into account and models its
stochastic behavior. Based on this behavior, the impact of algorithmic post-processing on the
internal random numbers is analyzed. Blackbox testing of the raw random numbers or of the
internal random numbers is not sufficient to assess their entropy.

263 The formulation, verification, and analysis of the stochastic model is the crucial part of a PTRNG
evaluation. We refer the reader to detailed explanations in Sect. 4.5, and to Sect. 5.4 for illus-
trating examples.

264 When the PTRNG has been started, a start-up test shall check for a total failure and severe
statistical weaknesses; cf. Subsect. 4.5.5.

265 The entropy per internal random number bit shall be large enough when the PTRNG is in
operation. This shall be assured by an online test; cf. Subsect. 4.5.3. The effectivity of the
online test shall be verified based on a stochastic model of the physical noise source.

266 During operation a total failure of the physical noise source can occur. A total failure would
imply that future raw random numbers contain almost no entropy. A total failure test shall
detect a total failure of the physical noise source virtually immediately (relaxations are possible,
depending on the design of the PTRNG); cf. Subsect. 4.5.4. This means, total failure test must
detect a total failure in time to prevent the output of low-entropy random numbers.

267 Ideal RNGs do not exist. And even if ideal RNGs existed, it would be impossible to verify them.
Thus, the functionality classes PTG.2 and PTG.3 allow small entropy defects. The compliance
to functionality classes PTG.2 and PTG.3 guarantees a minimum entropy bound per random
bit.

268 The PTG.2 class specification tolerates a small entropy defect, e.g. caused by a bias or by (short-
term) dependencies of the internal random numbers. For many cryptographic applications, e.g.
for the generation of AES keys, challenges, IVs, etc. such defects should not impact security.

269 For some applications such defects yet might bear security risks. For ECDSA signatures, for
example, the ephemeral keys are linked by an underdetermined system of linear equations over
a finite field. An adversary might try to combine information from many signatures. Although
no concrete attack is known to date that could leverage the small entropy defect allowed for
PTG.2-compliant PTRNGs, at least in principle, this represents a security risk.

270 Consequently, the direct employment of PTG.2-compliant PTRNGs for arbitrary cryptographic
applications is not recommended. Generally, PTG.2-compliant PTRNGs may be used to seed
DRNGs or may serve as a ‘core’ of a PTG.3-compliant PTRNGs.

271 Furthermore, the cryptographic post-processing of PTG.3-compliant hybrid PTRNGs should also
increase their resistance to side-channel and fault attacks (e.g. induced transient breakdowns of
the physical noise source or enforcing certain values). Implementation attacks are not covered

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

43

3 Functionality classes

by AIS 31, but, of course, are relevant in the overall evaluation of the TOE; cf. Sect. 2.1, par. 26.

272Principally, the tolerated entropy defect defined in this document could have been set even
considerably smaller. We have refrained from doing so for two reasons: First of all this would
have increased the requirements concerning the verification of the stochastic model. Furthermore,
it would increase the difficulties of implementing efficient online tests (with reasonable sample
sizes) that would effectively detect when the entropy falls below the minimum entropy bound.

273For the functionality classes PTG.2 and PTG.3, the entropy of the raw random numbers can
be quantified in Shannon entropy and / or in min-entropy. Shannon entropy is justified by
the fact that the raw random numbers are stationary (cf. Sect. 4.3) and that the Shannon
entropy satisfies useful functional equations (4.66) and (4.67). For the classes PTG.2 and PTG.3
entropy claims for the internal random numbers and the intermediate random numbers (only
PTG.3) in Shannon entropy, in min-entropy, or in both, in Shannon entropy and min-entropy,
are permitted. This is different from functionality class NTG.1, which only allows min-entropy.

3.4.3 Functionality Class PTG.2

274The class PTG.2 defines requirements for physical RNGs.

275Roughly speaking, PTG.2 compliant RNGs generate high-entropy internal random numbers. The
entropy shall, in particular, prevent successful guessing attacks, but the internal random num-
bers may be practically distinguishable from ideal randomness (i.e., independent and uniformly
distributed random numbers) when testing large amounts of data.

276The TSF has to protect the internal state (if applicable) of the RNG from being compromised.

277PTG.2-specific deliverables by the applicant
The security architecture description and developer evidence shall contain

• a description of the physical noise source (including the digitization mechanism),

• a comprehensive description of the ‘algorithmic behavior’ of the PTRNG beginning with
the digitization of the raw random numbers,

• a stochastic model of the raw random numbers with substantiated justification, statistical
evidence, and thorough analysis,

• evidence that PTG.2.1, PTG.2.2, and PTG.2.3 are fulfilled,

• a description of the start-up test and evidence that PTG.2.4 is fulfilled,

• a description of the online test and evidence that PTG.2.5 is fulfilled,

• a description of the total failure test and evidence that PTG.2.6 is fulfilled,

• evidence that PTG.2.7 is fulfilled.

44 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

3.4 PTRNGs: Functionality classes

278 PTG.2: Security functional requirements
Functional security requirements of the class PTG.2 are defined by component FCS_RNG.1 with
specific operations as given below.

279 FCS_RNG.1 Random number generation (Class PTG.2)

FCS_RNG.1.1 The TSF shall provide a physical random number generator that implements
the following:

(PTG.2.1) The raw random numbers can be viewed as realizations of a (time-local) sta-
tionary stochastic process R1, R2,

(PTG.2.2) The stochastic process R1, R2, . . . has only moderate 1-step and 2-step depen-
dencies. Significant k-step dependencies do not occur for k > 2.
If the raw random numbers are binary-valued, this means the following:

| Prob(Rj+1 = 0 | Rj = 0) − Prob(Rj+1 = 0 | Rj = 1)| ≤ 0.02 (3.5)
| Prob(Rj+2 = 0 | Rj = 0) − Prob(Rj+2 = 0 | Rj = 1)| ≤ 0.005 (3.6)

(PTG.2.3) Assume that the internal random numbers are interpreted as realizations of
random variables Y1, Y2, Then Prob(Yj ∈ (0.493, 0.507)) and [selection:
the average Shannon entropy per internal random number bit exceeds 0.9998,
the average min-entropy per internal random number bit exceeds 0.98,
the average Shannon entropy per internal random number bit exceeds 0.9998
and the average min-entropy per internal random number bit exceeds 0.98].

(PTG.2.4) The start-up test is applied immediately after the RNG has been started. It
shall detect a total failure of the physical noise source and severe statistical
weaknesses. The TSF shall not output any internal random numbers before
the start-up test has successfully been completed.

(PTG.2.5) The online test checks the quality of the raw random numbers while the RNG
is in operation. The online test shall detect non-tolerable entropy defects of the
raw random numbers sufficiently soon. The TSF shall not output any internal
random numbers if a non-tolerable entropy defect has been detected.

(PTG.2.6) The total failure test detects if a total failure of the physical noise source oc-
curs while the PTRNG is in operation. The total failure test prevents the
output of internal random numbers that depend on any raw random number
that has been generated after the total failure of the physical noise source. If the
PTRNG applies a cryptographic post-processing algorithm that is compliant to
the functionality classes DRG.2 or DRG.3, then this relaxes this requirement:
If t denotes the bit size of the effective internal state of the cryptographic post-
processing algorithm, then internal random numbers may be output that depend
on the first t raw random number bits (but not more) that have been generated
after the total failure of the physical noise source.

FCS_RNG.1.2 The TSF shall provide [selection: bits, octets of bits, integers [assignment:
format of the numbers]] that meet:

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

45

3 Functionality classes

(PTG.2.7) The raw random numbers pass the test suite Trrn. The internal random num-
bers pass the test suite Tirn

Application notes

280[stochastic model] The evaluation of a PTRNG shall be based on a verifiable, substantiated
stochastic model. There is only one level of detail in the description of the stochastic model,
irrespective of the chosen EAL. We refer to Sect. 4.5, which provides additional information,
illuminates the mathematical background, and discusses examples of stochastic models. Further
examples of stochastic models can be found in Chapter 5.

281[stochastic model] The evaluator checks the stochastic model, its justification, and its analysis
that has been provided by the applicant. The evaluator may perform additional tests if they feel
that this might be relevant.

282[PTG.2.1] The verification of requirement PTG.2.1 shall be based on the stochastic model. It
should be mentioned that ‘stationarity’ essentially means ‘time-local stationarity’, as is explained
in Subsect. 4.5.1, pars. 653 to 655.

283[PTG.2.2] The verification of requirement PTG.2.2 shall be based upon the analysis of the
stochastic model and on statistical tests of the raw random numbers. Requirement PTG.2.2
allows only moderate 1-step and 2-step dependencies of the raw random numbers to prevent
overly complicated and hard-to-verify stochastic models. In contrast, the bias of the raw random
numbers is not limited, because a bias can easily be detected and usually be reduced by simple
measures; for many designs XORing non-overlapping raw random numbers is a suitable option.
Theoretical arguments shall exclude significant dependencies for k > 2. Since the raw random
numbers are stationarily distributed, the autocorrelation function may be used.
Note: If the raw random numbers are iid, but biased, then Prob(Rj+k = u | Rj = v) =
Prob(Rj+k = u). Since the bias is not bounded, it is not possible to provide reasonable bound-
aries for the conditional probabilities Prob(Rj+k = u | Rj = v). Instead, the difference between
the conditional distributions Rj+k | (Rj = 0) and Rj+k | (Rj = 1) is considered.

284[PTG.2.2] If the raw random numbers are ℓ-bit vectors (ℓ > 1), the applicant has to provide and
justify alternate conditions to (3.5), (3.6), and that for k > 2 no significant k-step dependencies
exist. The applicant shall justify their choice and verify that these alternate conditions are not
weaker. The applicant shall take the fact into account that dependencies between individual bits
of the raw random number vectors might exist.

285[PTG.2.3] The developer may claim the Shannon entropy bound, the min-entropy bound, or
both. For both, the Shannon entropy and min-entropy the functionality class PTG.2 only allows
fixed, class-specific values. The verification of the min-entropy claim may require additional
efforts. The computed entropy values (based on the stochastic model) should normally exceed
the specified entropy bounds significantly. Significantly larger entropy bounds than specified in
requirement PTG.2.3, however, would require deeper analysis of the stochastic model and more
sensitive online tests.

286
46 A Proposal for Functionality Classes for Random Number Generators

Version 2.35 - DRAFT

3.4 PTRNGs: Functionality classes

[PTG.2.3] To verify requirement PTG.2.3, the effect of algorithmic post-processing on the entropy
has to be taken into account. Algorithmic post-processing (if applied) does not need to be
cryptographic. If the PTRNG has no post-processing, then this is formally interpreted as the
identity mapping.
Note: If the raw random numbers are Markovian and fulfill (3.5) with the upper bound 0.02,
i.e., if | Prob(Rj+1 = 0 | Rj = 0) − Prob(Rj+1 = 0 | Rj = 1)| ≤ 0.02, a data-compressing post-
processing algorithm is necessary. Even if the random variables R1, R2, . . . were unbiased, the
entropy defect per bit exceeds the admissible bounds defined in PTG.2.3. (Data-compressing)
algorithmic post-processing can only be omitted if the raw random numbers satisfy condition
(3.5) with a smaller bound than 0.02.

287 [PTG.2.3] Pars. 287 and 288 primarily refer to Shannon entropy, but the explanations apply
accordingly to min-entropy. The (optional) min-entropy claim is mentioned in brackets. If the
Shannon entropy per raw random number bit is below 0.9998 (the min-entropy is below 0.98),
the algorithmic post-processing algorithm must increase the average entropy per internal random
number bit. This is not possible without data compression. The evaluator has to verify that
the Shannon entropy per internal random number bit exceeds 0.9998 (the min-entropy exceeds
0.98). It is not necessary to quantify the exact entropy value.

288 [PTG.2.3] If the entropy per raw random number bit already exceeds the class-specific boundary
(Shannon entropy: 0.9998, min-entropy: 0.98), it suffices to show that the post-processing does
not decrease the average entropy per bit. Usually, this is much easier than to quantify the gain
of entropy per bit. An example is a post-processing algorithm (with memory) that is injective
for each admissible value of the memory, and if the elements of the domain and the range have
the same bit length. Then the post-processing algorithm maintains the (average) entropy per
bit.
If the post-processing algorithm uses widely recognized cryptographic primitive (not necessary
for class PTG.2), then post-processing it often can be modeled as a random bijection or as a
random mapping, just as for the classes DRG.2, DRG.3, and DRG.4; cf. pars. 107 to 112.

289 [PTG.2.2, PTG.2.3] Exemplarily, pars. 294 to 297 discuss the requirements PTG.2.2 and PTG.2.3
by two stochastic models. Note that in par. 294 to 297 the stochastic models are only claimed
but not justified. Stochastic models are treated in detail in Sects. 4.5 and 5.4.

290 [PTG.2.2, PTG.2.3] The verification of the requirements PTG.2.2 and PTG.2.3 shall be sup-
ported by statistical tests of the raw random numbers. The tested raw random numbers shall
be generated under representative relevant environmental conditions (cf. par. 308).

291 [PTG.2.3] This paragraph gives advice about how the Shannon entropy and the min-entropy can
be computed for iid random variables and for Markov chains. We consider exemplarily three
cases.
(i) The random variables Z1, Z2, . . . are iid and Prob(Zj = 1) ∈ [0.4931, 0.5069]. Then, H(Zj) >
0.9998 and Hmin(Zj) > 0.98.
(ii) The random variables Z1, Z2, . . . form a homogeneous Markov chain on Ω = {0, 1} with state
transition matrix P . The Shannon entropy and the min-entropy can be computed by (4.73) and
(4.92), respectively. If, for example, Prob(Zj = 1) ∈ [0.494, 0.506] and | Prob(Zj+1 = 0 | Zj =
0) − Prob(Zj+1 = 0 | Zj = 1)| ≤ 0.001, then H(Zj) > 0.99989 and Hmin(Zj) > 0.981.
(iii) The random variables Z1, Z2, . . . form a homogeneous Markov chain on a finite state space

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

47

3 Functionality classes

Ω. Then (4.93) (in place of (4.92)) can be applied to determine a set of appropriate parameters
that meet the min-entropy bound. If |Ω| > 2 the min-entropy per internal random number bit
is relevant. If Z1, Z2, . . . form a 2-step Markov chain on Ω, then at first a (1-step) Markov chain
has to be constructed as described in par. 522.

292[PTG.2.3] Par. 291 can be applied to both the raw random numbers and the internal random
numbers, or more precisely, to the corresponding random variables R1, R2, . . . and Y1, Y2, . . ., if
these random variables are iid or form a Markov chain. If the raw random numbers already
fulfill requirement PTG.2.3 and if the post-processing neither reduces the Shannon entropy nor
the min-entropy, the entropy claim can be directly transferred to the internal random numbers.
If the PTRNG provides significantly more entropy than needed, it may be reasonable to apply
non-optimal (but easy-to-prove) entropy estimates. (To give an example: For Markov chains,
the average gain of min-entropy per bit is trivially bounded from below by − log2 (maxi,j{pij}).
Of course, for Markov chains this is not necessary because more accurate formulae (4.92) and
(4.93) exist.)

293[PTG.2.3] It may be the case that even for unlocked test devices, the evaluator does not have
access to the raw random numbers. This can constitute a serious (unsolvable) problem for
the evaluation of a PTRNG that should have been considered during the design phase of the
PTRNG. In consultation with the evaluator, the developer may try to capture the necessary data
using external measurement equipment (e.g. a logic analyzer). In exceptional cases, it might
be possible to alternatively test the internal random numbers instead, provided that this allows
well-founded conclusions on the stochastic properties (e.g. entropy, bias, dependencies) of the
raw random numbers. In any case the applicant must be able to define, to verify, and to analyze
a stochastic model of the internal random numbers.
Note: This option is not recommended and the certification process may fail in practice.

294[PTG.2.3: Example A] The raw random numbers are interpreted as realizations of binary-valued
random variables R1, R2, On the basis of the stochastic model, the developer provides ev-
idence that the random variables R1, R2, . . . are stationarily distributed. Furthermore, based
on the stochastic model and supported by tailored statistical tests, the developer provides ev-
idence that a bias may exist, but no significant k-step dependencies for k ≥ 1. Assume that
Prob(Rj = u) ∈ (0.5 − ϵ0, 0.5 + ϵ0) for u ∈ {0, 1}. Then in particular PTG.2.1 (stationarity) and
PTG.2.2 (no (significant) multistep-dependencies) are fulfilled.

A.1 Assume that

ϵ0 = 0.003 or, equivalently, Prob(Rj = 1) ∈ (0.497, 0.503) . (3.7)

Then H(Rj) ≥ 0.99997 (and Hmin(Rj) ≥ 0.991).
Conclusion: If algorithmic post-processing does not reduce the entropy per bit, the PTRNG
fulfills requirement PTG.2.3 (including the optional min-entropy claim).
Note: The developer could also point to par. 291(i), saving their own calculations.

A.2 Assume that ϵ0 = 0.03.
Without data-compressing algorithmic post-processing this PTRNG violates requirement
PTG.2.3. XORing non-overlapping pairs of raw random number bits, i.e., Y1 = R1 ⊕
R2, Y2 = R3 ⊕ R4, . . ., guarantees Prob(Yj = 1) ∈ (0.4982, 0.5018), H(Yj) ≥ 0.99999, and
Hmin(Yj) ≥ 0.994.

48 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

3.4 PTRNGs: Functionality classes

Conclusion: The PTRNG fulfills requirement PTG.2.3 (including the optional min-entropy
claim).

295 [PTG.2.3] Assertion A.1 follows by substituting the least favourable parameters into the one-
dimensional Shannon entropy formula (4.58) and the one-dimensional min-entropy formula (4.59).
The second claim of Assertion A.2 follows from (5.2) with k = 2; cf. pars. 783 and 784.

296 [PTG.2.3: Example B] The raw random numbers are interpreted as realizations of binary-valued
random variables R1, R2, On the basis of the stochastic model, the developer gives evidence
that the random variables R1, R2, . . . are stationarily distributed. Furthermore, based on the
stochastic model and supported by tailored statistical tests, the developer gives evidence that
that a bias and 1-step dependencies may exist but no significant k-step dependencies for k ≥ 2.
Assume that Prob(Rj = u) ∈ (0.5 − ϵ0, 0.5 + ϵ0) for u ∈ {0, 1} and | Prob(Rj+1 = 0 | Rj =
0) − Prob(Rj+1 = 0 | Rj = 1)| ≤ ϵ1. Then in particular PTG.2.1 (stationarity) and PTG.2.2
(tolerable 1-step dependencies, no (significant) higher-step dependencies) are fulfilled.

B.1 Assume that

ϵ0 = 0.004 , or, equivalently, Prob(Rj = 1) ∈ (0.496, 0.504) , ϵ1 = 0.003 (3.8)

Then H(Rj | Rj−1, . . . , R1) = H(Rj | Rj−1) ≥ 0.99995 and Hmin(Rn+1,...,Rn+m)
m →m→∞

0.9845.
Conclusion: If the algorithmic post-processing does not reduce the entropy per bit, the
PTRNG fulfills requirement PTG.2.3 (including the optional min-entropy claim).

B.2 Assume that ϵ0 = 0.01, and ϵ1 = 0.012.
Without using data-compressing algorithmic post-processing this violates requirement
PTG.2.3, e.g. because the bias is too large. XORing non-overlapping pairs of raw random
number bits, i.e., Y1 = R1 ⊕ R2, Y2 = R3 ⊕ R4, . . ., guarantees H(Yn+1 | Y1, . . . , Yn) ≥
0.99989, and Hmin(Yj) ≥ 0.9712), and Prob(Yj = 1) ∈ (0.4938, 0.5062).
Conclusion: The PTRNG satisfies the Shannon entropy condition but not the min-entropy
condition of PTG.2.3. The bias of the internal random numbers lies in the permitted in-
terval.

B.3 Assume that ϵ1 = 0.05.
This does not fulfill requirement PTG.2.2, regardless of ϵ0.
Conclusion: This PTRNG is not compliant with functionality class PTG.2, regardless of
the algorithmic post-processing.

297 [PTG.2.3] Assertion B.1 and the first claim of Assertion B.2 of par. 296 follow by substitution into
the Shannon entropy formula and in the min-entropy formula for Markov chains; cf. par. 291(ii).
The Shannon entropy claim and the distribution of Yj in Assertion B.2 follow from (5.5) the
inequation (5.6) with k = 2; cf. pars. 784 and 785. The result on the min-entropy was obtained
as in (5.6). In particular,

Hmin(Ym+1 | Y1, . . . , Ym) ≥ Hmin(R2m+1 +R2m+2 mod 2 | Rm) ≥
− log2

(
max{pijpjk + pi(1−j)p(1−j)(1−k) | 0 ≤ i, j, k ≤ 1}

)
. (3.9)

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

49

3 Functionality classes

(3.9) provides a lower min-entropy bound. A larger min-entropy bound may be achievable but
would require a more sophisticated approach.

298[PTG.2.3] In par. 296, Example B.2, the entropy per bit is increased by XORing non-overlapping
pairs of raw random numbers. Another option would be to thin out the raw random numbers
by a factor of 2, i.e., by outputting only every second raw random number bit. This would also
slightly increase the entropy per bit. The internal random numbers then would be Markovian
with transition matrix P 2 in place of P .
Note: Thinning the raw random numbers out does not reduce the bias. Generally speaking,
thinning the raw random numbers out is not very efficient unless the 1-step dependencies are
rather large, but this would violate requirement PTG.2.2. It is an option, however, to thin
out beforehand (as part of the digitization mechanism, equivalent to reducing sample rate) and
interpret the resulting values as the raw random numbers.

299[PTG.2.4] The start-up test shall be applied when the RNG is started after the TOE has been
powered up, reset, rebooted, etc. or after the operation of the RNG has been stopped (e.g.,
to reduce the power consumption of the TOE). The start-up test shall detect a total failure of
the physical noise source and severe statistical weaknesses; cf. Subsect. 4.5.5. The start-up test
might apply the online test, possibly with different evaluation rules; cf. Subsect. 4.5.5.

300[PTG.2.5] When the PTRNG is in operation, the online test shall detect if requirement PTG.2.3
(or PTG.2.1, or PTG.2.2) is violated. If a defect occurs, it should usually affect the requirement
PTG.2.3. This cannot (or at least not reliably) be achieved by blackbox testing without con-
sidering the nature of the physical noise source. Instead, the online test shall be tailored to the
stochastic model and its effectiveness shall be proven on the basis of the stochastic model.

301[PTG.2.5] Of course, if the developer claims both Shannon entropy and min-entropy, the online
test shall detect if any claim is violated. In particular, the developer needs to specify appropriate
parameters. The online test shall detect sufficiently soon when the PTRNG leaves the specified
set of appropriate parameters (implicitly given by the class requirements). If the PTRNG gen-
erates internal random numbers that have significantly more entropy than required, this usually
simplifies the task of designing an effective (and efficient) online test. These aspects are explained
in detail in Subsect. 4.5.3.

302[PTG.2.5] Analyzing the impact of the algorithmic post-processing algorithm (cf. par. 285) pro-
vides a range of suitable (or at least tolerable) stochastic properties of the raw random numbers
(e.g. parameters of the stochastic model, such as bias). An effective online test shall have a low
probability of failing if the desired properties are met (false positive) and a high probability to
triggering a noise alarm if the undesired properties are present.

303[PTG.2.5] The online test should be applied to the raw random numbers. In exceptional cases it
might be possible to test the internal random numbers instead. This requires that the applicant
is able to determine the possible distributions of the internal random numbers, i.e., to formulate,
justify, and analyze a stochastic model of the internal random numbers. This may be possible
in favorable cases (e.g., for iid stochastic models with simple mathematical post-processing, but
usually the proofs will be more difficult than for online tests on the raw random numbers.
Note: This approach is not recommended.

50 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

3.4 PTRNGs: Functionality classes

304 [PTG.2.5] The online test may be applied continuously, at regular (short) intervals, or upon
specified internal events. The analysis shall take into account the calling scheme of the online
test in the verification of its suitability. The applicant shall specify the consequences of a noise
alarm. This is also a subject of the evaluation. For general considerations, further explanations,
and examples we refer to Subsect. 4.5.3.

305 [PTG.2.6] A total failure of the physical noise source implies that without intervention require-
ment PTG.2.3 would drastically be violated (e.g. because the next raw random number bits have
no entropy at all or at best very low entropy). If the internal random numbers are buffered before
they are output, then this feature can relax the detection and reaction time. The effectiveness
of the total failure test shall be proven on the basis of a substantiated failure analysis of the
physical noise source and the impact of the algorithmic post-processing on the entropy (cf. par.
285).
The total failure test may include statistical tests, but other solutions (voltage sensors etc.) may
be acceptable as well. For general considerations, further explanations, and examples we refer
to Subsect. 4.5.4.

306 [PTG.2.5, PTG.2.6] If the total failure test and / or the online test are not part of the TOE
but are to be implemented later as an external security measure, then the applicant must sub-
mit an accurate specification of the online test and / or of the total failure test as well as a
reference implementation. The tasks concerning the verification that PTG.2.5 and / or PTG.2.6
are fulfilled remain unaffected. The specification of the tests shall be part of the user manual
(guidance documents). The online test of the final PTRNG implementation shall exactly fulfill
the specification of the user manual (to be checked later in a composite evaluation) in order to
be PTG.2-compliant.

307 [PTG.2.7] The statistical test suites Trrn and Tirn shall be applied under representative environ-
mental conditions (cf. par. 308). Depending on the PTRNG design, the developer or evaluator
may apply further statistical tests. For the functionality class PTG.2, the importance of com-
prehensive statistical tests is incomparably higher than for the classes DRG.2, DRG.3, DRG.4,
and PTG.3, because the raw random numbers may be biased or have short-term dependencies.

308 [environmental conditions] Environmental conditions (temperature, voltage, etc.) are viewed as
relevant in this context if they belong to the specified range of permitted operating conditions.
A parameter set (temperature, voltage, etc.) is representative if the tests under these environ-
mental conditions allow to draw conclusions on the behavior of the raw random numbers (or the
internal random numbers) under other environmental conditions within the permitted operating
conditions.
Note: Within the vulnerability analysis one may perform tests for environmental conditions
that lie outside of the permitted range. If the physical noise source works properly under these
environmental conditions, too, then this may to some extent relax the requirements on the anti-
tamper measures (e.g., by sensors). This is, however, not part of the AIS 20/31; cf. pars. 22
and 23.

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

51

3 Functionality classes

3.4.4 Functionality Class PTG.3

309The class PTG.3 defines requirements for hybrid PTRNGs. The differences to the classes PTG.2
and DRG.4 are explained in par. 318.

310The class PTG.3 is the strongest functionality class. It defines requirements for RNGs that
shall be appropriate for any cryptographic application. Unlike for PTG.2-compliant PTRNGs,
the security of PTG.3-compliant PTRNGs does not only rely on information-theoretic security
ensured by the physical noise source (in combination with the algorithmic post-processing) but,
additionally, also on computational security ensured by the cryptographic post-processing. In
particular, the internal random numbers will not show any bias or short term dependencies. The
cryptographic post-processing can reduce the entropy defect per intermediate random number
bit by data compression.

311The functionality class PTG.3 demands a cryptographic post-processing algorithm that (inter-
preted as a DRNG) is DRG.3-compliant even if its input data, the intermediate random numbers,
would become predictable at some point in time. Intermediate random numbers can be seed ma-
terial, reseed material or additional input.

312The TSF has to protect the internal state of the RNG from being compromised.

313PTG.3-specific deliverables by the applicant
The security architecture description and developer evidence shall contain

• a description of the physical noise source (including the digitization mechanism),

• a comprehensive description of the ‘algorithmic behavior’ of the PTRNG beginning with
the digitization of the raw random numbers,

• a stochastic model of the raw random numbers with substantiated justification, statistical
evidence, and thorough analysis,

• evidence that PTG.3.1, PTG.3.2, and PTG.3.6 are fulfilled,

• a description of the cryptographic post-processing and evidence that PTG.3.3, PTG.3.4,
and PTG.3.5 are fulfilled,

• a description of the start-up test and evidence that PTG.3.7 is fulfilled,

• a description of the online test and evidence that PTG.3.8 is fulfilled,

• a description of the total failure test and evidence that PTG.3.9 is fulfilled,

• evidence that PTG.3.10 is fulfilled.

314PTG.3: Security functional requirements
Functional security requirements of the class PTG.3 are defined by component FCS_RNG.1 with
specific operations as given below.

315FCS_RNG.1 Random number generation (Class PTG.3)

52 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

3.4 PTRNGs: Functionality classes

FCS_RNG.1.1 The TSF shall provide a hybrid physical random number generator that im-
plements:

(PTG.3.1) The raw random numbers can be viewed as realizations of a (time-local) sta-
tionary stochastic process R1, R2,

(PTG.3.2) The stochastic process R1, R2, . . . has only moderate 1-step and 2-step depen-
dencies. Significant k-step dependencies do not occur for k > 2.
If the raw random numbers are binary-valued, this means the following:

| Prob(Rj+1 = 0 | Rj = 0) − Prob(Rj+1 = 0 | Rj = 1)| ≤ 0.02 (3.10)
| Prob(Rj+2 = 0 | Rj = 0) − Prob(Rj+2 = 0 | Rj = 1)| ≤ 0.005(3.11)

(PTG.3.3) If the cryptographic post-processing algorithm runs autonomously or if its input
data are known, the algorithm belongs to the functionality class DRG.3.

(PTG.3.4) The intermediate random numbers that are input to the cryptographic post-
processing algorithm [selection: are generated by a PTG.2-compliant PTRNG,
are generated by a PTRNG that fulfills the requirements PTG.2.1 and PTG.2.2
and guarantees that [selection:
the Shannon entropy per intermediate random number bit exceeds [assignment:
v1 ∈ [0.4, 0.9998])],
the min-entropy per intermediate random number bit exceeds [assignment:
v2 ∈ [0.1, 0.98])],
the Shannon entropy per intermediate random number bit exceeds [assignment:
v1 ∈ [0.4, 0.9998])] and the min-entropy per intermediate random number bit
exceeds [assignment: v2 ∈ [0.1, 0.98])].]
The intermediate random numbers are input into the cryptographic post-processing
algorithm by the seeding procedure, the reseeding procedure, or as additional
input. The PTRNG may apply several methods.

(PTG.3.5) The cryptographic post-processing shall not extend its input sequence. In other
words: The input rate (the intermediate random numbers, counted in bits)
shall be greater or equal than the output rate (the internal random numbers,
counted in bits). The compression rate crate is the ratio between input rate and
output rate.

(PTG.3.6) [selection:
the (average) Shannon entropy per intermediate random number bit exceeds
0.9998 and the cryptographic post-processing does not extend its input,
the (average) min-entropy per intermediate random number bit exceed 0.98 and
the cryptographic post-processing does not extend its input,
the (average) Shannon entropy and min-entropy per intermediate random num-
ber bit exceeds 0.9998 and 0.98 and the cryptographic post-processing does not
extend its input,
the (average) Shannon entropy per internal random number bit exceeds [as-
signment: vS ∈ [0.9998, 1 − 2−32]],
the (average) min-entropy per internal random number bit exceeds [assignment:
vm ∈ [0.98, 1 − 2−32]],
the (average) Shannon entropy per internal random number bit exceeds [as-
signment: vS ∈ [0.9998, 1 − 2−32]] and the (average) min-entropy per internal
random number bit exceeds [assignment: vm ∈ [0.98, 1 − 2−32]]]

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

53

3 Functionality classes

(PTG.3.7) The start-up test is applied immediately after the RNG has been started. It
shall detect a total failure of the physical noise source and severe statistical
weaknesses. The TSF shall not output any internal random numbers before
the start-up test has successfully been completed.

(PTG.3.8) The online test checks the quality of the raw random numbers while the RNG
is being operated. The online test shall detect non-tolerable entropy defects
of the raw random numbers sufficiently soon. The TSF shall not output any
internal random numbers if a defect has been detected.

(PTG.3.9) The total failure test detects if a total failure of the physical noise source oc-
curs while the PTRNG is being operated. Assume that t equals the bit size of
the effective internal state of the DRG.3-compliant post-processing. The total
failure test prevents the output of more than ⌊⌊t/crate⌋/m⌋ internal random
numbers after the total failure has occurred where m denotes the bit length of
the internal random numbers.

FCS_RNG.1.2 The TSF shall provide [selection: bits, octets of bits, numbers [assignment:
format of the numbers]] that meet:

(PTG.3.10) The raw random numbers pass test suite Trrn. Furthermore, there is strong
evidence that statistical test suites cannot practically distinguish the internal
random numbers from the output sequences of an ideal RNG. This conclusion is
based on [selection: theoretical considerations, theoretical considerations sup-
ported by statistical tests, statistical tests with justification of the choice.]

Application notes

316[PTG.3 vs. PTG.2] The general application notes in pars. 280, 281 (stochastic model) and 308
(environmental conditions) apply to class PTG.3 as well.

317[PTG.3 vs. PTG.2] The functionality class PTG.3 includes many of the requirements of class
PTG.2. In particular, the requirements PTG.2.1 and PTG.3.1, PTG.2.2 and PTG.3.2, PTG.2.4
and PTG.3.7, and PTG.2.5 and PTG.3.8 coincide. The corresponding application notes for the
functionality class PTG.2 apply to PTG.3, too.

318[PTG.3 vs. PTG.2, PTG.3 vs. DRG.4] Additionally to class PTG.2, by using cryptographic
post-processing class PTG.3 guarantees computational security even if the raw random numbers
or the intermediate random numbers would be compromised, provided that the internal state of
the cryptographic post-processing algorithm has been initialized properly. This should be the
case already shortly after the PTRNG has started. In contrast to class DRG.4 the cryptographic
post-processing does not ‘extend’ its input data.

319[PTG.3.1, PTG.3.2] The requirements PTG.3.1 and PTG.3.2 concern the raw random numbers
from which the intermediate random numbers are generated. For the ‘typical design’ (where
the intermediate random numbers are generated by a PTG.2-compliant ‘inner’ PTRNG), both
requirements are / were already part of the PTG.2-evaluation.

320
54 A Proposal for Functionality Classes for Random Number Generators

Version 2.35 - DRAFT

3.4 PTRNGs: Functionality classes

[PTG.3.3] Requirement PTG.3.3 requires the evaluation of the algorithmic properties of the cryp-
tographic post-processing algorithm with regard to functionality class DRG.3. More precisely,
this concerns the requirements DRG.3.3 to DRG.3.8. Some requirements from class DRG.3 need
modifications. In DRG.3.2 the upper bound of the internal random numbers between two seed-
ing procedures/reseeding procedures has been dropped for obvious reasons. In the context of
functionality class PTG.3, requirements DRG.3.4 is concerned with the start-up of the PTRNG,
i.e., before the PTRNG is permitted to output internal random numbers. The entropy may be
introduced by seeding, reseeding, or by additional input. Seeding is permitted only once, when
the PTRNG starts.

321 [PTG.3.3] The post-processing algorithm shall not be stateless, i.e., the state shall not be deleted
after the generation of one or more random numbers because otherwise the PTG.3 loses its ’with
memory’ property, which constitutes a security feature. If the internal state is deleted, a startup
test has to be applied before the next internal random numbers can be output (PTG.3.7). The
intermediate random numbers shall influence the next internal state.

322 [PTG.3.4] Usually, a PTG.2-compliant PTRNG generates the intermediate random numbers
for the cryptographic post-processing. For PTG.3-designs without an ‘inner’ PTG.2-compliant
PTRNG, the Shannon entropy claim for the intermediate random numbers can be smaller than
0.9998 per bit, and (if applicable) the min-entropy claim can be smaller than 0.98 per bit (PTG.2-
specific entropy bounds; cf. PTG.2.3). Higher entropy claims for the intermediate random num-
bers than in requirement PTG.2.3 are not accepted. The reasons are explained for functionality
class PTG.2.

323 [PTG.3.4] The intermediate random numbers that are fed into the cryptographic post-processing
algorithm shall be untampered with (integrity), authentic, and kept secret. This, of course, is
essential for the entropy claim of the internal random numbers. Verification of these security
claims is part of the overall evaluation of the TOE; cf. application note 223.

324 [PTG.3.5] Assume that the PTRNG outputs v internal random numbers (m-bit vectors) per
intermediate random number (nin bits). Here, v = 1 should be typical but v > 1 is possible. For
a given internal state s, the cryptographic post-processing of an intermediate random number
can be viewed as a mapping χs : {0, 1}nin → {0, 1}v·m, depending on the internal state s. The
mapping χs describes the generation of v random numbers. Depending on the method, how the
intermediate random numbers are fed into the PTRNG, this mapping may include the seeding
procedure or the reseeding procedure of the cryptographic post-processing algorithm, and / or
the application of the state transition function.

325 [PTG.3.5] Requirement PTG.3.6 allows to claim a PTRNG-specific entropy bound. Therefore,
in a first step the input size n = ⌊nint/v⌋ (counted in bits) per internal random number is
determined. In pars. 325 to 331 the general strategy is explained by several examples. In case of
doubt, the certification body should be contacted. The ratio crate = n/m equals the (average)
compression rate of cryptographic post-processing.

326 [PTG.3.5] Requirement PTG.3.5 separates PTG.3-compliant PTRNGs from DRG.4-compliant
DRNGs because n ≥ m is demanded, or equivalently, crate ≥ 1. To increase the (average) entropy
per internal random number bit beyond the (average) entropy per intermediate random number
bit it is necessary to apply a compression rate crate > 1.

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

55

3 Functionality classes

327[PTG.3.5] The (average) entropy bounds for the internal random number bits are computed
on the basis of the parameters (n,m) and, of course, under consideration of the used type of
cryptographic post-processing algorithm. This applies to Shannon entropy and / or to min-
entropy; see the application notes to requirement PTG.3.6 for details.

328[PTG.3.5] The compression rate crate is computed per intermediate random number, i.e., the
bit length nin of an intermediate random number is divided by the number of internal random
number bits (may belong to several internal random numbers) that are generated before the next
intermediate random number is input. If the bit length of the intermediate random numbers is
not constant, nin is set to the minimal guaranteed bit size. In order not to make the evaluation
too complicated, the use of a sliding average over several intermediate random numbers is not
allowed.

329[PTG.3.4, PTG.3.5] PTG.3-compliant designs without a clear inner ‘PTG.2-boundary’ are also
permitted, if the raw random numbers fulfill the requirements PTG.2.1 and PTG.2.2. If the
entropy of the intermediate random numbers does not meet the requirement PTG.2.3, this has
to be compensated by data compression. The entropy per internal random number bit shall
not be lower than for a design with crate = 1 that uses intermediate random numbers from a
PTG.2-compliant PTRNG. In particular, for those designs n = m (or equivalently, crate = 1)
is not sufficient. The lower entropy per intermediate random number bit has to be taken into
account when determining an entropy bound for the internal random number bits.

330[PTG.3.5] Example: We determine (n,m) and crate for several designs and explain the calcula-
tions. In this paragraph we assume that the cryptographic post-processing algorithm is given
by the DRNG that is defined in pars. 841 and 842. We summarize its relevant features: It is
S = Sreq = R = {0, 1}256, and both the state transition function ϕ(H2) : S × A → S and the
output function ψ(H2) : Sreq → R are closely related to the SHA -256 hash function. More pre-
cisely, if s and a denote the current internal state and the current intermediate random number
(treated as additional input), the next internal state is given by SHA -256(s∥11∥a) while the
next internal random number equals SHA -256(s∥00∥a). Requests are limited to 256 bits, the
bit length of a single internal random number. Alternatively, the intermediate random numbers
can be used as seed for the seeding procedure or the reseeding procedure of the cryptographic
post-processing algorithm; cf. requirement PTG.3.4. In this example, the seeding procedure and
the reseeding procedure are rather simple: The first internal state s′ is given by a 256-bit string
(seeding procedure), or a 256-bit seed string is XORed to the current internal state (reseeding
procedure).
The internal state comprises 256 bits and thus cannot store more than 256 bits of entropy. Con-
sequently, per request, i.e., between two consecutive applications of the state transition function,
between two reseeding procedures, etc., only one internal random number can be output. Oth-
erwise requirement PTG.3.5 would be violated.
Furthermore, we assume that the intermediate random numbers are generated by a PTG.2-
compliant PTRNG.

[(i)] Per intermediate random number a with |a| = 256 (input either by seeding, reseeding or
as additional input), one internal random number is output.
Conclusion: Requirement PTG.3.4 is fulfilled with (n,m) = (256, 256), and thus crate = 1.

56 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

3.4 PTRNGs: Functionality classes

[(ii)] An intermediate random number a with |a| = 320 is input as additional input, and one
internal random number is output.
Conclusion: Requirement PTG.3.4 is fulfilled with (n,m) = (320, 256), and thus crate =
320/256 = 1.25 ≥ 1.

[(iii)] 512-bit intermediate random numbers are used as seed for the seeding procedure and the
reseeding procedures. Two internal random numbers are output between two successive
reseeding procedures.
Conclusion: It is crate = 512/512 = 1, but requirement PTG.3.5 is violated because the
internal state can not store more than 256 bits of entropy.
Note: The output of only one internal random number between two successive reseeding
procedures would be compliant to class PTG.3.

[(iv)] Periodically, intermediate random numbers a with |a| = 320 and |a| = 270 are used as
additional input, and one internal random number is output.
Conclusion: Requirement PTG.3.4 is fulfilled with (n,m) = (min{320, 270}, 256), and thus
crate = 270/256 = 1.05 ≥ 1; cf. par. 328.

[(v)] Periodically, the additional input is given by intermediate random numbers a with |a| =
1024, a = o (no additional input), a = o, a = o, and after each additional input (including
the empty additional inputs) an internal random number is output.
Conclusion: This design does not fulfill Requirement PTG.3.5 because the internal state
cannot ‘store’ more than 256 bits of entropy.
Note: Instead, a sequence of intermediate random numbers with |a| = 1024, a = o, etc. or
with |a| = 512, a = o, etc. would be possible with (n,m) = (256, 256), and thus crate = 1.
Justification: The model is as follows: The entropy of the first 256 bits of the non-empty
intermediate random number is ‘directly’ used for the generation of an internal random
number while its second 256 bits provides fresh entropy of the internal state. The second
internal random number ‘uses’ this fresh entropy.

331 [PTG.3.5] Example: Below, three further examples are discussed. As in par. 330 we assume that
the intermediate random numbers are generated by a PTG.2-compliant PTRNG.

[(i)] Hash− DRBG, see Subsect. 5.3.1 An intermediate random number a with |a| ≥ outlen is
input as additional input, and one internal random number is output.
Conclusion: Requirement PTG.3.5 is fulfilled with (n,m) = (|a|, outlen), and thus crate ≥
1.
Justification: The additional input (here: an intermediate random number) is first mapped
to a outlen-bit value f(v, a), cf. (5.35), (5.37), (5.39). The entropy of f(v, a) is limited by
outlen bits.

[(ii)] Hash− DRBG, see Subsect. 5.3.1 An intermediate random number a with |a| ≥ seedlen is
input by seeding and reseeding.
Conclusion: If one internal random number is output, requirement PTG.3.5 is fulfilled with
(n,m) = (≥ seedlen, outlen), and thus crate ≥ seedlen/outlen ≥ 1.
Special case: For Hash = SHA -384 we have seedlen > 2outlen. If two internal random
numbers are output, requirement PTG.3.5 is fulfilled with (n,m) = (seedlen, 2outlen) =
(888, 768), and thus, crate = 888/768 = 1.16 ≥ 1.
Justification: cf. Example (i)

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

57

3 Functionality classes

[(iii)] The cryptographic post-processing is performed by the DRNG, that is described in pars. 843
to 845. Per intermediate random number a with |a| = 128 (additional input), one internal
random number is output.
Conclusion: Requirement PTG.3.5 is fulfilled with (n,m) = (128, 128), and thus crate = 1.
Note: Intermediate random numbers for which the entropy per bit is lower than defined in
requirement PTG.2.3 (for PTG.2-compliant PTRNGs) cannot be used; cf. par. 329

332[PTG.3.6] Requirement PTG.3.6 is crucial, as it considers or even quantifies the entropy of
the internal random numbers. The average entropy per intermediate random number bit shall
exceed some specified threshold value. This pertains to Shannon entropy and / or to min-
entropy, depending on the entropy claim. For PTG.2-compliant ‘inner’ PTRNGs this is covered
by requirement PTG.2.3. A min-entropy claim for the internal random numbers is only possible
if there is a (verified) min-entropy claim for the intermediate random numbers.

333[PTG.3.6, Typical design] Usually, a PTG.2-compliant PTRNG generates the intermediate ran-
dom numbers that are used as input for cryptographic post-processing. The PTRNG then can be
viewed as a composition of PTG.2-compliant PTRNG and DRG.3-compliant cryptographic post-
processing algorithm. If the applicant is satisfied with the lowest entropy claim of requirement
PTG.3.5, i.e., that the cryptographic post-processing does not extend the input data (inter-
mediate random numbers), the verification of requirement PTG.3.6 is easy because no entropy
analysis of the impact of cryptographic post-processing is required. Specified entropy claims for
the internal random number bits require entropy analysis. Various aspects are covered in the
next paragraphs.

334[PTG.3.6] For algorithmic post-processing the stochastic model of the raw random numbers
has to be taken into account. In contrast, the evaluation of the cryptographic post-processing
does not need to consider the stochastic model of the intermediate random numbers or of the
underlying raw random numbers, respectively. Instead, only the entropy claim of the intermediate
random numbers is taken into account. This allows composite evaluations where, for example, a
software developer uses the output of a certified PTG.2-compliant PTRNG that was designed and
manufactured by another company. The software developer does not need to know any details
of the PTRNG design (the usual scenario). If applicable they have to implement specifications
from the user manual (e.g., concerning the online test or the total failure test; cf. application
note 306). Of course, within the composite evaluation, the designer and evaluator have to give
evidence that the design fulfills the missing requirements of class PTG.3, in particular PTG.3.3,
PTG.3.4, PTG.3.5, and the second part of PTG.3.10.

335[PTG.3.6] For a given internal state s the cryptographic post-processing of an intermediate
random numbers can be viewed as a mapping χs : {0, 1}n → {0, 1}m that is parametrized by
the internal state s. The letters n and m denote the bit length of the intermediate random
numbers and of the generated internal random numbers (n ≥ m by requirement PTG.3.5). This
model applies to all admissible techniques (seeding, reseeding, additional input). The Shannon
entropy claim refers to the average entropy per bit (averaged over a sequence of internal random
numbers), while the min-entropy claim holds for the average entropy per bit of any internal
random number with probability ≥ 1 − 2−16.
Note 1: Since the internal state changes permanently, smaller entropy values for some internal
random numbers average out.
Note 2: The class PTG.3 only considers the gain of entropy of the sequence of generated internal

58 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

3.4 PTRNGs: Functionality classes

random numbers that is caused by the respective intermediate random numbers. That is, here
we pessimistically assume that an adversary knows the current internal state s. Relative to an
adversary who does not know at least a few bits of the internal state, the gained entropy usually
is larger because of the uncertainty on s or χs, respectively. Since it is assumed that an adversary
does not know the internal state this approach might seem to be overly cautious. Note that this
worst-case approach also covers scenarios where an adversary is able to temporarily compromise
the internal state.

336 [PTG.3.6] To verify an entropy claim for the internal random numbers, the cryptographic post-
processing algorithm usually has to be modeled; bijective mappings are an exception, but they do
not increase the entropy per bit. Usually, cryptographic post-processing is modeled as a random
mapping χs : {0, 1}n → {0, 1}m; see Sect. 4.4.2 for a comprehensive treatment. In order not to
overstress the model, the entropy claim per internal random number bit is bounded by 1 − 2−32.

337 [PTG.3.6, n = m] For n = m, i.e., for crate = 1, the cryptographic post-processing cannot
increase the entropy per bit. For many designs the cryptographic post-processing algorithm
χs : {0, 1}n → {0, 1}n can be viewed as a random mapping, e.g., when the post-processing
algorithm hashes an input vector that includes the current internal state and the intermediate
random numbers. In this case the average entropy per bit decreases to some degree. Note
that for any a2 ∈ {0, 1}m the pre-image size |χ−1

s ({a2})| can be interpreted as a realization of
a random variable that is Poisson distributed with parameter τ = 1. The entropy claims shall
consider Sect. 4.4.2, pars. 587 ff. Although here cryptographic post-processing even decreases the
entropy per bit to some degree it has positive effects on the practical security. This is because it
removes possible bias and short-term dependencies of the intermediate random number ‘smearing’
the weaknesses over the internal random number, thereby counteracting practical attacks and
increasing the computational security.
Note: If the mapping χs : {0, 1}n → {0, 1}n is bijective for each s, it maintains the entropy of
the intermediate random numbers; cf. pars. 843 to 845, and par. 331, Example (iii).

338 [PTG.3.6, n > m] For n > m, the cryptographic post-processing applies data compression, which
has to be taken into account for the verification of the entropy claim; cf. Sect. 4.4.2. Assume
that the cryptographic post-processing algorithm can be modeled by a random mapping (usual
case). To determine a lower min-entropy bound per internal random number bit the following
procedure can be applied:
First, n− := ⌊n · hm⌋ is computed where hm for the moment denotes the min-entropy per
intermediate random number bit. That is, for given bit length n of the intermediate random
numbers, the designer / evaluator applies (4.163) in the opposite direction to determine an input
bit length n− for a fictitious PTRNG design, for which the intermediate random numbers are
generated from an ideal RNG and the post-processing χs is given by a random mapping, As
explained in Subsect. 4.4.2, the real-world PTRNG is at least as good as the fictitious PTRNG.
If n− ≥ m+16 in a second step (4.162) can be applied with z = z16; cf. par. 598. This provides an
upper bound for entropy defect per internal random number bit of the PTRNG under evaluation.
Par. 339 illustrates the procedure by an example.
Note: The condition n− ≥ m+ 16 results from the condition 2n−−m

m log(2) −→ ∞ (par. 595) and the
normal approximation of the pre-image sizes f−1(a2) (par. 603). The case m < n− < m+ 16 is
not categorically excluded but requires additional evidence from the applicant.

339 [PTG.3.6, n > m] Example: Assume that n-bit intermediate random numbers are generated by

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

59

3 Functionality classes

a (certified) PTG.2-compliant PTRNG with the min-entropy claim ≥ 0.98. Assume further that
(n,m) = (327, 256). We first conclude that the min-entropy per intermediate random number
exceeds 327 · 0.98 = 320.45 > 320 =: n−. Applying (4.162) with (n−,m, z = z16) gives an upper
bound for the min-entropy defect per internal random number bit of 2−32.93 (cf. Tab. 4) for the
fictitious PTRNG. This justifies the following min-entropy claim for the (real) PTRNG under
evaluation: The min-entropy per internal random number bit exceeds 1 − 2−32.93.

340[PTG.3.6, n > m] Pars. 338 and 339 discuss designs where the data-compressing cryptographic
post-processing is applied that can be modeled by a random mapping and where n− > m+ 16.
This should cover the usual designs. If m < n− < m+16 the applicant has to provide arguments
of their own that support their entropy claim.
Note: This is also the case, of course, if the cryptographic post-processing algorithm, cannot be
modeled by a random mapping. An example is given if the pre-images χ−1

s ({a2}) have the same
size for all a2 ∈ {0, 1}m. (Identical pre-image sizes should have positive impact on the entropy
claim.)

341[PTG.3.9] Requirement PTG.3.9 customizes PTG.2.6 to the given situation. In particular, it
takes the compression rate crate (introduced in Requirement PTG.3.5) into account.

342[PTG.3.10] For PTRNG designs for which the intermediate random numbers are generated
by a PTG.2-compliant PTRNG (standard case, cf. par. 322) the first part of requirement
PTG.3.10 (concerning the test suite Trrn) has already been covered in the evaluation of the
PTG.2-compliant PTRNG (cf. PTG.2.7). Otherwise, the test requirements on the raw random
numbers remain unchanged, but the statistical tests on the intermediate random numbers (after
an algorithmic post-processing algorithm, if existent) are waived.

343[PTG.3.10] Concerning the second part of PTG.3.10, the requirement PTG.3 inherits the prop-
erties of the DRG.3-compliant cryptographic post-processing; cf. DRG.3.10.

3.5 NPTRNG: Functionality classes

344Subsect. 3.5.3 defines the functionality class NTG.1. The differences from the previous version of
the AIS 31 [AIS2031An_11] are pointed out in Subsect. 3.5.1. Subsect. 3.5.2 contains explana-
tions that are relevant for the functionality class NTG.1. We begin with general remarks about
NPTRNGs.

345NPTRNGs generate ’true’ random bits, but unlike PTRNGs they do not employ dedicated
hardware designs or physical experiments as noise sources. Instead, NPTRNGs prevalently
exploit non-physical noise sources such as system data or human interaction. From the point of
view of the RNG, these non-physical noise sources may be viewed as ‘external’, although they
belong to the device or are exploited by the device on which the NPTRNG is implemented. The
distribution of the output data from non-physical noise sources (= raw random numbers) usually
cannot be modeled as precisely as the raw random numbers generated by dedicated physical noise
sources of PTRNGs. Thus, their entropy shall be conservatively estimated.

346NPTRNGs are used to generate ‘true’ random numbers if PTRNGs with dedicated physical

60 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

3.5 NPTRNG: Functionality classes

noise sources are not available. Generally speaking, the BSI has lower trust in NPTRNGs than
in PTRNGs. First of all, noise sources used by NPTRNGs often only work well under specific
circumstances and the NPTRNG often is unable to check whether these conditions are met.
Secondly, the entropy estimate is usually based on complex assumptions about the knowledge
and capabilities of an adversary and the operational environment (cf. pars. 352 and 354). As
a consequence, the functionality class DRG.4 prohibits the use of NPTRNGs for the seeding
procedure, the reseeding procedure) and for high-entropy additional input.

347 It should be noted that the definition of the functionality class NTG.1 has been reworked in this
version of the document. The definition of the functionality class NTG.1 and the objectives are
similar to that in [AIS2031An_11] (which justifies maintaining the class names), although it is
different in detail.

3.5.1 NPTRNG: Main Differences to [AIS2031An_11]

348 In [AIS2031An_11] the functionality class NTG.1 requires that the evaluator applies statistical
tests (at least several specified blackbox tests) to the output of the cryptographic post-processing
algorithm. As for the functionality classes DRG.2, DRG.3, and DRG.4 the requirements con-
cerning statistical test suites for the internal random numbers during the evaluation have been
relaxed.

349 The entropy of the internal random numbers is measured in min-entropy. The tolerated min-
entropy defect is numerically significantly smaller than the Shannon entropy defect in [AIS2031An_11].

350 In this document the requirement of mutual disjointness of random vectors (requirement NTG.1
in [AIS2031An_11]) has been dropped. A similar change had been made to the functionality
classes DRG.2, DRG.3 and DRG.4; cf. Sect. 3.3, pars. 92 to 94.

3.5.2 NTG.1: Definitions, requirements, and justification

351 Typically, NPTRNGs are used if ‘true’ random numbers needed (e.g., for generating crypto-
graphic keys or (re-)seeding a DRNG), but no physical noise source is present. Therefore,
NPTRNGs use any available noise sources that are hard to predict. Since NPTRNGs are often
computer programs, those noise source outputs are usually system data and data produced by
the interaction of human users or other external entities. A common approach is using time
stamps from a high-resolution timer at ’random’ points in time.

352 For any TRNG evaluation, the central task is to verify that the entropy per internal random
number bit exceeds a specified lower bound. For NPTRNGs this means assessing how much
entropy the collected raw random numbers contain relative to external observers. Unlike in the
case of physical noise sources, the unpredictability of the raw random numbers collected by a
NPTRNGs from non-physical noise sources may to a large degree depend on the platform and
the operational environment. Furthermore, it depends on the means of an adversary to monitor
or influence the noise sources. As a consequence, the entropy estimation of an NPTRNGs is

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

61

3 Functionality classes

usually not based on a precise stochastic model, but instead on conservative estimates assuming
(realistic) worst case conditions.

353Attack paths and risks (Examples)

1. A software-implemented NPTRNG is not secure against an adversary with full system
access (in particular: read access to the internal state). An adversary with a lower access
level can try to monitor the noise sources (e.g., perform coarse time measurements) or
generate predictable raw random numbers (e.g., by running an unprivileged process on the
same CPU core).

2. An adversary may connect a malicious device that generates predictable events (e.g., key-
board and mouse events or network traffic).

3. A software NPTRNG may be operated in an environment for which it was not intended,
i.e. on a CPU where instructions behave differently, in a virtual machine, or in a scenario
where no or only a subset of the noise sources are present.

354In order to determine what an adversary can and can’t do as well as stating necessary opera-
tional conditions (e.g., the adversary’s privileges), the security boundary of the TOE must be
precisely specified. It should be noted that NPTRNGs usually have more and stronger security
operational requirements than PTRNGs (cf. par. 352); cf. Sect. 5.6, par. 1169, for example
(Linux /dev/random). Furthermore, the attacker should not have root rights.

355The raw random numbers collected by an NPTRNG are often huge in data size compared to
their estimated entropy. Since the entropy estimate usually is made with heuristic rules that
assume a (realistic) worst case scenario, the raw random numbers may contain more entropy in
practice (e.g., if real-world adversaries are not as knowledgeable as assumed or if the noise sources
are ‘more random’ than assumed). Thus, NPTRNGs often compress and mix the collected raw
random numbers into a large intermediate data structure, the entropy pool, in order to reduce
the data size while still preserving the extra entropy. When the NPTRNG generates internal
random numbers, data from the entropy pool is extracted and possibly compressed again such
that the estimated entropy per internal random number almost equals the bit length.

356An NPTRNG shall not generate more internal random number bits than the estimated overall
entropy of the collected raw random numbers. NPTRNGs usually feature an entropy counter to
keep track of how much entropy has entered the entropy pool and how much entropy has been
extracted. The counter is capped at the maximum amount of entropy that the mixing function
can insert into the entropy pool. If a request for random bits exceeds the available amount of
entropy contained in the entropy pool, the NPTRNG will block the output. The request can be
served only after sufficient entropy has been gathered.

357[generic design] There are many conceivable designs of NPTRNGs. This paragraph describes
a generic design that uses typical components. The design is exemplary, and variations are
possible.

• The non-physical noise sources are used to gather or generate raw random numbers from

62 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

3.5 NPTRNG: Functionality classes

system data or interaction with external entities. The entropy of the raw random numbers
is estimated.

• Periodically, or driven by events, the raw random numbers are mixed into the entropy pool.
The entropy counter is increased accordingly (taking into account the maximal amount of
entropy that the entropy pool can store).

• Upon a request for random bits, data from the entropy pool is extracted. If the entropy
pool contains insufficient entropy, the request is refused or blocked (suspended). After data
extraction the entropy counter is decreased accordingly. To achieve enhanced backward
secrecy, the previous value of the entropy pool is erased or cryptographically overwritten
after each output (cf. par. 360).

• The function that extracts data from the entropy pool and generates output (internal
random numbers) can be stateless (e.g., simply a hash function) or can have memory that
persists between calls (e.g., a DRNG for cryptographic post-processing). The use of a
DRNG does not waive the requirement of blocking in case of insufficient entropy.

358 [NTG.1] As an analogy to class PTG.3, we call the data that are input to the cryptographic
post-processing algorithm intermediate random numbers.

359 For stateful extraction, stateful output functions, or multiple entropy pools, the entropy must
be counted consistently over all data structures to prevent generating pseudorandom output
(cf. par. 356). This can be accomplished by having multiple entropy counters or fixed transfer
sizes. Note that in order to achieve enhanced backward secrecy, the previous values of each data
structure involved in generating output need to be erased or cryptographically overwritten (cf.
par. 360) after providing entropy to the next stage.

360 Similar to pure PTRNGs without cryptographic post-processing algorithms, an NPTRNG can
principally be stateless, i.e. collect a certain amount of entropy, generate output, and then
completely erase its internal state in order to achieve enhanced backward secrecy. It is, however,
recommended (and required for class NTG.1) that an internal state be maintained in such a way
that the NPTRNG exhibits the computational security properties of a (properly seeded) DRNG.
This provides an additional security anchor in case the entropy of some raw random numbers is
overestimated.

361 To be secure as a DRNG (even if from a point in time the raw random numbers from the noise
sources do not contain (enough) entropy), a DRNG within the NPTRNG must be properly
seeded. In particular, it must receive a sufficient amount of entropy before generating output.
Otherwise, even if the raw random numbers would contain some entropy, the NPTRNG, when
viewed as a hybrid DRNG, would potentially be susceptible to the generic guessing attack de-
scribed in par. 164.

362 A DRNG security anchor can be achieved, for example, by designing the NPTRNG to be a DRNG
with the internal state being the entropy pool. Alternatively, the NPTRNG can consist of an
entropy pool for collecting entropy and a dedicated DRNG for cryptographic post-processing that
is continually reseeded from the entropy pool. In order to achieve enhanced backward secrecy,
the entropy pool as well as the internal state of the DRNG need to be updated after having

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

63

3 Functionality classes

generated output (cf. par. 359). Using a dedicated DRNG for cryptographic post-processing can
simplify the security evaluation of DRNG properties.

363The concept of having a dedicated DRNG in par. 362 roughly corresponds to building a PTG.3
by combining a PTG.2 with DRG.3-compliant cryptographic post-processing with the difference
that a PTG.2 is usually stateless.

364A prominent example of an NTG.1-compliant NPTRNG (under suitable operational conditions)
has been for a long time the mechanism behind /dev/random; to be precise, until Linux kernel
version 5.5; cf. [Linux_RNG_overview]. In later kernel versions, /dev/random delivers pseu-
dorandom bits. Under suitable assumptions /dev/random is compliant to functionality class
DRG.3; see Sect. 5.6 for details. The reference [RNG_virtual_env] considers the generation of
random numbers in virtualized environments.

3.5.3 Functionality Class NTG.1

365The class NTG.1 defines requirements for NPTRNGs that rely on information-theoretic security
(similar to PTRNGs) but use external input signals as noise sources. Additionally, a suitable
cryptographic post-processing algorithm shall provide an additional security anchor.

366NTG.1-compliant NPTRNGs are usually operated on devices like PCs, servers, etc. that do not
have access to a PTRNG.

367The TSF has to protect the internal state of the RNG from being compromised.

368NTG.1-specific deliverables by the applicant
The security architecture description and developer evidence shall contain

• a description of the required operational conditions and a specification of the security
boundary,

• a description of the noise sources and a justification for entropy estimates,

• a comprehensive description of the ‘algorithmic behavior’ of the NPTRNG,

• evidence that NTG.1.1 through NTG.1.5 are fulfilled.

3.5.4 Security functional requirements for the NPTRNG class NTG.1

369Functional security requirements of the class NTG.1 are defined by the component FCS_RNG.1
with specific operations as given below.

370FCS_RNG.1 Random number generation (Class NTG.1)

64 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

3.5 NPTRNG: Functionality classes

FCS_RNG.1.1 The TSF shall provide a non-physical true RNG that implements:

(NTG.1.1) The NPTRNG shall collect and test the raw random numbers provided by its
noise sources in order to estimate the entropy and detect failures of the noise
sources.

(NTG.1.2) The NPTRNG shall have an entropy pool and an entropy counter that tracks
the estimated amount of entropy currently stored in the entropy pool. The
NPTRNG shall never generate more internal random number bits than indi-
cated by the entropy counter.

(NTG.1.3) The NPTRNG shall apply a cryptographic post-processing algorithm with mem-
ory. Viewed as a hybrid DRNG, the NPTRNG is compliant to the functionality
class DRG.3 (cf. pars. 360, 361, and 362). The fresh entropy can be input
by the seeding procedure, the reseeding procedure, or as additional input. The
NPTRNG may apply several methods to input fresh entropy.

(NTG.1.4) The NPTRNG shall not generate any random numbers until the following
condition has been met. The entropy pool has collected at least 220 bits of
min-entropy from at least two different noise sources each. These two noise
sources shall employ different principles to provide randomness. Viewed as a
DRNG, the NPTRNG has been seeded using contributions from the two noise
sources.

FCS_RNG.1.2 The TSF shall provide random numbers that meet:

(NTG.1.5) The estimated min-entropy per internal random number bit exceeds [assign-
ment v ∈ [0.98, 1 − 232]].

Application notes

371 [NTG.1.1] An NTG.1-compliant NPTRNG may utilize any source of data for which there is
a compelling technical explanation why the data are hard to predict by an adversary. The
explanation shall specify the necessary operational requirements for the noise source to function
and deliver a conservative lower bound for the expected amount of entropy (e.g., the type of
CPU, whether virtualization is allowed, or assumptions regarding the security features that
protect against an adversary).

372 [NTG.1.1] The explanation shall specify all possible failure modes for the noise source. The
explanation shall comprise a heuristic analysis of the noise source as a justification for the entropy
estimator during operation.

373 [NTG.1.1, overall evaluation] The explanation shall survey conceivable attack vectors on the
noise source (cf. par. 353) and assess (under realistic assumptions) the ability of an adversary
to influence or observe the data and the impact on its entropy.

374 [NTG.1.1] The entropy estimator may assign a constant value as an entropy estimate to data
from a noise source (unless a failure has been detected) or, alternatively, heuristically determine

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

65

3 Functionality classes

an entropy value. Sets of data that are estimated to contain zero entropy may also be added to
the entropy pool unless this weakens the security of the NPTRNG (cf. par. 375).

375[NTG.1.1, overall evaluation] The evaluator shall consider the different noise sources and an ad-
versary’s ability to weaken the NPTRNG through malicious raw random numbers. An adversary
outside the security boundary shall not be able to weaken the security of the NPTRNG, provided
that the operational requirements are met.

376[NTG.1.2] The entropy counter of the entropy pool shall start from zero. It shall be increased
by the estimated amount of entropy provided by the raw random numbers that are mixed into
the entropy pool and decreased by the bit length of the output random numbers (intermediate
random numbers) when the bits are extracted from the entropy pool. The value of the entropy
counter shall never exceed the maximal amount of entropy that the entropy pool can store. The
maximal amount of storable entropy is determined by the data size as well the function that
transfers entropy from raw random numbers into the entropy pool.
Note: There are no concrete regulations for the mixing function (i.e., update function) of the
entropy pool.

377[NTG.1.2] If the NPTRNG has separate logical data structures in which entropy is stored (i.e.,
entropy pools), then the local and the global entropy counters must be kept consistent (cf.
par 359). Note that NTG.1.5 (minimal amount of entropy of the internal random numbers)
implies that extracting entropy from multiple data structures in order to produce output also
needs to be kept consistent.

378[NTG.1.3] The documentation to be provided by the developer for a DRG.3 evaluation comprises
a formal description of how the DRNG updates its internal state and generates output. The same
modeling is thus required for an NTG.1 evaluation; see par. 362. The internal state may coincide
with the entropy pool, but this need not be the case.

379[NTG.1.3, NTG.1.4] Requirements NTG.1.3 and NTG.1.4 shall ensure that the NPTRNG is at
least as secure as a properly seeded DRG.3 (cf. par 360). To fulfill them, the corresponding
requirements of DRG.3 shall be checked with the following modification. Because of the issues
described in pars. 352 and 354, it is required to use two different noise sources that shall each
provide a sufficient amount of data for the seeding procedure. In order to increase resilience,
it may be advisable to collect even more data and from more noise sources before generating
internal random numbers.

380[NTG.1.4] This requirement for the seeding procedure of the DRNG security anchor also stipu-
lates that the NPTRNG shall have at least two different noise sources. It also means that the
NPTRNG cannot generate random bits until the slower of the two noise sources has produced
the required amount of entropy. If the NPTRNG possesses more than two noise sources, require-
ment NTG.1.4 is satisfied when the two fastest sources have each contributed enough entropy.
The amount of entropy contributed by any other noise sources may be less than that provided
by the two fastest sources.

381[NTG.1.4] Seeding the entropy pool requires bits from at least two different noise sources and
thus the second fastest noise source determines the delay until the first random number can be
generated. After this seeding step, it is not required to wait until the second fastest noise source

66 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

3.6 Cross-class Topics

has produced enough entropy. If the NTG.1 has a noise source that delivers a lot of entropy
per time period, it may then continue to produce output with this (or even greater) bandwidth.
This means that after the seeding step only the total entropy is relevant, regardless of how many
noise sources have contributed.
Note: In order to increase resilience and not to depend on a single noise source, however, it may
be advisable to prevent designs where the NPTRNG is dominated by a single noise source whose
entropy rate greatly exceeds that of the other noise sources.

382 [NTG.1.4] NPTRNGs often exploit time points or time intervals of random events. Different
types of events, e.g., events driven by user interaction, incoming network packages, or system
events, can be interpreted as different non-physical noise sources, even if they apply the same
sampling mechanism (time stamps of interrupts).

383 [NTG.1.5] Requirement NTG.1.5 is the equivalent to requirement PTG.3.6. Unlike for class
PTG.3 only min-entropy is allowed. While for class PTG.3 the entropy claim is based on a
stochastic model for class NTG.1, the entropy claim is derived from heuristic entropy estimates.

3.6 Cross-class Topics

384 Sect. 3.3, 3.4, and 3.5 consider DRNGs, PTRNGs, and NPTRNGs. In particular, the functional-
ity classes are specified. This section considers ‘cross-class’ problems where RNGs from different
classes are involved.

385 [PTG.3 to DRG.3] After a total failure, a PTG.3-compliant PTRNG shall not output further
internal random numbers. To be precise, its internal state allows (to some degree) a delayed
reaction; cf. Requirement PTG.3.9. Unless the total failure has occurred immediately after the
start of the PTRNG, the internal state of the cryptographic post-processing algorithm may be
assumed to have maximal entropy. In principle, the RNG could continue outputting internal ran-
dom numbers, but then the RNG would no longer be compliant to the functionality class PTG.3.
Instead, the RNG would drop down to functionality class DRG.3 (provided that Requirement
DRG.3.8 is fulfilled).

386 [PTG.3 to DRG.3] In certain scenarios (e.g. in the case of safety requirements) shutting down
an RNG is not a valid option. From the perspective of system design, it may be preferable to
let a PTRNG compliant to class PTG.3 continue to operate even if a failed online test indicates
that the noise source has become inadequate. The fact that in such systems noise alarms are
basically ignored does not, however, waive the respective requirements for class PTG.3. In order
to be compliant to class PTG.3, the PTRNG MUST be able to detect failures AND signal them
to the consuming application immediately. From the moment when the PTRNG asserts that
the noise source does not deliver the required entropy to satisfy the requirements of PTG.3, the
PTRNG is no longer conformant to class PTG.3, but may continue to operate. Whether the
device’s response is suitable or not for the application is outside the scope of this document

387 [combining several noise sources] The functionality classes PTG.2 and PTG.3 principally allow
the use of several physical noise sources, e.g. several ring oscillators. However, in general it
is not sufficient to analyze these physical noise sources separately because the physical noise

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

67

3 Functionality classes

sources (e.g., ring oscillators) might influence each other. Separate analysis of the noise sources
is permitted only if a thorough evaluation has verified that the physical noise sources can be
viewed as independent. Otherwise, all physical noise sources have to be analyzed together,
which justifies to speak of one physical noise source in the functionality classes PTG.2 and
PTG.3.
Note: If a single physical noise source provides enough entropy and if it can be excluded that the
other physical noise source have negative effects (physically or logically) it suffices to evaluate
this single physical noise source.

388[combining several RNGs] It is possible to combine several individually evaluated RNGs if they
are logically and physically independent. Logical independence means that there are no cor-
relations by design; an extreme example of logical dependence is given, for example, by two
instances of a DRNG that were initialized identically. Usually, logical independence applies to
several DRNGs. Physical independence means that the physical noise sources (including the
digitization mechanism) of different RNGs do not influence each other. Within the evaluation
process the developer has to give evidence that these assumptions are valid. In many cases this
task may be rather easy, in other cases very difficult.

389[combining several RNGs] This paragraph provides several examples of how to combine RNGs.
It is assumed that the RNGs are physically and logically independent. For simplicity, we further
assume that the internal random numbers of the RNGs have been concatenated to binary strings
y1(i), y2(i), The index (i) refers to the RNG (i = 1, 2, . . .). The output sequence of the
combined RNG is denotes by z1, z2,

(a) RNG no. 1: PTG.3-compliant, RNG no. 2: DRNG:
zj = yj(1) + yj(2)(mod 2) for j = 1, 2, . . . (corresponding bits are XORed).
The combined RNG belongs to the functionality class PTG.3.

(b) RNG no. 1: PTG.2-compliant, RNG no. 2: DRG.3-compliant:
zj = yj(1) + yj(2)(mod 2) for j = 1, 2, . . . (corresponding bits are XORed).
The combined RNG belongs to the functionality classes PTG.2 and DRG.3.

(c) RNG no. 1: PTG.3-compliant, RNG no. 2: PTG.2-compliant:
zj = yj(1) + yj(2)(mod 2) for j = 1, 2, . . . (corresponding bits are XORed).
The combined RNG belongs to the functionality class PTG.3.

(d) RNG no. 1: DRG.3-compliant, RNG no. 2: DRG.2-compliant:
zj = yj(1) + yj(2)(mod 2) for j = 1, 2, . . . (corresponding bits are XORed).
The combined RNG belongs to the functionality class DRG.3.

Note: From a logical point of view, it might seem to be natural to call the composition (b) PTG.3-
compliant. However, with regard to the resistance against implementation attacks, composition
(b) has a disadvantage compared to the design demanded by the functionality class PTG.3
because the DRNG never gets fresh entropy. This feature might make an attack on the DRNG
easier: An adversary might try to mount a side-channel attack on the DRG.3-compliant DRNG
first in order to learn its internal state and to determine (and remove) its contribution to the
XOR sum. In a second step the adversary could try to perform a fault injection attack on the
remaining PTG.2-compliant RNG. For a PTG.3-compliant PTRNG, implementation attacks on
the physical part and on the deterministic part cannot be separated in this way.

68 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

3.6 Cross-class Topics

390 [combining several RNGs] In the examples of par. 389 the bitwise XOR operation may be re-
placed by other group operations. For instance, one could divide the sequences (yj(1))j∈N) and
(yj(2))j∈N) into non-overlapping k-bit blocks and apply a group operation to these blocks (e.g.
the addition modulo 28 to 8-bit blocks).

391 [combining several RNGs] In this paragraph we assume that RNG no. 1 is PTG.3-compliant and
that RNG no. 2 is DRG.3-compliant. Furthermore, the output sequence of RNG no. 1 is fed
into the DRNG in compliance with requirement PTG.3.5. We consider the combined RNG to
be compliant with functionality class PTG.3.
Note: (i) If RNG no. 1 was PTG.2-compliant this would directly follow from the specification of
functionality class PTG.3.
(ii) If the developer (applicant for a certificate) aims for an RNG-specific entropy claim for
the overall PTRNG (cf. requirement PTG.3.6), this requires a specific entropy claim for RNG
no. 1.

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

69

4 Mathematical Background

4 Mathematical Background

392Chapter 4 introduces and explains central mathematical concepts that are relevant and can be
useful for the evaluation of RNGs according to AIS 20 and AIS 31. In Sects. 4.1 and 4.2 definitions
and facts from probability theory and stochastics are collected. In particular, random variables
and stochastic processes are treated. Sect. 4.3 considers the concepts of entropy and work factor,
while Sect. 4.4 deals with random mappings. In Sect. 4.5 the ’core’ of any PTRNG evaluation,
the concept of a stochastic model, is introduced, explained, and motivated. Furthermore, online
tests and total failure tests are also addressed. Finally, Sect. 4.6 specifies statistical blackbox
test suites that are applied in the evaluation of PTRNGs. The concepts and their central ideas
are illustrated by examples, within the sections but also later in Chapter 5.

4.1 Randomness and Random Experiments

393True randomness is a crucial requirement for any RNG. For non-deterministic (true) random
number generators (TRNGs), loosely speaking, the noise source ‘generates’ randomness. For
deterministic random number generators (DRNGs), the randomness is extracted from the seed.
In this section we treat randomness in a qualitative manner.

394Probability theory describes, analyzes, and quantifies randomness by means of abstract mathe-
matical objects, in particular by random variables and stochastic processes (cf. Sect.4.2). The
core of any PTRNG evaluation is the stochastic model (Section 4.5).

395Statistics links abstract mathematical models with real-world RNGs by experiments. These
experiments may be used to estimate parameters that describe the model or to test hypotheses
deduced from this model.

396A statistical test checks whether the output sequence of an experiment is ‘typical’ in a specified
sense. Any finite collection of statistical tests can only check finitely many criteria for ‘regularity’.
Hence, it is important to understand the nature of the noise source to rate the randomness of
random number generation.

397An experiment is called unpredictable if the observable outcome of the experiment is (to a cer-
tain extent) unknown before it is conducted. In this document we denote the outcome of an
experiment as random if it is unpredictable, i.e., if it cannot be predicted with certainty.
Note: Deterministic behavior can be viewed as a special case of randomness that is described by
a one-point distribution.

398After the experiment has been performed, the degree of uncertainty depends on the observer’s
ability to observe the outcome. Entropy (cf. Section 4.3) quantifies the degree of unpredictability
relative to an observer.

399Experiments are called independent if the outcomes of previous experiments do not influence the
outcome of the current experiment.

400
70 A Proposal for Functionality Classes for Random Number Generators

Version 2.35 - DRAFT

4.2 Probability, stochastics, random variables

Real-world RNGs cannot generate ideal randomness; they can at most approximately achieve
this goal. Roughly speaking, the key point of any TRNG evaluation is to verify that the TRNG
is ‘sufficiently close’ to ideal randomness.

4.2 Probability, stochastics, random variables

401 In Subsection 4.2.1 we introduce definitions and many concepts from probability theory and
stochastics that allow making the qualitative statements from the previous section precise in a
mathematical sense. Furthermore, Subsection 4.2.2 collects useful facts that are needed in this
document or may be used in evaluations of real-world RNGs. In the context of this document an
important field of application are stochastic models of physical noise sources (cf. Section 4.5).

4.2.1 Definitions and basic concepts

402 In the following Ω denotes a non-empty set.

403 In this document Ω usually represents the admissible values of random numbers, random exper-
iments, or measurements. Usually, Ω is finite (typically, Ω = {0, 1}k or Ω = Zn) or it equals Rm

or a subset of Rm (m ≥ 1).
Note 1: Experiments with finite Ω are, for example, coin tosses and dice rolls. In the context of
RNGs random numbers are important examples that assume values in a finite or in a countable
set Ω, e.g., Ω = {0, 1} and Ω = N0.
Note 2: Examples for Ω ⊆ Rm are timing measurements and voltage measurements.

404 P(Ω) denotes the power set of Ω. The power set contains all subsets of Ω. If Ω is finite then
|P(Ω)| = 2|Ω|.

405 The paragraphs 406 to 415 contain basic definitions and facts from probability and measure
theory, which will be needed below for proper definitions of independence or stationary stochastic
processes, for example. However, these concepts are rather ‘technical’. The paragraphs 417 to
420 provide a ‘light version’ thereof, which should suffice to understand the subsequent definitions
and concepts.

406 A σ-algebra A over Ω is a set of subsets of Ω, i.e. A ⊆ P(Ω), that fulfills the following conditions:

(a) Ω ∈ A

(b) If A ∈ A, then also its complement Ac := Ω \A ∈ A

(c) If A1, A2, . . . ∈ A then
⋃

n≥1 An ∈ A

407 Remark: Condition 406 (c) includes finite sequences A1, A2, . . . , Ak. Note that such a finite
sequence can formally be extended by Ak+1 = Ak+2 = . . . = {} to an infinite sequence with the
same union set.

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

71

4 Mathematical Background

408Example: (i) P(Ω) is a σ-algebra over Ω.
(ii) The Borel σ-algebra B(R) over R is the smallest σ-algebra that contains the open intervals
(equivalently, the open subsets of R).
(iii) More generally, for m ≥ 1 the Borel σ-algebra B(Rm) over Rm is the smallest σ-algebra that
contains the open subsets of Rm.

409A probability measure ν on A is a mapping ν : A → [0, 1] with the following properties

(a) ν(Ω) = 1

(b) If the sets A1, A2, . . . ∈ A are mutually disjoint, then ν (
⋃

n An) =
∑

n≥1 ν(An).
(The sequence A1, A2, . . . may be finite or countable.)

410More generally, if a mapping ν : A → [0,∞] fulfills Condition 409 (b) and if ν(Ω) < ∞, we refer
to ν as a finite measure, otherwise ν is an infinite measure. If there exists a countable sequence
C1 ⊆ C2 ⊆ C3 . . . ∈ A such that ν(Cn) < ∞ for all n ∈ N and

⋃
n≥1 Cn = Ω, then ν is a σ-finite

measure.

411Any A ∈ A is said to be an event or a measurable set. A pair (Ω,A) is denoted as a measurable
space, while the triple (Ω,A, ν) is called a measure space. If ν is a probability measure the triple
(Ω,A, ν) is a probability space.

412Example: (i) Let B(n, p) denote a binomial distribution with parameters n and p. Then B(n, p)
is a probability measure on P ({0, . . . , n}).
(ii) The Lebesgue measure λ is a σ-finite measure on B(R). (The Lebesgue measure corresponds
to the ‘geometric’ measure on R, i.e. λ([a, b)) = b− a if a ≤ b.).
(iii) The standard normal distribution (standard Gaussian distribution) N(0, 1) is a probability
measure on B(R).
(iv) The Lebesgue measure λm on Rm is a σ-finite measure.

413If there is no ambiguity about the σ-algebra A, we often loosely speak of ‘measures on Ω’. Unless
otherwise stated in this document, A = P(Ω) for countable Ω (finite or infinite), and for R,
Rm and measurable subsets Ω ⊆ Rm we use the Borel σ-algebras A = B(R), A = B(Rm) or
A = B(Ω), respectively.

414Assume that (Ω1,A1, ν) is a probability space and (Ω2,A2) a measurable space. Furthermore, let
ϕ : Ω1 → Ω2 be a mapping. We call ϕ measurable (or more precisely, (A1,A2)-measurable) if for
each A′ ∈ A2 the pre-image ϕ−1(A′) ∈ A1. If ν is a measure on A1 then νϕ(A′) := ν(ϕ−1(A′))
for all A′ ∈ A2 defines a measure on A2. We denote νϕ the image measure (or: transformed
measure) of ν under ϕ.

415Assume that A1 and A2 are σ-algebras over Ω1 and Ω2. A random variable X is a measurable
mapping X : Ω1 → Ω2. In our context Ω2 is finite, countable, or a subset of Rm.

416Outside of mathematical proofs the probability space of a random variable is usually not explicitly
stated. We point out that a random variable X : Ω1 → Ω2 with probability space (Ω1,A1, ν) may

72 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

4.2 Probability, stochastics, random variables

also be interpreted as a random variable on the measure space (Ω2,A2, ν
X). Here νX denotes

the image measure (or: transformed measure) of X, i.e., νX(A2) = ν(X−1(A2)) for all A2 ∈ A2.
Furthermore, Prob(X ∈ A1) = ν(A1) quantifies the probability that the random variable X
assumes a value in A1.

417 [’light version’ of pars. 406 to 415] As already mentioned above these definitions and concepts are
needed for mathematically precise definitions in the following. Fortunately, in the context of RNG
evaluations problems concerning measurability hardly occur. The paragraphs 418 to 420 thus
provide a ‘light version’. This light version should suffice for at least an intuitive understanding
of the following definitions and concepts and to apply them correctly. This in particular refers
to the material collected in Subsection 4.2.2.

418 [’light version’ of pars. 406 to 415 ctd.] Some of the following definitions and conditions refer
to ‘measurable subsets’ of some space Ω (equivalently, to elements of a σ-algebra on Ω). If Ω
is finite or countable all subsets of Ω are measurable. If Ω ⊆ Rm one may think of ‘regular’
subsets as (depending on the dimension m) intervals, rectangles, circles, cuboids, balls etc. and
countable unions thereof. (There exist further measurable and non-measurable subsets, but this
is of little importance for RNG evaluations.)

419 [’light version’ of pars. 406 to 415 ctd.] In this document and, more generally, in the context of
the evaluation of RNGs random variables usually assume values in finite or countable sets, or
in subsets of R or Rm. We may speak of random variables on finite or countable set Ω (e.g.,
Ω = {0, 1}), or random variables on R (also: ‘real-valued random variables’), random variables
on Rm, or random variables on Ω.

420 [’light version’ of pars. 406 to 415 ctd.] The expression Prob(X ∈ A) quantifies the probability
that the random variable X assumes a value in the set A ⊆ Ω.

421 X ∼ ν means that the random variable X has distribution ν, i.e. that Prob(X ∈ A) = ν(A).
The term Prob(X ∈ A) quantifies the probability that X assumes a value in the set A. Values
that are assumed (or: taken on) by a random variable X are called realizations of X.

422 [Notation] In this document we denote random variables by capital letters and their realizations
usually by the corresponding small letters.

423 Example: Assume that the random variable X models the tossing of a fair coin. Then Prob(X =
0) = Prob(X = 1) = 0.5 if we identify ‘head’ and ‘tail’ with 1 and 0. These probabilities quantify
the knowledge on the outcome of a future coin toss (and on a past experiment to a person who
does not know its outcome). Possible realizations of X are 0 and 1.

424 In this document we model non-deterministic phenomena by random variables. Their realizations
are observable as random numbers, voltage, or timing, for example.

425 Definition: The term B(n, p) denotes the binomial distribution with parameters n and p, which
is given by

Prob (X = k) =
(
n

k

)
pk (1 − p)n−k for k = 0, . . . , n. (4.1)

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

73

4 Mathematical Background

426Definition: The Poisson distribution with parameter τ > 0 is given by

P (X = k) = τk

k! e
−τ for k ∈ N0. (4.2)

Note: The parameter τ > 0 equals the mean number of events per time interval of length 1.

427Definition: The geometric distribution Gp with parameter p ∈ (0, 1] denotes a discrete distribution
on N. More precisely,

Gp(k) := p(1 − p)k−1 for k ∈ N. (4.3)

The term Gp(k) equals the probability that a sequence of iid Bernoulli trials with individual
success probability p is successful for the first time in the kth trial.
Note: There also exists an alternative definition which only counts the number of failures, i.e.
k − 1 in place of k.

428Definition: The letters λ and λm denote the Lebesgue measures on R or Rm, respectively. It
is λ([a, b)) = b − a if a ≤ b. Accordingly, λm

(∏m
j=1[aj , bj)

)
=
∏m

j=1 (bj − aj) if aj ≤ bj for
1 ≤ j ≤ m.
Note: The Lebesgue measure λ corresponds to the ‘geometric’ measure on R.

429Definition: The term N(µ, σ2) denotes the normal (Gaussian) distribution with expectation µ
and variance σ2. It has the density

ϕ(x) := 1√
2πσ

e− (x−µ)2

2σ2 . (4.4)

In particular, N(0, 1) is called standard normal distribution. Its cumulative distribution function
Φ(·) is given by

Φ(x) := 1√
2π

∫ x

−∞
e− t2

2 dt . (4.5)

Note: To be precise, ‘density’ means ‘Lebesgue density’. In this document densities with respect
to other measures than the Lebesgue measure are not considered. For this reason, we briefly
speak of ‘density’ in place of ‘Lebesgue density’ in the following.

430Definition: The Gamma distribution with the shape parameter α > 0 and rate parameter β > 0
has the density

γα,β(x) := βα

Γ(α)x
α−1e−βx for x > 0. (4.6)

Note: Occasionally, the Gamma distribution is not characterized by a shape parameter and a
rate parameter but by a shape parameter and a scale parameter. Thus, caution is advised when
results from different books are applied. The scale parameter is the reciprocal value of the shape
parameter.

431The random variable X is called discrete if Ω is countable (finite or infinite). If Ω is finite we
also call X a finite random variable. Examples are binomially distributed random variables
and Poisson distributed random variables. Section 4.4 deals with random mappings. There the
realizations of the random variables are mappings between sets.

74 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

4.2 Probability, stochastics, random variables

432 Let X be a random variable that assumes values in a finite set Ω. We say that X is uniformly
distributed (or equivalently: unbiased, equidistributed) if it assumes all ω ∈ Ω with the same
probability, namely Prob(X = ω) = |Ω|−1. Otherwise, X is said to be biased.
Note: Precisely formulated, it should actually read Prob(X = {ω}) instad of Prob(X = ω).
However, the shorter writing ‘Prob(X = ω)’ is common for finite and countable Ω.

433 A random variable X has density f : Ω → [0,∞] with respect to a measure τ if Prob(X ∈ A) =∫
A
f(ω) dτ(ω) for all measurable sets A. Equivalently, a measure ν has density f : Ω → [0,∞]

with respect to a measure τ if ν(A) =
∫

A
f(ω) dτ(ω) for all measurable A.

Note: Densities do not exist for each pair (ν, τ).

434 In our context, usually Ω ⊆ Rm with m ≥ 1, and τ = λm. Then

Prob(X ∈ A) =
∫

A

f(x)λm(dx) =
∫

A

f(x) dx . (4.7)

435 Let X denote a random variable that assumes values in Rm, and has distribution ν. If the
integral

E(X) :=
∫

Ω
x ν(dx) (4.8)

exists (i.e., if
∫

Ω |x| ν(dx) < ∞) then E(X) is called the expectation of X.
The expectation E(X) does not exist for every random variable. Counterexamples are, for
example, Cauchy-distributed random variables.

436 For discrete random variables X with values in Ω ⊆ R (e.g. Ω = {0, 1},N,Z) formula (4.8)
simplifies to

E(X) :=
∑
x∈Ω

xProb(X = x) . (4.9)

If X assumes values in Rm and has Lebesgue density f then (4.8) reads

E(X) :=
∫
Rm

xf(x) dx (4.10)

In the context of PTRNG evaluations we are usually faced with these two special cases.

437 Remark: For random variables with values in {0, 1}n no meaningful definition for the mean is
evident.

438 The variance of a real-valued random variable X is defined by

Var (X) := E (E (X) −X)2
. (4.11)

provided that both expectations exist. This is not always the case.

439 Assume that Var(X) exists. Then
σX :=

√
Var (X). (4.12)

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

75

4 Mathematical Background

is the standard deviation of X.

440[sum of normal distributions] If X1 and X2 denote independent normally distributed random
variables with expectations µ1, µ2 and variances σ2

1 , σ
2
2 then X1 +X2 is normally distributed with

expectation µ1 + µ2 and variance σ2
1 + σ2

2 . More generally, if the random variables X1, . . . , Xn

are iid N(µ, σ2)-distributed then the sum X1 + · · · +Xn is N(nµ, nσ2)-distributed.

441[Gamma distribution] The Gamma distribution with the shape parameter α > 0 and rate param-
eter β > 0 has the density γα,β(·), cf. par. 430. A random variable that is Gamma distributed
with parameters α and β has mean µ = α/β and variance σ2 = α/β2.

442[sum of Gamma distributions] If X and Y are independent random variables with densities
γα1,β(·) and γα2,β(·), respectively, then X + Y is Gamma-distributed with density γα1+α2,β(·).
Consequently, if the random variables X1, . . . , Xn are iid Gamma distributed with parameters α
and β then the sum X1 + · · · +Xn is Gamma distributed with parameters nα and β.

443The random variables X1, X2, . . . , Xk are said to be independent if for each k-tuple (A1, . . . , Ak)
of measurable sets the equality

Prob (X1 ∈ A1, . . . , Xk ∈ Ak) =
k∏

j=1
Prob (Xj ∈ Aj) . (4.13)

holds.

444More generally, the (infinite) sequence X1, X2, . . . of random variables is said to be independent
if for each integer k′ ≥ 1 and for each k′-tuple (A1, . . . , Ak′) of measurable sets condition (4.13)
is valid (with k′ in place of k).
Note: Independence can be generalized to uncountable index sets.

445For discrete random variables X1, X2, . . . with values in Ω condition (4.13) simplifies to

Prob (X1 = x1, . . . , Xk = xk) =
k∏

j=1
Prob (Xj = xj) (4.14)

for each k-tuple (x1, . . . , xk) ∈ Ωk .

446In the context of random variables X1, X2, . . . the abbreviation iid stands for ‘independent and
identically distributed’.

447Mathematically, a sequence of iid uniformly distributed random variables X1, X2, . . . on a finite
set Ω (e.g. Ω = {0, 1}) describes an ideal RNG.

448Assume that the random variables X1, X2, . . . , Xn, resp. X1, X2, . . . are independent. If Xj ∼ νj

the joint distribution of (X1, X2, . . . , Xn), resp., of the sequence X1, X2, . . . is given by the
product measure ⊗n

j=1νj resp. by ⊗∞
j=1νj . These product measures are characterized by the

conditions from pars. 443 and 444. If the random variables X1, X2, . . . are identically distributed,
i.e., if ν1 = ν2 = · · · = νn, we alternatively also use the notation νn and νN.

76 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

4.2 Probability, stochastics, random variables

449 Assume that for the real-valued random variables X and Y expectations and variances exist.
Then the right-hand sides of (4.15) and (4.16) exist

Cov (X,Y) := E (XY) − E (X)E (Y) (covariance) (4.15)

corr (X,Y) := Cov(X,Y)
σX · σY

= E (XY) − E (X)E (Y)√
Var(X)

√
Var(Y)

(correlation coefficient) (4.16)

If Cov(X,Y) = 0 we say that X and Y are uncorrelated.

450 Independence implies uncorrelatedness but in general the converse is not true (cf. pars. 451 and
452).

451 Counterexample ([Geor15], Beispiel (4.26)): Assume that X and Y are random variables that
assume values in Ω1 = {−1, 0, 1} and in Ω2 = {0, 1}, respectively. Assume further that Prob(X =
1, Y = 0) = Prob(X = 0, Y = 1) = Prob(X = −1, Y = 0) = 1/3. Hence Prob(X = 0) =
Prob(X = 1) = Prob(X = −1) = 1/3 and thus E(X) = 0. Similarly, Prob(Y = 0) = 2/3,
Prob(Y = 1) = 1/3 and thus E(Y) = 1/3. Finally,

Cov(X,Y) = E (XY) − 0 · 1
3 =

∑
x∈Ω1,y∈Ω2

xyProb(X = x, Y = y) =

(
1 · 0 · 1

3 + 0 · 1 · 1
3 − 1 · 0 · 1

3

)
= 0 .

Thus X and Y are uncorrelated but Prob(X = 1, Y = 1) = 0 ̸= 1/9 = Prob(X = 1)·Prob(Y = 1)
shows that the random variables X and Y are not independent.

452 Assume that the random variables X and Y are bivariate normally distributed. If X and Y are
uncorrelated, then X and Y are independent.

453 Let (Ω,A, P) a probability space. Formally, a stochastic process (Xt)t∈T with state space Ω is a
collection of real-valued random variables {Xt | t ∈ T} where the index t is usually interpreted
as ‘time’.

454 If T ⊆ R is an interval (e.g., T = (a, b), T = [0,∞) or T = R) we speak of (time-)continuous
stochastic processes. If T ⊆ ∆Z for some ∆ > 0, e.g. T = Z, T = N or T = N0, the stochastic
process is called (time-)discrete.

455 Example: Markov chains (time-discrete stochastic process); cf. par. 484, Wiener process (time-
continuous stochastic process)

456 A stochastic process (Xt)t∈T is called stationary (or: stationary in a strict sense) if

P (Xt1 ∈ A1, Xt2 ∈ A2, . . . , Xtk
∈ Ak) = P (Xt1+τ ∈ A1, Xt2+τ ∈ A2, . . . , Xtk+τ ∈ Ak) (4.17)

for each k ∈ N, τ > 0, all t1 < · · · < tk with tj , tj + τ ∈ T (j ≤ k),
and all measurable sets A1, . . . , Ak.

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

77

4 Mathematical Background

If the random variables Xj are discrete (4.17) simplifies to

P (Xt1 = x1, Xt2 = x2, . . . , Xtk
= xk) = P (Xt1+τ = x1, Xt2+τ = x2, . . . , Xtk+τ = xk) (4.18)

for each k ∈ N, τ > 0, all t1 < · · · < tk with tj , tj + τ ∈ T (j ≤ k), and all x1, . . . , xk ∈ Ω.

457Stationarity means that the distribution of the stochastic process is time-invariant. In other
words: For admissible shifts τ (that is, T+τ ⊆ T) the stochastic processes (Xt)t∈T and (Xt+τ)t∈T

are identically distributed. If T = R or T = [0,∞), for example, any τ > 0 is admissible. For
T = Z or T = N (time-discrete stochastic processes) the shift parameter τ must be a (non-
negative) integer.

458A stochastic process (Xt)t∈T is stationary in a weak sense (or: stationary in a wide sense) if

E (Xt) = E (Xt+τ) (4.19)
E ((Xt1 − µ) (Xt2 − µ)) = E ((Xt1+τ − µ) (Xt2+τ − µ)) (4.20)

for all t, t+ τ ∈ T , τ > 0. In particular, then

KX(t2 − t1) := E ((Xt1 − µ) (Xt2 − µ)) (4.21)

is the autocovariance of the stochastic process (Xt)t∈T .

459Stationarity implies stationarity in the weak sense. Par. 491 collects useful facts. Stationarity
plays an important role in stochastic models (Sect. 4.5) for PTRNGs. It captures the desired
feature that if a PTRNG is analyzed at a certain period in time, its stochastic behaviour should
be the same at different times.
Note: For stochastic models of physical noise sources the requirement is relaxed to time-local
stationarity; cf. pars. 653 to 655

460If a (time-continuous or time-discrete) stationary stochastic process is ergodic then statistical
properties of this stochastic process can be deduced from a single, sufficiently long realization of
this stochastic process with probability 1.
Note 1: In the context of the evaluation of PTRNGs this feature is exploited for the estimation
of parameters, by online tests and by evaluator tests, for example.
Note 2: There exist several equivalent formal definitions for ergodicity, e.g. that the invariant
events are attained with probability 0 or 1. We refer the interested reader to the relevant
literature, e.g., to [KaTa75], Chap. 9.
Note 3: Par. 461 and 462 provide an example and a counterexamples of an ergodic process.
Loosely speaking, to ensure ergodicity, it suffices if the long-term dependencies of the stochastic
process decrease sufficiently fast.

461Example: Assume that the random variables X1, X2, . . . are iid B(1, p)-distributed. If we observe
a realization sequence x1, x2, . . . the empirical mean n−1∑n

j=1 xj converges to p with probability
1 (Strong law of large numbers). If the random variables model the repeated tossing of a partic-
ular coin (cf. Subsec. 4.5.2) a sequence of realizations can easily be obtained by tossing this coin
several times, which allows the estimation of the (unknown) parameter p. The random variables
X1, X2, . . . are an example of a stationary ergodic process (cf. par. 462).

462
78 A Proposal for Functionality Classes for Random Number Generators

Version 2.35 - DRAFT

4.2 Probability, stochastics, random variables

Counterexample: Assume that the random variables X1, X2, . . . are identically B(1, p). Unlike in
par. 461 these random variables are not independent but fully dependent, namely X1 = X2 = · · · .
Then the realization of X1 determines the whole realization sequence. In this case one can only
observe the realization sequences 1, 1, . . . (with probability p) or 0, 0, . . . (with probability 1 −p).
Hence it is not possible to estimate p on the basis of a single realization sequence. The stochastic
process is stationary but not ergodic.

463 [empirical mean and empirical variance] Assume that x1, x2, . . . , xm are realizations of the iid
random variables X1, X2, . . . , Xm. Assume further, that the expectation µ = E(Xj) and the vari-
ance σ2 = Var(Xj) exist. The arithmetic mean x and the empirical variance s2 of x1, x2, . . . , xm

are given by

x := x1 + x2 + · · · + xm

m
(4.22)

s2 := 1
m− 1

m∑
j=1

(xj − x)2 (4.23)

x and s2 are unbiased estimators of µ and σ2. Both estimators are unbiased. In this context
unbiased means, that if the sample values xj in the right-hand sides of (4.22) and (4.23) are
replaced by random variables Xj the expectation of these terms is µ and σ2, respectively.
Note: Occasionally, formula (4.23) is used with factor 1/m in place of 1/(m − 1). In this case
the estimator is biased (but asymptotically unbiased).

464 [empirical mean and empirical variance] Assume that the random variables X1, X2, . . . , Xm are
iid N(µ, σ2)-distributed. Then

X1 +X2 + · · · +Xm

m
∼ N

(
µ,
σ2

m

)
and (4.24)

m− 1
σ2 · 1

m− 1

m∑
j=1

(
Xj −X

)2 ∼ χ2
m−1 (4.25)

where χn−1 denotes the χ2-distribution with n − 1 degrees of freedom. Formula (4.25) is a
well-known corollary from Cochrane’s Theorem.

465 [empirical mean and empirical variance] If the random variables X1, X2, . . . , Xm are iid (but not
necessarily normally distributed) then

E

 1
m− 1

m∑
j=1

(
Xj −X

)2

 = σ2 (4.26)

Var

 1
m− 1

m∑
j=1

(
Xj −X

)2

 = 1
m

(
E
(

(X − µ)4
)

− m− 3
m− 1σ

4
)

(4.27)

466 [Allan variance] When estimating the jitter of digital clock signals, for example, the empirical
variance may overestimate the jitter if low frequency noise as flicker noise is present. In such
scenarios often the Allan variance is used instead; cf., e.g., [ASPB+18]. Assume that the mea-
surement values x1, x2, . . . , xm are taken at times τ, 2τ, . . . ,mτ . In practice, the xj often are

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

79

4 Mathematical Background

fractional frequencies that have averaged over an interval of length τ . The (empirical) Allan
variance of x1, x2, . . . , xm is defined by

AVar = 1
2(m− 1)

m−1∑
j=1

(xj − xj+1)2 (4.28)

Note 1: By construction, the Allan variance is only little sensitive to slow drifts of the distribu-
tions of the corresponding random variables X1, X2, . . . , Xm.
Note 2: The definition of the Allan variance is not unique in the literature.

467[Allan variance] Assume that the measurement values x1, x2, . . . are realizations of the random
variables X1, X2, If the random variables are stationarily distributed and uncorrelated (i.e.,
Cov(Xi, Xj) = 0 for i ̸= j) the Allan variance coincides with the ‘usual’ variance [ASPB+18],
Theorem 1.
Note 1: Under these conditions the expectation of AVar in (4.28) equals 0.5

(
E
(

(Xj −Xj+1)2
))

.
Note 2: Independence implies uncorrelatedness.

4.2.2 Useful theorems and facts

468This subsection provides facts and theorems that can be useful in the context of this document.

469[Stirling’s approximation]
√

2πn
(n
e

)n

e
1

12n+1 < n! <
√

2πn
(n
e

)n

e
1

12n (Stirling’s approximation) (4.29)

470[Stirling’s approximation] If n, k, and n−k are large, then applying the lower bound in Stirling’s
formula (4.29) to the factorials of

(
n
k

)
yields the approximation(

n

k

)
≈
√

n

2πk(n− k) · nn

kk(n− k)n−k
. (4.30)

471[Expectation: computation rules] Assume that for the (not necessarily independent nor identi-
cally distributed) random variables X1, . . . , Xk the expectations E(Xj) exist. Let Y = a1X1 +
· · · + akXk with a1, . . . , ak ∈ R. Then the expectation of Y exists. More precisely,

E(Y) = E (a1X1 + · · · + akXk) =
k∑

j=1
ajE(Xj) . (4.31)

If the random variables are iid and aj = 1/k for each j ≤ k then E(Y) = E(X1) = · · · = E(Xk).

472[Variance: computation rules] Assume that for the independent (but not necessarily identically
distributed) random variables X1, . . . , Xk the variances Var(Xj) exist. Let Y = a1X1+· · ·+akXk

for a1, . . . , ak ∈ R. Then the expectation of Y exists. More precisely,

Var(Y) = Var (a1X1 + · · · + akXk) =
k∑

j=1
a2

jVar(Xj) . (4.32)

80 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

4.2 Probability, stochastics, random variables

If we drop the assumption that the random variables X1, . . . , Xk are independent then (4.32)
becomes more complicated

Var(Y) = Var (a1X1 + · · · + akXk) =
k∑

j=1
a2

jVar(Xj) +
∑
i ̸=j

aiajCov(Xi, Xj) . (4.33)

473 Example: Expectation and variance of B(n, p)-distributed random variables.
The random variable Y = Y1 + · · · + Yn ∼ B(n, p) if Y1, . . . , Yn are iid B(1, p)-distributed. By
(4.31) and (4.32) we conclude E(Y) = E(Y1) + · · · + E(Yn) = np and Var(Y) = Var(Y1) + · · · +
Var(Yn) = np(1 − p).

474 [Central Limit Theorem (CLT)] Assume that the real-valued random variables X1, X2, . . . are iid
with expectation µ and variance σ2. For n = 1, 2, . . .

S∗
n := X1 + · · · +Xn − nµ√

nσ
(4.34)

define normalized partial sums. The Central Limit Theorem (CLT) applies to the sequence
X1, X2, More precisely,

lim
n→∞

Prob(S∗
n ≤ x) = Φ(x) = 1√

2π

∫ x

−∞
e− t2

2 dt for all x ∈ R. (4.35)

475 [tail of the standard normal distribution] For x > 0 it is(
1
x

− 1
x3

)
1√
2π
e−x2/2 ≤ 1 − Φ(x) = Φ(−x) ≤ 1

x

1√
2π
e−x2/2 (4.36)

([GaSt77], Lemma 1.19.2).

476 [CLT, parameter estimation] Assume that X1, X2, . . . are iid B(1, p)-distributed. Then the CLT
implies

Prob

∣∣∣∣∣∣ 1
N

N∑
j=1

Xj − p

∣∣∣∣∣∣ > ϵ

 = Prob
(∣∣∣∣∣
∑N

j=1 Xj −Np

N

∣∣∣∣∣ > ϵ

)
=

Prob
(∣∣∣∣∣
∑N

j=1 Xj −Np
√
N
√
p(1 − p)

∣∣∣∣∣ > ϵ
√
N√

p(1 − p)

)
= 2Φ

(
−ϵ

√
N√

p(1 − p)

)
≤ 2Φ

(
−2ϵ

√
N
)
. (4.37)

477 [CLT] Par. 474 formulates the Central Limit Theorem (CLT) for iid random variables. The CLT
is very robust and holds under weak conditions. Under suitable conditions the iid assumption
and even the independence property may be dropped. Some special cases are covered in the
paragraphs 478, 489, 490.
Background information: If the CLT applies the random variables S∗

1 , S
∗
2 , . . . converge to N(0, 1)

in distribution. We do not go deeper but refer the interested reader to ([Geor15], Subsect. 5.3).

478
A Proposal for Functionality Classes for Random Number Generators

Version 2.35 - DRAFT
81

4 Mathematical Background

[CLT] Assume that the real-valued random variables X1, X2, . . . are independent (but not nec-
essarily iid with with expectations E(Xj) = µj and variances Var(Xj) = σ2

j for j ∈ N. For
n = 1, 2, . . .

S∗
n :=

∑n
j=1(Xj − µj)√

s2
n

with s2
n :=

n∑
j=1

σ2
2 (4.38)

defines normalized partial sums. Assume further that the Lindeberg condition holds

lim
n→∞

Ln(δ) = 0 for all δ > 0 where Ln(δ) := 1
s2

n

n∑
j=1

E
(
(Xj − µj)21{|Xj−µj |≥δsn}

)
(4.39)

Then the Central Limit Theorem (CLT) applies to the sequence X1, X2, In particular

lim
n→∞

Prob(S∗
n ≤ x) = Φ(x) for all x ∈ R. (4.40)

479[CLT] Assume that the random variables X1, X2, . . . are iid and that besides E(X1) and E(X2
1)

also the third moment E(X3
1) exist. Then the well-known Berry-Esséen-Theorem provides an

upper bound for the maximal difference between the exact cumulative distribution function of
S∗

n and Φ(·). It is

(Berry-Esséen-Theorem) |Prob(S∗
n ≤ x) − Φ(x)| ≤ C

E
(

|X1 − E(X1)|3
)

(Var(X1))1.5
1√
n

for each x ∈ R

(4.41)
for a suitable constant C (cf. [Geor15], Bemerkung (5.31), with C = 0.8). In [Shev11] it is
proved that C < 0.4748. In particular, (4.41) says that the rate of convergence is O

(
n−0.5).

480A sequenceX1, X2, . . . of random variables is called q-dependent if the random vectors (X1, . . . , Xu)
and (Xv, . . . , Xn) are independent for all 1 ≤ u < v ≤ n with v − u > q.
Note: The components of each vector need not be independent.

481[CLT for q-dependent random variables, [HoRo48]] Let X1, X2, . . . be q-dependent (not neces-
sarily stationary) sequence of random variables such that E(|Xi|3) is uniformly bounded for all
i ∈ N.

Ai := Var(Xi+q) + 2
q∑

j=1
Cov(Xi+q−j , Xi+q) for i ∈ N (4.42)

If the limit A := limu→∞ u−1∑u
h=1 Ai+h exists uniformly for all i ∈ N then

lim
n→∞

Prob
(∑n

j=1(Xj − E(Xj))
√
An

≤ x

)
= Φ(x) = 1√

2π

∫ x

−∞
e

t2
2 dt for all x ∈ R. (4.43)

482[CLT for q-dependent random variables] If the random variables X1, X2, . . . in par. 481 are
stationary, the necessary conditions simplify considerably: It suffices that E(|Xi|3) exists, and

A = σ2 := Var(X1) + 2
q∑

j=1
Cov(X1, X1+j) . (4.44)

82 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

4.2 Probability, stochastics, random variables

In particular, for µ := E(X1) we obtain the equivalent to (4.43)

lim
n→∞

Prob
(∑n

j=1(Xj − µ)
σ

√
n

≤ x

)
= Φ(x) = 1√

2π

∫ x

−∞
e−0.5t2

dt for all x ∈ R. (4.45)

483 [CLT, dependent random variables] The CLT may even hold if X1, X2, . . . has no finite memory,
provided that the dependencies decrease sufficiently fast. If the sequence X1, X2, . . . is stationary
and, e.g., strongly mixing then the CLT holds if some further conditions are fulfilled. If needed,
the reader is referred to [Jone04], Sect. 4, for details.

484 [Markov chains] Assume that the random variables X0, X1, . . . take on values in a countable set
Ω. Assume that

Prob (Xn+1 = xn+1 | X1 = x1, . . . , Xn = xn) = Prob (Xn+1 = xn+1 | Xn = xn) (4.46)

for each n ∈ N0 and all x0, x1, . . . , xn+1 ∈ Ω, provided that both conditional probabilities in
(4.46) are well-defined. (The latter is the case when Prob(X1 = x1, . . . , Xn = xn) > 0.) We
say that X0, X1, . . . is a (time-discrete) Markov chain on the state space Ω. If the right-hand
conditional probabilities in (4.46) do not depend on n the Markov chain is homogeneous.

485 [Markov chains] Condition (4.46) says that Xn+1 may depend on Xn but any further information
on the preceding random variables X0, . . . , Xn−1 does not provide additional information on the
outcome of Xn+1.
Note 1: Equation (4.46) does not imply that Xn+1 and Xn−1 are independent.
Note 2: Condition (4.46) can be generalized to time-continuous stochastic processes on arbitrary
state spaces (Markov processes).

486 [Markov chains] Assume that X0, X1, . . . is a homogeneous Markov chain on the finite state space
Ω = {ω1, . . . , ωk}. The transition matrix P = (pij)1≤i,j≤k is defined by pij = Prob(Xn+1 = ωj |
Xn = ωi). If the row vector νj denotes the distribution of Xj then νn+1 = νnP .
Note: In the literature on Markov chains traditionally row vectors are used instead of column
vectors.

487 [Markov chains] Assume that X0, X1, . . . is a homogeneous Markov chain on the finite state space
Ω = {ω1, . . . , ωk} with transition matrix P . Assume further that there is an integer m ∈ N for
which all entries of Pm are positive.
Then for each initial distribution ν0 the sequence of distributions ν0, ν1, . . . converges to a limit
distribution ν with ν(ωj) > 0 for all j ≤ k. The limit distribution ν is the unique left eigenvector
of P to the eigenvalue 1. The convergence rate is exponentially (e.g. [Geor15], Subsect. 6.3.1).

488 If the Markov chain from par. 487 already starts in the equilibrium state, namely if ν0 = ν,
then ν0 = ν1 = · · · = ν. Then the Markov chain X0, X1, . . . is stationary and ergodic (see, e.g.,
[Geor15], Subsect. 6.3.1).

489 [CLT, Markov chain] Assume that X0, X1, . . . is a homogeneous Markov chain on the finite
state space Ω = {ω1, . . . , ωk} with transition matrix P . Assume further that the Markov chain
converges to a limit distribution ν regardless of ν0 (as in par. 487). Let g : Ω → R any mapping.

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

83

4 Mathematical Background

Then the Central Limit Theorem applies to g(X1), g(X2), The normalized partial sums (see
par. 474) are given by

S∗
n := g(X1) + · · · + g(Xn) − nµ√

nσ
with (4.47)

µ := E (g(X1)) and σ2 := Var (g(X1)) + 2
∞∑

k=1
Cov (g(X1), g(X1+k)) .

490The version of the CLT from par. 489 also applies under more general conditions.
Note: If the random variables X1, X2, . . . are independent (special case of a Markov chain) (4.47)
corresponds to (4.34), applied to the random variables g(X1), g(X2),

491[Stationarity] This paragraph contains some useful facts on stationary sequences. Assume that
the stochastic process (Xn)n∈N is stationary on a state space Ω = Rm for some integer m ≥ 1.
Let further f : Ω → Ω′ := Rs denote a measurable mapping. (As usual, we consider the Borel-σ-
algebras on Rm and Rs.)
a) The stochastic process (f(Xn))n∈N is stationary, too.
b) The stochastic process Y1, Y2, . . . with Yn := (X(n−1)t+1, . . . , Xnt) is a stationary process on
Rst. The vectors Y1, Y2, . . . are non-overlapping.
Proof: a) Since ϕ is measurable X ∈ f−1(B′) ∈ B(Rs) for all B′ ∈ B(Rs), and the stationarity
of (Xn)n∈N implies that (f(Xn))n∈N is stationary, too.
b) The stationarity of (Xn)n∈N implies

Prob(Yj ∈ (B(j−1)t+1 × · · · ×Bjt) for j ≤ k) = Prob(Xi ∈ Bi for i ≤ kt) =
Prob(Xi+tτ ∈ Bi for i ≤ kt) = Prob(Yj+τ ∈ (B(j−1)t+1 × · · · ×Bjt) for j ≤ k) (4.48)
for each τ ∈ N and all Bj ∈ B(R)

Since the set {B′
1 ×B′

2 ×· · ·×B′
kt | B′

j ∈ B(R)} is stable under intersections and generates B(Rkt)
the vectors (Y1, . . . , Yk) and (Y1+τ , . . . , Yk+τ) are identically distributed on Rkt. Therefore„ (4.48)
generalizes to

Prob(Yj ∈ Aj for j ≤ k) = Prob(Yj+τ ∈ Aj for j ≤ k) for each τ ∈ N and Aj ∈ B(Rt) . (4.49)

492[Stationarity] The feature that stationarity is ‘inherited’ is very useful for the analysis of PTRNGs.
The assertions from par. 491 are also valid for time-continuous stochastic processes (Xt)t∈T .

493[Renewal process] Assume that T1, T2, . . . denote iid non-negative random variables, and that the
expectation E(Tj) > 0 exists. Furthermore, unless otherwise stated, Prob(Tj = 0) = 0, and there
is no ∆ > 0 such that Prob(Tj ∈ {j∆ | j ∈ N}) = 1. It defines Z(t) := inf{k | T1 + · · · + Tk > t}
a renewal process, where t ranges in [0,∞). The random variables Tj are often interpreted as
lifetimes of machines and called the jth holding time. In the of context physical noise sources
the random variable Tj often quantifies the intermediate time between the (j − 1)th and the jth

event; see Subsects. 5.4.2, 5.4.3, and 5.4.4.

494[Renewal process] A delayed renewal process considers independent, non-negative random vari-
ables T0, T1, T2, Again, the random variables T1, T2, . . . are iid while T0 can have a different

84 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

4.2 Probability, stochastics, random variables

distribution. Furthermore, it is assumed that E(T0) > 0 and E(Tj) > 0 exist. Let further

Jn := T0 + T1 + · · · + Tn . (4.50)

The delayed renewal process is given by

Z(t) := inf{k | T0 + T1 + · · · + Tk > t} . (4.51)

Note: The renewal process from par. 493 can be interpreted as a special case of a delayed renewal
process with T0 ≡ 0. It is also called a non-delayed renewal process.

495 [Stationary renewal process] A delayed renewal process is a stationary renewal process (or: equi-
librium renewal process) if the increments (Z(t2)−Z(t1), Z(t3)−Z(t2), . . . Z(tm+1)−Z(tm)) have
the same distribution as (Z(t2 + t) −Z(t1 + t), Z(t3 + t) −Z(t2 + t), . . . Z(tm+1 + t) −Z(tm + t))
for all m ∈ N, 0 ≤ t1 < . . . < tm+1, and t > 0. Then the distribution of JZ(t) − t converges to a
limiting distribution as t tends to ∞. More precisely, if GT denotes the cumulative distribution
function of the random variables Tj then

GT,∞(x) := lim
t→∞

Prob(JZ(t) − t ≤ x) = 1
µ

∫ x

0
(1 −GT (u)) du . (4.52)

If the Tj have density g(·) then

GT,∞(·) has density g∞(x) := (1 −GT (x))/µ. (4.53)

The formulae (4.52) and (4.53) are well-known, cf. [Fell65], Chap. XI, (4.10).
If the distribution of T0 equals the limiting distribution, i.e., if Prob(T0 ≤ x) = GT,∞(x) then
the renewal process is stationary.
Note 1: This property is fulfilled if the random variables . . . , J−1, J0 are in equilibrium.
Note 2: In the context of physical noise sources stationary renewal processes are of particular
interest; cf. Subsects. 5.4.2, 5.4.4, and, in particular, 5.4.3.

496 [Stationary renewal process] Assume that {Z(t) | t ≥ 0} defines a stationary renewal process for
which σ2 = Var(Tj) exist. Then (e.g., [Cox62], Sect. 4.5, Formula (18)),

E (Z(t)) = t

µ
, (4.54)

Var (Z(t)) =
(
σ2

µ3

)
t+ 1

6 + σ4

2µ4 −
E
(

(T − µ)3
)

3µ3 + o(1) . (4.55)

Note: Of course, for large t the expectation and the variance of the non-delayed renewal process
are rather similar to (4.54) and (4.55). In particular, for the non-delayed renewal process (4.54)
applies only asymptotically.

497 [Stationary renewal process] If {Z(t) | t ∈ [0,∞)} defines a stationary renewal process then((
TZ(t), TZ(t)+1, . . .

)
, TZ(t) − t

)
is stationary in t. (4.56)

For (4.56) the requirement that the random variables T1, T2, . . . are iid can be relaxed to the
assumption that T1, T2, . . . are stationarily distributed and ergodic; cf. [Lall86], (1.5), with
χ = [0,∞) while ξ : [0,∞)Z → [0,∞) is given by the projection onto the 0th component.
Note: Reference [Lall86] considers doubly infinite sequences of random variables; in our notation
. . . , T−1, T0, T1,

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

85

4 Mathematical Background

4.3 Entropy and Guess Work

498The central goal in the evaluation of TRNGs is to quantify the amount of randomness of the
generated random numbers. In this section the concepts of entropy, guess work, and work factor
are introduced, and their relation is pointed out.

4.3.1 Entropy

499For the evaluation of RNGs, the Shannon entropy (4.58) and the min-entropy (4.59) play an
outstanding role. Both can be viewed as special cases of Renyi entropy, a more general definition
of entropy. Collision entropy (4.60) has some relevance, too.

500Let X be a random variable that assumes values in the finite set Ω = {ω1, ω2, . . . , ωk}. The most
general notion of entropy is the Renyi entropy Hα where

Hα (X) = 1
1 − α

log2

k∑
i=1

(Prob (X = ωi))α
, 0 ≤ α < ∞ . (4.57)

Formula (4.57) comprises infinitely many different definitions of entropy. Its most important
representatives are the Shannon entropy, the min-entropy, and the collision entropy. For a given
random variable X the entropy values Hα(X) are monotonically decreasing in α.

501The entropy Hα(X) only depends on the distribution µ of X. Thus we synonymously use the
notation Hα (µ).

502The special case α = 1 yields the well-known Shannon entropy. In particular, L’Hopital’s rule
then recovers the definition of Shannon entropy

H1 (X) = H (X) = −
k∑

i=1
Prob (X = ωi) log2 (Prob (X = ωi)) (4.58)

If Prob(X = ωi) = 0, by convention Prob(X = ωi) log2(Prob(X = ωi)) = 0. Usually, we use H
in place of H1 to indicate the Shannon entropy.

503Shannon entropy H = H1 is sometimes also called average entropy or simply entropy due to its
prevalence in information theory.

504The min-entropy represents a special case α = ∞

lim
α→∞

Hα (X) = − log2

(
max

1≤i≤k
{Prob (X = ωi)}

)
= Hmin (X) . (4.59)

Besides Hmin(·) the notation H∞(·) is also common.

505Finally, H2 defines the collision entropy. Let X and X ′ be two independent and identically-
distributed random variables with values in a finite set Ω. The collision probability is P (X = X ′) =

86 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

4.3 Entropy and Guess Work

∑
x∈Ω

(Prob(X = x))2, and the collision entropy equals

H2 (X) = − log2

(∑
ω∈Ω

(Prob (X = ω))2

)
. (4.60)

506 The inequalities (4.61) quantify the relation between the Shannon entropy, min-entropy, and
collision entropy.

Hmin ≤ H2 ≤ H1, Hmin ≤ H2 ≤ 2Hmin . (4.61)

By par. 500 the min-entropy is the most conservative entropy measure. Figure 5 plots H1, H2
and H∞ for binary-valued random variables.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

e
n
tr

o
p

y

p=probability of outcome 0

Entropy of coin tossing

H
H2

Hmin

Figure 5: min-entropy, collision entropy and Shannon entropy for binary-valued random variables

507 The variation distance between two probability distributions ν = (ν(ω1), . . . , ν(ωk)) and η =
(η(ω1), . . . , η(ωk)) on Ω is defined by

∥ν − η∥ := max
A⊆Ω

{|ν(A) − η(A)|} . (4.62)

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

87

4 Mathematical Background

Note that ∥ν − η∥ is half of the L1-distance. If η = ū =
(1

k , . . . ,
1
k

)
(uniform distribution on Ω)

then (4.62) simplifies to

∥ν − ū∥ = ν (A) − |A|
k
, with A =

{
a | ν (a) ≥ 1

k
, a ∈ Ω

}
. (4.63)

508(4.64) provides an inequality for the variation distance

∑
x∈Ω

(Prob (X = x))2 ≥ 1 + 4 ∥ν − u∥2

|Ω|
([CFPZ09]). (4.64)

509[Shannon entropy: joint entropy] Assume that X1 and X2 denote (not necessarily independent)
random variables that assume values in Ω. Then the (joint) Shannon entropy of X1 and X2 is
given by

H (X1, X2) = −
k∑

i,j=1
Prob (X1 = ωi, X2 = ωj) log2 (Prob (X1 = ωi, X2 = ωj)) = (4.65)

−
k∑

i,j=1
Prob (X2 = ωj | X1 = ωi) Prob (X1 = ωi) log2 (Prob (X2 = ωj | X1 = ωi) Prob (X1 = ωi))

Since log2(ab) = log2(a) + log2(b) (here a = Prob(X2 = ωj | X1 = ωi) and b = Prob(X1 = ωi))
by rearranging the terms we obtain the useful functional equation

H (X1, X2) = H (X2 | X1) +H (X1) where (4.66)

H(X2 | X1) = −
k∑

i=1
Prob (X1 = ωi)H (X2 | X1 = x1) . (4.67)

Here, H(X2 | X1 = x1) denotes the entropy of X2 under the condition that X1 assumes the value
x1. The term H(X2 | X1) is the conditional entropy of X2 und X1. It quantifies the average
entropy of X2 when X1 is known. Clearly,

min
1≤i≤k

{H(X2 | X1 = ωi)} ≤ H(X2 | X1) ≤ max
1≤i≤k

{H(X2 | X1 = ωi)} . (4.68)

510The functional equation (4.66) generalizes to several random variables. More precisely,

H (X1, . . . , Xm+1) = H (X1, . . . , Xm) +H (Xm+1 | X1, . . . , Xm) . (4.69)

Formula (4.69) is well-known and very useful for the evaluation of physical RNGs.

511Depending on the distribution of the random variables X1, X2, . . . the formula for the conditional
entropy in (4.69) may simplify considerably. In particular,

H (Xm+1 | X1, . . . , Xm) ≤ H (Xm+1) , (4.70)
H (Xm+1 | X1, . . . , Xm) = H (Xm+1) if X1, X2, . . . are independent , (4.71)
H (Xm+1 | X1, . . . , Xm) = H (Xm+1 | Xm) if X1, X2, . . . are Markovian. (4.72)

88 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

4.3 Entropy and Guess Work

512 Assume that X1, X2, . . . defines a homogeneous ergodic Markov chain with limiting distribution
ν. If the Markov chain has already (at least almost) reached equilibrium then (4.72) simplifies
to

H (Xm+1 | Xm) =
k∑

i=1
ν(ωi)H (Xm+1 | Xm = ωi) (4.73)

where H(Xm+1 | Xm = ωi) depends on the ith row of the transition matrix.

513 If the sequence of random variables X1, X2, . . . is stationary for each shift parameter t and for
each h ≤ m

H (Xm+t+1 | Xm+t−h+1, . . . , Xm+t) = H (Xm+1 | Xm−h+1, . . . , Xm) . (4.74)

514 For Renyi parameters α ̸= 1 no equivalent to (4.66) exist. The inequality (4.68), however,
generalizes to

min
i1,...,im≤k

{Hα(Xm+1 | X1 = ωi1 , . . . , Xm = ωim)} ≤ Hα(Xm+1 | X1, . . . , Xm) ≤

max
i1,...,im≤k

{Hα(Xm+1 | X1 = ωi1 , . . . , Xm = ωim
)} . (4.75)

For independent random variables X1, . . . , Xm we have

Hα (X1, . . . , Xm) = Hα (X1) + · · · +Hα (Xm) . (4.76)

Pars. 516 to 524 consider min-entropy in the context of homogeneous Markov chains, improving
the general inequality (4.75).

515 Assume that the binary-valued random variable X is B(1, 0.5 + 0.5ϵ)-distributed. If |ϵ| is small
the Taylor expansion of the natural logarithm log(·) yields

log2(0.5 ± 0.5ϵ) = log2(0.5(1 ± ϵ)) = log2(0.5) + log(1 ± ϵ)
log(2) = −1 + ±ϵ− 0.5ϵ2 +O(ϵ3)

log(2) . (4.77)

Elementary, but careful computations show

Hmin(X) = 1 − ϵ− 0.5ϵ2
log(2) +O(ϵ3) and H(X) = 1 − 0.5ϵ2

log(2) +O(ϵ3) . (4.78)

516 [Markov chain, min-entropy] Assume that X1, X2, . . . defines a homogeneous ergodic Markov
chain on the state space Ω with transition matrix P and limiting distribution ν. If the distribution
of Xn has (at least almost) reached equilibrium ν then the joint min-entropy is given by

Hmin(Xn+1, . . . , Xn+m) =
− log2

(
max

{
ν(ω)pω,ωn+2 · · · pωn+m−1,ωn+m

| ω, ωn+2, . . . , ωn+m ∈ Ω
})

. (4.79)

The average gain of min-entropy per random number is given by

Hmin(Xn+1, . . . , Xn+m)
m

. (4.80)

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

89

4 Mathematical Background

517[Markov chain, min-entropy] Analogously to the Shannon entropy we define the average condi-
tional min-entropy of m consecutive random numbers by

Hmin(Xn+1, . . . , Xn+m | Xn) =
∑
ω∈Ω

ν(ω)Hmin(Xn+1, . . . , Xn+m | Xn = ω) =

−
∑
ω∈Ω

ν(ω) log2
(
max

{
pω,ωn+1 · · · pωn+m−1,ωn+m | ωn+1, . . . , ωn+m ∈ Ω

})
. (4.81)

The average conditional gain of min-entropy per random number equals

Hmin(Xn+1, . . . , Xn+m | Xn)
m

. (4.82)

518[Markov chain] Special cases:
(i) |Ω| = 2: Then the random variables X1, X2, . . . quantify the distribution of random bits (e.g.,
of raw random bits).
(ii) X1, X2, . . . forms a homogeneous k-step Markov chain. Then the random vectors Y⃗1, Y⃗2, . . .

given by Y⃗j = (Xj , . . . , Xj+k−1)t form a homogeneous Markov chain on the state space Ωk.

519[Markov chain, |Ω| = 2] The next goal is to develop easy-to-use formulae for (4.81) (and thus
for (4.82)) for arbitrary m ≥ 1. After re-ordering any product pω,ω1 · · · pωm−1,ωm

of transition
probabilities in (4.81) is of the form to pa

00p
b
01p

c
10p

d
11 with integers a, b, c, d ≥ 0 such that a+ b+

c + d = m. Our task is to determine the maximum for both ω = 0 and ω = 1. This requires
case distinctions for the parameters p00, p01, p10, p11, or more precisely, only for p01, p10 because
p00 = 1 − p01 and p11 = 1 − p10.

520[Markov chain, |Ω| = 2, ctd.] To simplify the notation we introduce the following definition

maxP,2(ω,m) := max
{
pω,ω1 · · · pωm−1,ωm | ω, ω1, . . . , ωm ∈ Ω

}
. (4.83)

We extend (4.83) to the case m = 0 by maxP,2(ω, 0) := 1. Below we assume m ≥ 1 and p01 ≤ p10.
The case p01 ≥ p10 can be handled analogously; concrete formulae can be derived without further
work by relabeling the state space Ω = {0, 1}.

• Case I: p01 ≤ p10 ≤ 0.5. Thus, p01 ≤ p10 ≤ 0.5 ≤ p11 ≤ p00, and

maxP,2(0,m) := pm
00 , maxP,2(1,m) = max{p10p

m−1
00 , pm

11} . (4.84)

• Case II: 0.5 ≤ p01 ≤ p10. Thus, p11 ≤ p00 ≤ 0.5 ≤ p01 ≤ p10, and

maxP,2(0,m) :=
{

(p01p10)m/2 for even m
(p01p10)(m−1)/2

p01 for odd m
(4.85)

maxP,2(1,m) :=
{

(p10p01)m/2 for even m
(p10p01)(m−1)/2

p10 for odd m
(4.86)

• Case III: p01 ≤ 0.5 ≤ p10. Hence p01, p11 ≤ 0.5 ≤ p10, p00. We distinguish two subcases:

90 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

4.3 Entropy and Guess Work

– Subcase III1: p00 ≥ p10. Thus p01 ≤ p11 ≤ 0.5 ≤ p10 ≤ p00. Then

maxP,2(0,m) := pm
00 , maxP,2(1,m) = p10p

m−1
00 (4.87)

– Subcase III2: p00 ≤ p10. Thus, p11 ≤ p01 ≤ 0.5 ≤ p00 ≤ p10. Then

maxP,2(0,m) :=

max
{
pm

00, (p01p10)m/2
}

for even m

max
{
pm

00, (p01p10)(m−1)/2
p00

}
for odd m

(4.88)

maxP,2(1,m) :=

max
{
p10p

m−1
00 , (p10p01)m/2

}
for even m

max
{
p10p

m−1
00 , (p10p01)(m−1)/2

p10

}
for odd m

(4.89)

521 [Markov chain, |Ω| = 2, ctd.] The results from par. 520 allow the simplification of (4.80) and
(4.82). The average gain of min-entropy per random bit of Xn+1, . . . , Xn+m equals

Hmin(Xn+1, . . . , Xn+m)
m

= − log2 (max {ν(0) maxP,2(0,m− 1), ν(1) maxP,2(1,m− 1)})
m

.

(4.90)
Similarly,

Hmin(Xn+1, . . . , Xn+m | Xn)
m

=
−
∑

ω∈Ω ν(ω) log2 (maxP,2(ω,m))
m

. (4.91)

522 [Markov chain, |Ω| = 2, ctd.] Par. 521 provides manageable formulae to determine the average
min entropy per bit for Markov chains on the state space Ω = {0, 1}. Their derivation require
careful considerations with case distinctions. It is obvious that for 2-step Markov chains the
necessary efforts increase significantly. Since in our context we are usually interested in the
average entropy within long sequences we may apply the simpler formula (4.92), neglecting
complicating ‘boundary effects’, which may play a role for small m. In fact, the functional
equation of the logarithm function, log2(pq) = log2(p) + log2(q), yields

lim
m→∞

Hmin(Xn+1, . . . , Xn+m)
m

= − max{log2 (p00) , log2 (p11) , 0.5 log2 (p01p10)} . (4.92)

523 [Markov chain] Consider a Markov chain on a finite state space Ω with transition matrix P . We
call (ω1, . . . , ωℓ, ωℓ+1) a loop if ω1 = ωℓ+1 while ω1, . . . , ωℓ are mutually distinct. Here, ℓ denotes
the length of the loop. Formula (4.93) equals Theorem 2 in [ASPB+18].

lim
m→∞

Hmin(Xn+1, . . . , Xn+m)
m

= min
ℓ

min
(ω1,...,ωℓ,ωℓ+1)∈Cℓ

1
ℓ

ℓ∑
j=1

log2

(
1

pωjωj+1

)
. (4.93)

Here, Cℓ denotes the set of all loops of length ℓ.
Note: For Ω = {0, 1} there are two loops of length 1 (namely, (0, 0), (1, 1)) and two loops of
length 2 (namely, (0, 1, 0), (1, 0, 1)). Substituting into (4.93) yields (4.92).

524 [Markov chain, ctd.] If X0, X1, . . . forms a homogeneous k-step Markov chain on Ω then Y⃗0 =
(X0, X1, . . . , Xk−1), Y⃗1 := (X1, X2, . . . , Xk) is a homogeneous 1-step Markov chain on the prod-
uct state space Ωk. In particular, (4.93) can be applied to Y⃗0, Y⃗1,

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

91

4 Mathematical Background

4.3.2 Guess Work and Work Factor

525Although guesswork and work factor do not appear in the specificatons of the functionality
classes we briefly treat these concepts.

526As in Subsect. 4.3.1 X denotes a random variable that assumes values in Ω = {ω1, ω2, . . . , ωk}.
W.l.o.g. we may assume

Prob (X = ω1) ≥ Prob (X = ω2) ≥ . . . ≥ Prob (X = ωk) . (4.94)

A reasonable goal is to estimate the effort to guess the outcome of an experiment that is viewed
as a realization of X.

527If the random variable X has distribution ν we set ν(ωj) := Prob(X = ωj) to simplify the
notation. In particular, ν := (ν(ω1), . . . , ν(ωk)).

528The λ-work-factor wλ (X) denotes the minimum number of guesses to get the correct result
with probability ≥ λ (0 < λ < 1) if the optimal guessing strategy (beginning with ω1, ω2, . . .) is
applied. That is,

wλ (X) = min
{
k |

k∑
i=1

ν (ωi) ≥ λ

}
. (4.95)

529The guess work W (X) denotes the expected number of guesses until success if the optimal
guessing strategy is applied

W (X) =
n∑

i=1
iν (ωi) . (4.96)

530The guess work and the λ-work-factor (for a suitable parameter λ) seem to be appropriate criteria
to assess the strength of a TRNG that is used for cryptographic applications. However, in many
scenarios of practical relevance it can be very difficult to sort the probabilities of the admissible
outcomes in descending order as in (4.94), in particular if X is a random vector (X1, . . . , Xm) with
dependent components. Usually, the calculation of the entropy (or at least the determination of
a useful lower bound) is easier. In the next paragraphs we explain the relation between entropy,
guess work, and work factor.

531For λ = 0.5 the work factor of the optimal strategy meets the following inequality [Plia99]⌊
1

2 max {ν (xj) | 1 ≤ j ≤ n}

⌋
≤ w 1

2
(X) ≤ ⌈(1 − ∥ν − ū∥ · n)⌉ . (4.97)

As above, ū denotes the uniform distribution on Ω.

532For the most general case, the following inequality provides tight bounds for the guesswork

k

2 ∥ν − ū∥ ≤ k − 1
2 −W (X) ≤ k ∥ν − ū∥ . (4.98)

92 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

4.3 Entropy and Guess Work

533 A memoryless binary-valued stationary random source can be described by independent iden-
tically B (1, p)-distributed random variables X1, X2, . . . , Xn. The guesswork for n random bits,
or equivalently for the random vector X = (X1, . . . , Xn) , may be estimated by the Shannon
entropy [Maur92]

log2 w 1
2

(X) ≈ n ·H1 (X1) . (4.99)

534 More generally, for an ergodic stationary binary random source, the relation between the guess-
work and the length of a sequence tends asymptotically to the Shannon entropy [Maur92]

lim
n→∞

log2 wα (X)
n

= H (X) , for 0 < α < 1. (4.100)

535 [Example] Let ν denote a probability measure on Ω = {0, 1}128 such that ν((0, . . . , 0)) = 0.5,
ν((1, . . . , 1)) = 2−128, and ν(ω) = 2−129 else. Then Hmin(X) = 1 whereas

H(X) = −
(
0.5 log2(0.5) + 2−128 log2(2−128) + (2128 − 2) · 2−129(log2(2−129)

)
= (4.101)

0.5 + 2−128 · 128 + (2128 − 2) · 2−129 · 129 = 0.5 + 64.5 − 2−128 ≈ 65 .

For λ ≤ 0.5 we have wλ(X) = 1, which would be disastrous for cryptographic applications. On
the other hand,

W (X) = 1 · 0.5 + 2 · 2−128 +
2128∑
i=3

i · 2−129 = 0.5 + 2−127 +
(

2128(2128 + 1)
2 − 3

)
2−129 =

2126 + 0.75 + 2−129 ≈ 2126 . (4.102)

is rather large. Note that the uniform distribution has guesswork W (X) = 2127 + 0.5 ≈ 2127.

536 [Example] Let ν denote a probability measure on Ω = {0, 1}128 such that ν((0, . . . , 0)) = 2−127,
ν((1, . . . , 1)) = 0, and ν(ω) = 2−128 else. Then Hmin(ν) = 127 while

H(X) = −
(
2−127 log2(2−127) + 0 + (2128 − 2) · 2−128(log2(2−128)

)
= (4.103)

2−127 · 127 + (2128 − 2) · 2−128 · 128 = 128 − 2−127 ≈ 128 .

For λ = 2−127 we have wλ(X) = 1 (in place of = 2 for the uniform distribution) but for λ = 2−100,
for instance, wλ(X) = 228 − 1 (instead of 228 for the uniform distribution). Furthermore, the
guesswork equals

W (X) = 1 · 2−127 +
2128−1∑

i=2
i · 2−128 = 2−127 +

(
(2128 − 1) · 2128

2 − 1
)

2−128 =

2127 − 0.5 + 2−128 ≈ 2127 , (4.104)

which is very close to the guesswork of the uniform distribution.

537 The example in par. 535 shows that for very unbalanced distributions the Shannon entropy and
the guesswork may tremendously overestimate the resistance against guessing attacks. On the

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

93

4 Mathematical Background

other hand the example in par. 536 the Shannon entropy and the guesswork provide a realistic
assessment of the strength against guessing attacks while the min-entropy underestimates this
strength unless extremely small parameters λ are concerned.

538Example: Assume that the random variables X1, . . . , Xn are iid B(1, p)-distributed and X⃗ =
(X1, . . . , Xn). Since the random variables Xi are iid we obtain H1(X⃗) = n · H1(X1) = −n ·
(p log2(p) + (1 − p) log2(1 − p)) and Hmin(X⃗) = − log2(max{pn, (1 − p)n}) = −n log2(max{p, 1 −
p}). If p ≥ 0.5 the most likely vector is (1, . . . , 1) but (0, . . . , 0) else. Furthermore, Y =
ham(X1, . . . , Xn), the Hamming weight of the random vector (X1, . . . , Xn), isB(n, p)-distributed,
and Prob(Y = y) =

(
n
y

)
py · (1 − p)n−y.

539Example from par. 538 continued: The work factor wλ(X⃗) (4.95) can be efficiently computed
because Prob(X⃗ = x⃗) only depends on the Hamming weight of x⃗. In particular, only n + 1
different probabilities occur. W.l.o.g. we may assume p ≥ 0.5. At first, for success probability λ
one determines

α(λ) := max

i ≥ 0 |
n∑

j=i

(
n

j

)
pj(1 − p)n−j ≥ λ

 . (4.105)

Then

wλ(X⃗) =
n∑

j=α(λ)+1

(
n

j

)
+
⌈
λ−

∑n
j=α(λ)+1

(
n
j

)
pj(1 − p)n−j

pα(λ)(1 − p)n−α(λ)

⌉
. (4.106)

Unless n or j are rather small, Stirling’s approximation formula (4.29) and (4.30) may be applied
to compute the factorials and the binomial coefficients. Table 1 provides concrete figures.

Table 1: work factor wλ(X⃗ = (X1, . . . , Xn)) for several success probabilities λ: X1, . . . , X128 are
iid B(1, p)-distributed; the top row describes the ideal case.

λ H(X⃗) log2

(
wλ(X⃗)

)
Hmin(X⃗)

p = 0.500 2−80 128 48 128
2−40 88

p = 0.501 2−80 128.000 47.688 127.631
2−40 87.773

p = 0.503 2−80 127.997 47.066 126.895
2−40 87.319

p = 0.507 2−80 127.982 45.822 125.433
2−40 86.403

p = 0.510 2−80 127.963 44.880 124.343
2−40 85.706

4.4 Random mappings

540This section treats random mappings. We focus on aspects that are relevant in the context of the
AIS 20 and AIS 31. Section 4.4.1 summarizes well-known statistical properties for the iteration

94 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

4.4 Random mappings

of random mappings. In Subsection 4.4.2 the impact of randomly selected mappings on the work
factor and, in particular, on the entropy is analyzed.

541 These results shall support the security evaluation of DRNGs (functionality classes DRG.2,
DRG.3 and DRG.4) and of cryptographic post-processing in the context of PTG.3- and NTG.1-
evaluations.

542 [Notation] In this section A,A1, and A2 denote finite sets and FA1,A2 := {f ′ : A1 → A2}. For
given sets A1 and A2 a random mapping F is a random variable that assumes values uniformly
in a specified subset V ⊆ FA1,A2 .

4.4.1 Iteration of random mappings: statistical properties

543 In this subsection A1 = A2 = A, and F is a random mapping which is uniformly distributed on
a subset V ⊆ FA,A. We focus on the special cases V = FA,A and V = PermA, the set of all
permutations on A (i.e. the bijective elements of FA,A).

544 In the context of the AIS 20 the results of this subsection may be applicable to state transition
functions of DRNGs. These results are in particular interesting for pure DRNGs while for hybrid
DRNGs the situation should be more favorable anyway since additional input usually causes that
the internal state ‘jumps’ between cycles of the pure version (’no additional input’) of the DRNG.

545 To given ω ∈ Ω the term F (ω) denotes a fixed mapping in V . We consider the sequence
tn+1 := F (ω) (tn) with t0 = t for some t ∈ A and n ≥ 0. In terms of the functional graph of
F (ω) this sequence t0, t1, . . . describes a path in A which ends in a cycle. The functional graph
consist of components, each of which consists of one cycle that is connected with several trees (0
trees are possible).

546 Table 2 collects well-known results on random mappings on FA,A; see, e.g. [Flod89] for details.
If |A| = n then |FA,A| = nn.

547 Table 3 collects well-known results on random permutations (random bijections) that are chosen
uniformly from the set of all n! permutations V = PermA (cf. [Golo64] for details). If |A| = n
then |PermA| = n!.

4.4.2 Impact on the work factor and on the entropy

548 In this subsection we analyze the impact of randomly selected mappings on the work factor
(pars. 558 to 582), the Shannon entropy (pars. 584 to 589), and the min-entropy (pars. 590
to 606). The contributions to the Shannon entropy and in particular to the min-entropy are of
most importance in the context of the AIS 31.

549 In this subsection A1, A2 denote finite sets with cardinality |A1| = b1 and |A2| = b2. In particular,
|FA1,A2 | = bb2

1 .

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

95

4 Mathematical Background

Table 2: Statistics of random mappings on A, |A| = n; cf. [Flod89]

Characteristic Expected value
as n → ∞ Definition and comments

Number of
components

1
2 lnn

A component consists of one cycle and several
trees connected to this cycle. (0 trees are
possible.)

Component size 2n
3 of a randomly selected point

Largest component ≈ 0.75782n
Number of cyclic

nodes
√

πn
2

√
πn
2 ≈ 1.253314

√
n

Cycle length (µ)
√

πn
8

The number of edges in the cycle is called the
cycle length of t, denoted µ (t),√

πn
8 ≈ 0.626657

√
n.

Maximum cycle
length ≈ 0.78248

√
n

Tail length (λ)
√

πn
8

The number of edges in the path to the cycle is
called the tail length of t, denoted λ (t),√

πn
8 ≈ 0.626657

√
n.

Maximum tail
length ≈ 1.73746

√
n

Rho length (ρ)
√

πn
2

ρ (t) = λ (t) + µ (t), number of steps until a
node on the path repeats,

√
πn
2 ≈ 1.253314

√
n.

Maximum rho
length ≈ 2.4119

√
n

Tree size n
3

Tree size of a node t means the size of the
maximal tree (rooted to the cycle) containing
this node t.

Largest tree ≈ 0.48n
Number of

terminal nodes e−1n
Number of nodes without predecessor,
e−1n ≈ 0.367879n.

Number of image
points

(
1 − e−1)n |f (A)| = number of nodes that have a

predecessor,
(
1 − e−1)n ≈ 0.632121n.

Number of k-th
iterate image

points

(1 − rk)n, r0 = 0,
rk+1 =

exp (−1 + rk)

∣∣fk (A)
∣∣ = number of nodes after application of

fk.

Predecessor size
√

πn
8

The predecessor size of the node t is the size of
the tree rooted at node t or equivalent the
number of iterated pre-images of t.

96 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

4.4 Random mappings

Table 3: Statistics of random permutations on A, |A| = n, cf. [Golo64; PuWi68]

Characteristic Expected value
as n → ∞ Distribution as n → ∞

Number of cycles
lnn+ C + o (1)

C =
0.57721566 . . .

Number ωn of cycle of the permutation

Prob (ωn = k) =
exp
(

− (k−ln n)2
2 ln n

)
√

2π ln n
(1 + o (1))

normal distribution (lnn, lnn).

Cycle length n
ln n+C+o(1)

Number ωnl of cycle of length l

Prob (ωnl = k) = P1/l(k) = exp(− 1
l)

lkk!
Poisson distribution with parameter τ = 1

l .
Length of the
largest cycle ≈ 0.6243n

Expected cycle
length of a random

element
n+1

2
Probability that a random element x lies on a
cycle of size k, k ≤ n, is Prob (ω (x) = k) = 1

n .

550 [random variables] In this subsection F denotes a random variable that assumes values uniformly
in FA1,A2 := {f ′ : A1 → A2}. The random variable X assumes values in A1, and F and X are
independent. Unless otherwise stated in this subsection X is uniformly distributed on A1 while
X ′ is allowed to be non-uniformly distributed. Furthermore, U denotes a random variable which
is uniformly distributed on A2.

551 The results of this subsection shall support the evaluation of requirements PTG.3.6. This in
particular concerns the impact of data compression.

552 The typical scenario for PTG.3-compliant PTRNGs is the following: A PTG.2-compliant PTRNG
has generated n-bit intermediate random numbers x1, x2, . . . which are interpreted as realizations
of random variable X1, X2, (The n-bit random number xj can be the concatenation of n
random bits.) The current intermediate random number xj is mixed as additional input into
Sreq of the cryptographic post-processing (a DRG.3-compliant DRNG), and finally also into
the internal state; alternatively, xj provides reseed material. If sj denotes the current inter-
nal state S of the cryptographic post-processing in the notation of Chap. 3 the next values in
Sreq and S can be described by the random variables ϕreq(sj , Xj) and ϕ(sj , Xj), respectively.
Similarly, the outputted internal random number rj can be interpreted as a realization of the
random variable ψ(ϕreq(sj , Xj)). Let the mapping fs : A1 = {0, 1}n → A2 = {0, 1}m be given by
fs(x) := ψ(ϕreq(s, x)). This yields a sequence of (different) functions fs1 , fs2 . . . ∈ FA1,A2 . This
motivates the study of random mappings with regard to evaluations with regard to class PTG.3.

553 Since X models the output of a PTG.2-compliant PTRNG we may assume that X is ‘nearly’
uniformly distributed. This justifies to study the case where X is uniformly distributed on A1.
Furthermore, pars. 599 to 604 consider non-uniform distributions.

554 In view of functionality class PTG.3 we are interested in the impact of the cryptographic post-
processing on the stochastic properties of the internal random numbers. This comprises the

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

97

4 Mathematical Background

Shannon entropy and the min-entropy. Additionally, we consider the impact on the work factor.

555For a fixed mapping f ∈ FA1,A2 the term f(X) describes the transformed random variable
X. Similarly, F (X) denotes the random variable that is given when a mapping f ∈ FA1,A2

is uniformly selected (modeled by the random variable F) and applied to the random variable
X, which models the intermediate random numbers. (The pair of random variables (X,F)
assumes values in (A1,FA1,A2) while F (X) assumes values in A2.) In particular, H(F (X)) and
Hmin(F (X)) denote the Shannon entropy and the min-entropy of F (X), respectively.

556Below, we assume that a mapping from FA1,A2 is selected randomly. Many properties of random
mappings are ‘typical’ in the sense that they are shared by ‘nearly all’ mappings. This property
is important for stateless post-processing algorithms (with a fixed cryptographic output func-
tion) and for cryptographic post-processing algorithms, where the adversary knows the complete
current internal state (which is the most favourable scenario from the adversary’s point of view).
For a PTG.3-compliant PTRNG the output function can be interpreted as a random mapping
on the intermediate random numbers that is parametrized by the current internal state of the
post-processing algorithm; see par. 552. If an adversary hasn’t any information on the internal
state from the standpoint of security the situation is more favorable than for a fixed randomly
selected mapping. Moreover, due to the constantly changing internal state this can be interpreted
as an averaging operation.

557For the functionality class NTG.1 the situation is similar to class PTG.3 in the sense that
truly random data are post-processed. However, for NTG.1-compliant NPTRNGs usually the
distribution of the raw random numbers has only little entropy per data bit, which requires a
higher compression rate; cf. par. 604.

558Impact on the work factor
Although the work factor does not appear in the class requirements of PTG.2 and PTG.3 we at
first consider the impact on the work factor. More precisely, we determine the expected (average)
work factor of F (X) in A2 and compare it to the work factor of a uniformly distributed random
variable U on A2. Furthermore, we determine the variance of the work factor.

559Let f ∈ FA1,A2 be fixed for the moment. For s ∈ N0 we introduce the definitions

V(f)s :=
{
z ∈ A2 :

∣∣f−1 (z)
∣∣ = s

}
and v(f)s :=

∣∣V(f)s

∣∣ . (4.107)

That is to say, V(f)s denotes the set of elements of A2 that have exactly s pre-images, and v(f)s

quantifies its cardinality.

560Since X is uniformly distributed on A1 we have Prob (f (X) = z) = s
b1

for each z ∈ V(f)s. As an
immediate consequence

Prob
(
f (X) ∈ V(f)s

)
=
sv(f)s

b1
and Prob

(
f (X) ∈

b1⋃
s=r

V(f)s

)
=

b1∑
s=r

sv(f)s

b1
. (4.108)

561In our context the values f(·) are random numbers. The best guessing strategy for an adversary
(without additional knowledge) is to try those a2 ∈ A2 first which have the most pre-images

98 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

4.4 Random mappings

under f . Thus the work factor corresponding to the success probability Prob
(
f (X) ∈

b1⋃
s=r

V(f)s

)
is given by

∑b1
s=rsv(f)s since by assumption X is uniformly distributed on A1.

562 [Notation] In the sequel EF (·) and ProbX (·) denote the expectation with regard to the random
mapping F and the probability with regard to the random variable X, respectively. In particular,
for a mapping h : FA1,A2 → R this means

EF (h(F)) = 1
|FA1,A2 |

∑
h∈FA1,A2

h(f) . (4.109)

563 The term
er := ProbX

(∣∣F−1(X)
∣∣ ≥ r

)
(4.110)

quantifies the average probability that a realization of F (X) has ≥ r pre-images.

564 If s ̸= t then V(f)s and V(f)t are disjoint. Hence

er = EF

(
ProbX

(
F (X) ∈

b1⋃
s=r

V(F)s

))
=

b1∑
s=r

EF

(
ProbX

(
F (X) ∈ V(F)s

))
=

b1∑
s=r

sEF

(
v(F)s

)
b1

=
b1∑

s=r

sEF

(∑
z∈M2

1{s}
(∣∣F−1 (z)

∣∣))
b1

=
b1∑

s=r

s
∑

z∈M2

Prob
(∣∣F−1 (z)

∣∣ = s
)

b1

=
b1∑

s=r

sb2

b1

(
b1

s

)
ps (1 − p)b1−s =

b1∑
s=r

(
b1 − 1
s− 1

)
ps−1 (1 − p)(b1−1)−(s−1)

= Prob (Y ≥ r − 1) (4.111)

with p = 1
b2

, and Y is a B (b1 − 1, p)-distributed random variable. The third equation results
from interchanging the order of integration (with regard to F and X).

565 The corresponding er-work factor (or more precisely, er(F), averaged over all f ′ ∈ FA1,A2) equals

wer (F (X)) = EF

(∣∣∣∣∣
b1⋃

s=r

V(F)s

∣∣∣∣∣
)

=
b1∑

s=r

b2

(
b1

s

)
ps (1 − p)b1−s = b2 Prob (Y ′ ≥ r) (4.112)

where Y ′ denotes a B (b1, p)-distributed random variable.

566 In particular, E (Y) = b1−1
b2

and Var (Y) = b1−1
b2

(
1 − 1

b2

)
. Similarly, E (Y ′) = b1

b2
and Var (Y ′) =

b1
b2

(
1 − 1

b2

)
.

567 [Notation] In the remainder of this subsection we assume

A1 = {0, 1}n and A2 = {0, 1}m with large n ≥ m. (4.113)

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

99

4 Mathematical Background

Then b1 = 2n and b2 = 2m. This case is relevant in the context of cryptographic post-processing.
To simplify the notation we define

γ := 2n−m, . (4.114)
Below we distinguish the cases γ ≫ 1 (data compression) and γ = 1.

568Since n,m are assumed to be large (b1 − 1)/b1 = (2n − 1)/2n ≈ 1 and 1 − 1
b2

= 1 − 2−m ≈ 1.
Using these approximations we obtain

E(Y) = E(Y ′) = Var(Y) = Var(Y ′) = γ . (4.115)

In the remainder we identify the distributions of Y and Y ′.

569Let U denote a uniformly distributed random variable on A2 = {0, 1}m. The equations (4.116)
and (4.117) provide useful relations

Prob
(
U ∈

(
b1⋃

s=r

V(F)s

))
= wer

(F (X))
b2

= Prob (Y ′ ≥ r) = er+1 , and thus (4.116)

wer
(F (X)) = wer+1 (U) and wer−1 (F (X)) = wer

(U) . (4.117)

570Equations (4.116) and (4.117) imply (4.118). This term quantifies the relative work factor defect
between U and F (X) (on the elements of A2 with pre-image size ≥ r)

wer (U) − wer (F (X))
wer

(U) =
wer−1 (F (X)) − wer

(F (X))
wer−1 (F (X)) = er − er+1

er
= Prob(Y = r − 1)

Prob(Y ≥ r − 1)
(4.118)

571[Case γ ≫ 1] On average each a2 ∈ A2 has γ pre-images. Unless r is very small or very
large compared to γ the Central Limit Theorem (with correction factor ‘±0.5’, see [Geor15],
Korollar (5.23)) equation (4.111) implies

er = 1 − Φ
(
r − 1 − 0.5 − γ

√
γ

)
= Φ

(
γ − r + 1.5

√
γ

)
(4.119)

wer
(F (X)) = 2m

(
1 − Φ

(
r − 0.5 − γ

√
γ

))
= 2mΦ

(
γ − r + 0.5

√
γ

)
and (4.120)

wer (U) = 2mΦ
(
γ − r + 1.5

√
γ

)
. (4.121)

572[Case γ ≫ 1] From (4.120) and (4.121) we obtain the work factor defect between U and F (X)
(on the elements of A2 with pre-image size ≥ r)

wer
(U) − wer

(F (X)) = Φ
(
γ − r + 1.5

√
γ

)
− Φ

(
γ − r + 0.5

√
γ

)
(4.122)

Substituting (4.120) and (4.121) into (4.118) yields the relative work factor defect between U
and F (X) (on the elements of A2 with pre-image size ≥ r)

wer (U) − wer (F (X))
wer (U) =

Φ
(

γ−r+1.5√
γ

)
− Φ

(
γ−r+0.5√

γ

)
Φ
(

γ−r+1.5√
γ

) (4.123)

100 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

4.4 Random mappings

573 [Case γ ≫ 1] Differentiating the relative work factor defect (4.123) yields

d

dr

Φ
(

γ−r+1.5√
γ

)
− Φ

(
γ−r+0.5√

γ

)
Φ
(

γ−r+1.5√
γ

) = d

dr

1 −
Φ
(

γ−r+0.5√
γ

)
Φ
(

γ−r+1.5√
γ

)
 =

Φ
(

γ−r+1.5√
γ

)
1√
γϕ
(

γ−r+0.5√
γ

)
− 1√

γϕ
(

γ−r+1.5√
γ

)
Φ
(

γ−r+0.5√
γ

)
(

Φ
(

γ−r+1.5√
γ

))2 (4.124)

Here ϕ(·) denotes the density of a standard normal distribution. Applying L’Hopital’s rule to
(4.123) shows that the relative work factor defect converges to 1 as r → ∞, which matches with
the intuition. It should be considered that at the same time the work factor wer

(U) converges
to 0 (and, of course, for fixed γ the model does no longer fit as r → ∞). For the work factor
defect we obtain

wer
(U) − wer

(F (X)) ≈ ϕ

(
γ − r + 1

√
γ

)
. (4.125)

Using the approximation (4.125) and applying the inequality (4.36) to the denominator of the
right-hand side of (4.123) (with x = (r − γ − 1.5)/√γ) yields the approximation

wer (U) − wer (F (X))
wer

(U) ≈
ϕ
(

γ−r+1√
γ

)
√

γ

r−γ−1.5ϕ
(

r−γ−1.5√
γ

) = r − γ − 1.5
√
γ

e
−0.5

γ ((γ−r+1)2−(γ−r+1.5)2) =

r − γ − 1.5
√
γ

e
−0.5

γ (−(γ−r+1)−0.25) = r − γ − 1.5
√
γ

e
−0.5

γ (r−γ−1.25) for r > γ + 1.5 (4.126)

574 [Case γ ≫ 1] Assume that er ≤ α < er−1. Linear interpolation in r yields an approximation of
the work factor wα (F (X)). More precisely,

wα (F (X)) = b2Φ
(
γ − rα + 0.5

√
γ

)
with rα = r − 1 + α− er−1

er − er−1
(4.127)

while trivially wα (U) = b2α = 2−mα.

575 [Case γ ≫ 1] Equation (4.123) is the equivalent to (4.118) for arbitrary success probabilities α

wα (U) − wα (F (X))
wer (U) ≈

α− Φ
(

γ−rα+0.5√
γ

)
α

. (4.128)

576 [Case γ = 1, i.e. n = m] This corresponds to a cryptographic post-processing for which the input
rate equals the output rate. In this case the random variables Y and Y ′ may be viewed Poisson
distributed Pτ with parameter τ = 1. In particular, (4.118) simplifies to

wer
(U) − wer

(F (X))
wer (U)

P1(r − 1)∑∞
s=r−1 P1(s) =

1
(r−1)!∑∞
s=r−1

1
s!

(4.129)

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

101

4 Mathematical Background

577Above, we computed the (average) work factor of a random mapping F , and we compared it to
the work factor for the uniform distribution U on A2. However, in cryptographic applications
usually a particular mapping f ∈ FA1,A2 is selected (e.g., a dedicated hash function), which is
permanently applied. This is in particular relevant for cryptographic post-processing algorithms
without memory. An important question in this context is how ‘typical’ such a mapping is with
regard to the work factor.

578The most extreme case clearly is when the selected mapping f maps all a1 ∈ A1 onto the same
image. Then the entropy of f(X) is 0, and its work factor is 1 for any success probability α.
Of course, it is extremely unlikely that a randomly selected mapping is constant. In particu-
lar, dedicated cryptographic algorithms are definitely far away from these extremal cases. The
question yet remains how typical the average work factor f(X) of a randomly selected mapping
f ∈ FA1,A2 is. In the following we develop a formula for the variance of the work factor of F (X).

579With the same strategy as in (4.112) we compute the second moment of the work factor wer
(F (X)).

EF

(
wer

(F (X))2) = EF

∣∣∣∣∣
b1⋃

s=r

V(F)s

∣∣∣∣∣
2 = EF

 ∑
s1,s2≥r

∣∣V(F)s1

∣∣ ·
∣∣V(F)s2

∣∣
∑

s1,s2≥r

EF

(∑
z1∈A2

1{s1}
(∣∣F−1(z1)

∣∣) ·
∑

z2∈A2

1{s2}
(∣∣F−1(z2)

∣∣)) =

∑
s1,s2≥r

EF

 ∑
z1,z2∈A2

1{s1,s2}
(∣∣F−1(z1)

∣∣ , ∣∣F−1(z2)
∣∣) =

∑
s1,s2≥r

∑
z1,z2∈A2

Prob
(∣∣F−1(z1)

∣∣ = s1,
∣∣F−1(z2)

∣∣ = s2
)

=

∑
s1,s2≥r

∑
z1,z2∈A2

Prob
(∣∣F−1(z1)

∣∣ = s1
)

· Prob
(∣∣F−1(z2)

∣∣ = s2 :
∣∣F−1(z1)

∣∣ = s1
)
.(4.130)

Similarly as in (4.112) we obtain

Prob
(∣∣F−1(z1)

∣∣ = s1
)

=
(
b1

s1

)
ps1 (1 − p)b1−s1 = Prob(Y ′ = s1) . (4.131)

The conditional probabilities require a case discrimination. It is

Prob
(∣∣F−1(z2)

∣∣ = s2 :
∣∣F−1(z1)

∣∣ = s1
)

=
(
b1 − s1

s2

)
p∗ s2 (1 − p∗)b1−s1−s2 =

Prob(Y ′
s1

= s2) with p∗ = 1
b2 − 1 and Y ′

s1
∼ B(b1 − s1, p

∗) if z1 ̸= z2. (4.132)

and

Prob
(∣∣F−1(z2)

∣∣ = s2 :
∣∣F−1(z1)

∣∣ = s1
)

= 1{s1}(s2) if z1 = z2. (4.133)

102 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

4.4 Random mappings

Putting the pieces together, substituting (4.131), (4.132) and (4.133) into (4.130), yields

EF

(
wer (F (X))2) =∑

s1,s2≥r

 ∑
z1,z2∈A2

Prob (Y ′ = s1) · Prob
(
Y ′

s1
= s2

)
+ Prob (Y ′ = s1)

∑
z∈A2

(
1{s1}(s2) − Prob

(
Y ′

s1
= s2

)) =

∑
s1,s2≥r

Prob (Y ′ = s1)
(
(b2

2 − b2) Prob
(
Y ′

s1
= s2

)
+ b2 · 1{s1}(s2)

)
=

b1∑
s1=r

Prob (Y ′ = s1)
(
b2

2
(
1 − b−1

2
)

Prob
(
Y ′

s1
≥ r
)

+ b21{≤b2/2}(s1)
)
. (4.134)

If s1 > b2/2 then in (4.133) s2 < s1 which verifies the indicator function 1{≤b2/2}(s1).

580 We first note that E (wer (F (X)) = wer (F (X)) and

(wer
(F (X)))2 = b2

2 Prob(Y ′ ≥ r)2 = b2
2
∑
s1≥r

Prob(Y ′ = s1) Prob(Y ′ ≥ r) . (4.135)

Hence

VarF (wer
(F (X))) = EF

(
wer

(F (X))2)− (wer
(F (X)))2 =

b1∑
s1=r

Prob (Y ′ = s1)
(
b2

2
[(

1 − b−1
2
)

Prob
(
Y ′

s1
≥ r
)

− Prob (Y ′ ≥ r)
]

+ b21{≤b2/2}(s1)
)
.(4.136)

581 We try to simplify (4.136). Recall that b1 = 2n and b2 = 2m are large. Since E(Y ′) = b1/b2 ≪ b1
the probability Prob(Y ′ > b2/2) is essentially zero. Omitting the indicator function 1{≤b2/2}(s1)
thus does not change significantly the value of (4.136). Similarly, 1 − b−1

2 ≈ 1. For c ≥ 1
the Chernoff inequality implies Prob(Y ′ ≥ (1 + c)E(Y ′)) ≤ e−(c/3)(b1/b2). This means that for
cryptographic purposes (estimating work factors for reasonable success probabilities) this tail
probability can be made sufficiently small for c ∈ O(1). For s1 ≤ (1 + O(1))E(Y ′) we have
Prob(Y ′ ≥ r) ≈ Prob(Y ′

s1
≥ r). Altogether, this justifies to replace the bracket [·] in (4.136) by

0. Putting the pieces together (4.136) simplifies to

VarF (wer
(F (X))) ≈ b2 Prob (Y ′ ≥ r) = wer

(F (X)) . (4.137)

The standard deviation of the work factor wer
(F (X)) is ≈

√
wer

(F (X)). For cryptographically
meaningful success probabilities the standard deviation is small compared to the work factor.
Hence we may assume that a randomly selected mapping in FA1,A2 is ‘typical’ with regard to
the work factors.

582 It is ProbX

(∣∣F−1(X)
∣∣ = r

)
= ProbX

(∣∣F−1(X)
∣∣ ≥ r

)
− ProbX

(∣∣F−1(X)
∣∣ ≥ r + 1

)
. By (4.111)

and (4.112)

ProbX

(∣∣F−1(X)
∣∣ = r

)
= Prob (Y = r − 1) and similarly (4.138)

EF

(∣∣{y ∈ A2 |
∣∣F−1(y)

∣∣ = r
}∣∣) = EF

(∣∣∣∣∣
r⋃

s=r

V(F)s

∣∣∣∣∣
)

= b2 Prob (Y ′ = r) (4.139)

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

103

4 Mathematical Background

where the random variables Y and Y ′ are binomially B(b1 − 1, 1
b2

)-distributed and B(b1,
1
b2

)-
distributed, respectively.

583584Impact on the Shannon entropy
After this excursion to the work factor we return to our main goal, the impact of randomly
selected mappings on the entropy. Our analysis begin with the Shannon entropy. As before,
γ = 2n−m with ‘large’ parameters n and m, and the random variable X is assumed to be
uniformly distributed on A1.

585[Shannon entropy] In the context of the AIS 20 and AIS 31 we are interested in the entropy
H(f(X)) for given mappings f . For one-way functions (as SHA -256) it is infeasible to determine
this value exactly. Instead, we compute the expected entropy value when the mapping f is
selected randomly; cf. pars. 553 to 557; basic considerations were already explained e.g. in
[Schi09b], Example 3.11. We view f as a realization of the random variable F . Straight-forward
considerations yield

E (H (F (X))) = −
∑

f∈FA1,A2

1
|FA1,A2 |

∑
a2∈A2

 ∑
a∈f−1(a2)

Prob(X = a)

 · log2

 ∑
a∈f−1(a2)

Prob(X = a)


= −

∑
f∈FA1,A2

1
|FA1,A2 |

b1∑
r=1

∣∣{y ∈ A2 |
∣∣f−1(y)

∣∣ = r
}∣∣ · r

b1
· log2

(
r

b1

)

= −
b1∑

r=1
EF

(∣∣{y ∈ A2 |
∣∣f−1(y)

∣∣ = r
}∣∣) · r

b1
· log2

(
r

b1

)

= −
b1∑

r=1
b2 Prob (Y ′ = r) · r

b1
· log2

(
r

b1

)
(4.140)

To be precise, E (H (F (X))) denotes the average entropy with regard to F , i.e. EF (H (F (X))).
The first line in (4.140) provides the formula for the general case where X has arbitrary distri-
bution on A1. For the special case where X is uniformly distributed on A1 it suffices to consider
the size of the pre-images. This simplifies the computations significantly (second line of (4.140)).
Since b1 = b2γ we obtain log2(r

b1
) = log2(r

γ) −m, and E(Y ′) = b1
b2

(4.140) implies

E (H (F (X))) = −b2

b1∑
j=1

Prob (Y ′ = r)
(

−m r

b1
+ r

b2γ
log2

(
r

γ

))
=

b2

b1
mE(Y ′) − b2

b2
E

(
Y ′

γ
log2

(
Y ′

γ

))
= m− E

(
Y ′

γ
log2

(
Y ′

γ

))
(4.141)

586In (4.140) the random variable X is assumed to be uniformly distributed on A1. This simplifies
the computation as it suffices to count the numbers of pre-images. Of course, the expectation
E (H (F (X))) exists for non-uniformly distributed random variables X, too, but the computa-
tions become significantly more complicated.

587[Shannon entropy, γ = 1] Here b1 = b2 = 2n and γ = 1. As pointed out in par. 576 the random

104 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

4.4 Random mappings

variable Y ′ may be viewed as Poisson distributed with parameter 1. Then (4.141) reads

E (H (F (X))) = n− e−1
∞∑

r=0

1
r!r log2(r) , (4.142)

with 0 log2(0) := 0 as usual. The second term of (4.142) quantifies the average entropy defect
that occurs when a random mapping is applied to a uniformly distributed random variable X.
Numerical computations show that

e−1
∞∑

r=0

1
r!r log2(r) ≈ e−1

10∑
r=1

log2(r)
(r − 1)! ≈ 0.827 (4.143)

This means that the average Shannon entropy defect per random bit is 0.827/m. If n = m = 256,
for example, the average Shannon entropy defect per bit is ≈ 0.003.

588 [Shannon entropy, γ ≫ 1] Since n and m are assumed to be large Y ′ can be approximated by a
normal distribution N(γ, γ) with γ = 2n−m, cf. par. 568. Then

Prob (Y ′ = r) ≈ 1√
2πγ e

− (r−γ)2
2γ , (4.144)

and (4.141) can be approximated by

E (H (F (X))) = m− 1√
2πγ ln(2)

∫ ∞

0.5
e− (r−γ)2

2γ · r
γ

ln
(
r

γ

)
dr (4.145)

589 [Shannon entropy, γ ≫ 1] Because the exact calculation of the right-hand integral in (4.145)
appears to be rather difficult we apply Jensen’s inequality to the expectation in (4.141). Recall
that Y ′ ∼ B(2n, p)-distributed with p = 2−m (cf. par. 565), and furthermore E(Y ′) = γ and
E(Y ′2) = Var(Y ′) + E2(Y ′) = γ(1 − p) + γ2 (par. 568). By this,

E

(
Y ′

γ
log2

(
Y ′

γ

))
=

b1∑
j=0

j Prob(Y ′ = j)
γ

log2

(
j

γ

)
=

b1∑
j=0

qj log2

(
j

γ

)
(4.146)

where qj := j Prob(Y ′ = j)/γ. Since γ = E(Y ′), it is q0, . . . , qb1 ≥ 0 and q0 + · · · + qb1 = 1.
Furthermore, since x 7→ log(x/γ) is concave on R+ Jensen’s inequality implies

b1∑
j=1

qj log2

(
j

γ

)
≤ log2

 b1∑
j=1

qj
j

γ

 = log2

 b1∑
j=1

Prob(Y ′ = j)j2

γ2

 = log2

E
(
Y ′2
)

γ2

 =

log2

(
γ(1 − p) + γ2

γ2

)
< log2

(
1 + 1

γ

)
≤ 1

log(2)γ . (4.147)

(Since q0 = 0 and by convention 0 · log2(0) = 0 the sums in (4.147) start with index j = 1.)
Equation(4.147) matches with our intuition that the entropy defect becomes negligible if the
compression difference n−m and thus γ = 2n−m increases. Altogether,

E (H (F (X))) ≥ m− 1
ln(4)γ . (4.148)

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

105

4 Mathematical Background

Dividing (4.148) by m provides a lower bound for the average Shannon entropy per internal
random number bit:

E (H (F (X)))
m

≥ 1 − 1
ln(4)γm . (4.149)

In particular, the average Shannon entropy per internal random number bit decreases exponen-
tially in n−m.
Note: Of course, Jensen’s inequality applies to the case γ = 1, too, but there (4.143) is more
suitable as it quantifies the entropy defect more precisely than (4.147).

590Impact on the min-entropy
Finally, we consider the impact of randomly selected mappings on the min-entropy. As before,
γ = 2n−m and the random variable X is assumed to be uniformly distributed on A1. The
following results have the highest relevance for the functionality classes PTG.3 and NTG.1. This
in particular applies to the results on non-uniformly distributed random variables.

591[Min-entropy] Thus for each mapping f : A1 → A2 we have Prob(f(X) = y′) = |f−1(y′)|
2n for each

y′ ∈ A2, and furthermore(
max
y′∈A2

∣∣f−1(y′)
∣∣ > γ(1 + τ)

)
⇐⇒(

Hmin(f(X)) < − log2

(
γ(1 + τ)

2n

)
= m− log2(1 + τ)

)
for τ > 0 (4.150)

Below we analyze the distribution of the size of the largest pre-image if the mapping f is selected
randomly.

592Let f ∈ FA1,A2 be fixed. For the remainder of this section the term M(f) := maxy′∈A2

∣∣f−1(y′)
∣∣

denotes the maximal pre-image size for f (a.k.a. maximal occupancy). In the pars. 593 to 595
we state three known limiting distributions of M(F); see [KoSC78] for details. Interestingly, the
limiting behavior depends on the scale parameter

|A1|
|A2| log(|A2|) = 2n

2m log(2m) = γ

m log(2) . (4.151)

In the pars. 593 to 595 we assume that n,m → ∞.

593[Case γ
m log(2) −→ 0] ([KoSC78], Sect. II 6, Theorem 1, p. 96) This case covers data expansion

(n < m), the case γ = 1 and small compression γ > 1. Interestingly, the asymptotic distribution
is concentrated at most two values. More precisely, assume that r = r(m) is chosen so that r > γ
and 2mνPγ

(r) converges to λ > 0. Here νPγ
denotes for the Poisson distribution with parameter

γ. Then

Prob(M(F) = r − 1) −→ e−λ (4.152)
Prob(M(F) = r) −→ 1 − e−λ (4.153)

594[Case γ
m log(2) −→ x > 0] ([KoSC78], Sect. II 6, Theorem 2, p. 96) In this case the asymptotic

distribution is discrete with infinite range. Assume that r = r(m) is chosen so that r > γ and

106 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

4.4 Random mappings

2mνP oi,γ(r) converges to λ > 0. Then

Prob(M(F) ≤ r + j) −→r→∞ exp
(

−ληj+1

1 − η

)
for j ∈ Z (4.154)

where η is the zero of the equation

η + x(log(η) − η + 1) = 0 (4.155)

in (0, 1).
Note: In (4.155) x denotes the value specified in the Case condition.

595 [Case γ
m log(2) −→ ∞] ([KoSC78], Sect. II 6, Theorem 3, p. 96) This is the most relevant case for us

since it treats the case of large compression. Here, the asymptotic distribution is continuous. It is
an extreme value distribution of the double exponential type, often named ‘Gumbel distribution’.
More precisely,

Prob

M(F) − γ − γ u
(

1
γ

(
log(2m) − log log(2m)

2

))
√

γ
2 log(2m)

+ 1
2 log(4π) ≤ z

 =

Prob

M(F) − γ − γ u
(

1
γ

(
m log(2) − log(m log(2))

2

))
√

γ
2 m log(2)

+ 1
2 log(4π) ≤ z

 −→ e−e−z

(4.156)

The function u : (0,∞) → (0,∞) is implicitly defined by

−u(t) + (1 + u(t)) log(1 + u(t)) = t . (4.157)

For small t > 0 the function u(t) has the expansion

u(t) =
√

2t+ 1
3 t−

√
2

36 t
3/2 + . . . (4.158)

In (4.156) it is t = 1
γ

(
m log(2) − log(m log(2))

2

)
. The expansion (4.158) applies to large compres-

sion rates γ.

596 [γ = 1] The Case γ
m log(2) −→ 0 from par. 593 applies to γ = (no data compression). On the

other hand, for a randomly selected element a2 ∈ A2 = {0, 1}m the pre-image size |f−1(a2)| is
Poisson distributed with parameter τ = 1. It should be easier to apply this result.

597 [numerical example, γ ≫ 1] The largest pre-image determines the min-entropy. Formula (4.156)
in par. 595 gives an upper bound for the maximal occupancy M(F), which in turn provides a
lower bound for the min-entropy. In Tab. 4 we used the approximation u(t) ≈

√
2t+ 1

3 t−
√

2
36 t

3/2.
(Cutting off u(t) after the first term, for example, yields numerical values that differ a little.)
The expansion of u(t) until the third term should be enough by far because its argument in
(4.156) is in the order of 1/γ. Furthermore, the min-entropy bound depends on the choice of z.
(Of course, in (4.156) probability 1 cannot be achieved because constant mappings map A1 onto
a single element.) Solving the term Prob(. . .) in (4.156) for M(F) gives

M(F) ≤
√

γ
2 m log(2)

(
z − 1

2 log(4π)
)

+ γ + γ u
(

1
γ

(
m log(2) + log(m log(2))

2

))
(4.159)

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

107

4 Mathematical Background

Then

M∗
z (F) :=

√
γ
2 m log(2)

(
z − 1

2 log(4π)
)

+ γ + γ u
(

1
γ

(
m log(2) + log(m log(2))

2

))
(4.160)

defines an upper bound for the maximal pre-image size that is not exceeded with probability
e−e−z . Therefrom, by (4.150) with M∗

z (F) = γ(1 + τ), we conclude that the min-entropy per
m-bit output block does not undercut

− log2

(
M∗

z (F)
2n

)
= m− log2

(
M∗

z (F)
γ

)
. (4.161)

with probability e−e−z . Consequently,

hmin,(n,m,z) := 1 −
log2

(
M∗

z (F)
γ

)
m

(4.162)

the min-entropy defect per output bit, is exceeded only with a probability of 1 − e−e−z . (As
before, X and F are uniformly distributed on {0, 1}n and on F{0,1}n,{0,1}m , respectively.)

598Table 4 provides the min-entropy defect per output bit (4.162) for several parameter sets (n,m, z).
There, zτ is selected such that the right-hand side in (4.156) equals 1 − 2−τ . Entry 3 in row 2,
for example, says that the min-entropy defect exceeds 2−64.17 only with probability < 2−16. The
numerical values indicate that the min-entropy defect per output bit essentially depends on the
difference n−m.

Table 4: Case γ
m log(2) −→ ∞ (cf. par. 595): Min-entropy defect per output bit for different

parameters, hmin,(n,m,z), computed with formula (4.162)

(n,m) z8 z12 z16
(320, 256) 2−33.59 2−33.05 2−32.67

(256, 128) 2−65.09 2−64.56 2−64.17

(192, 128) 2−33.09 2−32.56 2−32.17

599[non-uniformly distributed pre-images] So far, in this section we have assumed that X is uni-
formly distributed on {0, 1}n. For PTG.3-compliant PTRNGs the cryptographic post-processing
algorithm may be modeled as a randomly selected mapping, and an output sequence of length
n of a PTG.2-compliant PTRNGs (here: intermediate random numbers) may be interpreted as
a realization of a random vector X; cf. par. 551 to 556. Of course, we cannot assume that X is
uniformly distributed on {0, 1}n because the intermediate random numbers usually are (to some
degree) biased and correlated. One may might expect that pre-images with small probabilities
and those with large probabilities cancel each other out to a large extent. The question is, how-
ever, to which degree deviations from the uniform distribution influence the above results. In
the sequel we focus on min-entropy.

600[non-uniformly distributed pre-images] The ideal situation, of course, would be if the random
variable X would for each a2 ∈ A2 assume a value in its pre-image with probability 2−m.
Two things stand against it: the pre-images f−1(·) of randomly selected mappings do not have

108 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

4.4 Random mappings

identical size, and X is not uniformly distributed on A1. Principally, one might try to adapt the
strategies for the uniform distribution but then the computations became too complicated; it
would no longer suffice to count the number of pre-images. Below, we show that the deviations
of X from the uniform distribution can be compensated by a moderate increase of the input
length from n to n∗.

601 [non-uniformly distributed pre-images] As above, we assume that a vector of intermediate random
numbers (generated by a PTG.2-compliant PTRNG) is a realization of a random variable X ′.
Let

n∗ = min{n′ ≥ n | Hmin(X ′) ≥ n} and ∆n := n∗ − n (4.163)

In the following we assume n > m and that (n,m) are sufficiently large such that the asymptotic
formula (4.156) applies. Furthermore, A∗

1 = {0, 1}n∗ , and as before A1 = {0, 1}n and A2 =
{0, 1}m.
In the following we compare the case where an n∗-bit random vector X ′ is mapped (by a randomly
selected mapping ∈ FA∗

1 ,A2) to m-bit output vectors with the case where uniformly distributed
n-bit random vector X is mapped (by a randomly selected mapping ∈ FA1,A2) to m-bit output
vectors. The second case has already been studied above.

602 [non-uniformly distributed pre-images, Example] Assume that the output of the PTG.2-compliant
PTRNG (intermediate random numbers) can be modeled by a sequence of binary-valued iid ran-
dom variables B1, B2, . . . with Prob(Bj = 1) = 0.5 + ϵ for some ϵ ≥ 0. Then Hmin(Bj) =
− log2(0.5 + ϵ), and n∗ =

⌈
n

− log2(0.5+ϵ)

⌉
.

Numerical example: (n, ϵ, n∗,∆n) = (256, 0.01, 264, 8), (256, 0.007, 262, 6), (320, 0.007, 327, 7).

603 [non-uniformly distributed pre-images, γ ≫ 1] Let γ∗ = 2n∗−m and a2 ∈ A2. We assume
that f ∈ FA∗

1 ,A2 is selected randomly. The pre-image size v := |f−1(a2)| can be interpreted as a
realization of a random variable Va2 ∼ B(2n∗

, 2−m) ≈ N(2n∗−m, 2n∗ ·2−m(1−2−m)) ≈ N(γ∗, γ∗)
(CLT). We may assume that the pre-image f−1(a2) = {a′

1, . . . , a
′
v} is a randomly selected subset

of A1 of size v. Hence we may assume that a′
j ∈ f−1({a2}) has been selected in A1 with

probability 2−n∗ . For j = 1, . . . , v we define the random variable Tj := Prob(X ′ = a′
j). Then

E(Tj) =
∑

a∈A1

2−n∗
Prob(X ′ = a) = 2−n∗

. (4.164)

and, similarly,
E
(
Tj

2) =
∑

a∈A1

2−n∗
Prob(X ′ = a)2 = 2−n∗

2−H2(X′) . (4.165)

Recall that H2(X ′) denotes the collision entropy of X ′. Since Va2 ∼ N(γ∗, γ∗) it is |v| =
γ∗ + O(

√
γ∗) ≪ 2n∗. This justifies the assumption that the random variables T1, T2, . . . , Tv are

iid.

604 [non-uniformly distributed pre-images, γ ≫ 1] We set Ta2 := Prob(X ′ ∈ f−1(a2)) (= Prob(X ′ ∈
f−1(a2))), or equivalently, Ta2 = T1 + · · · + Tv. Wald’s Theorem implies

E (Ta2) = E

Va2∑
j=1

Tj

 = E(Va2)E(Tj) = γ∗2−n∗
= 2−m . (4.166)

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

109

4 Mathematical Background

Similarly, although with greater efforts, (4.167) follows. Concerning the random variable Va2

we ‘switch’ between the normal distribution and the discreteness of possible pre-image sizes
(binomial distribution). From (4.165) we obtain

E
(
T 2

a2

)
= E


Va2∑

j=1
Tj

2
 =

2n∗∑
v=0

Prob(Va2 = v)E
(
T 2

a2
| Va2 = v

)
=

2n∗∑
v=0

Prob(Va2 = v)E
(

(T1 + · · · + Tv)2
)

=

2n∗∑
v=0

Prob(Va2 = v)
(
vE
(
T 2

1
)

+ (v2 − v) (E(T1))2
)

=

2n∗∑
v=0

Prob(Va2 = v)
(
v · 2−n∗

2−H2(X′) + (v2 − v)2−2n∗
)

=

E(Va2) · 2−n∗
2−H2(X′) +

(
E(V 2

a2
) − E(Va2)

)
2−2n∗

=
γ∗ · 2−n∗

2−H2(X′) + γ∗22−2n∗
= 2−m · 2−H2(X′) + 2−2m (4.167)

Finally, from (4.166) and (4.167) we obtain

Var (Ta2) = Var

Va2∑
j=1

Tj

 = 2−m · 2−H2(X′) + 2−2m − 2−2m = 2−m · 2−H2(X′) and(4.168)

σTa2
=

√√√√√Var

Va2∑
j=1

Tj

 =
√

2−m · 2−H2(X′) =

2−0.5m · 2−0.5·H2(X′) = 2−0.5(n+m) · 2−0.5(H2(X′)−n) (4.169)

Note: If X ′ = (B1, . . . , Bn∗) with iid B(1, 0.5 + ϵ)-distributed random variables B1, . . . , Bn∗ (cf.
par. 602) then H2(X ′) = −n∗ log2(0.5 + 2ϵ2) and Hmin(X ′) = −n∗ log2(0.5 + ϵ).

605[non-uniformly distributed pre-images, γ ≫ 1, comparison to the uniform case] If the PTG.2-
compliant PTRNG would generate iid unbiased intermediate random numbers the random vector
X ′ would be uniformly distributed so that n∗ = n, H2(X ′) = Hmin(X ′) = n, and (4.169)
simplifies to σTa2

= 2−0.5(n+m). As in par. 601 we assume that the random variable X is
uniformly distributed on {0, 1}n while X ′ assumes values in {0, 1}n∗ . Then E(f(X) = a2) =
2−m = E(f ′(X ′) = a2) if a2 ∈ A2 and the mappings f ∈ FA1,A2 and f ′ ∈ FA∗

1 ,A2 are randomly
selected. The factor 2−0.5(H2(X′)−n) quantifies the ratio of the average standard deviations of
the probabilities Prob(f(X) = a2) and Prob(f(X ′ = a2). By (4.163) we have H2(X ′) − n ≥
Hmin(X ′) − n ≥ n − n = 0, and thus 2−0.5(H2(X′)−n) ≤ 1. This is an indicator that for X ′ the
situation is even more favorable than for the ideal case at the cost of ∆n additional input bits.

606[non-uniformly distributed pre-images, γ ≫ 1] In the derivation of formula (4.169) we applied the
assumption that the random variables T1, T2, . . . , Tv are iid (cf. par. 604). Although it may not
be true in a strict sense two features justify this assumption. At first, |f−1({a2})|/|A1| ≈ 2−m.
In other words: for parameters n,m that are relevant for the functionality classes PTG.3 (and

110 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

4.5 Stochastic model, online test, total failure test, start-up test

NTG.1) the size of f−1({a2}) is very small compared to the number of elements in A1. Secondly,
by assumption the intermediate random numbers have been generated by a PTG.2-compliant
PTRNG, which means that their distribution is not very far from the uniform distribution. For
very extreme input distributions the independence assumption might be invalid.
Note: We allow to apply this formula for the functionality class NTG.1, too, because there ∆ is
usually very large.

4.5 Stochastic model, online test, total failure test, start-up test

607 TRNGs such as PTRNGs and NPTRNGs should provide information-theoretic security. The
degree of randomness can be quantified by the entropy of the generated random numbers.

608 The evaluation processes for PTRNGs and NPTRNGs are, however, very different.

609 The main reason is that PTRNGs use physical noise sources. A physical noise source exploits
physical phenomena (thermal noise, shot noise, jitter, metastability, radioactive decay, etc.)
from dedicated hardware designs (using diodes, ring oscillators etc.) or physical experiments to
produce digitized random data. Dedicated hardware designs can use general-purpose components
(like diodes, logic gates, etc.) if the designer is able to understand, describe and quantify the
characteristics of the design that are relevant for the generation of random numbers.

610 In contrast, NPTRNGs exploit non-physical noise sources. Non-physical noise sources typically
exploit system data (RAM data, system time, etc.) and / or user interaction (e.g., mouse
movement, key strokes) to produce digitized random data.

611 Different copies of physical noise sources (e.g., within a chip series) are identically designed, and
therefore their stochastic behaviour is not identical but essentially similar. In contrast, non-
physical noise sources are not under the control of the designer. For NPTRNGs running on
different platforms, the behavior might be very different.

612 Finally, the central task of PTRNG and NPTRNG evaluations is to provide a lower entropy
bound per internal random number bit. For PTRNGs the AIS 31 demands a so-called stochastic
model. In most Common Criteria evaluations the evaluated PTRNGs are based on electronic
circuits.

613 The stochastic model is the core of any PTRNG evaluation according to AIS 31. In Subsec-
tion 4.5.1 the concept is motivated and explained. In Subsection 4.5.2 the theoretical explana-
tions are illustrated by an elementary example.

614 Furthermore, Subsections 4.5.3, 4.5.4, and 4.5.5 treat online tests, total failure tests, and start-up
tests. The AIS 31 requires that the online test is tailored to the stochastic model. The start-up
tests should also consider the stochastic model while the total failure tests should be based on a
failure analysis of the physical noise source.

615 In the literature stochastic models of many real-world PTRNG designs have been studied. In Sec-

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

111

4 Mathematical Background

tion 5.4 several stochastic models of real-world physical noise sources and two generic stochastic
models are are discussed, and references are provided.

4.5.1 Stochastic model: motivation and definition

616Finally, the random numbers delivered by a PTRNG to the consuming cryptographic application
(external random numbers) shall be suitable. That is, they must meet the security requirements
or the assumptions of the consuming application which usually means being iid and uniformly
distributed (i.e., unbiased). In the terminology of AIS 31, internal random numbers are finalized
random numbers ready for output that are still inside the RNG security boundary. The external
random numbers are subsets (usually subsequences) of the generated internal random numbers
that are passed to the requesting application outside the security boundary of the RNG.

617The goal is thus to guarantee a lower entropy bound per bit of the internal random numbers.

618Unfortunately, there do not exist effective (reliable) estimators or blackbox tests for the entropy
of a given, arbitrary sequence of random numbers without further information, i.e., without
stochastic assumptions on its distribution.

619This is because entropy is a property of random variables but not of their realizations (here:
random numbers); see Sect. 4.3, for example. For this purpose (verification of a lower entropy
bound), the functionality classes PTG.2 and PTG.3 of AIS 31 require a stochastic model.

620We interpret the raw random numbers r1, r2, . . . and the internal random numbers y1, y2, . . . as
realizations of random variables R1, R2, . . . and Y1, Y2, . . ., respectively. Analogously, we interpret
observables and measurement values of the physical noise source (if relevant for the development,
justification and verification of the stochastic model) as realizations of random variables, too.
The random variables Rj and Yj are discrete. The random variables Rj assume values in {0, 1},
{0, 1}k, or Z, while the Yj are {0, 1}m-valued. Here, k and m denote suitable integers. The
random variables that quantify the stochastic behaviour of observables usually are real-valued.

621[use of language] If there is no risk of misunderstanding, we loosely speak of the entropy per raw
random number, per raw random number bit, per internal random number, etc. A more precise
but more clumsy formulation, of course, would be ’the entropy per corresponding random vari-
able’ or even better ’the average gain of entropy per corresponding random variable’ if dependent
random variables are concerned.
Note: This applies to Shannon entropy and min-entropy.

622A stochastic model provides a partial mathematical description (of the relevant properties) of a
physical noise source using random variables. The stochastic model shall allow the verification
of a lower entropy bound for the internal random numbers.

623If there is no algorithmic post-processing, the raw random numbers and the internal random
numbers coincide. Formally, the algorithmic post-processing equals the identity mapping.

624
112 A Proposal for Functionality Classes for Random Number Generators

Version 2.35 - DRAFT

4.5 Stochastic model, online test, total failure test, start-up test

Of course, a precise analysis of the impact of a (DRG.3-compliant) cryptographic post-processing
on the entropy per random bit is infeasible. Instead, the cryptographic post-processing may be
interpreted as a random mapping (with particular properties). Sect. 4.4 provides many results
on random mappings, which may be useful for this purpose.
Note: This scenario is relevant for the functionaliy class PTG.3. The input values to the cryp-
tographic post-processing algorithm are called intermediate random numbers.

625 Due to pars. 624 and 622 the first part of the evaluation (stochastic model) is identical for
evaluations with regard to both the functionality classes PTG.2 and PTG.3.

626 For ‘real-world’ PTRNGs, the distribution of the underlying random variables R1, R2, . . . and
Y1, Y2, . . . (cf. par. 620) is usually unknown. To some degree the distribution may vary over
time, e.g., due to aging effects, changing environmental conditions, etc.; cf. par. 653 to 656.

627 Formally, a stochastic model is a family of probability distributions that contains the true dis-
tribution of the raw random numbers or of suitably defined auxiliary random variables during
the lifetime of the PTRNG, even if the quality of the digitized data goes down. This family of
distributions may depend on one or several parameters (typically, one to three).

628 Ideally, the stochastic model would contain the true (but unknown) distribution of the internal
random numbers, or more precisely, of the corresponding random variables Y1, Y2,

629 However, in many cases the algorithmic post-processing (in combination with the distribution
of the raw random numbers) is too complicated for an explicit formulation of the stochastic
model for the internal random numbers and, moreover, for a sound and reliable verification and
thorough mathematical analysis of the stochastic model, which is even more important.

630 Hence, AIS 31 demands a stochastic model of the raw random numbers. On the basis of this
stochastic model a lower entropy bound for the internal random numbers shall be derived.

631 Of course, from an abstract point of view the algorithmic post-processing transforms a stochastic
model of the raw random numbers into a stochastic model of the internal random numbers. Under
favorable circumstances, e.g., if the algorithmic post-processing is not too complicated, it may
be possible to explicitly formulate and to analyze the ’transformed’ stochastic model.

632 This is trivially the case, of course, in the absence of an algorithmic post-processing algorithm.
Non-trivial positive examples are given in Subsections 5.1.1, 5.1.2 and 5.1.3 (XORing indepen-
dent raw random numbers, von Neumann transformation, thinning out of homogeneous Markov
chains). However, this is not always the case. Par. 778 in Section 5.1 provides an elementary
counterexample where raw random number bits are XORed to the feedback value of an LFSR.

633 However, it is not necessary to analyze the transformed stochastic model. As stated above it
suffices to derive a lower entropy bound for the internal random numbers on the basis of the
stochastic model. In the LFSR example from par. 778 (depending on the initial state of the
LFSR) the raw random numbers are mapped 1-1 to the internal random numbers. Hence, the
(average) entropy per bit is trivially the same for both the raw random numbers and the internal
random numbers. On the other hand, even for iid B(1, p)-distributed raw random numbers, it

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

113

4 Mathematical Background

is hardly feasible to provide an explicit description of the distribution of the internal random
numbers.

634In some PTRNG designs the stage where the raw random numbers occur first may not be uniquely
identifiable. In such cases different interpretations are permitted, but we strongly recommend
selecting an early stage because this usually simplifies the justification of the stochastic model,
see pars. 646, 647, 648, and 649.

635Alternatively to a stochastic model for the raw random numbers, in some scenarios it might be
favorable to consider a stochastic model for suitably defined ’auxiliary’ random variables. If this
stochastic model allows the derivation of a lower entropy bound for the internal random numbers,
this approach is permitted. An example is discussed in Subsect. 5.4.2.

636The stochastic models in pars. 630 and 635 are families of probability distributions that contain
the true distribution of the raw random numbers or of the auxiliary random variables, respec-
tively. ’Contain’ means that the true distribution equals one element of this family.

637Different instances of a PTRNG design (e.g. PTRNGs on chips of some series) can to some
degree behave differently. Even the distribution of a single PTRNG changes to some degree
during its lifetime. This may be caused by tolerances of components (of the physical noise
source), variations of the environmental conditions (temperature or voltage, for example), and
aging effects, for example.

638The stochastic model shall contain all distributions that can occur in any possible scenario for
any copy of the PTRNG using the design under consideration (usually running on essentially the
same hardware). Different parameters correspond to different distributions.

639Assume that S1 denotes a stochastic model for some PTRNG, and that S2 is a superset of S1,
i.e. that each distribution of S1 is also contained in S2. Then S2 is a stochastic model for this
PTRNG, too.

640Considering a ’large’ stochastic model (depending on many parameters) has both advantages and
disadvantages. The advantage is that the verification of the stochastic model may become easier,
and thus the proof that the true distribution(s) of the raw random numbers (of all copies, under all
conditions of use) are contained in the admissible set of distributions (Example: S2 ∼= Markovian
model vs. S1 ∼= iid model). When estimating the parameters those parameter components from
which the true distribution does not (significantly) depend on, should be rather small (partly
caused by statistical noise). For the verification of the entropy bound the larger stochastic
model usually should not cause serious additional problems apart from the fact that the entropy
estimation formula becomes more difficult, see par. 670. An obvious disadvantage of this approach
is that the online test must cover a wider range of admissible distributions. This possibly reduces
the effectivity of the online test. In pars. 670 to 672 an example is discussed.

641[Advantages of a stochastic model] It is a notable advantage of stochastic models that they
comprise (parametric) families of distributions. First of all, the justification / verification that a
whole class of distributions contains the true distribution is easier than showing that it matches
with a particular single distribution. Moreover, as already pointed out in par. 626, even the

114 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

4.5 Stochastic model, online test, total failure test, start-up test

distribution of a single PTRNG varies to some degree while the PTRNG is in operation. Finally,
the distributions contained in a stochastic model usually allow a unified analysis since they only
differ by their parameters.

642 Of course, the stochastic model shall also contain distributions that correspond to defective states
of the physical noise source that yield non-tolerable weaknesses of the internal random numbers
(too large entropy defects). When the PTRNG is in operation non-tolerable defective behavior
must be detected. Therefore, suitable online tests and total failure tests are required. Online
tests and total failure tests are explained in Subsections 4.5.3 and 4.5.4.

643 The last feature of stochastic models addressed in par. 641 supports the estimation of entropy.
In a first step the parameters of the true distribution are estimated on the basis of observed raw
random numbers (or auxiliary random numbers). This parameter estimate is substituted into an
entropy formula that fits to the distribution of the stochastic model. This yields an estimate for
the entropy per random number (or more precisely, per random variable). In Subsection 4.5.2
this procedure is illustrated by an elementary example (coin tossing). Par. 512 provides the
entropy formula for homogeneous Markov chains, for example.

644 The experiments and the entropy estimations shall be performed under different environmental
conditions. The evaluated prototypes shall meet the requirements of the functionality class
PTG.2 or PTG.3 under all admissible environmental conditions.

645 When the PTRNG is in operation the online test shall guarantee that non-tolerable weaknesses
of the random numbers lead to a noise alarm (see Subsect. 4.5.2).

646 [verification of the stochastic model] Finally, a stochastic model is a claim that random values
(usually, raw random numbers) produced by some physical experiment or an electronic circuit
follow a probability distribution that is contained in a specified family of distributions. As already
mentioned the correctness of the stochastic model has to be justified and verified.

647 [verification of the stochastic model] The stochastic model shall be supported by technical ar-
guments based on the design of the physical noise source. This requires at least a qualitative
understanding of the physical noise source.

648 [verification of the stochastic model] Empirical data gained from the physical noise source (analog
data like voltage or timing variations, raw random numbers etc.) shall be used to develop,
confirm, and adjust the claimed stochastic model or subclaims thereof. Different environmental
conditions (temperature, voltage, etc.) shall be considered. This may be done by statistical tests
that are tailored to the physical noise source and the stochastic model. (These statistical tests
are applied additionally to the evaluator blackbox test suites Trrn and Tirn that are described
in Subsects. 4.6.2 and 4.6.3.) This should also increase the understanding of the source of
randomness that is exploited by the RNG and support the confidence in the stochastic model.
For very simple and theoretically well-understood designs (e.g., for the coin tossing example or if
the PTRNG exploits certain physical experiments) the evaluator might waive or at least reduce
such investigations.

649 [verification of the stochastic model] An interesting question is to what extent the raw random

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

115

4 Mathematical Background

numbers depend on variations of the environmental conditions (e.g., temperature, voltage) and
of characteristics of the physical noise source. Such dependencies may be very different (and
difficult to quantify). A high resolution measurement of the power consumption, for example,
might reveal correlations to the raw random numbers. The analysis of the TOE should consider
the question of whether variations of some parameters can cause significant changes of relevant
statistical properties of the raw random numbers because such a behavior might be exploited by
an adversary.

650The developer has to specify the allowed ranges of the environmental conditions. The evaluation
shall verify that the entropy of the internal random numbers remains large enough as long as
the parameters stay in the permitted ranges.

651[stage of the stochastic model] Considering the stochastic model at an early stage of the random
bit generation usually has the advantage that random data can still clearly be distinguished
from ideal output in case of a significant entropy defect. Furthermore, the supporting technical
rationale usually allows the evaluator to confirm that technical arguments predict the general
shape of the distribution of random output.

652[stage of the stochastic model] In contrast, assume that a PTRNG is analyzed at a stage where the
random output is indistinguishable from ideally distributed output (e.g., after cryptographic post-
processing) almost irrespective of the amount of true entropy therein contained. For example,
because these are pseudorandom. This cannot lead to a successful evaluation.

653For non-stationary stochastic processes the sound and trustworthy verification of a stochastic
model and the estimation of the parameters is rather difficult and can be practically infeasible.
Therefore, this document requires stationarity, or more precisely, time-local stationarity (cf.
par. 654). Stationarity facilitates the tasks in an evaluation considerably, in particular since
many transformations maintain stationarity; cf. Sect. 4.1, par. 491, and Sect. 5.4, for real-world
examples. Stationarity means that the process behaves time-invariant throughout the entire time.
Hence, demanding stationarity in a strict mathematical sense would be too restrictive since the
parameters of the true distributions may vary to some degree over time (due to aging effects,
varying environmental conditions, etc). Nevertheless, the property that observing a physical noise
source at one point in time is representative for other points in time is an important prerequisite
for a meaningful PTRNG evaluation. Hence, the AIS 31 demands that the raw random numbers
(resp., auxiliary random numbers) belong to a ‘time-locally stationary’ stochastic process.

654’Time-local stationarity’ is a AIS 31-specific term. It means that the raw random numbers
(resp., the auxiliary random numbers), or more precisely, the corresponding random variables
may be viewed as stationarily distributed over ’short’ time-scales which are ’large’ compared to
the sample size of the online tests and the evaluator tests (e.g., to estimate parameters). Within
such periods the relevant distribution parameters shall change at most marginally.

655This approach takes advantage of the properties of (mathematical) stationarity but also takes into
consideration that, for real-world PTRNGs, stationarity in a strict mathematical sense may not
exist due to reasons which have already been discussed above. PTRNGs can generate hundreds
of kBits or even MBits of raw random numbers per second so that within a few seconds a very
large amount of random numbers are generated.

656

116 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

4.5 Stochastic model, online test, total failure test, start-up test

Aging effects of the analog components may slowly change the distribution of the parameters.
However, such effects are not relevant over short time scales. Transient effects on the parameters
during the start-up of the physical noise source may be ignored if the raw random numbers that
have been generated before the physical noise source has reached its equilibrium state, are not
’directly’ used for the generation of internal random numbers that are considered for external
output. These raw random numbers yet can be used to seed the internal state of the algorithmic
post-processing algorithm (if with memory) and the cryptographic post-processing algorithm.

657 As already mentioned in par. 644 the parameters of the underlying distribution and therefrom
the entropy of the raw random numbers (or, the auxiliary random numbers) shall be estimated
under different environmental conditions. Minor variations of the estimated parameters under
changing environmental conditions are expected and tolerable as long as the entropy remains
large enough. Even then, if the parameter estimates vary ’significantly’ this might be a starting
point for a fault attack on the physical noise source and thus should be considered in the overall
evaluation of the TOE (cf. Sect. 2.1).

658 In the analysis of PTRNGs we assume that the adversary knows the design details but does not
have knowledge of any ’internal state’ of the physical noise source. The adversary, for instance,
does not know the current analog state of a Zener diode.

4.5.2 Example: Stochastic model for coin tossing

659 In this subsection we illustrate the concept of a stochastic model by an elementary example. A
single coin is tossed repeatedly by a human operator. For simplicity we assume that this operator
neither has the opportunity to cheat (i.e., to precisely influence the outcome of the coin tossings),
e.g., due to a minimum throw height of each valid coin toss, nor that he is interested in cheating.

660 It should be noted that this experiment would not be viewed as a PTRNG in the sense of
the AIS 31 because of the significant impact of the human operator. However, it provides an
appropriate example to illustrate the concept of stochastic models.

661 We identify the outcomes ’head’ and ’tail’ with ’1’ and ’0’, respectively. We assume that the
outcomes (raw random numbers) x1, x2, . . . are realizations of binary-valued random variables
X1, X2,

662 Since a coin has no memory and since the physical structure of the coin remains identical (at
least during reasonable time periods), we may assume that the random variables X1, X2, . . . are
iid B(1, p)-distributed with unknown parameter p. In this example the stochastic model is given
by a one-parameter family of distributions.
Note: An alternative, more formal description of this stochastic model is given by {B(1, p)n |
p ∈ [0, 1]}. The n-fold product measure B(1, p)n describes the distribution of the random vector
(X1, . . . , Xn).)

663 This stochastic model does not only apply to a single coin but to any coin (even though for
different parameters).

664
A Proposal for Functionality Classes for Random Number Generators

Version 2.35 - DRAFT
117

4 Mathematical Background

For real-world PTRNGs the verification of the stochastic model is more difficult. In Sect. 5.4
several examples are discussed.

665Tossing the coin N times the mean value provides an estimate p̃ for the unknown parameter p

p̃ := 1
N

N∑
j=1

xj . (4.170)

The strong law of large numbers guarantees that the right-hand side converges ’almost surely’
to the parameter p as N tends to infinity.

666By formula (4.37) the estimation error in (4.170) is ≤ ϵ with probability 1 − 2Φ(−2ϵ
√
N).

Numerical example: For (ϵ,N) = (0.01, 10000) we have −2ϵ
√
N = −2.0, and 2Φ(−2.0) ≈ 0.046.

Increasing N to 100.000 reduces this probability to 10−9.

667Since the random variables X1, X2, . . . , XN are iid H(X1, X2, . . . , XN) = NH(X1). Substituting
p̃ from (4.170) into the one-dimensional entropy formula yields the entropy estimate for H(X1)

H̃(X1) := − (p̃ log2 (p̃) + (1 − p̃) log2 (1 − p̃)) . (4.171)

668Linear Taylor expansion gives an approximation of the estimation error

H̃(X1) −H(X1) ≈ ∆p (− log2(p) + log2(1 − p)) (4.172)

where ∆p := p̃− p.

669Analogously to par. 667
H̃min(X1) := − log2 (max{p̃, 1 − p̃}) . (4.173)

provides an estimator for the min-entropy.

670Now consider another stochastic model that assumes that the random variables X1, X2, . . . form
a homogeneous Markov chain with transition matrix P = (pij)0≤i,j≤1. This stochastic model
depends on two parameters p01 := Prob(Xn+1 = 1 | Xn = 0) and p10 := Prob(Xn+1 = 0 | Xn =
1) ∈ [0, 1]. The transition matrix reads

P =
(

1 − p01 p01
p10 1 − p10

)
. (4.174)

If p10 = 1 − p01 then both rows of P are identical, which means that the random variables
X1, X2, . . . are iid. In particular the Markovian stochastic model is a superset of the iid stochastic
model discussed above and thus is a valid stochastic model for the coin tossing experiment, too
(cf. par. 639). Here, the stochastic model depends on two parameters. The set {(p01, p10) | 0 ≤
p01, p10 ≤ 1} specifies the admissible parameters.
Note: The iid model is described by the subset {(p01, p10) | p10 = 1 − p01, 0 ≤ p01 ≤ 1}.

671[Continuation of par. 670] If 0 < p01 +p10 < 2, the Markov chain is ergodic, and the distributions
ν1, ν2, . . . converge to the limiting distribution ν = (p10

p01+p10
, p01

p01+p10
) (par. 487). The special

cases p01 = p10 = 0 and p01 = p10 = 1 correspond to noise sources which generate constant raw

118 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

4.5 Stochastic model, online test, total failure test, start-up test

random number bit sequences or alternating raw random number bit sequences . . . , 0, 1, 0, 1, . . .,
respectively. By (4.67) we obtain the conditional entropy

H (Xm+1 | Xm) = − p10

p01 + p10
(p01 log2(p01) + (1 − p01) log2(1 − p01)) −

p01

p01 + p10
((1 − p10) log2(1 − p10) + p10 log2(p10)) . (4.175)

The conditional entropy (4.175) quantifies the average increase of entropy per raw random num-
ber bit.
Note 1: The gain of entropy by the next raw random number bit depends on the current random
raw random number bit, thus on the first or on the second row of the transition matrix P .
Note 2: If min-entropy is claimed pars. 516 to 524 in Sect. 4.3 can be useful.

672 [Continuation of par. 671] For the Markovian stochastic model not only one parameter p (as in
the iid model) but two parameters p01, p10 have to be estimated and then substituted into the
entropy formula (4.175).

4.5.3 Online test

673 The task of the online test (of a PTRNG) is to detect sufficiently soon when the quality of the
random numbers becomes too low (compared to the requirements of the functionality classes
PTG.2 or PTG.3) while the PTRNG is in operation. An effective online test is mandatory for
the functionality classes PTG.2 and PTG.3.

674 The stochastic model shall contain all possible distributions of the raw random numbers (or,
alternatively, of auxiliary random variables; cf. Subsect. 5.4.2) that may occur during the lifetime
of the PTRNGs. As already pointed out in Subsect. 4.5.2, even for a given PTRNG during its
lifetime, some variation of the parameters is normal, and different PTRNGs of the same type
can differ to some extent. The online test shall detect if the true distribution has left the subset
of appropriate parameters Agood. All parameters in Agood provide enough entropy (cf. PTG.2.3,
resp. PTG.3.6). This may be done directly by guessing the parameters, or indirectly by statistical
tests that fail if the true parameters leave the set Agood.
Note: Depending on the entropy claim, entropy means Shannon entropy, min-entropy, or both.

675 Ideally, the online test would never fail if the true parameter(s) belong to Agood but always fail
whenever the parameter(s) lie outside of Agood, i.e., if they lie in its complement Abad. Fig. 6
illustrates the failure probabilities of an ideal test. Of course, this aim cannot be achieved because
the discriminatory power of statistical tests (with finite sample size) is not infinite. Fig. 7 shows
a more realistic picture.

676 In Fig. 7 the failure probability for the parameter set Abad is appropriate but also for certain
parameters inside Agood (implicitly defined by PTG.2.3 or PTG.3.6), namely for the ‘border
region’, the failure probability is rather large. This is not a security problem but affects the
availability of the PTRNG.

677 For PTRNG evaluations only the behavior of the online test on the set Abad is relevant. In

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

119

4 Mathematical Background

0
parameter(s)

Pr(online test fails)

1

Agood

Figure 6: ideal online test: never fails if
the true parameter(s) is in Agood but always
fails otherwise

0
parameter(s)

Pr(online test fails)

1

Agood

Figure 7: more realistic online test: sig-
nificant failure probability near the border
between Agood and Abad, and large failure
probability outside Agood

particular, the applicant has to give evidence that the Requirement PTG.2.5, resp. PTG.3.8, is
fulfilled.

678From a security point of view, the behavior of the online test on the set Agood is irrelevant.
However, availability is an important feature of IT products. In pars. 679 to pars. 683 we
formulate some thoughts about how to combine security (effectiveness of the online test) with
availability (not too many ’false’ failures of the online test). In Section 5.5.1 concrete examples
are discussed.

679Usually, the entropy of the raw random numbers is larger than required to fulfil the entropy
requirements specified by the functionality classes PTG.2 and PTG.3. Assume for the moment
that during operation, the true parameters of all (properly working) copies of the PTRNG design
under evaluation are contained in a subset Areal ⊆ Agood, which contains ‘very good’ parameters
that parametrize ’very good’ distributions. From a security point of view, failures of the online
test on the difference set Agood \Areal are neither necessary nor harmful, and the availability is
not affected because these parameters should never occur for properly working PTRNGs.

680If the designer assumes that for all (properly working) PTRNGs under consideration, the true
parameters indeed always stay in such a subset Areal ⊆ Agood, he can utilize this property to
design an effective online test. The applicant does not need to provide evidence that the true
parameters of the PTRNG copies are indeed always contained in the set Areal. Too optimistic
assumptions, however, may limit the availability of the PTRNG, but this is primarily an issue
for the applicant to consider.

681Of course, the smaller Areal is (i.e., the larger the difference set Agood \Areal), the easier it is to
design a suitable (efficient) online test, which on the one hand detects sufficiently soon when the
true parameter(s) leave Agood and on the other side hardly limits the availability of appropriate
PTRNGs. Fig. 8 shows an example where the online test rarely fails if the true parameters are
in Areal, while the failure probability is large for Abad. Fig. 9 illustrates the relation between
these subsets for a stochastic model that depends on two parameters (e.g., a Markovian model).
Note: Agood includes the green and the yellow area.

682Of course, assuming a smaller subset Areal increases the technical requirements on the PTRNG
design, including aging effects, tolerances of components, and the dependence on environmental

120 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

4.5 Stochastic model, online test, total failure test, start-up test

0
parameter(s)

Pr(online test fails)

1

Agood

Areal

Figure 8: appropriate online test: low fail-
ure probability on Areal and large failure
probability on Abad

Abad

Agood

Areal

set of admissible parameters

Figure 9: Relation between Areal, Agood,
and Abad

conditions.
Note: As already mentioned in Chapter 3, the lower entropy bound defined in PTG.2.3 and
PTG.3.6 could have been set larger. One reason for omitting this option is to enable effective
and efficient online tests.

683 There is a 1-1 correspondence between the admissible parameters of the stochastic model and
the possible distributions of the raw random numbers (or, alternatively, to distributions of the
auxiliary random variables). This allows the identification of parameters with distributions. We
may view Areal as the (composite) null hypothesis of the online test, and the inappropriate
parameters Abad as the alternative hypothesis.

684 [terminology] The online test, or more precisely, the online test scheme (synonymously, the online
test procedure), consists of one or several statistical tests (applied simultaneously or consecutively
when the PTRNG is in operation), evaluation rules, a calling scheme (cf. par. 697), and a
specification what happens if the online test fails (’consequences of a noise alarm’; cf. par. 700).

685 [terminology] If it is unambiguous we alternatively use the term ’online test’ for the applied
statistical test(s) but also in place of ’online test scheme’ or ’online test procedure’.

686 The developer shall provide evidence that the online test (i.e., the online test scheme) is appro-
priate, i.e., that it fulfills Requirement PTG.2.5 or PTG.3.8, respectively.

687 Which random numbers should be tested by the online test? This is a natural question. The
general advice is to apply the online test to the raw random numbers even if the stochastic model
considers ’auxiliary’ random variables.

688 If the PTRNG applies an algorithmic post-processing algorithm, the AIS 31 principally allows
online tests on the internal random numbers. However, usually the design of the online test and
the verification of its effectiveness, if possible at all, are at least significantly more difficult if the
online test is applied to the internal random numbers. Exceptions are possible if the transformed

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

121

4 Mathematical Background

stochastic model can be described explicitly (cf. pars. 631 and 632) or if the post-processing can
be reversed (cf. par. 690). However, in the first scenario it should be more favorable to test
the raw random numbers, cf. par. 695. It is easy to see that, at least if the post-processing
algorithm is stateless, for each online test on the internal random numbers, an online test on the
raw random numbers exists, which is at least as effective.
Note: From a logical point of view the online test on the internal random numbers can then be
interpreted as an online test on the raw random numbers.

689Online tests on the output of a cryptographic post-processing algorithm (as substitute for an
online test on the raw random numbers) are meaningless and therefore not permitted.

690Example: Consider the PTRNG design described in par. 778 where the raw random number
bits are XORed to the feedback value of an LFSR. Even if the physical noise source would
fail completely and generate constant sequences of 0s or 1s (total failure; cf. Subsect. 4.5.4), the
statistical properties of the internal random numbers should pass common statistical tests (apart
from linear complexity tests, of course) unless the LFSR is too short. Effective online tests on
the internal random numbers have to reverse the effect of the LFSR, which means that finally
the raw random numbers would be tested anyway.

691The example in par. 690 underlines the general advice from par. 687 that the raw random
numbers should be tested.

692The online test shall be tailored to the stochastic model.

693Example: A monobit test counts the number of 0’s and 1’s. A monobit test is appropriate for
the stochastic model from par. 662 (coin tossing, iid model). The monobit test shall detect
when the parameter p moves or lies outside the permitted area. Of course, a monobit test is not
appropriate for the Markovian stochastic model that was discussed in pars. 670 to 672. Assume,
for example, that p01 = p10 = 0.1. By (4.175) the conditional entropy H(Xm+1 | Xm) = 0.468 is
by far too low. On the other hand, by par. 671, the limiting distribution is ν = (0.5, 0.5). Hence,
a monobit test would not detect even this dramatic entropy defect. In a Markovian stochastic
model an appropriate online test must consider the transition probabilities.
Note: The other direction, selecting an online test which tests properties beyond the given
stochastic model, is permitted. For an iid model a poker test can be a suitable choice. Apart
from the bias it would detect any (small) dependencies that are not covered by the stochastic
model. Large dependencies should not occur, since otherwise the stochastic model would be
inappropriate.

694Generally, the more comprehensive a stochastic model, i.e., the more parameters it includes, the
easier it should be to verify. On the negative side, the specification of an effective and efficient
online test may become more difficult.

695Assume that a physical noise source generates iid B(1, p)-distributed raw random number bits
for which |p− 0.5| is too large so that the entropy per bit is insufficient. To increase the entropy
per random bit, non-overlapping pairs of raw random number bits are XORed (algorithmic post-
processing). In this scenario it would also be easy to formulate a stochastic model for the internal
random numbers (cf. par. 632 and Subsect. 5.1.1), because the transformed stochastic model is
again iid. But, even in this scenario it is more favorable to test the raw random numbers in place

122 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

4.5 Stochastic model, online test, total failure test, start-up test

of the internal random numbers: First, XORing non-overlapping pairs of raw random numbers
reduces the sample size of the online test to 50%, and the algorithmic post-processing reduces
the ’distance’ between Areal and Abad, thereby reducing the discriminatory power of the online
test.
Note: An example is discussed in Subsect. 5.5.2.

696 The sample size of an online test is usually much smaller than the sample size of a typical eval-
uator test that is applied to some prototypes of the PTRNG. Consequently, the discriminatory
power of a single online test is much smaller. In Subsection 5.5.2 an online test (i.e., an online
test scheme) is discussed. In particular, a ’history variable’ compensates for this effect to some
degree as it captures long-term effects that result from deviations of the expectation of the test
value.

697 [calling schemes] Apart from the choice of an appropriate online test, the calling scheme is
important for the effectiveness of the online test scheme. The online test might, for example,
be applied to all raw random numbers, to the raw random numbers that are used to generate
the output data of the current request, or to the raw random numbers that precede those raw
random numbers that are used to generate the current request. The developer has to justify that
his choice is appropriate in the given scenario.

698 [calling schemes] A bad (i.e., not acceptable) solution would be to apply an online test to a
sample of random numbers and output (non-tested) random numbers that were generated much
later because after the online test, the behavior of the physical noise source might have changed
considerably.

699 [calling schemes] The situation would change if the raw random number are tested with a suitable
online test, and if the internal random number are securely stored. (Of course, the respective
memory had to be protected against manipulation and readout all the time. This is not an
aspect of the AIS 31 itself but of the overall evaluation; cf. Sect. 2.1.)

700 [noise alarm and false positives] Due to the nature of statistical tests, an online test fails with
positive probability even if the entropy per bit is sufficiently large; of course, failures would also
occur for ideal RNGs. If the online test fails, this causes a noise alarm. Because erroneous (or
accidental) noise alarms may occur, it is not obvious what should happen after a noise alarm.

701 [consequences of a noise alarm] Depending on the concrete application, different reactions to a
noise alarm (triggered by the online test) are appropriate. For example:

a) The most rigorous measure clearly is to stop the output of random numbers forever.

b) The device could be subjected to an ‘emergency test’ (without outputting internal random
numbers). The emergency test will be used to determine whether the noise alarm was
accidental or justified. In the first case the RNG again outputs random numbers, while in
the second case, further output of random numbers is permanently prohibited.

c) A human operator checks the quality of the RNG (typically by appropriate statistical tests)
before further output is allowed.

d) Noise alarms may be logged.

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

123

4 Mathematical Background

e) etc.

Whether certain options are possible (and reasonable) depends on the concrete application sce-
nario.

702[consequences of a noise alarm] The developer has to justify the suitability of the specified
consequences of a noise alarm. This belongs to the evaluation of the online test.

703[consequences of a noise alarm] It is not a valid option, of course, to just perform online tests
until one online test is (accidentally) passed and then to continue as before.

4.5.4 Total failure test

704The total failure test shall detect failures of the physical noise source that imply that the entropy
per raw random number bit has decreased to (essentially) 0. A failed total failure test causes a
total failure alarm.

705The total failure test shall detect naturally occurring (usually permanent) total failures of the
physical noise source (i.e., possible ways for the device to fail). The aim of the total failure
test is not to detect targeted attacks, in particular fault injection attacks that cause a (usually
transient) failure mode. Detection of such attacks would be ‘bycatch’ but in general additional
countermeasures are required. If targeted attacks are relevant for the TOE in the intended usage,
then potential attacks and the implemented countermeasures shall be analyzed within the overall
evaluation of the TOE, cf. Sect. 2.1.

706After a total failure the entropy per raw random number bit is essentially 0. Hence, a total failure
must be detected very soon, cf. pars. 712 ff. In particular, no weak internal random numbers
shall be output.

707The developer shall give evidence that the implemented total failure test is appropriate.

708A thorough failure analysis of the physical noise source is indispensable. This analysis shall
clarify which failures are technically plausible, and their impact on the raw random numbers
should be described.

709Technically, the total failure test can be realized by sensors or by statistical tests. The AIS 31
does not specify any other requirements besides its effectivity.

710In the simplest scenario a total failure of the physical noise source implies constant sequences of
raw random numbers (0’s or 1’s), e.g., due to a stuck flip flop. Of course, this behavior could
be detected by the online test or by a statistical test that fails if the last (for example) 40 raw
random number bits were constant. The choice of the threshold (e.g., 40) should consider the
throughput of the RNG within its lifetime to prevent erroneous total failure alarms. A little
bit more general is the repetition count test defined in [SP800-90B], Subsection 4.4.1, which can
handle bit strings in place of bits.

124 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

4.5 Stochastic model, online test, total failure test, start-up test

711 Depending on the physical noise source and its digitization mechanism, it is possible that a total
failure may lead to more complicated error patterns, e.g., alternating sequences . . . , 0, 1, 0, 1, . . .
or even sequences containing some remaining noise. For example, if a Zener diode fails, the
analog-to-digital converter may yet receive some noise from an amplification circuit. Despite
some remaining entropy, a failure of the Zener diode still constitutes a total failure of the noise
source.

712 After a total failure no ‘weak’ internal random numbers (containing only little entropy) shall be
output. In particular, if the PTRNG design belongs to one of the following three design types

(i) no post-processing

(ii) simple algorithmic post-processing (with memory or without)

(iii) stateless post-processing based on cryptographic constructions

this means that no internal random numbers shall be output that have been generated after a
total failure.

713 An immediate detection of a total failure can at best be attained by sensors or similar technical
measures but not by statistical tests. However, FIFO buffers (par. 714) and cryptographic post-
processing (par. 717) allow a delayed detection, thereby relaxing the requirements on the total
failure test.

714 Assume that (i) the internal random numbers are stored in a FIFO buffer before they are output,
and that (ii), by design, always at least t internal random number bits are stored in the FIFO
buffer. In this case it suffices if further output of internal random numbers is prevented (at the
latest) after t internal random number bits have been output after the total failure has occurred.
Compared to par. 712 this relaxes the requirement that the total failure has to be detected
immediately.

715 When a post-processing algorithm is applied the permitted delayed detection time in par. 714
can be translated into a requirement on the raw random numbers. If the PTRNG applies no
post-processing or injective post-processing (i.e., one-to-one post-processing as the LFSR design
in par. 778), par. 714 implies that further output of internal random numbers has to be prevented
at the latest after t raw random number bits (permitted by the FIFO) have been generated after
the total failure has occurred. To be precise, if the post-processing algorithm generates k-bit
internal random numbers, the threshold of t raw random number bits decreases to t − k + 1
because, in the worst case, the total failure occurs when the last raw random number bit for an
internal random number is generated. Similarly, if the PTRNG XORs non-overlapping pairs of
raw random number bits, the permitted delayed detection time increases from t to 2t − 1 raw
random number bits.

716 It is a natural aim to keep t as small as possible. A dedicated statistical total failure test (e.g.,
checking whether the last t raw random number bits have been identical) should be considered
instead of using the online test (applied with an specific rejection area that is adjusted to the

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

125

4 Mathematical Background

total failure case) because the sample size of the online tests is usually much larger than the
sample size of a dedicated total failure test. The size of t is not a security feature and thus not
prescribed by the AIS 31.

717[PTG.2.6, PTG.3.9] Assume that the PTRNG applies a cryptographic post-processing algorithm
that, viewed as a DRNG, belongs to the functionality class DRG.2 or DRG.3. Furthermore,
the effective internal space comprises v bits, while k denotes the bit length of the internal
random numbers. (This scenario applies to PTG.3-compliant PTRNGs.) After a total failure
has occurred, at most ⌊v/k⌋ further internal random numbers may be output that have been
generated after the total failure has occurred. The justification of this relaxation is that the
internal state should have accumulated v bits of entropy since the start of the PTRNG.

718Permitted delayed detection times, resulting from cryptographic post-processing and from FIFO
buffers, can be combined.

4.5.5 Start-up test

719When the PTRNG has been started, a so-called start-up test (a.k.a. self test) is performed. The
start-up test shall detect a total failure and severe statistical weaknesses.

720For these reasons the start-up test shall be tailored to the PTRNG. A reasonable choice would
be to apply the online test (possibly with different evaluation rules).

4.6 Evaluator Blackbox Test Suites

721In Subsect. 4.6.1 several statistical tests are described, and Subsects. 4.6.2 and Subsects. 4.6.3
provide two black box test suites Trrn and Tirn that the evaluator has to apply within PTG.2-
evaluations. Depending on the circumstances, the blackbox test suite Trrn may need to be
applied within PTG.3-evaluations, too.

722Within the evaluation process, the evaluator should apply further statistical tests and parameter
estimators that are tailored to the stochastic model. The aim of these design-specific statistical
tests and estimators is the verification of the stochastic model and the estimation of the param-
eter(s) of the PTRNGs under evaluation. These design-specific tests and estimators are not a
subject of this section.

723Note: Blackbox tests cannot verify stochastic models but, in the worst case, can falsify them.

724Before we specify concrete statistical tests and two blackbox test suites (Subsects. 4.6.1, 4.6.2
and 4.6.3), we recall various well-known facts from statistics that should ease the understanding
of this section. Readers who are familiar with these concepts may skip the next paragraphs and
proceed with Subsection 4.6.1.

725
126 A Proposal for Functionality Classes for Random Number Generators

Version 2.35 - DRAFT

4.6 Evaluator Blackbox Test Suites

In conclusive statistics the observed data (in our context: raw random numbers or internal
random numbers) are interpreted as realizations of random variables with unknown distributions.
More precisely, it is assumed that the (unknown) true distribution is contained in a set of
admissible hypotheses Θ (a collection of admissible probability distributions), which splits into
the null hypothesis H0 and its complement in Θ, the alternative hypothesis HA.

726 A test value c is interpreted as a realization of a random variable C. The distribution of C
depends on the statistical test and, of course, on the distribution of the tested random numbers,
or more precisely: on the distribution of the underlying random variables.

727 Note: If online tests and evaluator tests are concerned that are tailored to the concrete physical
noise source single null hypotheses H0 are not appropriate because real-world RNGs are not ideal.
For this reason the classes PTG.2 and PTG.3 tolerate to some degree statistical deficiencies of
the raw random numbers, and the class PTG.2 also for the internal random numbers. In the
presence of a stochastic model H0 and HA can be identified with subsets of the set of admissible
parameters. These aspects have been discussed in Subsect. 4.5.3 in the context of online tests.

728 If the statistical test fails, the null hypothesis is rejected. On the other hand even if the test value
is not very unlikely, this does not confirm the null hypothesis. Statistical tests cannot confirm
the null hypothesis. But the absence of evidence is not absence of knowledge. The statistician
decides under consideration of the number of performed tests whether he continues or stops
further testing. The criteria that cause the end of testing depend on the aimed assurance that
no deviation of the RNG from the null hypothesis H0 has been found.

729 The evaluator decides on the basis of test value(s) whether the true distribution is not contained
in the null hypothesis. Roughly speaking, the null hypothesis is rejected if the test data indicate
that the null hypothesis is sufficiently unlikely. One may select between two approaches to define
the probability of error type 1, yielding false positive.

730 Predefined level significance: The significance level α is selected before the experiments are
conducted. If the test value c is contained in the critical set Kα the statistician (evaluator)
rejects the null hypothesis. By definition, the significance level α of a test (with given null
hypothesis H0) is defined by

α = supC∈H0 Prob (C ∈ Kα) . (4.176)

In other words: The significance level α equals the largest probability (if a maximum exists)
among all hypotheses in H0 that the null hypothesis is rejected (although it is true).

731 The test suite below follows this approach. The significance level α should be selected with
regard to the test scenario.
Note: For many statistical (non-cryptographic) applications α = 0.05 and α = 0.01 are typical
significance levels.

732 The evaluator may commit two types of errors. Error type 1 gives a false positive while error
type 2 yields a false negative. Table 5 illustrates the situation.

733 p-value approach: The p-value quantifies the probability that the test value is at least as extreme
as the value that has just been observed (tail probability) if the null hypothesis is true. This

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

127

4 Mathematical Background

Table 5: Statistical tests: error types

Reality

Null hypothesis Null hypothesis is true Null hypothesis is false

Test rejects the
null hypothesis H0

Error Type 1 (false positive)
(with probability α)

Prob (C ∈ Kα | H0) ≤ α

correct decision
(with “power” = probability 1 − β)

Prob (C ∈ Kα | HA) ≥ 1 − β

Test does not
reject the null
hypothesis H0

correct decision
(with probability 1 − α)

Prob (C /∈ Kα | H0) ≥ 1 − α

Error Type 2 (false negative)
(with probability β)

Prob (C /∈ Kα | HA) ≤ β

approach is applicable to statistical test that assume real numbers.

734If the p-value is smaller than a pre-defined bound, the statistician rejects the null hypothesis or
he continues testing.

735As already mentioned statistical blackbox tests can only play a supplementary role for the eval-
uation of PTRNGs. For PTRNGs, the core of the evaluation is the stochastic model. Blackbox
tests can be seen as a sanity check. If the test suite fails this presumably points to errors in the
evaluation process.

736It is an important feature of the blackbox test suites Trrn and Tirn (including the specified
evaluation rules) that appropriate PTRNGs, i.e., PTRNGs that satisfy the requirements of class
PTG.2 and PTG.3, should not accidentally fail the test suites. It is important that the test
results (‘pass’ or ‘fail’) can be reproduced in different trials with large probability.

4.6.1 Specification of Statistical Tests

737In this subsection five statistical tests are specified. This comprises the name of the test, the
input data (a sequence of bits), the test value, and remarks concerning the distribution of the test
value. Apart from Coron’s entropy test these statistical tests are part of the blackbox testsuites
Trrn and Tirn.

738In this section test values are denoted by cj where j labels the statistical test. All statistical
tests apply to binary sequences.

739[general assumption] As usual, we interpret the test values as realizations of random variables,
denoted by the capital letter Cj . The distribution of Cj depends on the distribution of the
input random variables B1, . . . , Bm that quantify the stochastic properties of the input sequence
b1, . . . , bm. That is, we assume that b1, . . . , bm are realizations of the random variables B1, . . . , Bm

740Test T1: monobit test

128 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

4.6 Evaluator Blackbox Test Suites

input data: b1, . . . , bm ∈ {0, 1}
assumption: B1, . . . , Bm are iid binary-valued random variables.

test value: c1 =
m∑

j=1
bj . (4.177)

741 [monobit test] distribution of the test value: Under mild assumptions on the input random vari-
ables B1, B2, . . . the Central Limit Theorem (CLT) applies to the distribution of the test variable
C1; cf. Subsect. 4.2.2. More precisely, if Bj ∼ B(1, p)-distributed then

C1 −mp
√
m
√
p(1 − p)

is approximately N(0, 1)-distributed. (4.178)

unless the sample size m is too small. For the special case p = 0.5 (4.177) implies

C1 − 0.5m
0.5

√
m

is approximately N(0, 1)-distributed. (4.179)

742 Test T2: distance test
input data: b1, . . . , bm, b

′
1, . . . , b

′
m ∈ {0, 1}

assumption: The random variables B1, . . . , Bm, B
′
1, . . . , B

′
m are independent. Furthermore, Bj ∼

B(1, p) and B′
j ∼ B(1, p′).

test value: c2 = 1
m

m∑
j=1

bj − 1
m

m∑
j=1

b′
j . (4.180)

743 [distance test] distribution of the test value: The CLT implies that

C2 is approximately N
(
p− p′, p(1−p)+p′(1−p′)

m

)
-distributed. (4.181)

In particular, the standard deviation of the test variable C2 fulfils inequality (4.182)

σ(C2) :=
√

Var(C2) =
√
p(1 − p) + p′(1 − p′)

m
≤ 1√

2m
(4.182)

The upper bound 1√
2m

is attained for p = p′ = 0.5. By the CLT,

Prob
(
C2 /∈ [p− p′ − tσ(C2), p− p′ + tσ(C2)]

)
≤ 2Φ(−t) for each t > 0. (4.183)

744 [distance test] distribution of the test value, ctd.: Assume the |p− p′| ≤ d for some d > 0, while
p and p′ are unknown. By (4.182) and (4.183)

Prob
(
C2 /∈

[
−d− t√

2m
, d+ t√

2m

])
≤ 2Φ(−t) for each t > 0 (4.184)

As usually, Φ(·) denotes the cumulative distribution function of the standard normal distribution.

745 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

129

4 Mathematical Background

Test T3: poker test
input data: b1, . . . , bm ∈ {0, 1}; m is a multiple of 4
assumption: The random variables B1, . . . , Bm are iid uniformly distributed on {0, 1}.

test value: c3 =
15∑

i=0

(
f [i] − m

64
)2

m
64

with (4.185)

wj = 8b4j−3 + 4b4j−2 + 2b4j−1 + b4j and (4.186)

f [i] =
∣∣∣{j | wj = i, 1 ≤ j ≤ m

4

}∣∣∣ (frequency counter) (4.187)

746[poker test] distribution of the test value: If the input random variables B1, B2, . . . are iid uni-
formly distributed on {0, 1} the test variable

C3 is asymptotically χ2-distributed with 15 degrees of freedom. (4.188)

747Test T4: autocorrelation test on binary sequences
input data: b1, . . . , bm+τ ∈ {0, 1}; shift parameter 1 ≤ τ < m
assumption: The random variables B1, . . . , Bm+τ , are iid uniformly distributed on {0, 1}.

test value: c4 =
2
(∑m

j=1 (bj ⊕ bj+τ) − m
2

)
√
m

(4.189)

748[autocorrelation test on binary sequences] distribution of the test value: If m ≥ 10 then

C4 is approximately N(0, 1)-distributed. (4.190)

749Test T5: Coron’s entropy test [Coro99]
input data: b1, . . . , bm ∈ {0, 1} with m = (Q+K)L, test parameters: Q, K, L;
assumption: B1, . . . , Bm are iid binary-valued random variables (cf. par. 751).
From b1, . . . , bm a sequence of (Q+K) non-overlapping L-bit words w1, w2, . . . , wm/L is formed.
The Q first L-bit words are used to initialize a table.

test value: c5 = 1
K

Q+K∑
n=Q+1

g (An) with g (i) = 1
log (2)

i−1∑
k=1

1
k

and (4.191)

An =
{
n if no i < n exist with wn = wn−i

min {i | i ≥ 1, wn = wn−i} in all other cases
(4.192)

That is, An is the distance of wn to the nearest predecessor wi such that wn = wi.

750[Coron’s entropy test] [Coro99] distribution of the test value: If the input random variablesB1, B2, . . .
are iid

E (C5) = H (W1) = LH (B1) . (4.193)

130 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

4.6 Evaluator Blackbox Test Suites

Note: If the binary-valued random variables Bj are not iid, then test variable C5 in general
does not return a reliable estimate of the entropy per L-bit block. Coron’s entropy test cannot
compute the entropy of arbitrary input.
Example: Sequences generated by a DRNGs should have large test values whereas the entropy
per L-bit block is essentially 0.

751 [Coro99], Subsect. 7.2, considers the more general situation where the random variablesB1, B2, . . .
form a binary-valued, stationary, ergodic stochastic process with finite memory. [Coro99], Ta-
ble 3 provides exemplary figures for a special type of (one-step) Markov chain. There (especially
for L = 8) the expectation E(C5) is close to the entropy of an L-bit block. At the end of [Coro99],
Subsect. 7.2 it is pointed out that extensive experiments with multi-step Markov chains led to
similar results if the distribution of the Bj were ‘close’ to iid uniformly distributed random
variables.

752 distribution of the test value, ctd.: The above considerations suggest to use the test value c5 to
estimate the entropy per L-bit block or to design a statistical test. Therefore, one requires the
distribution of C5. [Coro99] analyzes the distribution of the test variable C5 for the special
case that the random variables B1, B2, . . . are iid uniformly distributed on {0, 1}. Then C5 is
(approximately) normally distributed. To be precise, C5 may be viewed N(L, σ2

C)-distributed
where

σ2
C = c2

C (L,K) Var (g (An))
K

with c2
C (L,K) = d (L) + e (L) · 2L

K
. (4.194)

The term cC (L,K) may be viewed as a ‘correction factor’ for the variance, resp. for the standard
deviation. This is necessary because the Ai’s are strongly dependent. Table 6 collects triplets
(Var (g (An)) , d (L) , e (L)) for common block sizes L. Table 7 provides exemplary values for
σC =

√
Var(C5).

753 For n ≥ 23, the following sum approximates g (n) with an error < 10−8:
n∑

j=1
j−1 = logn+ γ + 1

2n + 1
12n2 +O

(
1
n4

)
, γ ≈ 0.577216 (Euler constant) (4.195)

754 Coron’s entropy test Test T5 is an improvement of Maurer’s entropy test [Maur92; CoNa98]
because for iid random variables (4.193) provides equality instead of an asymptotic relation in
the block size L.

755 Note: Compared to [AIS2031An_11], Coron’s entropy test has been removed from the list of the
mandatory evaluator blackbox tests. The reason is that this document allows greater freedom
for the design of a PTRNG. In particular, there is no lower entropy bound for the raw random
numbers defined but only for the internal random numbers (cf. requirements PTG.2.2 and
PTG.3.2). Entropy deficiencies of the raw random numbers can be compensated by a suitable
post-processing algorithm. To be used as a blackbox test this would require a design-individual
entropy claim for the raw random numbers. For integer-valued raw random numbers r1, r2, . . .
Coron’s entropy test has to be applied to binary-valued χ(r1), χ(r2), . . . where χ : Z → {0, 1}
denotes a suitable mapping.

756
A Proposal for Functionality Classes for Random Number Generators

Version 2.35 - DRAFT
131

4 Mathematical Background

Table 6: Coron’s entropy test; assumption: B1, B2, . . . are iid uniformly distributed on {0, 1}; cf.
[Coro99], Table 1

L Var (g (An)) d (L) e (L)

3 2.5769918 0.3313257 0.4381809

4 2.9191004 0.3516506 0.4050170

5 3.1291382 0.3660832 0.3856668

6 3.2547450 0.3758725 0.3743782

7 3.3282150 0.3822459 0.3678269

8 3.3704039 0.3862500 0.3640569

9 3.3942629 0.3886906 0.3619091

10 3.4075860 0.3901408 0.3606982

11 3.4149476 0.3909846 0.3600222

12 3.4189794 0.3914671 0.3596484

13 3.4211711 0.3917390 0.3594433

14 3.4223549 0.3918905 0.3593316

15 3.4229908 0.3919740 0.3592712

16 3.4233308 0.3920198 0.3592384

infinite 3.4237147 0.3920729 0.3592016

Table 7: Coron’s entropy test: exemplary values for σC =
√

Var(C5); L = 8, B1, B2, . . . are iid
uniformly distributed on {0, 1}

K 256.000 500.000 1.000.000 1.5000.000√
Var(C5) = σC 0.002256 0.001614 0.001141 0.000932

132 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

4.6 Evaluator Blackbox Test Suites

Note: For many PTRNG designs Coron’s entropy test can be a reasonable option during eval-
uation. Of course, Coron’s entropy test cannot verify a stochastic model but possibly falsify it;
cf. par. 751. If the raw random numbers are integer-valued the choice of χ : Z → {0, 1} is often
natural (but not always!), depending on the post-processing algorithm. For this reason Coron’s
entropy test has been treated in this subsection.
Example: (i) The raw random numbers rj(mod 2) are XORed to the feedback value of an LFSR,
then χ(r) := r(mod2) is a natural choice.
(ii) More generally, if the raw random numbers χ′(rj) are input to a post-processing algorithm
for some function χ′ : Z → {0, 1}, then Coron’s entropy test should be applied to the binary
values χ′(r1), χ′(r2),
(iii) If the bit representations of integer-valued raw random numbers r1, r2, . . ., e.g., form the
input string of a hash function, an appropriate choice of χ is not obvious.

4.6.2 The test suite Trrn

757 The test suite Trrn applies to the raw random numbers. The raw random numbers can be bits,
bit vectors, or integers.

758 By PTG.2.7, the blackbox test suite Trrn is mandatory for the functionality class PTG.2. It fo-
cuses on requirement PTG.2.2 (and on PTG.3.2). The test suite Trrn is mandatory for the func-
tionality class PTG.3 (PTG.3.10), too, unless the PTRNG design includes a PTG.2-compliant
‘core’ (verified in previous certification process, typical design) that generates the intermediate
random numbers. In this case the test suite Trrn is waived.

759 The test suite Trrn applies the tests T2 and T4 from Subsect. 4.6.1. The parameters of these
tests are are customized, and rejection criteria are specified (pars. 763 to 765).

760 [Trrn: evaluation rules]
(a) The blackbox test suite Trrn is passed if all statistical tests have been passed.
(b) If at least one individual statistical test has failed, the test suite Trrn is failed.
(c) If the test suite Trrn has failed the evaluator applies the test suite Trrn a second time. If the
second trial is successful the test suite Trrn is viewed as passed. A second repetition of test suite
Trrn is not allowed.
(d) The rules (a) to (c) apply separately to all relevant environmental conditions, for which Trrn

is applied.

761 For each statistical test, the raw random numbers should be consecutive without gaps. If the
raw random numbers are not binary-valued, a preprocessing step is necessary.

762 [preprocessing] If the raw random numbers are binary bit vectors the bit vectors are interpreted
as sequences of bits. If the raw random numbers are integer-valued the integers are transformed
into bits via bj = rj mod 2.

763 TRRN(1) [distance test] cf. pars. 742 to 744, Test T2
parameter: m = 20000, d = 0.02, t = 4
input data: 5-tuples of raw random number bits (r1, r2, r3, r4, r5), (r6, r7, r8, r9, r10), . . . ,

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

133

4 Mathematical Background

(r5(M−1)+1, r5(M−1)+2, r5(M−1)+3, r5(M−1)+4, r5M). The integer M denotes the smallest value
for which there are at least m 5-tuples whose first component is zero and at least m 5-tuples
whose first component is one. More formally, M = min{M ′ ∈ N | |{i ≤ M ′ | r5(i−1)+1 = 0}| ≥
m and |{j ≤ M ′ | r5(j−1)+1 = 1}| ≥ m}.
We set

bk := r5(i−1)+2 if (r5(i−1)+1, . . . , r5i) is the kth 5-tuple with r5(i−1)+1 = 0 (4.196)
b′

k := r5(j−1)+2 if (r5(j−1)+1, . . . , r5j) is the kth 5-tuple with r5(j−1)+1 = 1 (4.197)

test value: tRRN(1) =
∣∣∣∣∣ 1
m

m∑
i=1

bj − 1
m

m∑
i=1

b′
j

∣∣∣∣∣ . (4.198)

decision rule: The test fails if tRRN(1) /∈
[
−d− t√

2m
, d+ t√

2m

]
=
[
−0.02 − 4

200 , 0.02 + 4
200
]

=
[−0.04, 0.04].

764TRRN(2) [distance test] cf. pars. 742 to 744, Test T2
parameter: m = 20000, d = 0.005, t = 4
input data: 5-tuples of raw random number bits (r1, r2, r3, r4, r5), (r6, r7, r8, r9, r10), . . . ,
(r5(M−1)+1, r5(M−1)+2, r5(M−1)+3, r5(M−1)+4, r5M). The integer M denotes the smallest value
for which there are at least m 5-tuples whose first component is zero and at least m 5-tuples
whose first component is one. More formally, M = min{M ′ ∈ N | |{i ≤ M ′ | r5(i−1)+1 = 0}| ≥
m and |{j ≤ M ′ | r5(j−1)+1 = 1}| ≥ m}.
We set

bk := r5(i−1)+3 if (r5(i−1)+1, . . . , r5i) is the kth 5-tuple with r5(i−1)+1 = 0 (4.199)
b′

k := r5(j−1)+3 if (r5(j−1)+1, . . . , r5j) is the kth 5-tuple with r5(j−1)+1 = 1 (4.200)

test value: tRRN(2) =

∣∣∣∣∣∣ 1
m

m∑
j=1

bj − 1
m

m∑
j=1

b′
j

∣∣∣∣∣∣ . (4.201)

decision rule: The test fails if tRRN(2) /∈
[
−d− t√

2m
, d+ t√

2m

]
=
[
−0.005 − 4

200 , 0.005 + 4
200
]

=
[−0.025, 0.025].

765TRRN(3) [autocorrelation test] cf. pars. 747 to 748 Test T4
parameter:
input data: b1, b2, . . . , b40200
Compute the test values

tRRN(3)τ
=

2
(∑20000

j=1 (bj ⊕ bj+τ) − 10000
)

100
√

2
for τ = 3, . . . , 100. (4.202)

Let τ1, . . . , τ5 ∈ {3, . . . , 100} denote those lags for which the absolute test values |tRRN(3)τ
|

assume the five largest values. Compute

tRRN(3)τ[j] =
2
(∑40100

j=20101
(
bj ⊕ bj+τj

)
− 10000

)
100

√
2

for j = 1, 2, 3, 4, 5. (4.203)

134 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

4.6 Evaluator Blackbox Test Suites

decision rule: The test fails if tRRN(3)τ[j] /∈ (−4.0, 4.0) for at least one index j ∈ {1, 2, 3, 4, 5}.

4.6.3 The test suite Tirn

766 The test suite Tirn applies to the internal random numbers. The internal random numbers can
be bits or bit vectors.

767 By PTG.2.7, the test suite Tirn is mandatory for the functionality class PTG.2.

768 The test suite Tirn applies the blackbox tests T1 and T3 from Subsect. 4.6.1. The parameters
of these tests are are customized, and rejection criteria are specified (pars. 772 to 773).

769 [Tirn: evaluation rules]
(a) The blackbox test suite Tirn is passed if all individual statistical tests have been passed.
(b) If at least one individual statistical test has failed, the test suite Tirn is failed.
(c) If the test suite Tirn has failed the evaluator applies the test suite Tirn a second time. If the
second trial is successful the test suite Tirn is viewed as passed. A second repetition of test suite
Tirn is not allowed.
(d) The rules (a) to (c) apply separately to all relevant environmental conditions, for which Tirn

is applied.

770 For each test, the internal random numbers should be consecutive without gaps.

771 [preprocessing] If the internal random numbers are bit vectors the internal random numbers are
interpreted as sequences of bits.

772 TIRN(1) [monobit test] cf. pars. 740 to 741, Test T1
parameter: m = 20 000
input data: b1, . . . , bm ∈ {0, 1}

test value: tIRN(1) =
m∑

j=1
bj . (4.204)

decision rule: The test fails if tIRN(1) /∈ {9655, . . . , 10345}.

773 TIRN(2) [poker test] cf. pars. 745 to 746, Test T3
parameter: m = 20 000
input data: b1, . . . , bm ∈ {0, 1}

test value: tIRN(2) =
15∑

i=0

(
f [i] − 625

2
)2

625
2

= with (4.205)

wj = 8b4j−3 + 4b4j−2 + 2b4j−1 + b4j and (4.206)
f [i] = |{j | wj = i, j = 1, . . . , 5000}| (frequency counter) (4.207)

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

135

4 Mathematical Background

decision rule: The test fails if tIRN(2) < 1.03 or tIRN(2) > 57.4.

136 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

5 Examples

774 This chapter discusses examples from several areas and illustrates general concepts that have
been introduced in the previous chapters. We begin with algorithmic post-processing algo-
rithms (Sect. 5.1), and then we discuss exemplary verifications of algorithmic requirements of
the functionality classes DRG.2, DRG.3, and DRG.4 (Sect. 5.2). In Sect. 5.3 the conformity
of the Hash_DRBG [SP800-90A] to the algorithmic requirements of class DRG.3 is verified.
Section 5.4 investigates stochastic models for real-world designs of physical noise sources. In
Sect. 5.5 strategies for online tests are discussed, and Sect. 5.6 deals with Linux /dev/random
and /dev/urandom. Applicants, designers, and evaluators can refer to the discussed examples
and to the results that are provided in this chapter.

5.1 Examples of Algorithmic Post-processing

775 In this section we discuss several examples of algorithmic post-processing. For further expositions,
we refer the interested reader e.g. to [Schi09b], section 3.5, or to [DiBi07; Lach08], for example.

776 By an algorithmic post-processing algorithm we mean a relatively simple mapping which (ideally)
has been selected with regard to the admissible distributions of the input data, usually the raw
random numbers. In other words: the algorithmic post-processing should be tailored to the
stochastic model. It shall be possible to determine the impact of the algorithmic post-processing
on the entropy per random bit.

777 The entropy per bit cannot be increased by injective mappings.

778 An example of this type would be, for example, a noise source that outputs one raw random
number bit per clock cycle. An LFSR is clocked synchronously, and the raw random number bit
is XORed to the feedback value of the LFSR. The output of the LFSR are the internal random
numbers. Ignoring the initial state of the LFSR, this post-processing algorithm is injective. It
thus cannot increase the entropy per bit, but transforms weaknesses of the raw random number
bits into others, e.g., a bias into dependencies (see, e.g. [Schi09b], Example 3.7)., In particular,
if the binary-valued random variables R1, R2, . . . and Y1, Y2, . . . model the raw random numbers
and the internal random numbers, respectively, for any distribution of R1, R2, . . . (at least in
average) we have

H(Yn+1 | Y1, . . . , Yn) ≥ H(Rn+1 | R1, . . . , Rn) . (5.1)
Ignoring the initial internal state of the LFSR (or assuming that this initial state is known), then
actually ’=’.

779 If the raw random numbers already have enough entropy, it suffices to proveH(Yn+1 | Y1, . . . , Yn) ≥
H(Rn+1 | R1, . . . , Rn). Otherwise, the gain of entropy per bit has to be verified, which is usually
more difficult.

780 To increase the entropy per bit, one has to compress the input stream, resulting in a lower output
rate.

781
A Proposal for Functionality Classes for Random Number Generators

Version 2.35 - DRAFT
137

5 Examples

The examples discussed below do not have an internal state, which means that they have no
memory. Of course, designs with memory are also possible; cf. Par: 778, for example.

5.1.1 Fixed compression rate

782In this subsection we treat several examples of algorithmic post-processing algorithms with fixed
compression rate.

783[Xoring non-overlapping k-bit subsequences, iid] If the random variables R1, R2, . . . are iid
B(1, 0.5 + ϵ0)-distributed for some ϵ0, the random variables Yj := Rk(j−1)+1 + · · · +Rkj(mod 2)
are iid, too. Setting ϵ := 2ϵ0 (equivalently, ϵ0 = 0.5ϵ) we obtain

Prob (Yj = 0) =
k∑

i=0;i even

(
k

i

)
(0.5 + 0.5ϵ)i (0.5 − 0.5ϵ)k−i

Prob (Yj = 1) =
k∑

i=0;i odd

(
k

i

)
(0.5 + 0.5ϵ)i (0.5 − 0.5ϵ)k−i and thus

ϵk := Prob (Yj = 1) − Prob (Yj = 0) = −
k∑

i=0
(−1)i

(
k

i

)
(0.5 + 0.5ϵ)i (0.5 − 0.5ϵ)k−i

= − (−(0.5 + 0.5ϵ) + (0.5 − 0.5ϵ))k = (−1)k+1ϵk . (5.2)

Formula (5.2) says that the bias vanishes exponentially fast in the number of XORed bits. On
the negative side, the output rate reduces by factor k. The greatest practical significance has
the case k = 2. In particular,

|Prob (Yj = 1) − 0.5| = 2k−1ϵk0 . (5.3)

784[Xoring k non-overlapping bits of a Markov chain] If the random variables R1, R2, . . . form a
homogeneous binary-valued ergodic Markov chain, the random variables Y1, Y2, . . . are usually
no longer Markovian (Yj := Rk(j−1)+1 +· · ·+Rkj(mod 2) as in par. 783). On the other hand, the
random vectors R⃗1 := (R1, . . . , Rk), R⃗2 := (Rk+1, . . . , R2k), . . . are Markovian with a (2k × 2k)-
transition matrix Q. As for the special case k = 2 in [Schi09b], Example 3.31, we obtain a lower
entropy bound

H(Yn+1 | Yn, . . . , Y1) ≥ H(Yn+1 | R⃗n, . . . , R⃗1) = H(Yn+1 | R⃗n) = H(Yn+1 | Rnk) (5.4)

The inequality follows from the fact that Yj is a function of R⃗j , and the Markov property of
R⃗1, R⃗2, . . . and R1, R2, . . . implies the equation signs. As in par. 783 the case k = 2 has the
greatest practical significance.

785[Xoring k non-overlapping bits of a Markov chain, ctd.] If all transition probabilities of P are
positive this is the case for Q, too, and the Markov chain R⃗1, R⃗2, . . . is ergodic with invariant
distribution ν(k). If we assume that the random variables R1, R2, . . . are in an equilibrium state,

138 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

5.1 Examples of Algorithmic Post-processing

then R⃗1, R⃗2, . . . are in equilibrium state, too. Furthermore, the random vectors Y1, Y2, . . . are
stationarily distributed with distribution η. More precisely,

η0 =
1∑

i=0
νi

∑
j1,...,jk

j1+...+jk≡0 mod 2

pij1pj1j2 · · · pjk−1jk
, η1 = 1 − η0 (5.5)

In particular, by (5.4)

H(Yn+1 | Yn, . . . , Y1) ≥ H(Yn+1 | Rnk) =
1∑

i=0
νiH(Yn+1 | Rnk = i) . (5.6)

786 [Xoring 2 non-overlapping bits of a Markov chain] In pars. 786 to 787 we take a closer look
to the distribution of the random variables Y1, . . . , Yn for k = 2. Again, we assume that the
random variables R1, R2, . . . form a homogeneous Markov chain with 2 × 2-transition matrix
P = (pij)0≤i,j≤1 with positive transition probabilities. The limiting distribution is given by
ν = (ν0, ν1) =

(
p10

p01+p10
, p01

p01+p10

)
. Under the assumption that the Markov chain R0, R1, . . . is in

equilibrium state we conclude

Prob (Y1 = y1, . . . , Yn = yn) =
1∑

j=0
νj Prob (Y1 = y1, . . . , Yn = yn | R0 = j) = (5.7)

1∑
j=0

νj Prob (Yn = yn | Y1 = y1, . . . , Yn−1 = yn−1, R0 = j) Prob (Y1 = y1, . . . , Yn−1 = yn−1 | R0 = j)

Exploiting the Markov property of R0, R1, . . . the last but one conditional probability in (5.7)
can be expressed as follows

Prob (Yn = yn | Y1 = y1, . . . , Yn−1 = yn−1, R0 = j) =
1∑

i=0
Prob (Yn = yn, R2n−2 = i | Y1 = y1, . . . , Yn−1 = yn−1, R0 = j) =

1∑
i=0

Prob (Yn = yn | R2n−2 = i) · Prob (R2n−2 = i | Y1 = y1, . . . , Yn−1 = yn−1, R0 = j) =

1∑
i=0

(pi0p0,yn
+ pi1p1,1−yn

) · Prob (R2n−2 = i | Y1 = y1, . . . , Yn−1 = yn−1, R0 = j) (5.8)

787 [Xoring 2 non-overlapping bits of a Markov chain, special cases]
(i) The first special case is given when p00 = p10 because then the random variables Rj are iid.
This special case has already been covered by par. 783.
(ii) Another special case is given when p01 = p10. Then ν = (0.5, 0.5), i.e. the random variables
R0, R1, . . . are unbiased but dependent. The equality p01 = p10 implies p00 = p11, and thus
pik = p1−i,1−k. Thus, the term (pi0p0,yn

+ pi1p1,1−yn
) does not depend on i, simplifying (5.8) to

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

139

5 Examples

(p00p0,yn + p01p0,yn) = p0,yn . By induction, we obtain from (5.7) and (5.8)

Prob (Y1 = y1, . . . , Yn = yn) =
1∑

j=0
νj Prob (Y1 = y1, . . . , Yn = yn | R0 = j) =

p0,yn

1∑
j=0

νj Prob (Y1 = y1, . . . , Yn−1 = yn−1 | R0 = j) = p0,yn Prob (Y1 = y1, . . . , Yn−1 = yn−1) =

p0,ynp0,yn−1 · · · p0,y1 (5.9)

Hence the random variables Y1, Y2, . . . are iid with Prob(Yj = i) = p0i. Interestingly, unlike in
special case (i) where XORing non-overlapping pairs of raw random number bits works very well
in special case (ii) it does not. Compared to the Markov chain R0, R1, . . . the entropy per bit
does not increase; this refers to both the Shannon entropy and the min-entropy; cf. pars. 671
and 522.
Note: It should be noted that the special case (ii) can be verified directly, without considering
the complicated formulae in par. 786. In fact, the probability that R2n = R2n−1, or equivalently,
that Yn = 0, is p00 = p11, regardless of y1, . . . , yn−1. This in turn implies

Prob (Y1 = y1, . . . , Yn = yn) = p0,yn
Prob (Y1 = y1, . . . , Yn−1 = yn−1) (5.10)

and by induction it follows the remainder.

788Of course, the compression functions are not limited to XORing single bits. Another approach is
to group the sequence R1, R2, . . . into non-overlapping blocks of t bits; R⃗1 := (R1, . . . , Rt), R⃗2 :=
(Rt+1, . . . , R2t), . . . and to interpret their realizations as values in a finite group G with 2t

elements and group operation. For example, the algorithmic post-processing could given by
Y⃗j := R⃗2j−1 + R⃗2j(mod 2t). Applying this group operation provides a stronger mixture of the
particular components than the bitwise XOR operation.

789A straight-forward example is G = Z2t , equipped with the addition modulo 2t. For the special
cases t = 4, 8 also G = Z∗

2t , equipped with the multiplication modulo 2t as group operation, is
an example because 17 and 257 are prime. The value is identified with 2t.

790The pars. 791 to 796 may in particular be useful when the noise source generates k-bit raw
random number vectors r⃗1, r⃗2,

791Assume that Ω1 = {x1, . . . , xn}, Ω2 = {y1, . . . , yn}, and Ω = {z1, . . . , zn}. The random variables
X and Y are independent and take on values in Ω1 and Ω2, respectively, with probabilities
Prob(X = xj) = pj and Prob(Y = yj) = qj for j = 1, . . . , n. Without loss of generality we
may assume p1 ≤ . . . ≤ pn and q1 ≤ . . . ≤ qn. (Otherwise, relabel the elements of Ω1 and Ω2.)
Furthermore, f : Ω1 × Ω2 → Ω and Z = f(X,Y).

792Assume further that the mapping f : Ω1 × Ω2 → Ω is invertible in the second argument (i.e., for
each fixed first argument). Hence for each pair (i, j) ∈ {0, 1}n × {0, 1}n, there exists a unique
index k such that zi = f (xj , yk). In other words: For each i ≤ n the function f generates a
permutation πi of {1, . . . , n} that is given by zi = f

(
xj , yπi(j)

)
. Since X and Y are independent

Prob (Z = zi) =
n∑

j=1
Prob

(
X = xj , Y = yπi(j)

)
=

n∑
j=1

pjqπi(j) for 1 ≤ i ≤ n . (5.11)

140 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

5.1 Examples of Algorithmic Post-processing

793 Applying the re-arrangement inequality [HaLP34] to the right-hand side of (5.11) provides the
inequality

n∑
j=1

pjqn−j+1 ≤ Prob (Z = zi) =
n∑

j=1
pjqπi(j) ≤

n∑
j=1

pjqj . (5.12)

794 In pars. 794 to 796 we additionally assume that Ω1 = Ω2 and that pj = qj for j = 1, . . . , n, i.e.
that X and Y are identically distributed. Inequality (5.12) implies

Hmin (Z) = − log2 (max {Prob (Z = zi) | i = 1, . . . , n}) ≤ − log2

 n∑
j=1

p2
j

 = H2 (X) (5.13)

with equality if max {Prob (Z = zi) | i = 1, . . . , n} =
n∑

j=1
p2

j (5.14)

which ties the collision entropy of X to the min-entropy of Z = f(X,Y).

795 Assume that Ω1 = Ω2 = {0, 1}k and f(x, y) = x ⊕ y (bitwise XOR operation). Then z =
f(x, y) = 0⃗ iff x = y, and thus

max
{

Prob (Z = zi) | i = 1, . . . , 2k
}

= Prob(Z = 0⃗) =
2k∑

j=1
p2

j (5.15)

Finally, (5.13) and (5.14) imply

Hmin (Z) = − log2

 2k∑
j=1

p2
j

 = − log2
(
Prob

(
Z = 0⃗

))
= H2 (X) . (5.16)

796 Equation (5.16) simplifies the estimation of the min-entropy of Z to the estimation of the prob-
ability Prob

(
Z = 0⃗

)
. This may be interesting for noise sources which output independent k-bit

raw random number vectors. Alternatively, portions of k bits may be taken from stationary
binary-valued raw random numbers such that consecutive vectors may be assumed to be inde-
pendent. In particular, (5.16) suggests a simple online test that checks the proportion of pairs
of k-bit input vectors which are identical. (This is equivalent to counting the number of 0’s of
the output sequence.)

5.1.2 Von Neumann unbiasing

797 Von Neumann unbiasing works asynchronously, i.e., it receives pairs of binary-valued raw random
numbers r⃗k = (r2k, r2k+1) as input but does not generate internal random number bit for all

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

141

5 Examples

input pairs. More precisely, let

r′
k :=


0 if r⃗k = (0, 1)
1 if r⃗k = (1, 0)
o if r⃗k = (0, 0)
o if r⃗k = (1, 1)

(5.17)

The internal random number bits y1, y2, . . . are given by the concatenation of all r′
k ∈ {0, 1}.

798It is well-known (and easy to prove) that the internal random numbers Y1, Y2, . . . are iid B(1, 0.5)-
distributed if the random variables R1, R2, . . . are iid B(1, p) distributed. This means that the
von Neumann unbiasing algorithm removes the bias completely.

799The main problem in the context of PTRNG evaluation is the verification that the random
variables R1, R2, . . . are (at least almost) iid.

800However, there are further disadvantages: The output rate drops down to p(1 − p) ≤ 0.25 of
the input rate (p = Prob(R1 = 1)), and from a technical point of view, it can cause problems
because it is impossible to guarantee the generation of an internal random number bit within a
fixed time interval.

801[Generalized von Neumann unbiasing] The technique described above can be generalized to trans-
form pairs of integer values r⃗k = (r2k, r2k+1) into internal random number bits by the following
rule.

r′
k :=


0 if r⃗k = (r2k < r2k+1)
1 if r⃗k = (r2k > r2k+1)
o if r⃗k = (r2k = r2k+1)

(5.18)

5.1.3 Thinning out

802Assume that the sequence R1, R2, . . . has only a small bias but non-negligible dependencies. A
straight-forward strategy is to use only each tth raw random number, i.e., Yn := Rnt. This should
reduce the dependencies.

803Assume that R1, R2, . . . form a homogeneous ergodic Markov chain on the finite state space
ΩR := {ω1, . . . , ωk} with state transition matrix P (typically, k = 2). Then Y1, Y2, . . . also
forms a homogeneous ergodic Markov chain but with state transition matrix P t. The rows of
the powers P, P 2, . . . converge exponentially fast to the limiting distribution ν. Thus H(ν) (or
Hmin(ν), respectively) provide upper entropy bounds.

5.2 Evaluation of DRNGs: Miscellaneous aspects

804
142 A Proposal for Functionality Classes for Random Number Generators

Version 2.35 - DRAFT

5.2 Evaluation of DRNGs: Miscellaneous aspects

In this section we discuss several pure DRNG and hybrid DRNG designs. The focus lies on the
exemplary verification of requirements of the functionality classes DRG.2, DRG.3, and DRG.4.
Furthermore, we also illustrate some pitfalls which can occur when a DRNG was designed care-
lessly. These may serve as a warning to evaluators.

805 In this section we focus on algorithmical aspects. We do not cover entropy issues associated with
seeding procedures and reseeding procedures.

806 The Hash_DRBG from the NIST document [SP800-90A] is analyzed in Sect. 5.3, which is a
section of its own.

5.2.1 AES in OFB mode

807 In this subsection we analyze a simple pure DRNG design. We illustrate how typical proofs can
be organized. We show that this DRNG is compliant to the functionality class DRG.2 but not
to DRG.3. In particular, the DRNG provides backward secrecy and forward secrecy but not
enhanced backward secrecy.

808 The ’core’ is the block cipher AES -256. The DRNG calls the AES -256 cipher once during each
iteration (full OFB mode). Its plaintext and ciphertext space are given by SB := {0, 1}128 while
SK = {0, 1}256 denotes the key space. For simplicity, we further assume that this DRNG only
accepts requests of at most ≤ 128 bit, the bit length of a single internal random number. Below,
we formulate the describing 9-tuple (S, Sreq, R,A, I, ϕ, ϕreq, ϕ0, ψ); cf. (3.1).

809 [describing 9-tuple] The components of the 9-tuple are as follows: S = SB × SK , Sreq = S,
R = SB , A = {o} (no external input, pure DRNG), I = {1, . . . , 128} (requests have length
≤ 128 bits), ϕ : S → S, ϕ(r, k) := (AES -256(r, k), k) (state transition function), ϕreq : S →
Sreq, ϕreq(s) = s (identity mapping), ϕ0 : Sreq → Sreq (the definition of ϕ0 is irrelevant because
a request comprises only one internal random number; cf. par. 137), and ψ : S → R,ψ(r, k) := r
(output function).

810 We assume that a seed string of 128+256 = 384 bits is generated by a PTRNG that is compliant
with PTG.2 or PTG.3, or by an NPTRNG compliant with class NTG.1. The seeding procedure
and the reseeding procedure are rather simple.

811 The seed string equals the first internal state s1 := (r1, k) of the DRNG. In terms of the seed
describing 4-tuple (SM,PS, S, ϕseed) (cf. (3.3)) the seeding procedure reads as follows. SM =
{0, 1}384, PS = {o}, ϕseed : SM × PS → S, ϕseed(s′, o) = s′ (seeding procedure, projection onto
the first component).

812 For the reseeding procedure a seed string of 384 bits is generated by a PTRNG that is compliant
with PTG.2 or PTG.3, or by an NTRNG compliant with class NTG.1. In terms of the seed
describing 4-tuple (SM,PS, S, ϕseed) (cf. (3.4)) the reseeding procedure reads as follows: SM =
{0, 1}384, PS = {o}, ϕreseed : S × SM × PS → S, ϕseed(s, s′, o) = s + s′ mod 2 (reseeding
procedure, XORing the reseed string onto the internal state).

813
A Proposal for Functionality Classes for Random Number Generators

Version 2.35 - DRAFT
143

5 Examples

The second component of the internal state S = SB × SK remains constant and serves as a
long-term key for AES -256. The output function is the projection onto the first component of
the internal state. Since each random number reveals the current first component, the first 128
bit of the internal state (= SB) are potentially public. Thus, the unknown part of the internal
state comprises 256 bits; cf. par. 819.

814Now assume that an adversary knows the random numbers ri, . . . , rj . The task is to determine
or to guess the successor rj+1 or the predecessor ri−1 of this subsequence.

815[forward secrecy] The subsequence ri, . . . , rj can be written in the following form: ri+1 =
AES -256(ri, k), ri+2 = AES -256(ri+1, k), . . . , rj = AES -256(rj−1, k). If this information would
suffice to determine rj+1 = AES -256(rj , k), this would mean that a chosen plaintext attack on
AES -256 (for the (plaintext / ciphertext) pairs (ri, ri+1), . . . , (rj−1, rj)) would be feasible. How-
ever, the cryptographic community has analyzed the AES cipher for more than two decades, and
no such cryptanalytic attack has been found. This common knowledge about AES -256 can be
used to conclude that the DRNG has forward secrecy.

816[forward secrecy] Par. 815 provides a typical security proof for DRNGs. The desired security
property of the DRNG is traced back to established properties of the cryptographic primitives.

817[backward secrecy] The proof of backward secrecy is analogous to the proof in par. 815. We
express the known subsequence ri, . . . , rj as follows: rj−1 = (AES -256)−1(rj , k), rj−2 =
(AES -256)−1(rj−1, k), . . . , ri = (AES -256)−1(ri+1, k). A successful attack on ri−1 = (AES -256)−1(ri, k)
would imply a chosen ciphertext attack on (AES -256)−1, the decryption function of AES -256.
Since no such attack is known, we conclude that the DRNG has backward secrecy.

818[enhanced backward secrecy] Obviously, the DRNG does not have enhanced backward secrecy.
If an adversary learns the internal state sn = (rn, k), he obtains the preceding internal states
sn−1, sn−2 . . . (and the preceding random numbers rn−1, rn−2 . . .).

819As a by-product of the security proofs in pars. 815 (forward security) and 817 (backward security),
we conclude that the effective internal space equals the key space SK = {0, 1}256, due to the
generally accepted properties of the AES.

820In the previous paragraphs we have proved that the DRNG fulfills several requirements of the
functionality class DRG.2. In particular, this refers to the requirements DRG.2.1 (pars. 810, 811, 812),
DRG.2.2 (par. 808), DRG.2.3 (par. 819), DRG.2.4 (pars. 810, 811, 812, 819), DRG.2.5 (par. 815),
and DRG.2.6 (par 817). Moreover, DRG.2.7 does not apply because the DRNG is a pure DRNG,
and thus, DRG.2.6 is also fulfilled. The state transition function ϕ is cryptographic, and thus
DRG.2.8 is fulfilled, too. Since no statistical weaknesses of AES-256 are known, the evaluator
might argue that requirement DRG.2.9 is fulfilled on the basis of theoretical considerations.

821By par. 820 the DRNG is compliant with functionality class DRG.2. Yet the DRNG is not
compliant with functionality class DRG.3 because of the missing enhanced backward secrecy
(par. 818).

144 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

5.2 Evaluation of DRNGs: Miscellaneous aspects

5.2.2 Pure and hybrid DRNGs and a (too) simple state transition function

822 In this subsection several simple DRNG designs are considered. In pars. 823 to 834 the DRG.2-
compliance of a pure DRNG design is verified, and then different extensions to hybrid DRNG
designs are discussed. Pars. 835 to 837 underline that a (too) simple state transition function
may ruin the security if the adversary is able to control a single additional input value. We offer
bug fixes but also sketch an instructive pitfall.

823 For simplicity, we assume that all DRNGs discussed in this subsection accept only requests,
whose bit length is ≤ the bit length of an internal random number.

824 In par. 825 below, we formulate the describing 9-tuple (S, Sreq, R,A, I, ϕ, ϕreq, ϕ0, ψ) for the
’pure’ version of the DRNG; cf. (3.1).

825 [pure DRNG, describing 9-tuple] For the pure DRNG the components of the 9-tuple are as follows:
S = Sreq = Z2512 , R = {0, 1}256, A = {o} (no external input, pure DRNG), I = {1, . . . , 256}
(requests have length ≤ 256 bits), ϕ : S → S, ϕ(s) := (s+ 1 mod 2512) (state transition function,
modular incrementation by 1), ϕreq : S → Sreq, ϕreq(s) = s, ϕ0 : Sreq → Sreq (the definition of
ϕ0 is irrelevant because a request requires only one internal random number), and ψ : Sreq →
R,ψ(sreq) := SHA -256(sreq) (output function).

826 We assume that a seed string of 512 bits is generated by a TRNG that is compliant with the
class PTG.2, PTG.3, or NTG.1. The seeding procedure and the reseeding procedure are rather
simple.

827 The seed string equals the first internal state s1 of the DRNG. In terms of the seed describing
4-tuple (SM,PS, S, ϕseed) (cf. (3.3)) the seeding procedure can be described as follows. SM =
{0, 1}512, PS = {o}, ϕseed : SM × PS → S, ϕseed(s′, o) = s′ (seeding procedure, projection onto
the first component).

828 For the reseeding procedure a seed string of 512 bits is generated by a TRNG which is compliant
with PTG.2, PTG.3, or NTG.1. In terms of the seed describing 4-tuple (SM,PS, S, ϕseed) (cf.
(3.4)), the reseeding procedure reads as follows: SM = {0, 1}512, PS = {o}, ϕreseed : S × SM ×
PS → S, ϕseed(s, s′, o) = sXOR s′ (reseeding procedure, bitwise addition mod 2).

829 Due to the one-way property of SHA -256, we may assume that the internal state S equals the
effective internal state. Thus, the effective internal state comprises 512 bits.

830 [backward secrecy and forward secrecy] The subsequence ri, . . . , rj can be expressed as ri =
SHA -256(si), ri+1 = SHA -256(si + 1 mod 2512), . . . , rj = SHA -256(si + j − i mod 2512). The
task of an adversary would be to exploit this information to determine rj+1 = SHA -256(si + j−
i+ 1 mod 2512) (forward secrecy) or ri−1 = SHA -256(si − 1 mod 2512) (backward secrecy).

831 [backward secrecy and forward secrecy] If an adversary could determine any internal state, this
would violate the one-way property of SHA -256. Similarly, the assumption that an adversary
would be able to determine ri−1 or rj+i+1 only on the basis of ri, . . . , ri+j and relations between
pre-images would also contradict the common knowledge about SHA -256. In particular, it can

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

145

5 Examples

be assumed that the DRNG has forward secrecy and backward secrecy.

832Yet this DRNG does not provide enhanced backward secrecy. If an adversary would learn the
internal state sn, he could easily obtain the preceding internal states sn−1 ≡ sn − 1 mod 2512,
sn−2 ≡ sn − 2 mod 2512, . . . (and by this, the preceding random numbers rn−1, rn−2 . . .).

833[pure DRNG] In the previous paragraphs we have proved that the pure DRNG fulfills several
requirements of the functionality class DRG.2. In particular, this refers to the requirements
DRG.2.1 (pars. 826, 827, 828), DRG.2.2 (par. 823), DRG.2.3 (par. 829), DRG.2.4 (pars. 826, 827,
828, 829), DRG.2.5 (par. 831), and DRG.2.6 (par. 831). Moreover, DRG.2.7 does not apply
because the DRNG is a pure DRNG, and thus DRG.2.7 is also fulfilled. The output function
ψ is cryptographic, and thus DRG.2.8 is fulfilled, too. Since no statistical weaknesses of the
SHA -256 are known the evaluator can argue that requirement DRG.2.9 is fulfilled on the basis
of theoretical considerations.

834[pure DRNG] By par. 833 the pure DRNG is compliant with functionality class DRG.2. The
DRNG is not compliant with functionality class DRG.3 because of the missing enhanced back-
ward secrecy (par. 832).

835[hybrid DRNG, inadequate design] In this paragraph the pure DRNG is extended to a hybrid
DRNG design which allows additional input. For this, we set A = {0, 1}512 ∪ {o} and replace
the state transition function ϕ and the function ϕreq by

ϕreq(s, a) =
{
s mod 2512 if a = o

s+ a mod 2512 if a ̸= o ,
(5.19)

ϕ(s, a) =
{
s+ 1 mod 2512 if a = o

s+ a+ 1 mod 2512 if a ̸= o ,
(5.20)

836[successful attack] If the additional input values are generated by a strong TRNG, no problems
should occur (512-bit strings are interpreted as binary representations of 512-bit integers). How-
ever, if the adversary is able to control a single additional input value, he is able to set the future
random numbers. More precisely: Assume that aj−k, . . . , aj−1 describe the additional inputs at
time j − k, . . . , j − 1. If at time j the adversary inputs aj = 2512 − aj−k − · · · − aj−k−1 − k for
some k < j, then rj = rj−k and sj+1 = sj−k+1. If aj−k+1 = aj+1, . . . , aj−1 = aj+k−1 (e.g., all
= o) then rj = rj−k, rj+1 = rj−k+1, . . . , rj+k−1 = rj−1, which means that the DRNG repeats
the last k internal random numbers.

837The hybrid design from par. 835 violates requirement DRG.2.7. Thus, this hybrid DRNG is not
DRG.2-compliant. This is an example where a hybrid DRNG is weaker than its pure DRNG
version. In particular, this observation justifies requirement DRG.2.7 (resp. DRG.3.8, resp.
DRG.4.8).

838[hybrid DRNG, healed design] In this paragraph we fix the buggy design from par. 835. We

146 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

5.2 Evaluation of DRNGs: Miscellaneous aspects

modify ϕreq and ϕ to

ϕreq(H)(s, a) =
{
s if a = o

s+ a mod 2512 if a ̸= o ,
(5.21)

ϕ(H)(s, a) =
{

SHA -512(s) if a = o

SHA -512(s+ a mod 2512) if a ̸= o ,
(5.22)

where ’(H)’ stands for ’healed’ to avoid confusion. The (generally accepted) security properties
of SHA -512 prevent even an adversary with full control over the additional input data from
selecting values that affect the internal state S in a targeted way. By the same argumentation,
due to the properties of the hash function SHA -256, an adversary is not able to influence the
internal random number of the current request in a targeted way. Using the generally accepted
security properties of SHA -512 and SHA -256, one can show that the DRNG has backward
secrecy, forward secrecy, and enhanced backward secrecy. In particular, this hybrid DRNG is
compliant with functionality class DRG.3.
Note: For an evaluation the argumentation should be more detailed.

839 [instructive pitfall] Depending on the device the implementation of two different hash functions
may be too expensive. This problem could be solved by replacing R = {0, 1}256 by R = {0, 1}512

and the output function ψ = SHA -256 by ψ∗ = SHA -512. However, this design is terribly
weak since rn = ψ∗(ϕreq(H)(sn, a))) = SHA -512(sn + a mod 2512) = ϕ(H)(sn, a) = sn+1. The
knowledge of a single internal random number reveals the next internal state, and thus (provided
that an adversary knows the future additional input data) all future internal random numbers.

840 Par. 839 emphasizes that it does not suffice that the functions ϕ and ψ are individually strong.
Their interaction must be secure, too; cf. par. 841.

841 [hybrid DRNG, another design] We set S = {0, 1}256 and A = {0, 1}∗, and we identify both the
state space S = Z2256 and Sreq with {0, 1}256. Moreover,

ϕreq(H2)(s, a) = (s∥00∥a) (5.23)
ψ(H2)(sreq) = SHA -256(sreq) (5.24)
ϕ(H2)(s, a) = SHA -256(s∥11∥a) (5.25)

The strings ’00’ and ’11’ ensure that the arguments of the state transition function ϕ and output
function ψ are different.

842 The describing 9-tuple reads as follows: S = {0, 1}256, Sreq = {0, 1}256, R = {0, 1}256, A =
{0, 1}∗, I = {1, . . . , 256}, ϕ(H2) (state transition function, cf. (5.25)), ϕreq(H2) (cf. (5.23)),
ϕ0 : Sreq → Sreq, ϕ0(sreq) = sreq (the definition of ϕ0 is irrelevant because a request requires
only one internal random number), and ψ(H2) : S → R (output function, cf. (5.24)).

843 [DRG.3-compliant DRNG with bijective output function] First, p ∈ {0, 1}128 is a constant. The
additional input a ∈ A is a bit string of length ℓ ∈ {0, . . . , 128}, and ι(a) := (a, 0 . . . , 0) ∈
{0, 1}128, i.e. ι(·) extends a to a 128-vector by appending 0’s to the right. In particular, if
a = ∅ then ι(a) = (0, . . . , 0). The output function ψ(b) : {0, 1}256 × A → {0, 1}128 is given by
ψ(b)(s, a) := AES -256(p ⊕ ι(a), s). The key s is the value of current internal state. The state
transition function ϕ(b) : {0, 1}256 ×A → {0, 1}256, ϕ(b)(s, a) := SHA -256(s∥p⊕ ι(a)). Following

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

147

5 Examples

par. 823 we assume that requests are limited to 128 bits, which is the bit length of a single
internal random number).

844The describing 9-tuple reads as follows: S = {0, 1}256, Sreq = {0, 1}256 ×{0, 1}128, R = {0, 1}128,
A = {a ∈ {0, 1}∗ | 0 ≤ |a| ≤ 128}, ϕ(b) (state transition function), ϕreq(b) : S × A → Sreq,
ϕreq(b)(s, a) := (s, ι(a)), ϕ0 : Sreq → Sreq (the definition of ϕ0 is irrelevant because a request
requires only one internal random number), and ψ(b) : Sreq → R (output function).

845[DRG.3-compliant DRNG with bijective output function, ctd.] We first note that the DRNG
described in par. 843 is compliant to class DRG.3: Both the state transition function ϕ(b) and the
output function ψ(b) are cryptographic. Finding predecessors or successors to a given sequence
of internal random numbers ri, . . . , rj would require that an adversary was able to mount a suc-
cessful chosen-plaintext attack or chosen-ciphertext attack on AES -256, which is not considered
practically feasible; cf. Subsect. 5.2.1. The one-way property of the state transition function ϕ(b)
ensures enhanced backward secrecy.

846Interestingly, for each fixed internal state s the mapping χs : {0, 1}128 → {0, 1}128, χs(a) :=
AES -256(p ⊕ ι(a), s) is bijective. In the context of the functionality class PTG.3 assume that
a PTRNG supplies intermediate random numbers of length 128 bit. Then ι(a) = a, and the
output function is bijective for each value of the internal state, by this maintaining the entropy
of the intermediate random numbers.

5.2.3 One-way functions derived from the AES block cipher

847Assume that Enc(·, ·) : {0, 1}t × {0, 1}t → {0, 1}t denotes an (ideal) block cipher for which block
length and key length are t bits. Then χ : {0, 1}m ×{0, 1}m → {0, 1}m, χ(m, k) := Enc(m, k)⊕m
defines a one-way compression function. In one form or another, this idea is used in well-known
constructions such as Davies–Meyer, Matyas–Meyer–Oseas, and Miyaguchi–Preneel.

848For resource-constraint devices as smart cards designs of one-way compression functions that use
the AES (or more generally, a widely recognized block cipher) can be an alternative to the use
of dedicated hash functions. Such constructs are principally allowed. The applicant has to give
evidence that the class requirements are fulfilled.

5.3 NIST Approved Designs [SP800-90A]: Conformity analysis with
regard to DRG.3 and DRG.4

849The document [SP800-90A] specifies three approved DRNG designs, the Hash_DRBG (Sub-
sect. 10.1.1), the HMAC_DRBG (Subsect. 10.1.2), and the CTR_DRBG (Subsect. 10.2.1).
These DRNGs are based on hash functions (Hash_DRBG, HMAC_DRBG) and block ciphers
(CTR_DRBG).

850Figure 10 illustrates the generic design of these DRBGs. The meaning of the components will
become clear in the subsections below.

148 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

5.3 NIST Approved Designs [SP800-90A]: Conformity analysis with regard to DRG.3 and
DRG.4

Figure 10: DRBG functional model of the NIST approved DRBGs; source: [SP800-90A], Sect. 7,
Figure 1

851 Subsect. 5.3.1 provides a conformity proof for the Hash_DRBG to the algorithmic requirements
of the functionality class DRG.3. The permitted hash algorithms are listed in par. 857.

852 An applicant for a certificate can refer to Subsect. 5.3.1, or to relevant paragraphs. No further
proof needs to be supplied that (correct) implementations of the approved designs will conform
to the functionality classes hereinafter indicated. The resistance of the implementation against
attacks, for instance, is part of the overall evaluation of the TOE; cf. Sect. 2.1.

853 [Hash_DRBG: Conformity to DRG.3] Par. 857 lists the permitted hash functions. By par. 921
the Hash_DRBG fulfills the algorithmic requirements DRG.3.2, DRG.3.3, DRG.3.5, DRG.3.6,
DRG.3.7, DRG.3.8, DRG.3.9 and DRG.3.10. Par. 923 formulates (easy to check) sufficient
conditions that DRG.3.1 and DRG.3.4 are fulfilled if the entropy_input is generated by a TRNG
which is compliant with class PTG.2, PTG.3 or NTG.1.

854 [Conformity to DRG.4] Additionally to the requirements of functionality class DRG.3 compli-
ance to class DRG.4 demands an appropriate calling scheme for high-entropy additional input,
for seeding and / or for reseeding (DRG.4.10). According to the requirements DRG.4.1 and
DRG.4.10 the seed for the seeding procedure and the reseeding procedure and (if applicable) the
high-entropy additional input (that shall ensure enhanced forward secrecy) shall be generated by
a PTRNG. If the PTRNG is compliant with class PTG.2 or PTG.3 this simplifies the verification
of the requirements DRG.4.4 and DRG.4.10. Par. 925 provides further information.

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

149

5 Examples

5.3.1 Security Evaluation of the Hash− DRBG [SP800-90A]

855In this subsection we analyze the conformity of the Hash_DRBG to the requirements of func-
tionality class DRG.3. Pars. 921 to 923 summarize the results.

856For a detailed description of the Hash_DRBG we refer to [SP800-90A], Subsubsect. 10.1.1.

857In the following we assume

Hash ∈ {SHA -224,SHA -512/224,SHA -256,SHA -512/256,SHA -384,SHA -512,
SHA3 -224,SHA3 -256,SHA3 -384,SHA3 -512} . (5.26)

The hash function Hash outputs strings of length outlen ∈ {224, 256, 384, 512} as indicated by
its name; if the name includes two numbers the output length is indicated by the second number.

858If Hash ∈ {SHA -224,SHA -512/224,SHA -256,SHA -512/256} then seedlen = 440. If Hash ∈
{SHA3 -224,SHA3 -256,SHA3 -384,SHA3 -512} then seedlen = 512. Finally, if
Hash ∈ {SHA -384,SHA -512} then seedlen = 888.

859Remark: Additionally to (5.26) [SP800-90A] allows the hash functions SHA-1.

860Our first goal is to describe the Hash_DRBG by the 9-tuple (par. 135) and by the 4-tuples for
the seeding procedure (par. 151) and reseeding procedure (par. 155).

861In this subsection S′ := {0, 1}seedlen. If additions modulo 2seedlen are concerned, we tacitly
identify S′ with Z2seedlen .

862The internal space of the Hash_DRBG (denoted as working state in [SP800-90A]) is given by
the cartesian product

S := S′ × S′ × Z248 . (5.27)

Its elements are triples (v, c, rc). The values v and c = c(v1) are kept secret while the value of
the reseed_counter rc is publicly known. The reseed_counter is initialized by 1 and incremented
by 1 after each request. The reseeding procedure is required after 248 requests at the latest.
Note: Since c(v1) remains constant within a request for the sake of readability we briefly write
c instead of c(v1).

863The first component S′ of S = S′ ×S′ ×Z248 is the effective internal state; cf. pars. 915 and 916.

864Furthermore,

Sreq := S′ (5.28)
A := {0, 1}∗ (5.29)
R := {0, 1}outlen (5.30)
I := Z219 (5.31)

The bit length of additional input a ∈ A is ≤ 235. Empty strings are possible.

865150 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

5.3 NIST Approved Designs [SP800-90A]: Conformity analysis with regard to DRG.3 and
DRG.4

After each request the internal state S has been updated by the state transition function ϕ.

ϕ := ϕB ◦ (ϕA × id) : S ×A → S with (5.32)
ϕA : S ×A → S, ϕA(v, c, rc, a) := (v + f(v, a) mod 2seedlen, c, rc) (5.33)
ϕB : S ×A → S, ϕB(v, c, rc, a) := (v + g(v) + c+ rc mod 2seedlen, c, rc+ 1) (5.34)

with f : {0, 1}seedlen × {0, 1}∗ → {0, 1}outlen, f(v, a) :=
{

Hash(0x02∥v∥a) if a ̸= ∅
0 if a = ∅

(5.35)

and g : {0, 1}seedlen → {0, 1}outlen, g(v) := Hash(0x03∥v) . (5.36)

Actually, in the Hash−DRBG−Generate Process ([SP800-90A], Subsect. 10.1.1.4) the internal
state S is processed in three steps, in Step 2 (by ϕA), and in Step 5 and Step 6 (by ϕB). Step 2
is carried out before the random numbers are generated (Step 3) while Step 5 and Step 6 are
performed after the random numbers have been generated. This means that during the request,
the internal state assumes an intermediate value s := ϕA(sold, a).

866 From a logical point of view, the internal state (v, c, rc) is updated per request by the state
transition function ϕ = ϕB ◦ ϕA. Its first component v is updated within each request (by ϕA

and ϕB). The value c is a function of the first internal state after the seeding procedure or
the reseeding procedure (cf. pars. 876 and 880). It remains constant until the next reseeding
procedure. The request counter rc is initialized by 1 and is increased by 1 after each request.

867 The temporary internal state during a request is generated and updated by

ϕreq :=: S ×A → Sreq with
ϕreq(v, c, rc, a) := (v + f(v, a) mod 2seedlen) (5.37)
ϕ0 : Sreq → Sreq, ϕ0(sreq) := sreq + 1 mod 2seedlen (5.38)

The value sreq corresponds to ’data’ in the Hashgen process; cf. [SP800-90A], Subsect. 10.1.1.4.
Furthermore, sreq equals the first component of the current internal state S (after ϕA has been
applied).

868 Finally, the output function ψ is defined by

ψ : Sreq → R, ψ(s′) := Hash(s′) (5.39)

This completes the specification of the describing 9-tuple.

869 Next, we provide formal descriptions of the seeding procedure and the reseeding procedure.

870 In [SP800-90A], Sect. 10.3.1, the derivation function Hashdf is defined. The function Hashdf is
the ’core’ of both the seeding procedure and the reseeding procedure.

871 The derivation function Hashdf concatenates Hash values of different input values. In the fol-
lowing we assume that Hashdf is a one-way function; see par. 887.

872 The initial internal state is computed from the seed (denoted by seed_material in [SP800-90A]).
For the Hash_DRBG

seed_material = (entropy_input || personalization_string) (5.40)

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

151

5 Examples

The maximum bit length of both the entropy_input and the personalization_string is 235 [SP800-
90A], Table 2. The personalization_string belongs to the set PS. It may contain secret parts
but need not.
Note: The definition of seed_material in (5.40) refers to the upcoming version of [SP800-90A].
For the current version of [SP800-90A] the definition reads as follows

seed_material = (entropy_input || nonce || personalization_string) (5.41)

The nonce may contain entropy but need not. Both nonce and personalization_string belong to
the set PS.

873The security shall be guaranteed by the entropy of the string entropy_input (denoted as ’seed’
in the seed describing 4-tuple from par. 151).

874In the notation of the 4-tuple which describes the seeding procedure (par. 151)

SM = PS = {0, 1}∗ (5.42)

875The nonce and the personalization_string are constructed from the current value of PS.

876The first initial state (v1, c, rc) is computed from seed_material via

ϕseed : {0, 1}∗ → {0, 1}seedlen × {0, 1}seedlen × Z248 , ϕseed(seed_material)
:= (v1 := Hashdf(seed_material, seedlen), c := Hashdf(0x00∥v1, seedlen), 1) , (5.43)

i.e. c = c(v1). The parameter seedlen depends on Hash.
Note: In the seeding procedure the bit string seed_material (5.40) is the concatenation of values
in SM (entropy_input) and PS (nonce and personalization_string).

877For the reseeding procedure

seed_material = (0x01∥v∥ entropy_input || additional_input) (5.44)

The letter v denotes the first component of the internal state before the reseeding procedure. The
maximum bit length of both the entropy_input and the additional_input is 235 [SP800-90A],
Table 2. The additional_input may be empty. The additional_input belongs to the set PS.

878The security shall be guaranteed by the entropy of entropy_input.

879In the notation of the 4-tuple which describes the reseeding procedure (par. 155)

SM = PS = {0, 1}∗ (5.45)

880The first initial state (v1, c, rc) after the reseeding procedure is computed from seed_material
via

ϕreseed : {0, 1}∗ → {0, 1}seedlen × {0, 1}seedlen × Z248 , ϕreseed(seed_material)
:= (v1 := Hashdf(seed_material, seedlen), c := Hashdf(0x00∥v1, seedlen), 1) (5.46)

152 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

5.3 NIST Approved Designs [SP800-90A]: Conformity analysis with regard to DRG.3 and
DRG.4

i.e. c = c(v1). The parameter seedlen depends on Hash.
Note: In the reseeding procedure the bit string seed_material (5.44) is the concatenation of the
first component of the internal state (v) and of values in SM (entropy_input) and PS (nonce
and personalization_string).

881 Below we analyze the conformity of the Hash_DRBG to the requirements of functionality class
DRG.3.

882 [Notation] If the request y demands a bit string of length reqbits (by specification reqbits ≤ 219,
cf. (5.31)) we set

my :=
⌈

reqbits
outlen

⌉
and u := reqbits −(my − 1)outlen . (5.47)

The output is

ψ(ṽy)∥ψ(ṽy + 1)∥ . . . ∥ψ(ṽy +my − 2)∥pru(ψ(ṽy +my − 1)) . (5.48)

It is ṽy = ϕreq(vy) = sreq, the value of Sreq after being initialized by ϕreq (or, equivalently, the
first component of the internal state S after ϕA has been applied). Furthermore, pru(·) denotes
the projection onto the leftmost u bits. In particular, Hash is applied my times.

883 First we investigate forward secrecy (DRG.3.5) and backward secrecy (DRG.3.6).

884 [Notation] To simplify the notation we denote the jth random number (hash value or truncated
hash value) of request y by w(y)j (cf. (5.48)). Assume that an adversary knows the random
numbers

w(y1)j , . . . , w(y1)my1
, w(y1+1)1, . . . , w(y2)i . (5.49)

His task would be to compute or guess the next random number (forward secrecy) or the random
number that precedes this sequence (backward secrecy).

885 [state transition] Assume that the triple (vy, c, y) denotes the internal state at the beginning
of request y. By (5.32), (5.33), and (5.34) the next internal state (after request y has been
completed) equals

(vy+1, c, y + 1) = ϕ(vy, c, y, ay) = (5.50)
(vy + g∗(vy, ay) + c+ y + f(vy, ay) mod 2seedlen, c, y + 1) where
g∗ : {0, 1}seedlen × {0, 1}∗ → {0, 1}outlen, g∗(vy, ay) := g(vy + f(vy, ay) mod 2seedlen)

886 [Cryptographic assumptions] In pars. 887 to 893 several cryptographic assumptions are formu-
lated and justified, which will be needed below to verify the backward secrecy, forward secrecy
and enhanced backward secrecy. These assumptions concern ψ = Hash but also the mappings
Hashdf(·, seedlen), g, f, g∗, which are derived from Hash and are closely related.

887 [Cryptographic assumptions] The ‘core’ of the following cryptographic assumptions is (5.51).
Since Hash is a (worldwide) recognized hash function this justifies the following assumption

ψ(·) = Hash(·) has the pre-image resistance property.
It can be modeled by a random mapping. (5.51)

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

153

5 Examples

Pre-image resistance means that it is practically infeasible to determine a pre-image under Hash
to a given image value y, i.e. to find any x with Hash(x) = y. The second assumption in (5.51)
refers to the modeling of Hash(·) in the random oracle model. This means that for given x the
value Hash(x) can be viewed as realization of a random variable which is uniformly distributed
on {0, 1}outlen. Furthermore, the output values of Hash for different input values can be viewed
as independent.
Note: If the output length of a function is too small, modeling by a random mapping does not
imply the pre-image resistance property.
Note: The justification of the cryptographic assumptions below are in a way redundant as they
use ’cryptographic’ arguments and the modeling by random mappings.

888[Cryptographic assumptions] By definition the function g(·) = ψ(0x03∥·) appends the argument
to the fixed string ‘0x03’ and then applies Hash. Thus, by (5.51) we may also assume

g : {0, 1}seedlen → {0, 1}outlen , g(v) = ψ(0x03∥v)
has the pre-image resistance property. It can be modeled by a random mapping.(5.52)

Rationale: Otherwise, finding a pre-image of y ∈ {0, 1}outlen under Hash would not be hard,
if there exists a pre-image x of y which starts with the pre-fix byte ‘0x03’. If the bit length
of the pre-images was not limited, the pre-image resistance of g(·) would directly follow from
the pre-image resistance of Hash. In the context of the Hash_DRBG the variable part of the
pre-images under g(·) has fixed length seedlen, and this restriction does not simplify the problem
because 2seedlen is large. The second claim follows from the restriction of Hash to the domain
{0x03} × {0, 1}seedlen.

889[Cryptographic assumptions] This assumption considers the restriction of g to a domain interval
Ib of length 2outlen. Based on (5.52) we also assume

g : {0, 1}outlen → {0, 1}outlen , g(v′) = ψ(0x03∥v′ + b mod 2seedlen) for known b ∈ Z2seedlen

has the pre-image resistance property. It can be modeled by a random mapping. (5.53)

Rationale: For given c ∈ Z2outlen a randomly selected interval Ib := [b, b + 2outlen − 1] contains
one pre-image x∗ of c (i.e. g(x∗) = c) on average. Thus, if finding a pre-image of an restriction
g|Ib

was easy an adversary could also find a pre-image of g in (5.52). In fact, he could select
randomly an integer b ∈ Z2seedlen , and with probability ≈ 1 − e−1 ≈ 0.63 the interval Ib contains
a pre-image of c. In this case the adversary could solve (5.53). The second claim follows from
restricting the domain of g to {0x03} × {0, 1}outlen.

890[Cryptographic assumptions] If a ̸= ∅ then f(v, a) = ψ(0x02∥v∥a). Similar argumentation as in
par. 888 justifies

If a ̸= ∅ then f : {0, 1}seedlen × {0, 1}∗ → {0, 1}outlen , f(v, a) :=
{

Hash(0x02∥v∥a) if a ̸= ∅
0 if a = ∅

has the pre-image resistance property. It can be modeled by a random mapping. (5.54)

Note: In (5.54) we assume that v is unknown.
(Of course, Assumption (5.54) is not valid for a = ∅.)

891[Cryptographic assumptions] The derivation function Hashdf(·, ·) is given by the concatenation
of one or several hash values (possibly truncated) whose pre-images only differ in the first byte;

154 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

5.3 NIST Approved Designs [SP800-90A]: Conformity analysis with regard to DRG.3 and
DRG.4

cf. [SP800-90A], Subsect. 10.3.1. In both the seeding procedure and the reseeding procedure
Hashdf(·, seedlen) is applied twice to compute the first and the second component of the internal
state S; cf. (5.40) and (5.44). In these cases at most three hash values are concatenated,
depending on Hash. Thus, we assume

[seeding procedure, reseeding procedure] Hashdf : {0, 1}∗ → {0, 1}seedlen

has the pre-image resistance property. It can be modeled by a random mapping.(5.55)

Rationale: The following task is not more difficult than finding a pre-image of Hashdf(·, seedlen):
An adversary knows three hash values Hash(x),Hash(x′),Hash(x′′) where x, x′, x′′ are in some
way related (here: differences in the first input byte). The task is to find any pre-image x∗ with
Hash(x∗) = Hash(x). If this was possible this would point to an exploitable correlation of the
hash function Hash for related input values. In particular, this would exclude the modeling of
Hash by a random mapping in the random oracle model.

892 [Cryptographic assumptions] Assume that an adversary knows k < 260 hash values

ψ(x), ψ(x+ δ1(mod 2seedlen)), . . . , ψ(x+ δk−1(mod 2seedlen)) with k < 260 (5.56)

and the differences δj for 1 ≤ j ≤ k − 1 but not x ∈ Z2seedlen (resp., x ∈ {0, 1}seedlen). In the
remainder of this subsection we assume that

To a given δ ∈ Z2seedlen an adversary is not able to calculate ψ(x+ δ(mod 2seedlen))
unless x+ δ(mod 2seedlen) ∈ {x, x+ δ1(mod 2seedlen), . . . , x+ δk−1(mod 2seedlen)}
In particular, the knowledge of (5.56) does not allow to find x. (5.57)

Rationale: This is not a ’standard assumption’ on hash functions (recall that ψ = Hash) but it is
closely related to its pre-image resistance. Assumption (5.57) reminds of Assumption (5.55)
although there only three calls of Hash were considered but not 260. On the other hand,
260 ≪ 2outlen so that a violation of (5.57) would point to a hidden weakness of Hash, namely
to correlations of Hash values for different input values. In particular, this would exclude the
modeling of Hash by a random mapping. In fact, (5.57) follows when modeling of Hash by a
random mapping. Altogether, these arguments make Assumption (5.57) rather plausible.

893 [Cryptographic assumptions] Based on (5.53) we conclude

{0, 1}outlen → {0, 1}outlen , v′ 7→ v′ + b+ g(v′ + b) mod 2outlen for known b ∈ Z2outlen

has the pre-image resistance property. It can be modeled by a random mapping. (5.58)

Rationale: Assumption (5.58) is reasonable because the modular addition of the identity mapping
should be ’incompatible’ with g(·), or more precisely, to its restriction to Ib (cf. 5.53). Arguing
from the modeling by a random mapping, the modular addition of v just means that the values
of g(·) are pointwise shifted mod 2outlen, transforming the uniform distribution to the uniform
distribution.
Note: Assume that v + g(v) = c mod 2seedlen. Since 0 ≤ g(v) < 2outlen we have v ∈ [c mod
2seedlen, c + 2outlen − 1 mod 2seedlen] (modular interval). Thus it suffices to determine v mod
2outlen, which leads to (5.58).

894 By definition,

The output values of ψ = Hash, g, g∗, f consist of outlen bits. (5.59)

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

155

5 Examples

895When proving the backward secrecy and the forward secrecy properties we assume that an
adversary knows a sequence of internal random numbers, while the (intermediate) internal states
(vy, c, y) are unknown for y1 ≤ y ≤ y2 apart from the request counter y. A priori, the values
g∗(vy, ay) and f(vy, ay) are unknown, too. An adversary would gain additional information if he
knew the modular differences

by+1 := vy+1 −vy ≡ g∗(vy, ay)+c+y+f(vy, ay) mod 2seedlen for all y = y1 +1, . . . , y2 . (5.60)

In this case the adversary would know the differences modulo 2seedlen between the first com-
ponents of all (relevant) internal states. (Note that the knowledge of any internal state would
allow an easy computation of all successors.) Within each request no more than 219 random bits
can be output, which means that no more than ⌈219/outlen⌉ ≤ ⌈219/224⌉ < 212 hash values are
computed.

896[backward secrecy and forward secrecy, simpler problem] Now consider the following problem:
The adversary knows the hash values

ψ(ṽy1 + j), . . . , ψ(ṽy1 + 212 − 1), ψ(ṽy1+1), . . . , ψ(ṽy2 + i) (5.61)
and the differences by1+1, . . . , by2 as defined in (5.60)

but not the pre-images of these hash values. Furthermore, the adversary knows which random
numbers belong to which request and that within one request the pre-images form an interval
(to be precise, an interval mod 2seedlen) of length < 212. His task is to determine the successor
(forward secrecy), resp. the predecessor (backward secrecy), of the sequence (5.61).

897[backward secrecy and forward secrecy, simpler problem] Par. 884 formulates the task that an
adversary has to solve in order to violate forward secrecy or backward secrecy. If he additionally
knows the modular differences by+1 (5.60), his task does not become more difficult. In (5.61)
we extended the requests y1 + 1 to y2 − 1 to 212 random numbers per request which is more
information than in par. 884. Furthermore, the random numbers are not truncated, and the
adversary knows the differences by1+1, . . . , by2 . Extending the request lengths to their maximum
does not affect the following internal states and thus, does not affect future random numbers.

898[backward secrecy and forward secrecy, simpler problem] Altogether, the tasks in par. 896 cannot
be more difficult than the tasks of par. 884 because more information is available. The idea in
analyzing the simpler problem is to get rid of complicated design features and to trace back the
problem to the properties of Hash.

899[backward secrecy and forward secrecy, simpler problem] In pars. 900 to 911 we show that it is
not practically feasible to determine the successor or the predecessor of (5.61) or to guess these
values with non-negligibly greater probability than without knowledge of the sequence (5.61).
This shows that the Hash_DRBG fulfills the requirements DRG.3.5 and DRG.3.6.

900[forward secrecy] We begin with the proof of forward secrecy. The successor of (5.61) either is
ψ(ṽy2 + i+ 1) if i ≤ 212 − 2, resp. ψ(ṽy2+1) if i = 212 − 1. We distinguish two cases:

Case i) The pre-image of the searched random number, ψ(ṽy2 + i + 1) or ψ(ṽy2+1), is not
contained in the set of the Hash pre-images in (5.61). By par. 892, Assumption (5.57), an

156 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

5.3 NIST Approved Designs [SP800-90A]: Conformity analysis with regard to DRG.3 and
DRG.4

adversary is not able to exploit the knowledge of the hash values (5.61) and the modular
differences between the pre-images to determine the next random number.

Case ii) The pre-image of the requested random number is contained in the set of pre-images
of (5.61), i.e. a ’pre-image’ hit occurs. Then the adversary’s task is easy because both
succeeding random numbers coincide. (We neglect exceptional cases where one value of a
’pre-image hit pair’ marks the end of a request while the other does not. In particular, we
even overestimate the probability of a pre-image hit in the following.) Before we derive an
upper bound for the probability that Case ii) occurs we point out two facts.

901 [forward secrecy, to par. 900, Case i)] In Case i) by Assumption (5.57) the successor of the
subsequence (5.61) cannot be determined even if all by are known. Furthermore, Assumption
(5.58) prevents an adversary from determining vy from the knowledge of by+1 = by+1(vy, ay) (pre-
image resistance of g∗). Since the value vy is unknown, the adversary cannot increase his success
rate by chosen additional input. Furthermore, the adversary cannot determine vy+1 = bj+1 +vy.

902 [forward secrecy, to par. 900, Case ii)] It is 3 · outlen > seedlen for all admissible hash functions.
Thus, a collision of triplets (ψ(ṽy2 + i− 2), ψ(ṽy2 + i− 1), ψ(ṽy2 + i)) = (ψ(ṽya

+ j − 2), ψ(ṽya
+

j − 1), ψ(ṽya
+ j)) for some request ya is a strong indicator that ṽy2 + i = ṽya

+ j. Except for
Hash = SHA -384, even a collision of 2-tuples should suffice.

903 [forward secrecy, to par. 900, Case ii)] Next, we determine an upper bound for the probability
that Case ii) occurs. By induction on y equation (5.60) implies

vy ≡ v1 + b2 + · · · + by ≡

v1 +
y−1∑
s=1

g∗(vs, as) + (y − 1)c+ y(y − 1)
2 +

y−1∑
s=1

f(vs, as)(mod 2seedlen) (5.62)

for 1 ≤ y ≤ 248 (5.63)

904 [forward secrecy, to par. 900, Case ii)] If the pre-image ṽy2 + i+ 1 (or analogously, the pre-image
ṽy2+1) is contained in the set of pre-images in (5.61), briefly denoted as ’pre-image hit’ in the
following — i.e. Case ii) applies, then ṽy2 + i + 1 ∈ ṽy + {0, . . . , 212 − 1} mod 2seedlen for some
request y < y2 (necessary condition). This is equivalent to vy2 − vy + i + 1 mod 2seedlen ∈
{0, . . . , 212 − 1}. Substituting vy2 and vy by (5.62) yields

y2−1∑
s=y

g∗(vs, as) + (y2 − y)c+ y2(y2 − 1)
2 − y(y − 1)

2 +
y2−1∑
s=y

f(vs, as) + i+ 1

≡ j mod 2seedlen for some 1 ≤ y ≤ y2 ≤ 248, 1 ≤ j ≤ 212 . (5.64)

905 [forward secrecy, to par. 900, Case ii)] A quick look at (5.64) shows that g∗(vs, as), f(vs, as) <
2outlen, y ≤ 248 while i, j ≤ 212. Consequently,

y2−1∑
s=y

g∗(vs, as) + y2(y2 − 1)
2 − y(y − 1)

2 +
y2−1∑
s=y

f(vs, as) + i+ 1 < 2outlen+49 + 295 . (5.65)

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

157

5 Examples

Equation (5.65) says that all terms in (5.64) except c(y2 − y) are < 2outlen+50, and thus only
affect the least outlen + 50 bits if we neglect carries. The most significant bits of (5.64) are
determined by the term (y2 − y)c.

906[forward secrecy] Of course, for a pre-image hit all seedlen bits must coincide. It is not easy to
determine the exact probability for a pre-image hit. Instead, motivated by the observations in
par. 905, we determine an upper bound for this probability by considering ’partial’ pre-image
hits in the least significant outlen bits and in the most significant seedlen− outlen− 50 bits.

907[forward secrecy] In the following we assume that in (5.64) the sum
∑y2−1

s=y (g∗(vs, as)+f(vs, as)) mod
2outlen behaves (stochastically) like a realization of a uniformly distributed random variable Zy

on {0, 1}outlen. This is a mild assumption if we assume that the summands (g∗(vs, as)+f(vs, as))
at least approximately behave like realizations of independent random variables (recall that g∗

and f assume values in Z2outlen).

908[forward secrecy, pre-image hit mod 2outlen] In the following Ay,ℓ denotes the event that a pre-
image hit in the outlen least significant bits of y2 + i + 1 occurs with some random number,
which has been generated in the yth request. Then Prob(Ay,ℓ) < 212−outlen for each y < y2.

909[forward secrecy, pre-image hit on the most significant bits] A pre-image hit does not only imply
a hit of the outlen least significant bits but of all bits, in particular, of the seedlen − t most
significant bits. To simplify our notation we set t := outlen+ 50, and Ay,m denotes a hit in the
(seedlen − t) most significant bits. A pre-image hit for some random number within request y
implies

y2−1∑
s=y

g∗(vs, as) + (y2 − y)c+ y2(y2 − 1)
2 − y(y − 1)

2 +
y2−1∑
s=y

f(vs, as) + i+ 1

mod 2seedlen ∈ [0, 212) . (5.66)

Furthermore, let c = c1 · 2outlen + c0 with c0 = c mod 2outlen. By par. 905

0 ≤ T :=
y2−1∑
s=y

g∗(vs, as) + (y2 − y)c0 +
y2−1∑
s=y

f(vs, as) +

+y2(y2 − 1)
2 − y(y − 1)

2 + i < 3 · 2outlen+48 < 2outlen+50 = 2t , (5.67)

and since the left-hand side of (5.66) equals (y2 − y)c12outlen + T , we conclude that

(y2 − y)c1 · 2outlen mod 2seedlen ∈ [(2seedlen−t − 1)2t, 2seedlen) ∪ [0, 212) . (5.68)

Equation (5.68) is a necessary condition for a pre-image hit of the most significant seedlen − t
bits.

910[forward secrecy] We may assume that c1 is the realization of a random variable C1 that is
uniformly distributed on Z2seedlen−outlen . Then the random variable X := C1/2seedlen−outlen may
be modeled as uniformly distributed in the unit interval [0, 1), because we are interested in the
probability that X is contained in a ’large’ interval, whose length is 2t times 2−seedlen+outlen.
Moreover, since y2 − y is an integer the random variable Xy := X(y2 − y) mod 1 may be viewed

158 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

5.3 NIST Approved Designs [SP800-90A]: Conformity analysis with regard to DRG.3 and
DRG.4

uniformly distributed on [0, 1), too. The term A′
y,m denotes the event that the random variable

C1 fulfills (5.68). Dividing the second line below by 2seedlen yields

Prob(Ay,m) < Prob(A′
y,m) =

Prob((y2 − y)C1 · 2outlen mod 2seedlen ∈ [(2seedlen−t − 1)2t, 2seedlen) ∪ [0, 212)) ≈
Prob(Xy ∈ [1 − 2−seedlen+t, 1)) ≈ 2−seedlen+t . (5.69)

since 212 ≪ 2t. Putting the pieces together gives

Prob(pre-image hit of y2 + i+ 1) <
y2−1∑
y=1

Prob(Ay,m, Ay,ℓ) <
y2−1∑
y=1

Prob(A′
y,m, Ay,ℓ) =

y2−1∑
y=1

Prob(A′
y,m) · Prob(Ay,ℓ) ≤ 248 · 2−seedlen+t · 2−outlen+12 =

2−seedlen+110 ≤ 2−330 . (5.70)

(Since C1 does not affect Prob(Ay,ℓ) this implies that Prob(A′
y,m, Ay,ℓ) = Prob(A′

y,m)·Prob(Ay,ℓ).)
To be precise, for the hash functions SHA -384 and SHA -512 the probability for a pre-image hit
of y2 + i + 1 even is ≤ 2−778. This means that the Hash− DRBG provides forward secrecy, i.e.
fulfills requirement DRG.3.5.

911 [backward secrecy] The proof of the backward secrecy property can be organized analogously.
The only difference is that in place of the pre-images vy2 +j+1 or vy2+1, the pre-images vy1 +i−1
or vy1−1 +my1−1 (if i = 0), respectively, have to be considered. In particular, the Hash_DRNG
fulfills the backward secrecy requirement, i.e. fulfills requirement DRG.3.6.

912 [enhanced backward secrecy] Next, we verify that the Hash_DRBG has enhanced backward
secrecy. We assume that an adversary knows the internal state of the Hash_DRBG after re-
quest y, namely (vy+1, c, y + 1). Assume further that ṽy = ϕreq(vy, ay). To violate the en-
hanced backward secrecy property an adversary has to determine any of the random numbers
ψ(ṽy), ψ(ṽy + 1), . . . , pru(ψ(ṽy +my − 1)) of request y or to guess them with significantly larger
probability than without knowledge of the internal state. (Of course, the knowledge of ṽy or
(vy, ay) would solve this problem.) In particular,

(vy+1, c, y + 1) = ϕB(ṽy, c, y) = (ṽy + g(ṽy) + c+ y mod 2seedlen, c, y + 1) and (5.71)
ṽy = vy + f(vy, ay) mod 2seedlen (5.72)

If ay = ∅ then vy = ṽy. Assume ay ̸= ∅. By (5.50) it would not be easier to determine vy first
instead of ṽy even if an adversary knew the value f(vy, ay). In both cases an adversary had to
solve an equation of the following type: v + g(v) ≡ c mod 2seedlen with known right-had side c.

913 [enhanced backward secrecy] By the assumption in par. 912 the values c and y are known.
Hence, (5.71) allows the adversary to determine the sum ṽy + g(ṽy), or more precisely, ṽy +
g(ṽy) mod 2seedlen. (In very rare cases ṽy + g(ṽy) may exceed the modulus 2seedlen.) As pointed
out in the Note of par. 893 this allows to find an interval Ib of length 2outlen, which contains the
pre-image ṽy. By (5.58) an adversary cannot solve this pre-image problem practically.

914 [enhanced backward secrecy] Recall that the adversary searches the image ψ(ṽy + i) for some
i ≤ 212. By par. 913 the knowledge of ṽy + g(ṽy) does not suffice to determine ṽy. Thus, the

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

159

5 Examples

adversary is not able to guess any of the random numbers ψ(ṽy + i) with significantly greater
probability than without knowledge of the current internal state (vy+1, c, y + 1). Moreover,
by (5.55) Hashdf(·, seedlen) is a one-way function. Hence it is not feasible to determine the
first internal state v1 from c or to guess it with significantly greater probability than without
knowledge of c (cf. par. 880). (Of course, the knowledge of v1 (together with the knowledge of
the additional input data a1, . . . , ay) would allow to recover all the previous random numbers.)
Hence, the Hash_DRBG fulfills the enhanced backward secrecy requirement, i.e. requirement
DRG.3.7.

915[effective internal state] In this paragraph we consider the backward secrecy and forward secrecy.
The internal state is S = S′ × S′ × Z248 . The third component equals the number of the next
request and may be publicly known. Since ψ(·) is a one-way function, it is not possible to
determine any intermediate value ṽy from the random numbers in (5.49) or, which would be a
more favorable scenario for the adversary, from (5.61), even if y1 = 1, y2 = 248 and if for each
vy the subsequence of random numbers has maximum length. In particular, it is not possible
to get vy+1 = pr(S′)(ϕB(ṽy, c, y)) or vy ∈ ϕ−1

req(ṽy). Furthermore, c is the image of v1 under a
one-way function (cf. (5.55), and pars. 876 and 880). Thus, it would require knowledge of v1
to compute c. If only DRG.2-compliance was to be claimed the effective internal state would be
the cartesian product S′ × S′.

916[effective internal state] Our goal is to verify the compliance to the class DRG.3 or to DRG.4. By
par. 915 the effective internal state is a subset of S′ × S′. To verify enhanced backward secrecy
we assume that an adversary knows the internal state (vy, c(vy), y) after request y has been
terminated. Since the second component remains constant the effective internal state equals the
first component S′ of S = S′ ×S′ ×Z248 , and thus comprises 440 bits, 512 bits, or even 888 bits.
In particular, the Hash_DRBG fulfills requirement DRG.3.3.

917[request requirement] By specification the Hash_DRBG fulfills requirement DRG.3.2.

918[additional input] Since f(v, a) (if a ̸= ∅) (5.35) and g(v) (5.36) are closely related to Hash Hence,
the Hash_DRBG fulfills requirement DRG.3.8.

919[cryptographic functions] Both the state transition function ϕ and the output function ψ are
cryptographic and composed of summarized cryptographic primitives. Thus, the Hash_DRBG
fulfills requirement DRG.3.9.

920[statistical tests] The first components of the internal states, v1, v2, . . ., and also the intermediate
values ṽ1, ṽ2, . . ., are images of v1 under the repeated application of two one-way functions (pos-
sibly affected by additional input values a1, a2, . . .). For each intermediate value ṽy, less than
212 random numbers ψ(ṽy), ψ(ṽy + 1), . . . are generated. The random numbers are the (possibly
truncated) hash values of input values that are mutually distinct with overwhelming probability
(cf. par. 910 ff.). If the sequence of random numbers (interpreted as a binary sequence) within
the life cycle of an instance would fail fair statistical tests (i.e. which do not exploit the knowl-
edge of the internal state) significantly often, this would point to inherent weaknesses of the hash
function. Since, for the permitted hash functions (5.26), no statistical weaknesses are known, we
may assume that the Hash_DRBG fulfills requirement DRG.3.10.

921[summary] The Hash_DRBG fulfills the algorithmic requirements DRG.3.2 (par. 917), DRG.3.3

160 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

5.4 Noise Sources and Stochastic Models

(pars. 863, 915, 916), DRG.3.5 (pars. 900 to 910), DRG.3.6 (par. 911), DRG.3.7 (pars. 912 to
914), DRG.3.8 (par. 918), DRG.3.9 (par. 919), and DRG.3.10 (par. 920).

922 [(re-)seeding] It remains the verification that the requirements DRG.3.1 and DRG.3.4 are fulfilled.
These requirements concern the true RNG which is used for the seeding procedure / reseeding
procedure and thus require case-by-case considerations. Par. 923 formulates sufficient conditions
which are easy to check.

923 [(re-)seeding] Assume that the entropy_input string consists of ≥ 256 bits which have been
generated by a TRNG that is compliant with class PTG.2, PTG.3 or NTG.1. Then requirement
DRG.3.1 is fulfilled. Furthermore, requirement DRG.3.4 is fulfilled, too. We first note that the
Shannon entropy of the entropy_input is> 255. If the length of the entropy_input string is ≈ 256
bits (with given (fixed) nonce and personalization_string, resp. with given additional_input)
ϕseed(·, ·), resp. ϕreseed(·, ·), should be ’almost’ injective, thus losing only marginal entropy. Note
that even if the entropy_input string consists of seedlen bits, the entropy loss is marginal; see
Sect. 4.4. Thus, if the length of the entropy_input increases, the defect caused by collisions
increases much slower than the overall entropy of the entropy_input string.
As an alternative to a TRNG which is compliant with PTG.2, PTG.3 or NTG.1, one can use
a TRNG with some guaranteed entropy bound (DRG.3-compliance; cf. DRG.3.1). To achieve
compliance to class DRG.4, the TRNG has to be a PTRNG (cf. DRG.4.1). The minimum
number of bits needed from this TRNG (resp. PTRNG depends on the guaranteed entropy
bound.

924 [(re-)seeding] The second component of the internal state, c = c(v1), does not increase the entropy
of the effective internal state because c is a function of v1.

925 [enhanced forward secrecy] The Hash_DRBG can be ’upgraded’ to class DRG.4 if (parts of) the
entropy_input-string (for the seeding procedure and the reseeding procedure) and / or the high-
entropy additional input data are generated by a physical RNG, provided that a suitable calling
scheme is used (see DRG.4.10). The explanations from pars. 922 and 923 can be transferred
to high-entropy additional input (if applicable) if we replace ’entropy_input’ by ’(high-entropy)
additional input’.

926 [additional input, PTG.3] If the fresh entropy is introduced by additional input the amount of en-
tropy is bounded by the output length of the function f(·, ·), or equivalently, by the output length
of the applied hash function Hash, resp. by the bit length of a single internal random number.
This is an important observation when the Hash− DRBG is considered as cryptographic post-
processing for a PTG.3-compliant PTRNG. Introducing fresh entropy by the seeding procedure
or reseeding procedure allows to introduce (almost) seedlen bits of entropy.

5.4 Noise Sources and Stochastic Models

927 Subsect. 5.4.1 exemplarily addresses different noise sources that are often used by PTRNGs and
NPTRNGs. In Subsects. 5.4.2 to 5.4.5 several stochastic models are discussed and analyzed.
Subsects. 5.4.2, 5.4.5, and 5.4.6 consider concrete designs of physical noise sources while Sub-
sects. 5.4.3 and 5.4.4 focus on the mathematical analysis of generic designs. Several designs of

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

161

5 Examples

physical noise sources fit to these generic designs.

5.4.1 Examples of physical and non-physical noise sources

928Below, a number of noise sources are mentioned that are used by PTRNGs (pars. 930 to 937)
and NPTRNGs (pars. 939 to 942). This list does not claim to be complete and does not provide
any kind of quality assessment. The AIS 20 and AIS 31 are technology neutral. The applicant
has to give evidence that the requirements of the aimed functionality class are fulfilled.

929The quality of a PTRNG does not only depend on the analog part of the physical noise source
but on the whole design, including the digitization mechanism. Due to (inadvertent) band-pass
filtering, inherent noise, and probabilistic detection, for example, a digitization mechanism may
undesirably blur even a physically perfect noise signal or introduce dependencies between sam-
ples. For this reason, this document assumes that the digitization mechanism (and, if applicable,
the sampling mechanisms) is part of the physical noise source of a PTRNG. This applies to
non-physical noise sources as well.

930Shot entropy of a tube diode. The shot entropy of a parallel-plane temperature-limited tube
diode is non-deterministic. The number of electrons emitted from the tube’s cathode during a
time interval follows a Poisson distribution, cf. [DaRo87], Sect. 7-2.

931Thermal resistive entropy. The voltage between resistors varies randomly due to the vibration of
atoms. Ideally, the thermal entropy signal has the same energy in all frequency bands (so called
“white noise”). Sampling an ideally-amplified white noise signal would generate a sequence of
independent bits.

932Semi-conductor diode breakdown entropy. The reverse current through semi-conductor diodes
varies randomly due to the tunneling of electrons. The power of the entropy signal is inversely
proportional to the frequency.

933Free running oscillators. Free running oscillators generate digital signals with an edge-to-edge
random analog time drift (jitter). Sampling a fast oscillator by a lower frequency oscillator gen-
erates a random bit signal. If the standard deviation of the slow oscillator is considerably greater
than the fast period, the sampled bit sequence may be expected to be (nearly) uncorrelated.

934Designs based on metastability in digital circuits. This comprises various designs where parts of
a digital circuit are forced into a state between logic levels ‘0’ and ‘1’ to induce unpredictable
behavior.

935Chaos based noise source. This comprises designs whose behavior is highly sensitive to small
variations (e.g., in voltage, current, or time due to inherent noise). The entropy of the raw
random numbers results from the entropy introduced by physical disturbances and the noise
source’s ability to amplify them and make them measurable ([BuLu08; BuLu16]). Although
classical (mathematical) chaos theory only considers variations of the initial conditions, this
kind of modeling (finally, a DRNG with unlimited entropy in the seed) is not appropriate for
real-world PTRNGs and will not be accepted. Instead, it has to be shown that the average

162 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

5.4 Noise Sources and Stochastic Models

supply of entropy to the system exceeds the output rate.

936 Radioactive atomic disintegration. The number of decay events (detected particles) per time
interval follows a Poisson distribution; see Subsect. 5.4.5.

937 Quantum noise source. Quantum RNGs exploits physical phenomena that contain randomness
according to the laws of quantum mechanics. This document does not distinguish between
quantum entropy and entropy from physical phenomena based on other physical models. The
AIS 31 considers quantum RNGs as PTRNGs already because of the digitization mechanism
that transfers the analog data to raw random numbers.

938 Pars. 939 to 942 consider noise sources for NPTRNGs.

939 General system data. A computer (e.g., a PC or a server) offers a variety of possibilities to collect
data that are non-deterministic. It should be noted, however, that many sources deliver infor-
mation which are comparatively easy to guess, to influence, or determine in a different way. Ex-
amples: network data, file system or process header information, threads, current time and date,
time since system start, disk I/O operations, interrupts, etc. The reference [Linux_RNG_2022]
treats the Linux /dev/random and /dev/urandom.

940 Time stamps. If available (e.g., CPU instruction RDTSC), a highly precise time stamp counter
can be used to generate data which are hard to predict by an adversary. The least significant
bits of time stamps should be affected by all activities currently running on the computer. Under
suitable conditions virtualization does not negatively influence the suitability of time stamps as
noise sources for NPTRNGs; cf. [Linux_RNG_2022; RNG_virtual_env].

941 Human interaction. Input data generated by the user (e.g., mouse movement and key strokes)
usually contains little entropy. In order to generate a (considerable) amount of entropy from hu-
man interaction, the computer needs to apply highly precise time resolution (similar to par. 940).

942 Software execution jitter. This approach uses specially crafted software whose execution time
varies greatly. The cause for variances of the execution times depends on the platform; see
[Jitter-RNG] etc.

943 Note: Applicants for certificates, designers, and evaluators may apply the results and strategies
from Subsects. 5.4.2 to 5.4.6. But, of course, it has to be verified that the assumptions are
justified for the physical noise source under evaluation.

5.4.2 PTRNG with two noisy diodes

944 In Subsect. 5.4.2 we discuss a PTRNG design that exploits two noisy diodes. The design is
analyzed, relevant conclusions are summarized, and finally a stochastic model is developed. For
many details we refer the interested reader to [KiSc08]. This and related designs are also treated
in [Schi09b]. Some new considerations are added in the following. We mention that this design
is also treated in ISO / IEC 20543 [ISO_20543], A.3.4, Example 2.

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

163

5 Examples

945[diodes] Zener diodes have a reverse avalanche effect (depending on diode type, 3 − 4 V or about
10 V) and produce more than 1mV of noisy voltage with a cutoff frequency of about 10 MHz.
The flicker noise in Schottky diodes is associated with static current flow in both resistive and
depletion regions, caused by traps due to crystal defects and contaminants, which randomly
capture and release carriers.

946[design] Fig. 11 illustrates the PTRNG design which is discussed in Subsect. 5.4.2. The circuit of

Figure 11: PTRNG with two noisy diodes (schematic design), created by W. Killmann

the AC coupling, the negative feedback for the operational amplifier, the stabilizing mechanism
for the power supply and compensating effects of temperature have been omitted for clarity in
Fig. 11.

947[design] In Fig. 11 the outlets of two identical noisy diodes provide the input to an operational
amplifier. The operational amplifier applies bandpass filters and amplifies the difference of the
noisy voltages (with a very high amplification rate). Its output voltage is fed into a Schmitt
trigger. The mean voltage of the output signal of the amplifier is approximately in the middle
of the two threshold values of the Schmitt trigger. When the input voltage is below the lower
threshold value, the output signal of the Schmitt trigger assumes the value ‘low’ (= 0), when
the input voltage exceeds the higher threshold value the output value is ‘high’ (= 1), and when
the input voltage is between the two levels the output retains its value. For the generation
of random numbers, the proposed design exploits the 0-1-crossings (‘up-crossings’). Each up-
crossing switches the output value of the Schmitt trigger from 0 to 1 and clocks an intermediate
flip-flop that inverts the D-input of a second flip-flop. The second clock is latched by a regular
clock signal at equidistant times s0 := 0, s1 := s, s2 := 2s,

948The physical noise source exploits the random time intervals between subsequent 0-1-crossings.
Due to the steep edges of the output of the operational amplifier and since only the 0-1-crossings
are exploited, the hysteresis effect should be negligible.

949[random numbers] The number of 0-1-crossings within the nth clock cycle, i.e., within the time

164 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

5.4 Noise Sources and Stochastic Models

interval In := (sn−1, sn] = ((n − 1)s, ns], gives the raw random number rn ∈ N0. Finally, the
internal random numbers are given by yn+1 = yn ⊕ rn+1(= yn ⊕ rn+1(mod2)). We denote
the sequence r1, r2, . . . as ‘virtual’ in this context because these integers never appear explicitly.
Although the internal random numbers (5.73) depend only on rn(mod 2), the least significant
bit of rn, the stochastic model and the online tests should consider the virtual raw random
numbers r1, r2, . . . as they contain more information than their least significant bits.
Note: ‘y′

0 denotes the value output of the flip-flop when the ‘observation’ (at time t = 0) starts.

950 Principally, the design in Fig. 11 would also work with a single noisy diode in place of two. A
single diode yet is potentially more vulnerable to environmental conditions, and in particular to
an adversary who aims to manipulate the output voltage of the diode(s) by active attacks, e.g.
by applying an external electromagnetic field.
Note: Designs based on single diodes are not generally unsuitable but additional measures should
then be considered to mitigate these threats.

951 [experiments] We provide experimental results from a PTRNG prototype for which the design
left to the first flip-flop equals the schematic design from Fig. 11; cf. [KiSc08], Sect. 5). We
mention that the operations that follow the up-crossings are principally deterministic as soon as
the position of one 0-1-crossing relative to the regular clock signal has been fixed; cf. par. 992
The PTRNG prototype was kindly provided by Frank Bergmann.

Figure 12: Hardware setup of the PTRNG [KiSc08], Fig. 2

952 Obviously,
yn ≡ yn−1 + rn ≡ y0 + r1 + · · · + rn (mod 2) for n ≥ 1 (5.73)

where y0 denotes the internal random number at time t = 0. This simple algorithmic post-
processing allows the transfer of results on the raw random numbers (mod 2) to the internal
random numbers.

953 Below, we summarize analyzes and facts which are relevant for the evaluation and for the stochas-
tic model. As usual, we interpret the (virtual) raw random numbers r1, r2, . . . and the internal
random numbers y0, y1, . . . , as realizations of random variables R1, R2, . . . and Y0, Y1, . . ., respec-
tively. Our goal is to (at least) determine lower bounds for the following average conditional

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

165

5 Examples

entropies

H(Rn+1 | R1, . . . , Rn) and finally (5.74)
H(Rn+1(mod 2) | R1(mod 2), . . . , Rn(mod 2)) = H(Yn+1 | Y0, Y1, . . . , Yn) (5.75)

The right-hand conditional entropy in (5.75) corresponds to the real-world scenario where an
adversary knows several internal random numbers y0, y1, y2, . . . , yn.

954We interpret the lengths t1, t2, . . . of the time intervals between consecutive 0-1-crossings as
realizations of a stochastic process T1, T2, One may assume that the analog part of the
physical noise source is in an equilibrium state when enough time has passed since the start of
the PTRNG (a fraction of a second should suffice). The stochastic behavior of the PTRNG is
determined by several operational constants (as breakdown voltages of the noisy diodes, electronic
characteristics of the amplifier, or threshold levels of the Schmitt trigger). Consequently, shortly
after the start-up the stochastic process T1, T2, . . . should be stationary, or more precisely, time-
local stationary. Long-term drifts (caused by the feedback loop of the amplifier, by changing
environmental conditions or by ageing effects) are ignored in the following, cf. pars. 653 to 656.
If needed, earlier time intervals between consecutive 0-1-crossings (before equilibrium) may be
denoted with negative indices (. . . , t−2, t−1, t0).

955It should be noted that in a modification of this design where both the 0-1-crossings and the
1-0-crossings are counted, the sequence of random intervals between two consecutive crossings
would presumably lose the time-local stationarity property. The reason for that is that the ran-
dom intervals between consecutive 1-0-crossings and 0-1-crossings are in general not identically
distributed. And even if the time-local stationarity would still hold, its justification and verifi-
cation would become significantly more difficult. The selected design increases the robustness of
the design and simplifies its security analysis at the cost of halving the output rate. Recall that
physical noise sources that generate non-stationary raw random numbers are not compliant with
the functionality classes PTG.2 and PTG.3.

956Due to the nature of shot noise, one may assume that the stochastic process T1, T2, . . . is q-
dependent (cf. par. 480) with small q. This assumption was supported by experiments, see
[KiSc08], Sect. 5. For the lags τ = 1, . . . , 5 the autocorrelation

E ((Tj − E(Tj))(Tj+τ − E(Tj+τ)))√
Var(Tj)

√
Var(Tj+τ)

(5.76)

of the stochastic process T1, T2, . . . was estimated. In all cases the absolute value was < 0.002,
which suggests that both q and the magnitude of dependencies is small. In fact, this observation
is consistent with the hypothesis that the random variables T1, T2, . . . , are essentially iid. But
the conclusion that the variables are indeed iid cannot be drawn from this observation alone.
Instead, this would require further analysis. As in [KiSc08] we cautiously assume q ≤ 1 but
especially point to results that apply when the Tj are iid.

957The q-dependence T1, T2, . . . ensures that a version of the CLT (Central Limit Theorem) applies
to the random variables T1, T2 . . .; cf. par. 969. We introduce the notation µ := E(T1) and
σ2

T := Var(T1). Of course, σ2
T > 0 since otherwise the 0-1-crossings would appear periodically,

and the random numbers would not have any entropy. Further (natural and non-restrictive)
assumptions are that E(|Tj |3) < ∞ (necessary condition for the applied version of the CLT) and
Prob(T1 = 0) = 0 which is ensured by the technical properties of a Schmitt trigger.

166 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

5.4 Noise Sources and Stochastic Models

958 Par. 959 considers the one-dimensional distribution of the Tj , while pars. 960 and 961 address
the output of the operational amplifier.

959 Fig. 13 plots the distribution of the time intervals between successive 0-1-crossings, and Fig. 14
illustrates the percentiles of the distribution. (Both diagrams belong to different measurements.)
These experiments verify that the random variables T1, T2, . . . are approximately Gamma-distributed
(cf. par. 441). In [KiSc08], Sect. 5, the shape parameter α and the rate parameter β were es-
timated to α̃ = 3.0949 and β̃ = 0.0240: Furthermore, the mean length between successive
0-1-crossings, E(Tj), was ≈ 128.85 ns, and the standard deviation ≈ 72.9 ns.

Figure 13: Empirical distribution of the
time intervals between successive 0-1-
crossings (in ns) [KiSc08], Fig. 3

Figure 14: Percentiles of the Gamma distri-
bution (curve) vs. the observed percentiles
(circles) of the time intervals between suc-
cessive 0-1-crossings (in ns) [KiSc08], Fig. 3

960 Fig. 15 and Fig. 16 plot the power spectrum and the autocorrelation function of the output signal
of the amplifier.

961 Fig. 17 and Fig. 18 show typical output curves of the operational amplifier within time intervals
of 1ns (resolution: 8 bits).

962 The term w0 denotes the time of the first 0-1-crossing after t = 0 (when the observation of the raw
random numbers begins). The term zn denotes the index of the first 0-1-crossing that follows after
time sn = ns when the clock has latched the nth time. Furthermore, wn := w0 + t1 + · · · tzn

− sn

equals the time interval from latching time sn of the second flip-flop to the next 0-1-crossing. In
particular,

w0 + t1 + · · · + tzn−1 ≤ sn < w0 + t1 + · · · + tzn
. (5.77)

963
A Proposal for Functionality Classes for Random Number Generators

Version 2.35 - DRAFT
167

5 Examples

Figure 15: Mean power spectrum of the
output of the amplifier (low amplification),
created by W. Killmann

Figure 16: Autocorrelation of the amplified
difference of noise voltages (maximum am-
plification, time in ns), created by W. Kill-
mann

The equations (5.78) to (5.81) show relations between several random variables

T1, T2, . . . are stationary and q-dependent , (5.78)
Zn := min{m ∈ N0 | W0 + T1 + T2 + . . .+ Tm > sn} , (5.79)
Rn := Zn − Zn−1 , (5.80)
Wn := W0 + T1 + · · · + TZn

− sn . (5.81)

964The relations (5.78) to (5.81) fit for other PTRNG designs, too. This would be the case if we
would replace the two noisy diodes by a single noisy diode, and Example 3.5 in [Schi09b] considers
a physical noise source with two independent ring oscillators. The distribution of the random
variables T1, T2, . . . and thus the distribution of R1, R2, . . . and Y1, Y2, . . ., may vary significantly
for different PTRNG designs. Thus, it is profitable to study the system of random variables
that is defined by (5.78) to (5.81), under general (weak) assumptions as well as for the specific
distribution of the Tj , e.g., for iid or Markovian random variables T1, T2, For our design
q ≤ 1.

965A special feature of this PTRNG design is that under mild assumptions, the sequence T1, T2, . . .
‘inherits’ the stationarity property to other random variables; for details see [KiSc08], Lemma 1
and Assumption 1. In particular, the random variables

(Tj)j∈N , (Rj)j∈N , (Wj)j∈N0
, (Rj(mod 2))j∈N , and (Yj)j∈N are stationarily distributed.

(5.82)
The stationarity suggests the analysis of the autocovariance and autocorrelation of these stochas-
tic processes.

966
168 A Proposal for Functionality Classes for Random Number Generators

Version 2.35 - DRAFT

5.4 Noise Sources and Stochastic Models

Figure 17: Output signal of the operational
amplifier (low amplification), time-scale in
ns, created by W. Killmann

Figure 18: Output signal of the operational
amplifier (maximum amplification), time-
scale in ns, created by W. Killmann

[definition] The terms

GT (u) := Prob(Tj ≤ u) and GW (u) := Prob(Wj ≤ u) (5.83)

denote the cumulative distribution functions of the random variables Tj and Wj . Furthermore,
for u ∈ (0,∞) the random variable

V(u) := inf

τ ∈ N |
τ+1∑
j=1

Tj > u

 = sup

τ ∈ N |
τ∑

j=1
Tj ≤ u

 (5.84)

quantifies the number of random 0-1-crossings in the interval (0, u] if W0 ≡ 0. The paragraphs
below summarize important results from [KiSc08], Lemma 2 and Theorem 1.

967 For k ≥ 1 we have

Prob(V(u) = k) = Prob (T1 + · · · + Tk ≤ u) − Prob (T1 + · · · + Tk+1 ≤ u) . (5.85)

968 The cycle length s should be ‘large’ compared to the mean length between two 0-1-crossings where
the quantitative meaning of ‘large’ also depends on the generalized variance of the Tj . Otherwise,
the entropy of the random variables Rj might be very small, in particular, if the cycle length
s is close to a small integer multiple of µ. Even if the parameter s would be selected in the
middle of two integer multiples of µ, such a design would be rather sensitive to a variation of the
parameter µ. The internal random numbers depend only on Rj(mod 2), the least significant bit
of Rn. However, it is advisable to select the cycle length s so large that the distribution of Rj

has several probable outcomes around the ratio s/µ. This provides distributions which are more
robust against deviations of the parameters.

969
A Proposal for Functionality Classes for Random Number Generators

Version 2.35 - DRAFT
169

5 Examples

Since T1, T2, . . . are assumed to be stationary and q-dependent (with q ≤ 1, cf. par. 956) and
since s ≫ µ, the CLT may be applied to the right-hand probabilities of (5.85) so that

Prob
(
T1 + · · · + Tk − kµ√

kσ
≤ x

)
−→k→∞ Φ(x) for x ∈ R. (5.86)

The variance σ2 is computed by (4.44) with q = 1, while Φ denotes the cumulative distribution
function of the standard normal distribution (cf. par. 474, (4.35)). The mathematical background
is sketched in pars. 481 and 482. We follow [KiSc08].

970Let u = vµ with v ≫ 1. By (5.85) and (5.86) we obtain

Prob
(
V(vµ) = k

)
≈ Φ

(
v − k√
k

· µ
σ

)
− Φ

(
v − (k + 1)√

k + 1
· µ
σ

)
for k ≥ 1 (5.87)

Prob
(
V(vµ) = 0

)
≈ 1 − Φ

(
(v − 1)µ

σ

)
. (5.88)

Interestingly, the distribution of the random variable V(vµ) (or more precisely, its normal ap-
proximation) depends only on the ratios µ/σ and u/µ = v but not on the absolute values of the
parameters µ, σ2, u = vµ. The mass of V(vµ) is essentially concentrated on the values k around
k ≈ v. Since s ≫ µ the approximation error should be negligible.

971[iid case] If the random variables T1, T2, . . . are iid, it is well-known (cf. par. 495) that then

GW (x) := Prob(Wn ≤ x) = 1
µ

∫ x

0
(1 −GT (u)) du . (5.89)

If GT (·) is continuous (or equivalently, if Prob(T1 = y) = 0 for all y ∈ [0,∞)), then GW (·) has
density gW (x) := (1 −GT (x))/µ.

972Equations (5.90) and (5.91) provide an expression for the kth moment for the sum R1 + R2 +
· · · +Rj).

E((R1 + · · · +Rj)k) =
∫ js

0
E((V(js−u) + 1)k | W0 = u)GW (du) (5.90)

≈
∫ js

0
E((V(js−u) + 1)k)GW (du) for each k ∈ N (5.91)

with equality for iid random variables Tj . The term ‘+1’ in (5.90) and (5.91) is needed because
the random variables V(u) do not consider the origin (t = 0). For j ≥ 1 the stationarity of the
Rj implies

E((R1 + . . .+Rj)2) = jE(R2
1) + 2

j∑
i=2

(j + 1 − i)E(R1Ri) . (5.92)

Beginning with E(R2
1) and then adding in (5.90), successively the random variables R2, R3, . . .

one obtains E(R1R2), E(R1R3), . . . in terms of expressions which are already known.

973Under mild regularity assumptions on the random variables T1, T2, . . ., heuristic arguments pro-
vide the inequality

H(Yn+1 | Y1, . . . , Yn) = H(Rn+1(mod 2) | R1(mod 2), . . . , Rn(mod 2))
≥ min{H(V(s−u)(mod2)) | u ∈ [0, µ+ aσ)}GW (µ+ aσ). (5.93)

170 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

5.4 Noise Sources and Stochastic Models

where a > 0 should be selected such that GW (µ + aσ) ≈ 1. The idea of the min-operation is
to consider the worst case (depending on Wn). Apart from the impact on the time remaining
until the next latch by the regular clock, potential dependencies between Wn and Rn+1 are not
considered. Due to the preceding such dependencies, if existent at all, should be rather small. If
the random variables T1, T2, . . . are (almost) iid, easier formulae are derived below.

974 For the raw random numbers we obtain

Prob(Rn+1 = k) ≈
∫ s

0
Prob(V(s−u) = k − 1)GW (du) for k ∈ N0 (5.94)

H(Rn+1(mod 2)) ≥ H(Rn+1(mod 2) | Wn) ≈
∫ s

0
H(V(s−u)(mod 2))GW (du) (5.95)

If the random variables T1, T2, . . . are iid in (5.94) and (5.95), ‘≈’ signs can be replaced by ‘=’.

975 [Case: T1, T2, . . . are iid] If the random variables T1, T2, . . . are iid, then (Wn−1, Rn)n∈N defines
a Markov chain on the state space R+ × N0. In this case W0, T1, T2, . . . induces a stationary
renewal process Z ′(t) := inf{k | W0 + T1 + · · · + Tk > t}, where t ranges in [0,∞); cf. pars. 495
to 497. In particular, Zn = Z ′(sn). Even for iid random variables T1, T2, . . . the random variables
R1, R2, . . . are usually not iid because large Rn (i.e., many 0-1-crossings in the nth interval) makes
it plausible that the last 0-1-crossing has occurred shortly before the end of this interval and
thus that Wn is likely to be ‘large’. Hence Rn and Rn+1 are weakly negatively correlated. For
deeper mathematical analysis see Subsect. 5.4.3, pars. 1031 ff.
However, if s ≫ µ (as recommended) and if σ/µ is not ‘small’ the dependency between Rn and
Rn+1 should be small. Table 1 in [KiSc08] underlines that this is the case for the evaluated
design.

976 If the sequence T1, T2, . . . is iid and the random variables R1, R2, . . . are ‘almost’ independent
(since µ ≪ s), then

H(Yn+1 | Y0, . . . , Yn) ≈
∫ s

0
H(V(s−u)(mod 2))GW (du) for all n ∈ N. (5.96)

If GT (·) is continuous (may be assumed here; cf. par. 956), then (5.96) reads

H(Yn+1 | Y0, . . . , Yn) ≈
∫ s

0
H(V(s−u)(mod 2)) 1

µ
(1 −GT (u)) du. (5.97)

977 [iid case] For iid Tj (5.89) provides an explicit formula for the cumulative distribution function
GW (·), and if GT is continuous, also for the density of Wn. If Tj ∼ γα,β · λ (par. 959), then
Fubini’s Theorem, µ = α/β (par. 441), and the properties of the Gamma function imply that

E (Wm
n) =

∫ ∞

0
um 1

µ

∫ ∞

u

γα,β(v) dv du =
∫ ∞

0

∫ v

0
um 1

µ

βα

Γ(α)v
α−1e−βv du dv =∫ ∞

0

1
m+ 1v

m+1 1
µ

βα

Γ(α)v
α−1e−βv dv =

∫ ∞

0

1
m+ 1

1
µ

βα+m+1Γ(α+m+ 1)
βm+1Γ(α)Γ(α+m+ 1)v

α+m+1−1e−βv dv =

1
m+ 1

1
µ

Γ(α+m+ 1)
βm+1Γ(α)

∫ ∞

0
γα+m+1,β(v) dv = 1

m+ 1
β

α

(α+m) · · ·α
βm+1 · 1 =

1
(m+ 1)βm

(α+m) · · · (α+ 1) for m ≥ 1 . (5.98)

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

171

5 Examples

As an immediate consequence we obtain

E(Wn) = α+ 1
2β and Var(Wn) = (α+ 2)(α+ 1)

3β2 − (α+ 1)2

4β2 = α2 + 6α+ 5
12β2 . (5.99)

978Subsect. 5.4.3 provides a thorough analysis of a generic stochastic model with iid random vari-
ables T1, T2, . . ., allowing the computation of the joint distribution of (R1, . . . , Rm) for m ≥
1. Therefrom, both the Shannon entropy and the min-entropy of the the random variables
(R1(mod2), . . . , Rm(mod2)) can be computed. Under suitable circumstances these results can
also be applied if the Tj are only weakly dependent; cf. Subsect. 5.4.3.

979[stochastic model] Essential for the evaluation is the stochastic behavior of the (random) intervals
between consecutive 0-1-crossings. We described these random intervals by random variables
T1, T2, Our first task was to characterize these random variables. By technical arguments
that consider the properties of the noisy diodes and of the operational amplifier, and supported by
experiments, in [KiSc08] was given evidence that the random variables T1, T2, . . . are stationary
and q-dependent. It was concluded that q can be selected ≤ 1 with only small dependencies
between Tj and Tj+1. The one-dimensional distribution of the random variables Tj can be
approximated by a Gamma distribution; cf. pars. 951, 954, 956, 959, 960, 961. Further analysis
depends on these findings.

980[stochastic model] A Gamma distribution depends on two parameters, the shape parameter α
and the rate parameter β. Possibly, it can be shown that the random variables T1, T2, . . . are
‘almost’ iid (= 0-dependent). This conclusion (as far as applicable) would require deeper analysis
of the design but would simplify the further analysis to some degree.

981[stochastic model] Actually, the stochastic model should comprise a family of admissible distri-
butions of the raw random number variables R1, R2, . . ., called ‘virtual raw random numbers’ in
[KiSc08] because they do not ‘really’ appear. The specification of this family of distributions is
not easy, not even if the Tj are iid (par. 975). It should be noted that par. 974, formula (5.94),
specifies the one-dimensional distribution of Rn. If s ≫ µ (as recommended) the dependencies
between neighboring Rn should be weak, and it is rather likely, that the (mod 2) operation re-
duces dependencies additionally . In particular, the virtual raw random numbers R1, R2, . . . and
R1(mod 2), R2(mod 2), . . . are stationary (5.82).

982[stochastic model] On the other hand, the relevant conclusions from above are closely connected
to the random variables V(u); cf. pars. 972, 973, 974, 976. In particular, this allows the deter-
mination of lower entropy bounds for the internal random numbers (cf. (5.93), (5.96), (5.97)).
Hence, we consider the ‘auxiliary’ random variables V(u); cf. par. 635.

983[entropy] Tab. 1 in [KiSc08] summarizes results for several parameter sets. Recall that µ̃ = 128.85
ns (estimate of E(Tj); cf. par. 959). For the most conservative design parameter s = 15.017µ̃
the conditional Shannon entropy per raw random bit, Rj(mod 2), (Rn+1(mod 2) | Rn+1(mod
2), . . . , Rn+1(mod 2)), is assumed to be > 1 − 10−4; cf. [KiSc08], Sect. 5. This gives an output
rate of raw random bits (= output rate of internal random numbers) of a little nore than 500
kBit/sec.

984[stochastic model] The distribution of the random variable V(u) depends on the parameters

172 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

5.4 Noise Sources and Stochastic Models

u = vµ and µ/σ, or equivalently, on v = u/µ and µ/σ, cf. (5.87) and (5.88). The distribution of
the raw random numbers R1, R2, . . . as well as of R1(mod 2), R2(mod 2), . . ., and their average
conditional entropy depends on the ratios s/µ and µ/σ.

985 [stochastic model] This means that the stochastic model of the raw random numbers is a 2-
parameter model with parameters (s/µ, µ/σ) ∈ (0,∞)2. A central task of the evaluation is to
specify subsets Areal, Agood, Abad = (0,∞)2 \ Agood ⊆ (0,∞)2; cf. Subsect. 4.5.3. In particular,
the parameters in Areal and Agood provide enough conditional entropy; cf. (5.93), (5.96), (5.97).
The online test shall detect if the true parameters leave the subset Areal when the PTRNG is in
operation.
Note: If s is fixed, the 2-parameter-family of admissible distributions can alternatively be
parametrized by (µ, µ/σ), (µ, σ2), or (µ, σ).

986 [online test] The distribution of the raw random numbers (and thus the guaranteed lower entropy
bound for the internal random numbers) depends on the ratios s/µ and µ/σ. The online test shall
detect when these values leave the set of appropriate parameters Agood. General considerations
are found in [KiSc08], Sect. 6. We do not deepen this aspect here but refer to Subsect. 5.4.3.

5.4.3 Sampling events with iid intermediate time intervals – Design A

987 This subsection does not develop and analyze the stochastic model for a concrete design of
a physical noise source. Instead, thorough analysis of a generic stochastic model is provided
that potentially fits to several different designs; cf. pars. 995 and 1015. Unlike (5.96) and
(5.97) this subsection also covers scenarios for which the random variables Rj are far from being
independent.
Note: The developer may apply the results from this subsection but, of course, has to give
evidence that the stochastic model defined below indeed fits to the design under evaluation.

988 In the following we assume that a physical noise source counts (design-specific) events. The time
intervals between two successive events are denoted by t1, t2, The integers rj denote the
number of events within the interval Ij := ((j− 1)s, js] where s denotes the (fixed) length of the
sampling intervals, e.g., the cycle length of a stable clock. Furthermore,

y′
j = rj(mod 2) (5.100)

Note: The definition of the binary random number y′
j differs from that of yj in Subsect. 5.4.2 but

the results on the entropy of the random variables Y ′
j can easily be transferred to the random

variables Yj = Y0 + Y ′
1 + · · · + Y ′

j (mod 2).

989 The first goal is to determine the joint distribution of random variables R1, . . . , Rm. Therefrom
the joint distribution of random variables Y ′

1 , . . . , Y
′

m can be deduced. This allows to determine
the joint entropy and conditional entropy for both Shannon entropy and min entropy. Later, we
develop an effective online test.

990 Example: In Subsect. 5.4.2 the design-specific events are 0-1-crossings of a Schmitt trigger.
Likewise, such events could be radioactive decays as in Subsect. 5.4.5.

991
A Proposal for Functionality Classes for Random Number Generators

Version 2.35 - DRAFT
173

5 Examples

Finally, we are interested in the intermediate random numbers y′
1, y

′
2, However, with regard

to the online test we recommend to count the raw random numbers r1, r2, . . . because rj contains
much more information than y′

j . After the raw random number rj has been read the counter is
reset to 0.

992As already mentioned above the applicant / the developer has to show that this generic stochastic
model fits to the concrete physical noise source. In this subsection, the stochastic model assumes
that sampling is ideal in the sense that r1, r2, . . . equal the exact numbers of events that have
occurred in the intervals I1, I2, In real-world designs, occasional detection errors can occur,
e.g., because an event occurs when a counting flip-flop is in the state of metastability because
the guaranteed setup-time or hold-time restrictions are undercut. If such detection errors occur
rarely and if the entropy proof is not based on the metastability (e.g., of the flip-flop) they may
be neglected in the stochastic model. Furthermore, one may assume that occasional detection
errors (caused by metastability) even slightly increase the entropy of the random numbers.

993The most critical task within the evaluation of the physical noise source is to verify that the
random variables T1, T2, . . . fulfil (at least approximately) the iid assumption. If should be
investigated which physical effects contribute to the variance of the Tj . A favorable scenario
is, for example, if the variance is essentially caused by thermal noise or shot noise. If (low-
frequent) flicker noise has relevant impact the situation becomes more complicated. Here the
Allan variance could be used to estimate the size of the ‘useful jitter’. Perhaps, the results from
this subsection cannot directly be applied but then possibly the basic ideas and strategies might
be used and adjusted. ‘Worst case analysis’, assuming the least favorable assumptions, might
be necessary in place of the integrals developed below, presumably losing some information. For
appropriate designs proving a lower entropy bound should be possible.

994[iid assumption] We assume that the time lengths t1, t2, . . . can be viewed as realizations of iid
random variables T1, T2, As already noted in par. 975 the random variables Z ′(t) := inf{k |
W0 +T1 + · · ·+Tk > t} form a stationary renewal process where t ranges in [0,∞); cf. pars. 1031
ff.

995The iid assumption from par. 994 applies (at least approximately) to several noise source designs.
Example (cf. par. 990): Subsect. 5.4.2 (under the iid assumption; cf. par. 975), radioactive decays
(cf. Subsect. 5.4.5, par. 1058, although there a different sampling mechanism is used).

996For each x ∈ R there exist unique k ∈ Z and b ∈ [0, s) such that x = ks + b. We write
x(mod s) = b. Assume that the real-valued random variables Y1 and Y2 are independent. If
Y1 is uniformly distributed on [0, s) then Y1 + Y2(mod s) is uniformly distributed on [0, s), too,
regardless of the distribution of Y2.

997Let Sj = T1+· · ·+Tj(mod s). Under weak assumptions on the distribution of the Tj the random
variables S1, S2 . . . converge exponentially fast to the uniform distribution on [0, s).
Note: It suffices that the distribution of Tj has a density that is > 0 on some interval I ⊆ [0, s).
Note: We may assume that the PTRNG has started some time before (at time −Js for some
J > 0), and that S0, S1, . . . are uniformly distributed on [0, s) (equilibrium state).

998We use the same notation as in Subsect. 5.4.2. To simplify reading we repeat the definitions.
The random variable W0 describes the (random) time when the first event is detected after time

174 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

5.4 Noise Sources and Stochastic Models

t = 0 (when the observation of the raw random number starts). Furthermore,

T1, T2, . . . are iid , (5.101)
Zn := min{m ∈ N0 | W0 + T1 + T2 + . . .+ Tm > sn} , (5.102)
Rn := Zn − Zn−1 , (5.103)
Wn := W0 + T1 + · · · + TZn

− sn . (5.104)

Unlike in Subsect. 5.4.2, par. 963, the random variables T1, T2, . . . are not only stationarily dis-
tributed and q-dependent but even assumed to be iid.

999 Of course, as in Subsect. 5.4.2, par. 965 (which covers a more general case), the random variables

(Tj)j∈N , (Rj)j∈N , (Wj)j∈N0
, and

(
Y ′

j = Rj(mod 2)
)

j∈N are stationarily distributed. (5.105)

Note: The renewal process Z ′(t) is stationary (cf. par. 994), and thus the sequence R1, R2, . . .
is stationary (cf. par. 495, it is Rn = Zn − Zn−1 = Z ′(ns) − Z ′((n − 1)s)). This in particular
implies the stationarity of Y ′

1 , Y
′

2 , . . . while the stationarity of W0,W1, . . . follows from (4.56).

1000 [Assumption] The distribution of the random variables T1, T2, . . . has density (to be mathemati-
cally precise: a Lebesgue density) g(·). If GT (·) denotes the cumulative distribution function of
Tj then Wj has density gW (·) = 1

µ (1 −GT (·)) (par. 495).
Note: In particular, Prob(Wj > 0) = 1 for all j ∈ N.
Note: The case that the distribution of Tj has a density constitutes the most relevant case for
applications. We mention that similar results can be derived if the random variables T1, T2, . . .
do not have a density g(·) (although with greater mathematical efforts). If the random variables
Tj are discrete the integrals below turn into sums.

1001 For each integer ℓ ≥ 1 the term g∗(ℓ)(·) denotes the ℓ-fold convolution of the density g(·). In
particular, g∗(1)(·) = g(·).
Note: For each t ∈ N0 and ℓ ∈ N the sum Tt+1 + · · · + Tt+ℓ has density g∗(ℓ)(·); cf. pars. 1013
and 1014.

1002 For m ∈ N and k1, . . . , km ∈ N0 it is

Prob (R1 ≤ k1, R1 +R2 ≤ k1 + k2, . . . , R1 + · · · +Rm ≤ k1 + · · · + km) =
Prob (W0 + T1 + · · · + Tk1 > s,W0 + T1 + · · · + Tk1+k2 > 2s, . . . ,

W0 + T1 + · · · + Tk1+···+km > ms) (5.106)

1003 In the next paragraphs we develop integral representations for the joint probabilities of (R1, . . . , Rm).

1004 [k1, . . . , km > 0] If k1, . . . , km > 0 we obtain from (5.106) the integral representation

Prob (R1 ≤ k1, R1 +R2 ≤ k1 + k2, . . . , R1 + · · · +Rm ≤ k1 + · · · + km) =∫ ∞

ms

∫ ∞

(m−1)s

. . .

∫ ∞

s

∫ ∞

0
g∗(km)(um − um−1)g∗(km−1)(um−1 − um−2) · · ·

g∗(k1)(u1 − u0)gW (u0) du0du1 · · · dum−1dum (5.107)

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

175

5 Examples

Note: The term du0 belongs to ‘
∫∞

0 ’.
Note: Since gW (u), g∗(ℓ)(u) = 0 for u < 0 (ℓ ≥ 1) the integrand does not contribute to the
integral unless 0 ≤ u0 ≤ u1 ≤ · · · ≤ um. Likewise, the lower integration boundaries js could be
replaced by max{js, uj−1} (for j = 1, . . . ,m).

1005If kj = 0 for one or several indices j the integral representation (5.107) has to be adjusted. We
begin with an example.

1006[Example: m = 4, k3 = 0] Let (k1, k2, k3, k4) = (3, 7, 0, 2). By (5.106) we obtain

Prob (R1 ≤ 3, R1 +R2 ≤ 10, R1 +R2 +R3 ≤ 10, R1 +R2 +R3 +R4 ≤ 12) =
Prob (W0 + T1 + · · · + T3 > s,W0 + T1 + · · · + T10 > 2s,

W0 + T1 + · · · + T10 > 3s,W0 + T1 + · · · + T12 > 4s) (5.108)

Since the condition (W0 +T1 + · · ·+T10 > 3s) implies the weaker condition (W0 +T1 + · · ·+T10 >
2s) this saves one integral in the integral representation. In particular,

Prob (R1 ≤ 3, R1 +R2 ≤ 10, R1 +R2 +R3 ≤ 10, R1 +R2 +R3 +R4 ≤ 12) =
Prob (W0 + T1 + · · · + T3 > s,W0 + T1 + · · · + T10 > 3s,W0 + T1 + · · · + T12 > 4s) =∫ ∞

4s

∫ ∞

3s

∫ ∞

s

∫ ∞

0
g∗(2)(u4 − u3)g∗(7)(u3 − u1)g∗(3)(u1 − u0)gW (u0) du0du1du3du4(5.109)

Note: The integral ‘
∫∞

3s
. . . g∗(k2)(u3 − u1) · · · du3’ replaces ‘

∫∞
3s

∫∞
2s
. . . g∗(k3)(u3 − u2)g∗(k2)(u2 −

u1) . . . du3du2’ (compared with the integral representation (5.107) for k1, k2, k3, k4 > 0).

1007[kj = 0 for at least one index j] In this and in the following paragraph we generalize the insights
from the preceding example. The goal is to derive an integral representation corresponding
to (5.107). At first, isolated subsequences of 0’s in k1, . . . , km are identified. Each of these
subsequences is treated as explained in par. 1008.
Example: Let (k1, k2, k3, k4, k5, k6, k7) = (9, 0, 0, 3, 1, 5, 0). There are two subsequences of 0’s,
namely k2, k3 and k7.

1008[kj = 0 for at least one index j] In this paragraph we consider the impact of the isolated
subsequences of 0’s (cf. par. 1007) on the integral representation. We assume that kj , . . . , kj+t =
0. We distinguish four cases (t ≥ 0).

Case (a) 1 < j, j + t < m and kj−1, kj+t+1 > 0.
Then W0 + T1 + . . .+ Tk1+···+kj−1 > (j + t)s.
Impact on the integral representation (5.107), compared to the case k1, . . . , km > 0:
The integrals ‘

∫∞
(j+t)s

. . . g∗(kj−1)(uj+t − uj−2) duj+t’ replace the integrals∫∞
(j+t)s

· · ·
∫∞

(j−1)s
. . . g∗(kj+t)(uj+t − uj+t−1) · · · g∗(kj−1)(uj−1 − uj−2) . . . duj−1 · · · duj+t.

Case (b) 1 = j, 1 + t < m and kt+2 > 0.
Then W0 > (t+ 1)s, W0 + T1 + . . .+ Tkt+2 > (t+ 2)s.
Impact on the integral representation (5.107), compared to the case k1, . . . , km > 0:
The integrals ‘

∫∞
(t+2)s

∫∞
(t+1)s

. . . g∗(kt+2)(ut+2 − u0)gW (u0) dut+2du0’ replace the integrals

176 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

5.4 Noise Sources and Stochastic Models

∫∞
(t+2)s

· · ·
∫∞

0 . . . g∗(kt+2)(ut+2 − ut+1) · · · gW (u0) du0 · · · dut+2.

Case (c) 1 < j, j + t = m and kj−1 > 0
Then W0 + T1 + . . .+ Tkj−1 > ms.
Impact on the integral representation (5.107), compared to the case k1, . . . , km > 0:
The integrals ‘

∫∞
ms

. . . g∗(kj−1)(um − uj−2) dum’ replace the integrals∫∞
ms

· · ·
∫∞

js
. . . g∗(km)(um − um−1) · · · g∗(kj)(uj − uj−1) duj · · · dum.

Case (d) 1 = j, j + t = m (i.e., k1 = . . . , km = 0).
Then W0 > ms.
Impact on the integral representation (5.107), compared to the case k1, . . . , km > 0:
The integral ‘

∫∞
jm
gW (u0) du0’ replaces (5.107).

1009 So far, we have learned how to compute probabilities of the type Prob(R1 ≤ k1, . . . , R1 +
· · · + Rm ≤ k1 + · · · + km). However, finally we are interested in probabilities of the type
Prob(R1 = k1, . . . , Rm = km).

1010 Equation (5.110) provides the desired formula.

Prob (R1 = k1, R2 = k2, . . . , Rm = km) =∑
T ⊆{1,...,m}

(−1)|T | Prob (R1 ≤ ℓ1, R1 +R2 ≤ ℓ2, . . . , R1 + · · · +Rm ≤ ℓm |

ℓj = k1 + · · · + kj − 1 if j ∈ T, ℓj = k1 + · · · + kj else)
for k1, . . . , km ≥ 0 (5.110)

We prove (5.110) by induction on m. For m = 1 (5.110) reads Prob (R1 = k1) = Prob (R1 ≤ k1)−
Prob (R1 ≤ k1 − 1), which is correct. Assume that (5.110) is valid for all 1 ≤ m′ ≤ m. The
inductive step can be verified as follows

Prob (R1 = k1, R2 = k2, . . . , Rm = km, Rm+1 = km+1) =
Prob (R1 = k1, R2 = k2, . . . , Rm = km, R1 + · · · +Rm+1 = k1 + · · · + km+1) =
Prob (R1 = k1, R2 = k2, . . . , Rm = km, R1 + · · · +Rm+1 ≤ k1 + · · · + km+1) −

Prob (R1 = k1, R2 = k2, . . . , Rm = km, R1 + · · · +Rm+1 ≤ k1 + · · · + km+1 − 1)(5.111)

We apply the induction hypothesis separately to the first m components of both summands of
the last equation in (5.111). This leads to

Prob (R1 = k1, R2 = k2, . . . , Rm = km, Rm+1 = km+1) =∑
T ⊆{1,...,m}

(−1)|T | Prob (R1 ≤ ℓ1, R1 +R2 ≤ ℓ2, . . . , R1 + · · · +Rm+1 ≤ k1 + · · · + km+1 |

ℓj = k1 + · · · + kj − 1 if j ∈ T, ℓj = k1 + · · · + kj else) −∑
T ⊆{1,...,m}

(−1)|T | Prob (R1 ≤ ℓ1, R1 +R2 ≤ ℓ2, . . . , R1 + · · · +Rm+1 ≤ k1 + · · · + km+1 − 1 |

ℓj = k1 + · · · + kj − 1 if j ∈ T, ℓj = k1 + · · · + kj else) (5.112)

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

177

5 Examples

Actually, the right-hand probabilities of the second sum in (5.112) correspond to subsets T ′ =
T ∪ {m + 1} ⊆ {1, . . . ,m + 1}. Furthermore, since |T ′| = |T | + 1 we can combine the last two
sums of (5.112), which leads to

Prob (R1 = k1, R2 = k2, . . . , Rm = km, Rm+1 = km+1) =∑
T ⊆{1,...,m,m+1}

(−1)|T | Prob (R1 ≤ ℓ1, R1 +R2 ≤ ℓ2, . . . , R1 + · · · +Rm+1 ≤ ℓm+1 |

ℓj = k1 + · · · + kj − 1 if j ∈ T, ℓj = k1 + · · · + kj else) (5.113)

This completes the proof of (5.110).

1011[Example] Equation (5.114) illustrates the general formula (5.110) for the special case m = 2.

Prob (R1 = k1, R2 = k2) =
Prob (R1 ≤ k1, R1 +R2 ≤ k1 + k2) − Prob (R1 ≤ k1 − 1, R1 +R2 ≤ k1 + k2) −
Prob (R1 ≤ k1, R1 +R2 ≤ k1 + k2 − 1) + Prob (R1 ≤ k1 − 1, R1 +R2 ≤ k1 + k2 − 1)(5.114)

1012[special cases] If k1, . . . , km contains one or more 0s in the right-hand probabilities of (5.110)
‘special cases’ can occur. If ℓj = −1 for some j then the whole probability is 0. If ℓj > ℓj+1 then
ℓj can be replaced by ℓj+1 because the random variables Rj assume non-negative values.

1013[convolution] The expectation and the variance of the sum Tt+1 + · · · + Tt+ℓ are ℓE(Tj) and
ℓVar(Tj).

1014[convolution densities, special cases] If the random variables T1, T2, . . . are iid normally distributed
the sum Tt+1 + · · · + Tt+ℓ is normally distributed, too (cf. par. 440). If the random variables
T1, T2, . . . are iid Gamma distributed the sum Tt+1 + · · · + Tt+ℓ is also Gamma distributed
(par. 442). In both cases it is easy to determine the convolution densities g∗(ℓ).

1015[convolution densities, CLT] In the general case (for arbitrary densities g(·)) it can be difficult
to provide exact expressions for the convolution densities g∗(ℓ). However, if the CLT applies to
the relevant parameters kj (cf. par. 1019) one can use normal densities for the computation of
integrals (5.107). Furthermore, as an additional advantage, in such cases there is no need to
determine the distribution of the Tj exactly. Instead, it suffices to estimate their expectation
and variance.

1016[convolution densities, CLT] Whether the CLT applies to the densities f∗(ℓ)(·) for ℓ ≥ L0 (where
L0 is a suitable lower bound) has to be checked in each case. Of course, the ‘closer’ f is to a
normal distribution the lower L0 can be chosen. Note that the Berry-Esséen-Theorem (see, e.g.,
par. 479) considers the worst case.

1017[convolution densities, CLT] If the CLT applies to the Tj (as in Subsect. 5.4.2) the results from
this subsection may also be applicable to noise sources for which the random variables T1, T2, . . .
are time-locally stationary but show (weak) dependencies (but ‘large’ relevant values kj). Recall
that the CLT is rather robust and, e.g., applies to q-dependent and Markovian random variables
(cf. pars. 481, 482, 483, 489, 490).

1018178 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

5.4 Noise Sources and Stochastic Models

Recall that Y ′
j = Rj(mod 2). Finally, we are interested in the distribution of Y ′

1 , . . . , Y
′

m. Obvi-
ously,

Prob (Y ′
1 = y′

1, . . . , Y
′

m = y′
m) =

∑
kj≡y′

j
(mod 2) for 1≤j≤m

Prob (R1 = k1, . . . , Rm = km)

for y′
1, . . . , y

′
m ∈ {0, 1} (5.115)

1019 In principle, the right-hand side (5.115) comprises infinitely many probabilities. However, if
kj is ‘far’ from the expectation E(Rj) = s

E(T) the corresponding probabilities are negligible.
(The quantitative meaning of ‘far’ depends on the distribution of the Tj , in particular on their
variance.) With regard to (5.110) and (5.115) it seems reasonable to calculate probabilities
Prob(R1 ≤ k1, . . . R1 + · · · + Rm ≤ k1 + · · · + km) for relevant (k1, . . . , km) first because these
probabilities may be needed several times.

1020 Equation (5.115) provides a formula for the joint probability of the random variables Y ′
1 , . . . , Y

′
m.

Applying Bayes’s formula, we obtain the conditional probabilities

Prob
(
Y ′

m = y′
m | Y ′

1 = y′
1, . . . , Y

′
m−1 = y′

m−1
)

= Prob (Y ′
1 = y′

1, . . . , Y
′

m = y′
m)

Prob
(
Y ′

1 = y′
1, . . . , Y

′
m−1 = y′

m−1
) (5.116)

1021 Equations (5.115) and (5.116) allow to calculate the joint entropy and the conditional entropy of
the random variables Y ′

1 , . . . , Y
′

m. This concerns both the Shannon entropy and the min entropy.

1022 [Numerical example] Table 8 provides several numerical examples. In all cases the random vari-
ables Tj are assumed to be N(µ, σ2)-distributed. The figures were not gained by the evaluation
(5.107), (5.110), and (5.115). Instead, the random variables Tj , and implicitly the random vari-
ables Rj , were simulated (sample size N).

The conditional Shannon entropy is computed with formula (4.73) (with m − 1 in place of m).
The conditional min-entropy (last column of Table 8) applies the formula

Hmin(Y ′
m | Y ′

1 , . . . , Y
′

m−1) =
min{Hmin(Y ′

m | Y ′
1 = y′

1, . . . , Y
′

m−1 = y′
m−1) | y′

1, . . . , y
′
m−1 ∈ {0, 1}} . (5.117)

1023 Tab. 8 provides exemplary figures for pairs of parameters. An important question is how sensitive
the corresponding entropy values are with regard to deviations of the parameters. To investigate
this question, in Tab. 9 we considered subsets of parameters. Let

A[α1,α2,β1,β2](µ, σ) := {(µ′, σ′) | α1µ ≤ µ′ ≤ α2µ, β1σ ≤ σ′ ≤ β2σ}, α1, β1 ≤ 1 ≤ α2, β2
(5.118)

Note: The sensitivity of the entropy values is a crucial feature for the robustness of the design of a
physical noise source. Little sensitivity against deviations of the parameters is a desirable feature
(‘robust design’), which reduces the requirements on the online test, and also the protection
against active attacks should become easier.

1024
A Proposal for Functionality Classes for Random Number Generators

Version 2.35 - DRAFT
179

5 Examples

Table 8: Simulation experiments (design type A): Tj ∼ N(µ, σ2), µ = 1.0, sample size N =
10, 000, 000

(
s
µ ,

σ
µ

)
m H(Y ′

1 ,...,Y ′
m)

m

H(Y ′
m | Y ′

1 , . . . , Y
′

m−1) Hmin(Y ′
1 ,...,Y ′

m)
m

Hmin(Y ′
m | Y ′

1 , . . . , Y
′

m−1)

(25, 0.2) 4 0.99998 0.99998 0.9928 0.9914
(10, 0.2) 4 0.9907 0.9907 0.843 0.842
(100, 0.1) 4 0.99997 0.99997 0.9914 0.9905

(10000, 0.01) 4 0.99998 0.99998 0.9922 0.9915

[Numerical example] Tab. 9 provides numerical examples for sets A[0.9,1.1,0.9,1.1(µ, σ). As in
Tab. 8 the random variables Tj are assumed to be N(µ, σ2)-distributed. Again, the figures
were not gained by the evaluation of the formulae (5.107), (5.110), and (5.115). Instead, the
random variables Tj , and implicitly the random variables Rj , were simulated (sample size N).
We treated pairs of parameters (µ′, σ) for which µ′ ∈ {0.9µ, 0.95µ, µ, 1.05µ, 1.10µ} and σ′ ∈
{0.9σ, 0.95σ, σ, 1.05σ, 1.10σ} The conditional Shannon entropy is computed with formula (4.73)
(with m − 1 in place of m). As for Tab. 8 we computed the conditional min-entropy for each
pair (µ′, σ′) with formula (5.117).
Note: The experiments confirm the intuition that (µ′, σ′) = (1.1µ, 0.9σ) is the ‘worst case’.

Table 9: Simulation experiments (design type A): Tj ∼ N(µ, σ2), µ = 1.0, subsets
A[0.9,1.1,0.9,1.1(µ, σ), the index ‘(A)’ indicates that sets are considered. The values in the upper
line denote the average, the values in the lower line the worst case, sample size N = 10, 000, 000,

(
s
µ ,

σ
µ

)
m H(A)(Y ′

1 ,...,Y ′
m)

m

H(A)(Y ′
m | Y ′

1 , . . . , Y
′

m−1) Hmin(A)(Y ′
1 ,...,Y ′

m)
m

Hmin(A)(Y ′
m | Y ′

1 , . . . , Y
′

m−1)

(25, 0.2) 4 0.99995 0.99995 0.9925 0.9905
0.99975 0.99975 0.9758 0.9700

(10, 0.2) 4 0.99172 0.99169 0.8893 0.8764
0.95734 0.95738 0.6803 0.6759

(100, 0.1) 4 0.99988 0.99988 0.9877 0.9860
0.99896 0.99895 0.9465 0.9429

(10000, 0.01) 4 0.99998 0.99998 0.9878 0.9857

0.99892 0.99892 0.9422 0.9422

1025[Numerical example, Gamma distribution] Subsect. 5.4.2 summarizes results from [KiSc08] on a
physical noise source design that exploits two noisy diodes. In [KiSc08] it was shown that the
(one-dimensional) distribution of the Tj can be approximated by a Gamma distribution with
estimated shape parameter α̃ = 3.0949 and estimated rate parameter β̃ = 0.0240. Further-
more, in [KiSc08] it was concluded that consecutive Tj should be 1-dependent and only weakly
autocorrelated. Under the idealized assumption that the Tj are iid Gamma distributed with
parameters α̃ and β̃ simulations (as for Tabs. 8 and 9) show that the conditional min-entropy
Hmin(A)(Y ′

4 | Y ′
1 , . . . , Y

′
3) is > 0.99 for all parameter sets considered in Tab. 1 of [KiSc08].

1026
180 A Proposal for Functionality Classes for Random Number Generators

Version 2.35 - DRAFT

5.4 Noise Sources and Stochastic Models

[stochastic model] The distribution of the variables R1, R2, . . . depends on the distribution of
the iid random variables T1, T2, . . ., and thus also on the number of parameters that specify the
admissible distributions.

1027 [stochastic model] If the Tj are normally distributed or Gamma distributed, for example, their
distribution is defined by µ and σ2 or by the shape parameter α and the rate parameter β. If
the Tj are normally distributed the distribution of the Rj depends on the triples (s, µ, σ), while
for the Gamma distribution it depends on (s, α, β), or equivalently, on (s, µ = α/β, σ =

√
α/β).

In both cases the distribution of the Rj remains unchanged if the triplet (s, µ, σ) is multiplied
by some factor r > 0 (transformation theorem). Consequently, the distribution of the variables
R1, R2, . . . depends on the two parameters (s/µ, µ/σ).
Note 1: If the length of the sampling interval s is fixed, the 2-parameter-family of admissible
distributions of the Rj can alternatively be parametrized, e.g., by (µ, µ/σ), (µ, σ2), or (µ, σ).
This is because the parameters can be transformed into each other by bijective mappings on
[0,∞)2

Note 2: These conclusions hold approximately if the CLT applies; see pars. 1015 to 1017.
Note 3: Interestingly, E(Rj) and (asymptotically) Var(Rj) depend only on (s/µ, σ/µ) for any
distribution of the Tj ; cf. pars.1031 to 1032.

1028 [stochastic model] If the random variables T1, T2, . . . , are iid exponentially distributed with pa-
rameter τ it is well-known that the random variables R1, R2, . . . are iid Poisson distributed with
parameter τs. In this case the stochastic model depends only on one-parameter.
Note 1: This models a physical noise source that counts radioactive decays with the intervals
I1, I2, . . ., using an ideal Geiger counter.
Note 2: Also designs with real-world (non-ideal) Geiger counters are candidates that potentially
fit to the stochastic model considered in this subsection; cf. Subsect. 5.4.5, see in particular
par. 1076.

1029 [online test] Intuitively, it seems to be clear that s/µ and σ/µ should be ‘large’. This intuition has
been confirmed by numerical experiments above. The task of the online test is to detect if any
of these conditions are violated. Generally, one should proceed as follows: In a first step subsets
Areal, Agood, and Abad need to be specified, e.g., for the parameters (s/µ, σ/µ) as described in
Subsect. 4.5.3. The online test shall detect when the true parameters leave the subset Agood

(moving into Abad) when the PTRNG is operation. Usually, testing the empirical distribution of
the Tj is not possible as it would require a precise clock.

1030 [online test] Intuitively, one might expect that a large variance of the random variables R1, R2, . . .
ensures large conditional min-entropy of the internal random numbers. This suggests to test the
integer-valued raw random numbers r1, r2, At first, we have a closer look at E(Rj) and
Var(Rj).

1031 [renewal process] The random variables Z ′(t) := inf{k | W0+T1+· · ·+Tk > t} define a stationary
renewal process (t ∈ [0,∞)); cf. par. 994. It is Zn = Z ′(ns) for all n ∈ N0. This means that
the random variables Z1, Z2, . . . coincide with Z ′(t) at the times t = s, 2s, Let s = τµ, or

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

181

5 Examples

equivalently, τ = s/µ. From (4.54) and (4.55) we obtain

E (Zn) = nτµ

µ
= nτ (5.119)

Var (Zn) =
(
σ2

µ2

)
nτ + 1

6 + σ4

2µ4 −
E
(

(Tj − µ)3
)

3µ3 + o(1) (5.120)

Note 1: Setting n = 1 (5.119) and (5.120) provides E (Rj) and Var (Rj)
Note 2: Furthermore, the stationarity of the Rj implies E(Rj +. . . Rj+i−1) = E(Zi) and Var(Rj +
. . . Rj+i−1) = Var(Zi).

1032[renewal process] If Tj ∼ N(µ, σ2), for example, then E
(

(Tj − µ)3
)

= 0. Then (5.119) and
(5.120) simplify to

E (Rj) = τ and (5.121)

Var (Rj) ≈
(
σ

µ

)2
τ + 1

6 + 1
2

(
σ

µ

)4
for ‘large’ τ = s

µ (5.122)

In our applications usually σ/µ < 1 or even σ/µ ≪ 1 so that (5.122) further simplifies to

Var (Rj) ≈
(
σ

µ

)2
τ + 1

6 for ‘large’ τ = s
µ (5.123)

1033[renewal process] Since the random variables R1, R2, . . . are stationary

Cov(Rn, Rn+1) = 0.5 (Var(Rn +Rn+1) − Var(Rn) − Var(Rn+1)) =
= 0.5 (Var(R1 +R2) − 2Var(R1))) =

= 0.5

−1
6 − 1

2

(
σ

µ

)4
+
E
(

(Tj − µ)3
)

3µ3 + o(1)


= − 1

12 − 1
4

(
σ

µ

)4
+
E
(

(Tj − µ)3
)

6µ3 + o(1) (5.124)

If the third central moment E
(

(Tj − µ)3
)

vanishes (e.g., because Tj ∼ N(µ, σ2)), if σ/µ ≪ 1,
and if τ (and by this, the sampling interval s) is sufficiently large, then (5.124) simplifies to

Cov(Rn, Rn+1) ≈ − 1
12 (5.125)

1034[renewal process] Equation(5.126) follows from definition and by substituting of (5.120) and

182 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

5.4 Noise Sources and Stochastic Models

(5.124). This is an equivalent to (5.92) for variances and covariances.

0 = Var (R1 + . . .+Rj) − jVar(R1) − 2
j∑

i=2
(j + 1 − i)Cov(R1, Ri)

= Var (R1 + . . .+Rj) − jVar(R1) − 2(j − 1)Cov(R1, R2) −
j∑

i=3
(j + 1 − i)Cov(R1, Ri)

=
(
σ2

µ2

)
jτ + 1

6 + σ4

2µ4 −
E
(

(Tj − µ)3
)

3µ3 + o(1) − j

(σ2

µ2

)
τ + 1

6 + σ4

2µ4 −
E
(

(Tj − µ)3
)

3µ3 + o(1)


+2(j − 1)

− 1
12 − 1

4

(
σ

µ

)4
+
E
(

(Tj − µ)3
)

6µ3 + o(1)

−
j∑

i=3
(j + 1 − i)Cov(R1, Ri)

= o(1) −
j∑

i=3
(j + 1 − i)Cov(R1, Ri) for j ≥ 3 (5.126)

Setting j = 3 (5.126) implies Cov(R1, R3) = o(1). By induction on j one concludes

Cov(R1, Rj) = o(1) for j ≥ 3 (5.127)

Thus, if the ratio s/µ is sufficiently large Cov(R1, Rj) ≈ 0 for j ≥ 3 which confirms the intuition.

1035 [renewal process] The first and the third term of (5.120) can be expressed in terms of s/µ and
µ/σ. For given interval length s both terms depend on the two first moments of the Tj , i.e.,
on µ and σ2,. The forth term is a multiple of the third central moment of Tj . If the random
variables Tj are normally distributed the fourth term vanishes. Of course, if the interval length
s is sufficiently large the first term dominates anyway.

1036 [online test] In par. 1027 it was pointed out that if the random variables Tj are normally dis-
tributed or Gamma distributed the distribution of the Rj only depends on s/µ and µ/σ. This
should approximately be true if the CLT applies. Together with the observation in par. 1035
this suggests to apply an online test that exploits estimates of E(Rj) and Var(Rj). This means
that we have to determine regions A′

real and A′
bad such that (E(Rj),Var(Rj)) ∈ A′

real implies
(s/µ, σ/µ) ∈ Areal whereas (s/µ, σ/µ) ∈ Abad implies (E(Rj),Var(Rj)) ∈ A′

bad. (Ideally, the
implications would be equivalences.) And, of course, an appropriate online test must be able
to ‘separate’ A′

real from A′
bad. In particular, the online test shall detect sufficiently soon, if

(E(Rj),Var(Rj)) ∈ A′
bad.

1037 [online test, Tj ∼ N(µ, σ2)] Fig. 19 illustrates the close connection between the min-entropy
of the random variables Y ′

j and Var(Rj) for normally distributed Tj . Parameters (s/µ, σ/µ),
for which the conditional min-entropy Hmin(Y ′

2 | Y ′
1) is 0.98 lie almost perfectly on the curve

{(s/µ, σ/µ) | Var(Rj) = 1.05}, or shortly, {Var(Rj) = 1.05}. This curve was computed by
(5.122). For other conditional min-entropy values the situation is similar; the corresponding
parameters (s/µ, σ/µ) lie almost perfectly on curves with constant Var(Rj).
Note 1: For parameters that imply large conditional min-entropy values (relevant for the class
PTG.2) it is Hmin(Y ′

2 | Y ′
1) ≈ Hmin(Y ′

4 | Y ′
1 , Y

′
2 , Y

′
3).

Note 2: For parameters with small min-entropy values this need not be the case.

1038 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

183

5 Examples

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

E(Rn) = s/µ

σ
/
µ

Hmin(Y
′
n | Y ′n−1) ≈ 0.98

Var(Rn) = 1.05

Figure 19: Tj ∼ N(µ = 1, σ2). The black dots belong to parameters with Hmin(Y ′
2 | Y ′

1) = 0.98

[online test, Tj ∼ N(µ, σ2)] Fig. 20 illustrates how the variance of the Rj separates Areal and
Abad. The upper curve {Var(Rj) = 1.40} corresponds to the conditional min-entropy Hmin(Y ′

2 |
Y ′

1) = 0.995

1039[online test, Tj ∼ N(µ, σ2)] For normally distributed random variables T1, T2, . . . pars. 1037
and 1038 suggest an online test that only exploits the variance Var(Rj). Here, analogously
to par. 1036 subsets A′′

real, A
′′
bad ⊆ (0,∞) for the variance Var(Rj) need to be defined. This

means that Var(Rj) ∈ A′′
real implies (s/µ, σ/µ) ∈ Areal whereas (s/µ, σ/µ) ∈ Abad implies

Var(Rj) ∈ A′′
bad. In par. 1040 the values A′′

real = (1.40,∞) and A′′
bad = (0, 1.05) are used.

1040[online test, Tj ∼ N(µ, σ2)] For the sample of raw random numbers r1, . . . , rm the online test
calculates the one-dimensional empirical variance s2 of the random variables Rj with formula
(4.23). The online test fails if s2 < 1.20. Tab. 10 collects the probabilities for false positives and
false negatives, depending on the sample size m of the online test. False positive means that the
online test fails although the true distribution is in A′′

real. If the online test does not fail although
the true distribution is in A′′

bad we speak of a false negative.

Note 1: Tab. 10 shows that the online test is very strong, especially for N = 2048. In this case,
a complex online test procedure as described in Subsect. 5.5.2 may not be necessary.
Note 2: Assume that B1, B2, . . . , Bm are iid B(1, p)-distributed with Hmin ≥ 0.995 (as for

184 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

5.4 Noise Sources and Stochastic Models

Areal

Abad

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

E(Rn) = s/µ

σ
/
µ

Var(Rn) = 1.4

Var(Rn) = 1.05

Figure 20: Tj ∼ N(µ = 1, σ2). The variance Var(Rn) separates Areal from Abad.

{Var(Rj) ≥ 1.40})Ṫhen |p − 0.5| ≤ 0.0017. There, it requires a much larger sample size m to
separate equally efficient between A∗

real = [0.4983, 0.5017] and A∗
bad = [0, 0.4931] ∪ [0.5069, 1].

1041 [online test, Tj is Gamma distributed] Finally, we consider Gamma-distributed random variables
Tj (shape parameter α, rate parameter β). The variance Var(Rj) follows from (5.120) with
n = 1 where we again assume that the o(1)-term is negligible for the selected parameters. For
Gamma-distributed Tj the third central moment does not vanish. Interestingly,

E
(

(Tj − µ)3
)

3µ3 =
σ3E

((
Tj−µ

σ

)3
)

3µ3 = 1
3

(
σ

µ

)3
· 2√

α
= 2

3

(
σ

µ

)4
(5.128)

Fig. 21 illustrates the close connection between the min-entropy of the random variables Y ′
j and

Var(Rj) if the Tj are Gamma distributed. The situation is rather similar to normally distributed
random variables Tj ; cf. par. 1037, Fig. 19. Consequently, also for Gamma distributed Tj the
empirical variance is an appropriate online test.
Note: It should be taken care that the ratio s/µ is not too small. Otherwise, (even if σ/µ is
sufficiently large) for s/µ ≤ 2 the results are sensitive to changes of the parameters.

1042 [online test] If the random variables are neither normally distributed nor Gamma distributed
the relation between the conditional min-entropy of the random variables Y ′

j and Var(Rj) needs

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

185

5 Examples

Table 10: Simulated probabilities for false positives and false negatives: Tj ∼ N(µ, σ2), µ = 1.0,
test sample size m, number of simulated test values N = 10, 000, 000.

m Prob(false positive) Prob(false negative)
1024 0.00034 0.00096
1536 0.00002 0.00007
2048 0.0000007 0.0000045

to be analyzed as it was done above. It should be taken care that the empirical mean of the
raw random numbers r1, r2, . . . does not become too small, neither by design nor accidentally
while the PTRNG is in operation. Unless the variance of the Tj increases correspondingly the
second scenario should be detected by an online test that computes the empirical variance of Rj .
Otherwise, if it might be possible (under consideration of the physical noise source) that both
the empirical variance and the empirical mean of the Tj can significantly increase at the same
time the online test should additionally monitor the empirical mean of the raw random numbers.

5.4.4 Sampling events with iid intermediate time intervals – Design B

1043As Subsection 5.4.3 this subsection focuses on the mathematical treatment of a generic stochastic
model, which may fit to different noise sources designs.
Note: The developer may refer to this subsection but, of course, has to give evidence that the
stochastic model indeed fits to the design under evaluation.

1044In this subsection we assume that a physical noise source latches a (perfect) square wave with
constant period length s whenever a (design-specific) random event occurs. This event might
be, for example, that a ring oscillator has terminated N periods since the last latching. The
time intervals between two successive events are denoted by t1, t2, Thus, the square wave is
latched at the time instants t1, t1 + t2, . . ., and the raw random numbers r′

1, r
′
2, . . . are given by

r′
j =

{
0 if w0 + t1 + . . .+ tj ∈ [ks, (k + 0.5)s) for some k ∈ N0

1 if w0 + t1 + . . .+ tj ∈ [(k + 0.5)s, (k + 1)s) for some k ∈ N0
(5.129)

Note: Compared to Subsection 5.4.3 the roles of the noise source and of the constant signal are
interchanged.

1045The goal is to determine the joint distribution of random variables R′
1, . . . , R

′
m. This allows

to determine the joint entropy and conditional entropies for both Shannon entropy and min
entropy. Unlike in Subsection 5.4.3 the raw random numbers are not integer-valued but already
binary-valued.

1046As in Subsection 5.4.3 we assume that sampling is ideal in the sense that the raw random numbers
r′

1, r
′
2, . . . are given by (5.129). The latching event can occur around the times ks or (k + 0.5)s

(for k ∈ N0) when the square wave changes its value (from 1 to 0 or from 0 to 1), which may
cause deviations from (5.129). If such ‘latching errors’ occur rarely they may be neglected in the
stochastic model.

1047186 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

5.4 Noise Sources and Stochastic Models

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

E(Rn) = s/µ

σ
/µ

Hmin(Y
′
n | Y ′n−1) ≈ 0.98

Var(Rn) = 1.05

Figure 21: Tj is Gamma-distributed. The black dots belong to parameters with Hmin(Y ′
2 | Y ′

1) =
0.98

[iid assumption] We assume that the time lengths t1, t2, . . . can be viewed as realizations of iid
random variables T1, T2, In particular, the random variables X(t) := sup{k | W0 +T1 + · · · +
Tk ≤ t} define a renewal process (t ∈ [0,∞)); cf. par. 975.

1048 As in Subsection 5.4.3 the random variable W0 describes the (random) time when the first event
occurs after time t = 0. The random variable W0 quantifies the phase of the random events
relative to the square wave when the first considered time interval begins.

1049 [Assumption] The distribution of the random variables T1, T2, . . . has density (to be mathemat-
ically precise: Lebesgue density) g(·). If GT (·) denotes the cumulative distribution function of
Tj then W0j has the density gW (·) = 1

µ (1 −GT (·)) (par. 971).
Note: In particular, Prob(Wj > 0) = 1 for all j ∈ N.
Note: The case that the distribution of Tj has a density constitutes the most relevant case for
applications. We mention that similar results can be derived if the random variables T1, T2, . . .
do not have a density g(·) (although with greater mathematical effort). If the random variables
Tj are discrete the integrals below turn into sums.

1050 For each integer ℓ ≥ 1 the term g∗(ℓ)(·) denotes the ℓ-fold convolution of the density g(·). In

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

187

5 Examples

particular, g∗(1)(·) = g(·).
Note: For each t ∈ N0 and ℓ ∈ N the sum Tt+1 + · · · + Tt+ℓ has density g∗(ℓ)(·).

1051We define the sets A(0) and A(1):

A(0) :=
∞⋃

k=0
[ks, (k + 0.5)s) and A(1) :=

∞⋃
k=0

[(k + 0.5)s, (k + 1)s) (5.130)

It is R′
j = b iff W0 + T1 + · · · + Tj ∈ A(b) for b = 0, 1.

1052For m ∈ N and b1, . . . , bm ∈ {0, 1} we have
Prob (R′

1 = b1, R
′
2 = b2, . . . , R

′
m = bm) =

Prob (W0 + T1 ∈ A(b1),W0 + T1 + T2 ∈ A(b2), . . . ,W0 + T1 + · · ·Tm ∈ A(bm)) =∫
A(bm)

∫
A(bm−1)

. . .

∫
A(b1)

∞∫
0

g∗(m)(um − um−1)g∗(m−1)(um−1 − um−2) · · ·

g∗(1)(u1 − u0)gW (u0) du0du1 · · · dum−1dum (5.131)
Note: The term du0 belongs to ‘

∫∞
0 ’.

Note: Since gW (u), g∗(ℓ)(u) = 0 for u < 0 (ℓ ≥ 1) the integrand does not contribute to the
integral unless 0 ≤ u0 ≤ u1 ≤ · · · ≤ um.

1053If the noise source and the square wave signal are synchronized at time t = 0 then W0 ≡ 0, and
the inner integral (

∫∞
0) in (5.131) drops out.

1054[Numerical example] (to be continued) Table 11 provides several numerical examples. In all cases
the random variables Tj are assumed to be N(µ, σ2)-distributed. The figures were not gained
by the evaluation (5.131). Instead, the random variables Tj , and implicitly the random variables
R′

j , were simulated (sample size N).

The conditional Shannon entropy is computed with formula (4.73) (with m − 1 in place of m).
The conditional min-entropy (last column of Table 11) applies the formula

Hmin(R′
m | R′

1, . . . , R
′
m−1) =

min{Hmin(R′
m | R′

1 = b1, . . . , R
′
m−1 = bm−1) | b1, . . . , bm−1 ∈ {0, 1}} . (5.132)

1055It is much easier to express the joint probability Prob (R′
1 = b1, R

′
2 = b2, . . . , R

′
m = bm) by inte-

grals than in Subsection 5.4.3, and concrete calculations require much less effort. On the negative
side, it seems to be very difficult to develop an effective online test unless the device is able to
measure the intermediate times t1, t2, . . . (or, equivalently, the times t1, t1 + t2, . . .). The reason
is that the binary-valued raw random numbers r′

1, r
′
2, . . . contain much less information than the

integer-valued raw random numbers r1, r2, . . . in Subsection 5.4.3.

5.4.5 PTRNG exploiting radioactive decay

1056
188 A Proposal for Functionality Classes for Random Number Generators

Version 2.35 - DRAFT

5.4 Noise Sources and Stochastic Models

Table 11: Simulation experiments (design type B): Tj ∼ N(µ, σ2), µ = 1.0, sample size N =
10, 000, 000

(
s
µ ,

σ
µ

)
m H(R′

1,...,R′
m)

m

H(R′
m | R′

1, . . . , R
′
m−1) Hmin(R′

1,...,R′
m)

m

Hmin(R′
m | R′

1, . . . , R
′
m−1)

(1971, 0.24) 4 0.9945 0.9913 0.9211 0.7776
(3942, 0.34) 4 0.9975 0.9967 0.9306 0.9012
(7885, 0.48) 4 0.9994 0.9999 0.9969 0.9948

In Subsect. 5.4.5 we discuss the stochastic model of a PTRNG design which exploits a physical
phenomenon, namely radioactive decay, detected and digitized by a Geiger counter. Mathemat-
ically, we follow [Neue04], Sect. 4.2. We mention that this design is also treated in ISO / IEC
20543 [ISO_20543], A.3.4, Example 3.

1057 [design] The noise source is a radioactive source which is assumed to decay spontaneously. There
is a Geiger counter close to this radioactive source. The Geiger counter is connected to a com-
puter. The device measures the intermediate times t1, t2, . . . between consecutive impulses of the
Geiger counter. From these intermediate times the PTRNG computes the raw random numbers.
Furthermore, the half-life L of the radioactive material is substantially larger than the expected
life-time of the PTRNG.

1058 Note: In this subsection we assume that the radioactive material decays to stable products. Our
considerations apply to decay chains, too, if the number of decays of the generated radioactive
products is negligible compared to the number of radioactive decays of the radioactive starting
material. This is the case if the half-life of the generated radioactive products is very large (ab-
solute and compared to that of the radioactive starting material). Of course, the considerations
below can be adjusted to arbitrary decay chains, although in the general case the mathematical
treatment becomes more difficult.

1059 The measured intermediate times t1, t2, . . . are interpreted as realizations of random variables
T1, T2,

1060 [ideal Geiger counter] To become familiar with this design and its special features at first,
pars. 1061 to 1066 consider an ideal Geiger counter. This means that it detects all radioac-
tive decays and measures the intermediate times exactly. In particular, the dead time of an ideal
Geiger counter is 0.

1061 [ideal Geiger counter] If the Geiger counter is ideal, the random intermediate times are in-
dependent and exponentially distributed with parameter θ. The density f(·) and cumulative
distribution function F (·) of the random variables Tj are given by

f(t) = 1
θ
e−θt and F (t) = 1 − e−θt for t > 0 (5.133)

for some parameter θ > 0. The parameter θ does not only depend on the radioactive material
but also on its quantity. For a realistic lifetime of the RNG, we may assume that the parameter
θ essentially remains constant; cf. par. 1058.

1062
A Proposal for Functionality Classes for Random Number Generators

Version 2.35 - DRAFT
189

5 Examples

[ideal Geiger counter] Under this assumption, a random variable N that counts the number of
impulses within a time interval of length s is Poisson distributed with parameter λ = θs. In
particular,

Prob (N = k) = λke−λ

k! for k ∈ N0. (5.134)

1063[ideal Geiger counter] If Tj is exponentially distributed with parameter θ then the random vari-
able Uj = e−θTj is uniformly distributed on the unit interval. (Note that Prob(Uj ≤ x) = x for
each x ∈ (0, 1).) Thus the k most significant bits of u1, u2, . . . (derived from the times t1, t2, . . .)
may be used as k-bit raw random numbers.

1064[ideal Geiger counter] The drawback of both methods described in par. 1063 is that one needs
to know the (exact) parameter θ, resp. λ = θs. Additionally, for real-world (non-ideal) Geiger
counters the detection rate q affects θ and λ. These properties are in particularly unfavorable
if many PTRNGs have to be evaluated and if it is not a realistic option to estimate θ (and the
detection rate q) individually for each PTRNG. Instead, par. 1065 proposes an algorithm which
gets by without the knowledge of θ. Additionally, over time the parameter θ shrinks to some
degree. The cost to pay is that the output rate decreases to 50%.

1065[ideal Geiger counter] Under the assumptions from par. 1061 the random variables

Ui = T2i

T2i−1 + T2i
for i ∈ N. (5.135)

are uniformly distributed on the unit interval [0, 1), regardless of θ. The k most significant bits Ri

of the binary representation of Ui are uniformly distributed on {0, 1}k. Thus, from t1, t2, . . ., one
can compute the values u1, u2, . . . and therefrom the k-bit raw random number vectors r1, r2,

1066[ideal Geiger counter] Of course, a stochastic model as developed in pars. 1060 to 1065 will not
be accepted by the evaluator because ideal Geiger counters do not exist in the real world. Below,
we consider a more realistic scenario.

1067A ‘real-world’ detection mechanism is not able to measure the intermediate times between decays
exactly but only in multiples of a positive constant ∆ (= length of a clock cycle). If multiple
impulses occur within one clock cycle, they are only counted once.

1068The random intermediate times T1, T2, . . . are discrete and can assume values that are integer
multiples of the dead time ∆. In particular, the random variables T1, T2, . . . are iid geometrically
distributed with parameter p = 1 − e−θ∆ (= Prob(Tj ≤ ∆)).

1069These considerations are also appropriate for a Geiger counter which detects a decay with prob-
ability q. If we assume ∆ = 0 for the moment the random variables N of the detected decays
per time unit would be Poisson distributed with parameter λ = qθs instead of λ = θs. Thus, the
random variables T1, T2, . . . (modeling a Geiger counter with detection rate q and dead time ∆)
are iid geometrically distributed with parameter p = 1 − e−qθ∆.

1070Formula (5.135) requires a modification that considers these real-world assumptions. Analogously

190 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

5.4 Noise Sources and Stochastic Models

to (5.135) we set
U ′

i = T2i − 0.5∆
T2i−1 + T2i − ∆ for i ∈ N. (5.136)

This leads to the following inequalities ([Neue04], Theorem 4.1)

1
2 tanh

(p
2

)
≤ ∥FU − FU ′∥∞ ≤ 1 − e− p

2 ≤ p

2 . (5.137)

Recall that p = 1−e−qθ∆. The right-hand inequality is a well-known property of the exponential
function. Here, FU (·) and FU ′(·) denote the cumulative distribution functions of the uniform
distribution U on [0, 1) and of U ′. Furthermore, ∥ · ∥∞ denotes the supremum norm in R. This
means that

∥FU − FU ′∥∞ = sup
x∈[0,1]

{|FU (x) − FU ′(x)|} . (5.138)

For our purposes the upper bound in (5.137) is relevant. To avoid confusion we point out that
[Neue04], Sect. 4.2, applies an alternate definition of the geometric distribution, cf. par. 427.

1071 Formula (5.136) can be used to generate values in u′
1, u

′
2, . . . ∈ [0, 1) from the intermediate times

t1, t2, . . . between consecutive impulses of the Geiger counter. From the sequence u′
1, u

′
2, . . .,

finally k-bit raw random numbers r1, r2, . . . can be computed. The random variables R1, R2, . . .
are no longer uniformly distributed on {0, 1}k as it would be the case for an ideal Geiger counter.

1072 If the random variables Tj are geometrically distributed with parameter pθ = 1 − e−qθ∆, raw
random numbers Rj have distribution πp. For the moment, let b⃗ = (b1, . . . , bk) ∈ {0, 1}k and
s(⃗b) be the binary representation (0.b1 . . . bk)2 =

∑k
j=1 bj2−j . Formula (5.137) quantifies the

deviation of the random variables Rj from the uniform distribution on {0, 1}k

πp(⃗b) = Prob
(
U ′ ∈ [s(⃗b), s(⃗b) + 2−k)

)
=
∑
ℓ=0

∑
m=0

Prob
(
T2i = ℓ, T2i−1 = m,U ′

i ∈ [s(⃗b), s(⃗b) + 2−k)
)

=∑
ℓ=0

∑
m=0

(1 − p)2
pℓpm1{s(⃗b)≤ ℓ+0.5

m+ℓ+1 <s(⃗b)+2−k} . (5.139)

From (5.137) and (5.139) we conclude that∣∣∣πp(⃗b) − 2−k
∣∣∣ ≤ p for all b⃗ ∈ {0, 1}k (5.140)

which provides an estimate for the min-entropy. Of course, more accurate evaluations of the
right-hand term in (5.139) may yield larger entropy bounds.

1073 This PTRNG is based on well-understood physical laws that in particular describe the number
of radioactive decay events per time unit. The chain of reasoning that connects random events
to the entropy of the generated random numbers contains model assumptions.

1074 Within the evaluation process the applicant has to give evidence that the design under evaluation
indeed fulfills these model assumptions which were specified in pars. 1067 and 1068. Depending
on the concrete design, it may turn out that refinements or corrections of the stochastic model
will be necessary.

1075
A Proposal for Functionality Classes for Random Number Generators

Version 2.35 - DRAFT
191

5 Examples

Note: To be PTG.2-compliant an appropriate online test and an appropriate total failure test
need to be implemented.

1076Note: Alternatively, raw random numbers can be derived from the number of impulses of the
Geiger counter within time intervals I1, I2, . . . with Ij = [(j − 1)s, js); cf. Subsect. 5.4.3.

5.4.6 A PLL-based physical noise source

1077In Subsect. 5.4.6 we briefly discuss a PLL-based physical noise source. The design is described,
and central features are explained. For details we refer the interested reader to [FiDr02; BeFV10;
FiBB19].

1078[PLL] Fig. 22 shows (a particular type of) a PLL. As usual, the acronym ‘PLL’ stands for
‘phase-locked loop’.

 N
PFD CP LF VCO  C

clkin clkout

 M

Figure 22: PLL (Phase-locked loop); source: [FiBB19], Fig. 2

1079[PLL] The PLL in Fig. 22 divides the frequency fin of the input signal clkin by factor N and
the output frequency of the VCO (voltage controlled oscillator) by factor C. The PFD (phase-
frequency detector) compares the phase and the frequency of the input clock signal clkin with
the output signal clkout of the PLL. More precisely, the PFD ensures that the output frequency
fout(V CO) of the VCO, divided by M , equals fin, divided by N . Furthermore, in Fig. 22 the
acronyms ‘CP’ and ‘LF’ stand for the charge pump and loop filter. In the following we may
assume that the phase difference between clkin and clkout remains constant. The numbers
N,M,C are integers. Altogether, this gives the relation

fout = fin
M

NC
= fin

KM

KD
. (5.141)

The terms KM ,KD ∈ N denote the frequency multiplication and division factors of the PLL. We
assume that gcd(KM ,KD) = 1 in the following, i.e., that KM and KD are relatively prime.

1080[PLL] The jitter of the input signal clkin is intended to be kept as small as possible. This aim
can be reached, for example, by using a low-jitter quartz oscillator. On the other hand, the PLL
parameters (the bandwidth of the loop filter, for example) should be selected in a way such that
the impact of the thermal noise on the output clock jitter is maximal. The VCO provides the
main contribution to the jitter.

1081192 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

5.4 Noise Sources and Stochastic Models

[design] The PLL-based physical noise source discussed in this subsection uses a PLL as source
of randomness and a coherent sampling mechanism to convert the jitter of clk1 into raw random
numbers; see Fig. 23. In coherent sampling, both the sampled signal and the sampling signals
are periodic signals with a known (fixed) frequency ratio. In the following we assume that both
signals are binary clock signals. The use of a PLL enables coherent sampling.

1082 [design] The lower part of Fig. 23 illustrates a design of a physical noise source that is based
on one PLL. We note that PLL-based physical noise sources can use more than one PLL; cf.
[FiBB19], Fig. 5, for example. In the following we restrict our attention to the most elementary
design with one PLL and refer the interested reader to the literature. The reference clock signal

 D-FF
TRNG
outD

 Q
 clk

1-bit counter
(XOR-ing KD samples)

clkin

 Period TQ : KD sampling positions in TQ AND in T1

PLL
 clk1

 clk0

 f1 = f0

KM

 KD

 clk1

 clk0

 q(j)

5

7

 q

Figure 23: Sampling mechanism of a PLL-based physical noise source (schematic design); source:
[FiBB19], Fig. 3

clk0 latches the jittered clock signal clk1 of the PLL with a flip flop (D-FF) on the rising edge.
The 1-bit counter outputs the parity of the number of sampled signals that equal 1 (XOR sum)
within KD cycles of the sampling signal clk0. This XOR sum provides a single binary-valued
raw random number rk.
Note: We follow the notation in [FiBB19]. If the physical noise source uses only one PLL (as
in Fig. 23) clk0 (reference clock) and clk1 (sampled clock signal) coincide with clkin and clkout

(input and output clock of a PLL). In [FiBB19] the authors also consider designs that exploit
more than one PLL, which motivates this notation.

1083 [FPGA] PLLs are usually available on FPGAs, and PLLs are physically separated from the rest
of the FPGA. This is a good feature for physical noise sources. Furthermore, PLLs are robust
to environmental conditions.

1084 The PLL fixes the frequency relationship f1/f0 = KM/KD and also ensures that the signals
clkin and clkout are in phase. If the sampled clock signal clk1 would be a regular signal with
fixed cycle length, i.e., if clk1 (and clk0) was jitter-free, the output sequence of the flip-flop
would be KD-periodic (in absolute time: KD× the cycle length of clk0). The sampled signal
clk1 is jittered so that the output sequence is only ‘almost’ KD-periodic, and the deviations
induce the entropy. Also here, since the phase difference between clk0 and clk1 is (time-locally)
constant, many output values of the flip-flop are always 0 or always 1 because the time period
to the previous or to the next switch of clk1 from 0 to 1 or from 1 to 0 is large compared to
the jitter of clk1. Only the remaining output values of the flip-flop contribute to the entropy

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

193

5 Examples

of the raw random numbers. The upper part of Fig. 23 illustrates this phenomenon by a toy
example. The green circles and blue circles mark sampled values that are always 0 or always 1,
respectively. Only the ‘random’ red circles, which are close to the jittered clock edges, contribute
to the entropy of the raw random numbers.

1085Actually, both clk0 and clk1 are jittered. Since the PLLs (clock generators) are physically
isolated (if more than one PLL is being used), it is supposed that their jitters are independent.
Consequently, the jitter of the reference clock signal clk0 can be transferred to the sampled
signal clk1. Finally, the relative jitter between clk0 and clk1 is relevant. Thus, it is reasonable
to consider a stochastic model where the reference clock signal is jitter-free.

1086Within one ‘conversion period’ (time interval needed to generate one raw random bit) the signal
clk1 is sampled KD times on the rising edges of signal clk0. In particular, µ1 = (KD/KM)µ0,
and a conversion period takes time KDµ0 = KMµ1. Here, µ1 denotes the average cycle length
of signal clk1, and µ0 the cycle length of clk0.
Note: To simplify reading we refrain from an additional index k that labels the conversion period.

1087The distribution of the output sequence of the flip-flop is far from being stationary. On the
other hand, due to the control mechanism of the PLL, we may assume that the raw random
numbers r1, r2, . . . can be interpreted as realizations of stationarily distributed binary-valued
random variables R1, R2, However, due to the feedback mechanism within the PLL the
random variables R1, R2, . . . dependencies could arise. In particular, within the evaluation the
autocorrelation of the raw random numbers should be investigated thoroughly to detect (or
exclude) possible (long-term) dependencies. After that, it remains to formulate, to verify, and to
analyze a stochastic model to obtain a reliable lower entropy bound for the raw random numbers.
Note: Maybe the KD output bits of the flip-flop D-FF within each conversion period (viewed as
a binary vector) can be assumed to be (time-locally) stationarily distributed (to be investigated).

1088During each conversion period the signal clk1 is latched KD times. The sampled value xi depends
on the relative phase zi within a cycle of clk1 at the time of sampling. If zi ∈ [0, µ1/2) (first
half-period) the sampled value xi is 1, and if zi ∈ [µ1/2, µ1) (second half-period) it equals 0.
This observation suggests to order the sampled values xi with regard to the average relative
phases at the sampling times. The average (expected) relative phase of the ith sampled value
equals (ϕ0 + i · µ0)(mod µ1). Here, ϕ0 denotes the relative phase between clk1 and clk0 at the
beginning of the conversion period. Regardless of the phase difference ϕ0 the KD sampled average
values are uniformly distributed on [0, t1) where the distance between neighboured values equals
∆ := t1/KD.

1089Actually, the signal clk1 is jittered, and thus the intervals between the neighboured relative phases
are not perfectly identical, but jittered. In [BeFV10; FiBB19] the authors interpret the relative
phase zj of the jth sampled point xj as a realization of a random variable Zj ∼ N(µ(j), σ

2) with
µ(j) := ϕ0 + j · µ0(mod µ1).
Note: Due to the jitter of clk1, the random variable Zj can assume values outside [0, t1).

1090From the sampled values x0, . . . , xKD−1 a new raw random number is computed via rk ≡ x0 +
· · · + xKD−1(mod 2). Thus, the distribution of the XOR sum Rk = X0 + · · · + XKD−1(mod 2)
has to be studied.

1091

194 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

5.5 Online tests

Since σ ≪ µ1 it suffices to consider the nearest switch of a half-period of clk1. In [FiBB19], Eq.
(5), the searched probability is calculated as

Prob(Xj = 1) = 1 − 1√
2πσ

(∫ µ1

−∞
e− (z−µj)2

2σ2 dz −
∫ µ1/2

0
e− (z−µj)2

2σ2 dz

)
(5.142)

Note that Prob(Zj < −t1/2) and Prob(Zj > 3t1/2) are essentially 0.

1092 In [FiBB19] it is assumed that the random variables X0, . . . , XKD−1 are independent. The
independence assumption yields

Prob(R = 1) = 0.5 +B for R := X0 + · · · +XKD−1

B =
(

1
2

)KD−1 KD−1∏
j=0

(Prob(Xj = 1) − 0.5) . (5.143)

1093 As already pointed in par. 1084 some random variables Xj assume the values 0 or 1 with
probability 1 because σ ≪ µ1. These sampled values do not contribute to the entropy of
the raw random numbers, and thus, these random variables are not considered in the fol-
lowing. The focus lies on the random variables whose indices are in a subset of the indices
M = {j1, . . . , js} ⊂ {0, . . . ,KD − 1}, for which Prob(Xj = 1) differs significantly from 0 and 1.
These random variables contribute to the entropy of the raw random numbers due to the jitter
of clk1. Essentially, the distribution of

Xj1 + · · · +Xjs
(mod 2) (5.144)

needs to be studied.
Note 1: The XOR sum of the remaining (i.e., non-considered) sampled bits may be 0 or 1,
thereby affecting the value of the raw random number. However, these values have no impact
on the entropy of the raw random numbers. In particular, if the clk1 (and clk0) signal would be
jitter-free, the generated raw random numbers would be constant 0 or 1, depending on number
of sampled values equal to one.
Note 2: The smaller ∆, the more sampled values should contribute to the entropy of the raw
random numbers, and the larger should be the entropy.

1094 In [FiBB19] the total failure test and the online test are not applied on the raw random numbers
but exploit all the sampled values within the conversion periods. More precisely, two parameters
P1 and P2 are estimated; cf. [FiBB19] (9), (10). The first estimate is used by the total failure
test, the second by the online test. We refer the interested reader, e.g., to [FiBB19].

5.5 Online tests

1095 In Section 5.5 different online test schemes are discussed, and their advantages and disadvantages
are explained. The general considerations from Subsection 4.5.3 are supported by examples.

1096
A Proposal for Functionality Classes for Random Number Generators

Version 2.35 - DRAFT
195

5 Examples

In this section we assume that binary-valued raw random numbers r1, r2, . . . are tested. Further-
more, c = ξ(r1, . . . , rm) denotes the test value, ξ the applied statistical test, and m is the sample
size of the statistical test ξ in bits.

1097Consequently, we interpret the test value as a realization of the random variable C = ξ(R1, . . . , Rm).
It is a relevant part of the evaluation to understand the distribution of C under the admissible
parameters of the stochastic model.

1098As explained in Subsection 4.5.3 (par. 692), the online test shall be selected with regard to the
stochastic model of the noise source. In Section 5.5 we tacitly assume that the online test, or
more precisely, the applied statistical test(s), is appropriate for the stochastic model. Instead,
we focus on the suitability of the whole online test procedure, including the evaluation rules.

5.5.1 A look at single statistical tests

1099In this subsection we focus on single statistical (online) tests. A negative example is provided
and desirable properties are discussed. The results motivate the design of more sophisticated
test suites.

1100[χ2 goodness-of-fit test] If a χ2 goodness-of-fit test on 4-bit words (a.k.a. poker test, often
briefly denoted as χ2-test) is applied to the raw random numbers, the sequence r1, r2, . . . , rm

is divided into non-overlapping 4-tuples w1, . . . , wm/4 where wj = (r4j−3, r4j−2, r4j−1, r4j). For
i = 0, . . . , 15 the term fr(i) := |{j ≤ n | wj = i}| equals the frequency of the 4-tuple i. Here, we
identify the 4-bit vector wi with the binary representation of an integer. The test value is given
by

c :=
15∑

i=0

(
fr(i) − m

16
)2

m
16

. (5.145)

Note: The χ2-test in (5.145) corresponds to a scenario where the null hypothesis says that the
tested raw random numbers were generated by an ideal RNG.

1101Negative Example [Schi01], Example 2: The online test applies the χ2 goodness-of-fit test from
par. 1100 with sample size m = 320. The online test fails if the test value c exceeds 65.0. It
is claimed that Prob(C > 65.0) = 3.4 · 10−8 for ideal RNGs, i.e., for iid B(1, 0.5)-distributed
random variables Rj .

1102The example in par. 1101 shows several problems that may occur with online tests. We follow
and extend the analysis and the conclusions in [Schi01].

1103The distribution of the test variable C of the poker test (5.145) converges to the χ2-distribution
with 15 degrees of freedom as the sample size m → ∞. This indeed suggests the significance
level 3.4 · 10−8 from par. 1101. However, C > 65.0 is a very rare event, at least if the tested raw
random numbers are ‘almost’ ideal. Generally speaking, at the tails of the distribution the rate
of convergence may be low.

1104
196 A Proposal for Functionality Classes for Random Number Generators

Version 2.35 - DRAFT

5.5 Online tests

[relative approximation error] Generally, when computing rejection probabilities from limit dis-
tributions, the relative approximation error

|pexact − papprox|
|papprox|

(relative error) (5.146)

is relevant. Here, pexact denotes the exact rejection probability, while papprox is the approximate
rejection probability given by the limit distribution (here: χ2-distribution with 15 degrees of
freedom).
Note: We use papprox instead of pexact in the denominator because the designer of the PTRNG
bases his further considerations on papprox.

1105 [relative approximation error] In the example from par. 1101 the sample size m = 320 is rather
small. In fact, for ideal RNGs the relative approximation error is 10.1. (Exploiting the symme-
tries allows the calculation of the exact rejection probability.) In this case the developer would
have underestimated the significance level of the online test (i.e., the number of (undesired) noise
alarms under the null hypothesis) by a factor of more than 10. This may primarily affect the
availability of the PTRNG but for other statistical tests, the approximation error might swing
into the opposite direction, leading to a significant overestimation of the significance level, which
definitely would be a security issue.

1106 The relative approximation error should decrease for an increasing sample size m; in the above
example, e.g., to m = 512 or m = 1024, which are more typical sample sizes for poker tests.
However, the considerations from pars. 1103 to 1105 point to a general problem when using
limiting distributions.

1107 A further disadvantage of the online test from par. 1100 (in particular, for sample size m = 320
as in par. 1102) is that it is hardly feasible to estimate the true rejection probabilities if the
distribution of the raw random numbers deviates from the output of an ideal RNG (due to a
bias and dependencies). However, this is relevant to assess the suitability of the online test.
Note: A suitable online test shall reliably separate the sets of parameters Areal and Abad.

1108 If the developer cannot (at least approximately) determine the failure probabilities for the rel-
evant parameters in Areal and Abad, there is a lack of evidence whether Requirement PTG.2.5
(resp. PTG.3.8) is indeed fulfilled, i.e., whether the online test is effective. Then the PTRNG
cannot be certified to be PTG.2- or PTG.3-compliant.

1109 Remark: For iid stochastic models a monobit test may be applied. Then the Central Limit The-
orem provides approximate rejection probabilities of the monobit test for iid B(1, p)-distributed
random variables and (4.41) provides an upper bounds for the approximation error. In principle,
this would solve the problems addressed in pars. 1107 to 1108.

1110 However, the upper bound (4.41) converges in the order of n−0.5, which means that the sample
size of the monobit test had to be very large if extremely small rejection probabilities are con-
cerned. Furthermore, the developer had to show that the proposed monobit test (with specified
sample size m and evaluation rules) is sufficiently discriminating between Areal and Abad.

1111 These problems motivate the search for more sophisticated online test schemes that apply more
complex evaluation rules than just considering individual tests; cf. Subsection 5.5.2.

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

197

5 Examples

1112The key is to analyze the distribution of the test variable C for different parameters. The
expectation E(C), the variance Var(C), and the standard deviation σC :=

√
Var(C) as well as

probabilities Prob(C ∈ E) (e.g., Prob(C > x)) can easily be estimated by stochastic simulations.
The latter (rejection) probabilities Prob(Cj ∈ E) may be small on Areal (let’s say, ∈ [10−4, 10−2])
but shall not be tiny (let’s say, < 10−6) since otherwise the required sample size for (trustworthy)
stochastic simulations would ‘explode’.

1113For stochastic simulations it is not necessary to use a DRNG that is suitable for cryptographic
applications. Instead, one may use a linear congruential generator or a linear feedback shift
register since both types of pseudorandom number generators are very fast, and their statistical
properties are suitable for this purpose (cf. [Schi09a], Subsection 2.4.3).

1114From so-called standard random numbers z1, z2, . . . ∈ [0, 1) (generated e.g. by a linear congruen-
tial generator or a linear feedback shift register), one generates sequences of pseudorandom bits
for different parameters. B(1, p)-distributed random numbers, for example, can be obtained via
rj := 1{zj≤p}. The simulated standard random numbers are assumed to be uniformly distributed
on [0, 1). The specified test (e.g., a χ2 goodness-of-fit test on 4-bit words or a monobit test) is
applied to the simulated raw random numbers. Finally, these empirical values yield estimates
for E(C), Var(C), σC and Prob(C ∈ E).

1115Table 12 provides exemplary results for the above-mentioned χ2 goodness-of-fit test on 4-bit
words. For simplicity, only iid random variables R1, R2, . . . are considered. However, it is easy
to simulate other distributions of the raw random numbers (e.g. for Markovian models) as
well. It might be noted that for p = 0.500 for each sample size m, the χ2-approximation yields
E(C) = 15.0 and Var(C) = 5.477. Table 12 and Table 13 collect simulation results for different
parameter values and sample sizes,

Table 12: χ2 goodness-of-fit test on 4-bit words: simulation results for iid raw random numbers
(Rj ∼ B(1, p)); Ns = 106 or 220

criteria p = 0.500 p = 0.503 p = 0.507 p = 0.510 p = 0.520
m = 512
E(C) 15.01 15.02 15.10 15.20 15.81
σC 5.46 5.46 5.49 5.53 5.76
Prob(C > 34.0) 0.0036 0.0035 0.0038 0.0041 0.0062
m = 1024
E(C) 15.00 15.04 15.19 15.41 16.64
σC 5.46 5.48 5.53 5.62 6.05
Prob(C > 34.0) 0.0035 0.0036 0.0040 0.0045 0.0098
m = 220

E(C) 15.01 52.79 229.43 434.9 1696.69
σC 5.47 13.4 29.24 41.4 82.53
Prob(C > 150.0) 0.0000 0.0000 0.9955 1.000 1.000

1116The figures in Table 12 show that single χ2 goodness-of-fit tests on 4-bit words reliably separate
different parameters if the sample size m is extremely large. Of course, m = 220 = 1,048,576 is

198 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

5.5 Online tests

Table 13: χ2 goodness-of-fit test on 4-bit words: simulation results for iid raw random numbers
(Rj ∼ B(1, p));Ns = 106

criteria p = 0.570 p = 0.560 p = 0.540 p = 0.530 p = 0.520
m = 512
E(C) 25.23 22.47 18.20 16.84 15.81
σC 8.74 7.93 6.63 6.13 5.76
Prob(C > 34.0) 0.1489 0.0825 0.0215 0.0110 0.0062
m = 1024
E(C) 35.60 30.00 21.60 18.69 16.64
σC 11.06 9.77 7.59 6.73 6.05
Prob(C > 34.0) 0.5156 0.3065 0.0645 0.0248 0.0098
m = 216

E(C) 1337.71 979.17 438.51 252.17 120.12
σC 76.48 64.52 42.19 31.52 21.30
Prob(C > 600) 1.0000 1.0000 0.0002 0.0000 0.0000

by far too large for a single online test, but it comes into question for the test mode after a noise
alarm has occurred, or as an additional criterion for online test suites; cf. pars. 701, 1149, 1150,
and 1130.

1117 Table 13 underlines that if the parameters differ more significantly, much smaller sample sizes
m suffice to distinguish these parameters. While Table 12 primarily concerns PTRNG designs
where the raw random numbers have enough entropy, Table 13 applies to designs that need
data-compressing algorithmic post-processing, e.g., XORing non-overlapping pairs of raw random
number bits. In the second scenario the raw random numbers may show considerable weaknesses.
This facilitate the efforts of designing efficient tests.

1118 Assume that non-overlapping pairs of the raw random numbers are XORed. If p = 0.44 or
p = 0.47, for example, the internal random numbers are B(1, p′)-distributed with p′ = 0.5072 or
p′ = 0.5018, respectively.

5.5.2 A more sophisticated online test procedure

1119 In this subsection we exemplarily discuss a generic approach that mitigates several problems
mentioned in Subsection 5.5.1. The considerations are based on [Schi01] but also go beyond.
Pre-versions are explained in [AIS31An_01], Example E.7, and [AIS2031An_11], Subsect. 5.5.3.
Note: The requirements on online tests have increased since then (mainly because of the increased
entropy requirements).

1120 The central idea is not just to consider independent, single statistical tests but to combine the
information from several statistical tests by suitable evaluation rules.

1121 Other online test schemes are permitted, too, of course. It is not claimed that the online test
scheme discussed in this subsection is optimal! The suitability of an online test scheme depends

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

199

5 Examples

on the concrete scenario; c.f. par. 1160.

1122At first the developer selects a so-called ‘basic test’ that is tailored to the stochastic model. For
the remainder of this subsection this selection will not be thematized. We assume that the choice
of the basic test is appropriate. As in Subsection 5.5.1 m denotes the sample size of the basic
test in bits.

1123[start-up test] The basic test may also serve as start-up test (single application with an appro-
priate rejection boundary, such that an ideal RNG would fail, let’s say, with probability ≈ 10−8

or 10−7). The start-up test shall detect a total breakdown of the noise source and significant
statistical weaknesses immediately when the PTRNG is started. The start-up test then fulfills
functional requirement PTG.2.4 and PTG.3.7.

1124Let C1, C2, . . . denote the random variables which correspond to the test values c1, c2, . . . of
the basic tests within an online test suite. Furthermore, H0, H1, . . . are the so-called ’history
variables’. We set

H0 := E (C1;IRNG,t) (5.147)

where E(C1;IRNG,t) denotes the expectation of the test variable C1 for an ideal RNG, rounded
to a multiple of 2−t. Moreover, we define the recursion

Hj := (1 − β)Hj−1 + βCj for j = 1, 2, . . . with β = 2−s (5.148)

where the Hj are rounded to t binary digits after the binary point. This allows the calculation
of the ‘history values’ h0, h1, . . . by integer arithmetic.

1125[online test suite] In Step j of the online test suite, a basic test is applied (→ test value cj), and
two criteria are evaluated unless a noise alarm has occurred within this online test suite before.
The online test suite consists of N basic tests unless a noise alarm has occurred before. If no
noise alarm has occurred during the N basic tests, a further test is applied. The evaluation rules
(ER 1a), (ER 1b), (ER 2), and (ER 3) specify these criteria.

(ER 1a) cj ∈ E1a ⇒ noise alarm

(ER 1b) cj−k+1, . . . , cj−1, cj ∈ E1b ⇒ noise alarm

(ER 2) hj := (1 − β)hj−1 + βcj ∈ E2 ⇒ noise alarm

(ER 3) at the end of the online test suite, if no noise alarm has occurred:
Apply the basic test to all raw random numbers that were tested within this online test
suite (test value ctotal).
ctotal ∈ E3 ⇒ noise alarm

The parameter k > 1 is a small integer. A noise alarm terminates the current online test suite. If
not interrupted by a noise alarm, an online test suite consists of N basic tests. If the online test
suite has been terminated earlier due to a noise alarm evaluation criteria ER 3 is not applied.
The evaluation criteria (ER 1a), (ER 1b), (ER 2), and ER 3 cover different aims. This topic will
be taken up later. Possible consequences of a noise alarm are explained in pars. 701 to 703.

1126
200 A Proposal for Functionality Classes for Random Number Generators

Version 2.35 - DRAFT

5.5 Online tests

Since the class requirements PTG.2 and PTG.3 do not permit (significant) long-term dependen-
cies of the raw random numbers, we may assume that the random test variables C1, C2, . . . are
iid.

1127 In par. 1125, the particular evaluation criteria serve different aims; cf. par. 1133.
Note: The probabilities Prob(Cj ∈ E1) can be estimated by stochastic simulations for relevant
parameters; cf. pars. 1112 to 1118.

1128 [Time-local stationarity] We assume that the raw random numbers can be viewed stationarily
distributed within an online test suite.

1129 The proposed online test scheme from par. 1125 is generic. To make the ideas more concrete,
in the remainder of this subsection we exemplarily assume that the basic test is given by a χ2

goodness-of-fit test on 4-bit words. The sample size is m bits, or equivalently, m/4 four-bit
words.
Note 1: The considerations can be transferred to any other basic test.
Note 2: (Reminder) Universally suitable online tests do not exist but the online test shall be
tailored to the physical noise source. In Subsect. 5.4.3, for example, the online test considers the
expectation and the variance of integer-valued raw random numbers.

1130 [online test suite: (special case: basic test = χ2 goodness-of-fit test)] Local counters fr(0) to
fr(15) count the number of 4-bit words within a basic tests that equal 0, 1, . . . , 15 (interpreted as
the binary representation of integers). At the beginning of each online test suite global counters
are initialized: totfr(0) = · · · = totfr(15) = 0.
In Step j of the online test suite a basic test is applied (→ test value cj), the evaluation criteria
(ER 1a), (ER 1b), and (ER 2) are evaluated, and the global counters totfr(0) to totfr(15) are
updated. A noise alarm terminates the online test suite. Unless the online test suite has been
terminated by a noise alarm, finally evaluation criterion (ER 3) is applied.

(ER 1a) cj > xa ⇒ noise alarm

(ER 1b) cj−k+1, . . . , cj−1, cj > xb ⇒ noise alarm

(ER 2) hj := (1 − β)hj−1 + βcj /∈ [u, v] ⇒ noise alarm

(ER 3) for i = 0 to 15 do totfr(i) := totfr(i) + fr(j)(i)
After all N basic tests have been evaluated:
ctotal > xtotal ⇒ noise alarm

1131 [evaluation criteria] As already mentioned above the four evaluation criteria (ER 1a), (ER 1b),
(ER 2), and (ER 3) serve different purposes. The sample size of the basic tests and thus their
discriminatory power is usually much smaller than that of typical evaluator tests. Evaluation
rule (ER 3) is applied at most once per online test suite. Due to its large sample size the
discriminatory power of this final test is very large. The extra costs are limited to 16 additional
integer counters and the computation of one χ2 test value.

1132 Generally, one can expect that aging effects or changing environmental conditions (apart from
attacks) change the entropy of the generated raw random numbers slowly. As will become clear

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

201

5 Examples

below such phenomena are reliably detected by (ER 3). Problems can arise shortly after start-up
if the PTRNG in operation behaves very differently from typical copies of the same series (and, of
course, within targeted attacks which yet are not in the scope of the online test). The evaluation
criteria (ER 1a,b), (ER 2), and (ER 3) serve different goals.

1133[aims of the evaluation criteria] The aims of the evaluation criteria (ER 1a) and (ER 1b) are
to detect rapidly developing, significant weaknesses of the raw random numbers, which have
to be detected very soon. Evaluation rule (ER 2) mitigates the problem of the small sample
size of a basic test to some degree since the history values h1, h2, . . . are sensitive to deviations
of the ’true’ expectation E(Cj) (depending on the true parameters). The task of evaluation
criterion (ER 2) is to detect smaller (but still non-acceptable) weaknesses, that are also rapidly
developing. Finally, due to its large sample size the aim of (ER 3) is the reliable (and sufficiently
fast) detection of slowly developing small weaknesses, i.e., when the parameters (slowly) leave
the set Agood.

1134[total failure test] In principle, the online test schemes specified in pars. 1125 and 1130 can also
include an evaluation rule which fulfills the requirements of a total failure test. This option
was discussed in [Schi01] (cf. [AIS31An_01], Example E.7, and [AIS2031An_11], Subsect. 5.5.3)
under the assumption that a total failure would imply a constant sequence of raw random number
bits. A further evaluation rule was added to par 1130:

(T) cj ≥ 269.5 ⇒ noise alarm (total failure)

1135[total failure test] The disadvantage of the approach from par. 1134 is that the actual basic test
may not detect a total failure if it occurs too late in the test sample. If the last 220 bits of a test
sample (m = 512) are constant 0 or constant 1, then cj ≥ 269.5, which triggers a noise alarm due
to decision rule (3) [Schi01]. This means that the detection of a noise alarm might be delayed
by 219 + 512 = 731 raw random number bits in the worst case. Hence, the PTRNG design must
provide a large buffer for the internal random numbers. Specially designed total failure tests
usually have much smaller delay times and thus are preferable in most cases.

1136Compared to the online test suite discussed in [Schi01] the proposed solutions from pars. 1125
and 1130 lack of a total failure test. Instead, the evaluation criteria (ER 1a) and (ER 3) have
been added.

1137Compared to online test schemes that apply independently statistical tests, the proposed online
test scheme has several advantages. First of all, it is feasible to estimate the probabilities of
noise alarms for any distribution of the raw random numbers. Secondly, there is a whole set of
parameters (m,N, k, t, β, E1a, E1b, E2, E3), resp. (m,N, k, t, β, xa, xb, u, v, xtotal), which allows
’fine-tuning’, i.e., the optimization of the online test scheme under consideration of the PTRNG
design.
Note: The parameters x, u, v are specific for the selected χ2-test.

1138Evaluation rule (ER 2) defines a random walk on {u, u + 2−t, . . . , v}. Without rounding the
history variables to a multiple of 2−t, the expectations E(Hj) would tend to E(C1) as j → ∞. If
E(C1) /∈ [u, v] the history variables should ’drift out’ of [u, v] rather soon, causing a noise alarm.

202 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

5.5 Online tests

Even if E(C1) ∈ [u, v], a deviation of E(C1) from E(C1;IRNG,t) should increase the probability
that an absorbing barrier is reached earlier (provided, of course, that u and v have properly been
selected.

1139 By par. 1126 the evaluation rules (ER 1a,b) and (ER 2) in par. 1130 can be modeled by a
homogeneous Markov chain on the finite state space

Ω =
{(

2−tℓ, i
)

| ℓ ∈ N, 2−tℓ ∈ [u, v] , 0 ≤ i < k
}⋃

{ω} . (5.149)

Recall that k > 1 is a small integer. Furthermore, u and v are multiples of 2−t, while ω is an
absorbing state. The online test scheme reaches state (s, i) after step j if the history variable
hj = s and if cj−i ≤ x but cj−i+1, . . . , cj > x (or if j = i < k). The absorbing state ω is reached
when a noise alarm has occurred within the first j steps; see [Schi01] for details.

1140 The state space Ω consists of ((v−u)2t+1)k+1 elements. The initial distribution ν0 has total mass
on the state (E(C1;IRNG,t, 0). If P denotes the transition matrix on Ω, then νj(ω) = ν0P

j(ω)
equals the probability that a noise alarm has occurred within the first j steps.

1141 The probability Prob(Cj > x) is estimated and the transition matrix P is determined on the
basis of stochastic simulations. For each relevant distribution random numbers are simulated
and basic tests are performed. This provides the empirical cumulative distribution function of
the random variables Cj .

1142 A small weight factor β ensures that evaluation rule (2) in par. 1125 (resp. in par. 1130) does
not depend on the occurrence of a single, very rare event but on several events that, taken
individually, need not be rare. The smaller β = 2−s, the more inertial are the history values
h0, h1, Reasonable values seem to be s = 4, 5, 6.

1143 The choice of the precision 2−t also has impact on the probabilities for a noise alarm.

1144 [(ER 1b)] As explained above the probability for a noise alarm within an online test suite can be
calculated for any set of parameters. To support a targetful search for appropriate parameters
we consider the question how many basic tests are needed on average until k fails (each with
probability p ∈ (0, 1)) occur in a row. For j = 0, . . . , k let ek(j) denote the expected number
of basic tests until k fails in a row occur under the condition Aj that the j previous basic tests
failed. If j < k then condition Aj implies condition C0 in the next step with probability 1 − p
and Aj+1 with probability p while Ak is the terminating condition. This leads to the following
linear equations.

ek(0) = (1 − p) (ek(0) + 1) + p (ek(1) + 1) ⇐⇒ pek(0) − pek(1) = 1 (5.150)
ek(j) = (1 − p) (ek(0) + 1) + p (ek(j + 1) + 1) ⇐⇒ (p− 1)ek(0) + ek(j) − pek(j + 1) = 1(5.151)

for j = 1, . . . , k − 1
ek(k) = 0 (5.152)

The solution of the linear equations in particular yields ek(0), the value we are interested in.

1145
A Proposal for Functionality Classes for Random Number Generators

Version 2.35 - DRAFT
203

5 Examples

[(ER 1b), Example] For k = 4 we obtain the linear equations
p −p 0 0 0

p− 1 1 −p 0 0
p− 1 0 1 −p 0
p− 1 0 0 1 −p

0 0 0 0 1



e4(0)
e4(1)
e4(2)
e4(3)
e4(4)

 =


1
1
1
1
0

 (5.153)

In particular, e4(0) = p3+p2+p+1
p4 . Thus e4(0) ≈ 1

p4 for small p.

1146[(ER 1b), Example] For k = 5 we obtain the linear equations
p −p 0 0 0 0

p− 1 1 −p 0 0 0
p− 1 0 1 −p 0 0
p− 1 0 0 1 −p 0
p− 1 0 0 0 1 −p

0 0 0 0 0 1




e5(0)
e5(1)
e5(2)
e5(3)
e5(4)
e5(5)

 =


1
1
1
1
1
0

 (5.154)

In particular, e5(0) = p4+p3+p2+p+1
p4 . Thus e5(0) ≈ 1

p5 for small p.

1147PTRNG designs usually generate much better raw random numbers than required by PTG.2.3
and PTG.3.6. As explained in Subsection 4.5.3, pars. 675 to 682, this eases the design of an
effective and efficient online test. The probability for an (undesired) noise alarm for the ‘very
acceptable’ parameters Areal should be small while it should be large for inappropriate parame-
ters Abad. For the remaining ’in-between’ distributions Agood = Areal \Abad, the probability for
a noise alarm is not relevant.

1148[Quality assessment] The suitability of an online test primarily depends on the stochastic model,
but also on the parameter sets Areal and Abad. Other aspects are, for example, the test strategy
and the output rate of the PTRNG, which affects the number of accidental noise alarms. For
simplicity, we exemplarily assume an iid model for the remainder of this section. The general
procedure would be the same for a Markovian model.

1149[consequences of a noise alarm] In Subsection 4.5.3 several options for the consequences of a
noise alarm were addressed; cf. pars. 701 to 703. One of these options is to trigger a test mode
(without outputting any random numbers, ‘emergency test’) in order to check whether the noise
alarm was justified or accidental. In the following we focus on this possibility. The ‘emergency
test’ can be a single basic test but with much larger sample size.

1150[Example: emergency test] A reasonable strategy is to apply the basic test to fresh Nm raw
random numbers bits (equals the sample size of evaluation criterion (ER 3)). The decision rule
can be the same as for (ER 3) but another decision rule can be selected as well. If the emergency
test fails the noise alarm is confirmed, otherwise considered erroneous.
Natural requirement: If the raw random numbers belong to ∈ Abad, this should be detected with
overwhelming probability (cf. Tab. 12 and Tab. 13). On the other hand, if the true parameter(s)
are in Areal, a failure of the emergency test should be very unlikely.

1151
204 A Proposal for Functionality Classes for Random Number Generators

Version 2.35 - DRAFT

5.5 Online tests

[Scenario I, iid stochastic model] The designer is convinced that Prob(Rj = 1) ∈ (0.497, 0.503)
for all properly working examples of this PTRNG design (e.g. for the PTRNGs on chips of some
product series). This is considerably better than demanded by requirement PTG.2.3 (resp. by
PTG.3.6), and this feature supports the design of an effective online test. In the notation of
Subsection 4.5.3, this means that Areal(I) = [0.497, 0.503] and Abad(I) = [0, 0.4931) ∪ (0.5069, 1].
For for the parameters in Agood(1) = [0.0, 1.1] \ Abad(I) both the Shannon entropy and min-
entropy of the corresponding distributions exceed the bounds that are specified in PTG.2.3
(0.9998 for Shannon entropy and 0.98 for min-entropy. Thus, there is no need for algorithmic
post-processing.

1152 [Scenario II, iid stochastic model] As in par. 1151 we assume an iid model but here, Areal(II) =
[0.470, 0.530] and Abad(II) = [0, 0.441) ∪ (0.559, 1]. This requires a data-compressing algorithmic
post-processing. The algorithmic post-processing XORs non-overlapping pairs of consecutive raw
random number bits.

1153 [Example: Scenario I, test parameters] (m,N, k, β, t, xa, xb, u, v, xtotal) = (1024, 1024, 5, 1/32, 5,
75.0, 34.0, 11.0, 20.5, 150.0). If a noise alarm has occurred the PTRNG goes into the test mode
(cf. par. 1150) and performs an emergency test. The tested raw random numbers are not output.
As for the evaluation rule (ER 3) the emergency test applies the χ2-test to 220 = 1,048,576 bits
(sample size of an online test suite). The emergency test fails if the test value is > 150.0. If
the emergency test is passed the PTRNG returns to the working mode (outputting random
numbers).

1154 [Example: Scenario I, numerical values] Tab. 14 collects numerical results that illustrate proper-
ties of the test parameters that were selected in par. 1153. Recall that 0.503 limits Areal while
(approximately) p = 0.507 defines the limit line between Agood and Abad. The values in Tab. 14
are computed on the basis of the simulated cumulative distribution function of the test vari-
able C1 under the particular distributions of the raw random numbers, cf. par. 1112. Criterion

Table 14: The first row provides the average number of basic tests until 5 consecutive basic
test values exceed 34.0 (event A5). The second row quantifies the probability that a noise
alarm is triggered by evaluation criterion (ER 1a,b) or (ER 2), while the third row contains the
probabilities the (ER 3) causes a noise alarm. Both row 2 and row 3 refer to a single online test
suite.

p= 0.500 0.503 0.507 0.525 0.530 0.535 0.560 0.570
E(# basic tests 1.9 · 1012 1.7 · 1012 9.8 · 1011 1.2 · 109 1.1 · 108 8.8 · 106 532 55
until A5 occurs)

Prob(noise alarm 0.00000 0.00000 0.00000 0.05856 0.85597 1.00000 1.00000 1.00000

by (ER 1a,b)
or (ER 2))

Prob(noise alarm 0.00000 0.00000 0.99552 1.00000 1.00000 1.00000 1.00000 1.00000

by (ER 3))

(ER 1a) detects with a probability of almost 1 (of > 0.9, of > 0.5) if p ∈ [0, 0.34] ∪ [0.66, 1]
(if p ∈ [0, 0.36] ∪ [0.64, 1], if p ∈ [0, 0.38] ∪ [0.62, 1]), while the probability is essentially 0 if

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

205

5 Examples

p ∈ [0.43, 0.57]. If p ∈ [0.43, 0.57] ∩Abad the other criteria apply.

1155[Example: Scenario I, numerical values] Tab. 14 underlines the different aims of the particular
evaluation rules; cf. par. 1133. Evaluation criterion (ER 3) separates reliably Areal from Abad.
The absolute time that an online test suite requires depends on how many raw random numbers
are generated per second. For typical PTRNGs it should not last longer than a few seconds.

1156[Example: Scenario II] (m,N, k, β, t, xa, xb, u, v, xtotal) = (512, 128, 4, 1/32, 5, 75.0, 34.0, 11.0, 23.0,
600.0). If a noise alarm has occurred the PTRNG goes into the test mode (cf. par. 1150) and
performs an emergency test. The tested raw random numbers are not output. As for the evalu-
ation rule (ER 3) the emergency test applies the χ2-test to 216 = 65536 bits (sample size of an
online test suite). The emergency test fails if the test value is > 600.0. If the emergency test is
passed the PTRNG returns to the working mode (outputting random numbers).

1157[Example: Scenario II, numerical values] Tab. 15 collects numerical results that illustrate prop-
erties of the test parameters that were selected in par. 1156. Recall that 0.53 limits Areal while
(approximately) p = 0.56 defines the limit line between Agood and Abad. The values in Tab. 15
are computed on the basis of the simulated cumulative distribution function of the test vari-
able C1 under the particular distributions of the raw random numbers, cf. par. 1112. Criterion

Table 15: The first row provides the average number of basic tests until 4 consecutive basic test
values exceed 34.0 (event A4). The second row quantifies the probability that a noise alarm is
triggered by evaluation criterion (ER 1) or (ER 2), while the third row contains the probabilities
the (ER 3) causes a noise alarm. Both row 2 and row 3 refer to a single online test suite.

p= 0.520 0.530 0.560 0.570 0.580 0.590 0.60
E(# basic tests 6.9 · 108 6.8 · 107 2.3 · 104 2387 335 72 23
until A4 occurs)

Prob(noise alarm 0.00000 0.000002 0.64744 0.99983 1.00000 1.00000 1.00000

by (ER 1)
or (ER 2))

Prob(noise alarm 0.00000 0.00000 1.00000 1.00000 1.00000 1.00000 1.00000

by (ER 3))

(ER 1a) detects with a probability of almost 1 (of > 0.9, of > 0.5) if p ∈ [0, 0.34] ∪ [0.66, 1]
(if p ∈ [0, 0.36] ∪ [0.64, 1], if p ∈ [0, 0.38] ∪ [0.62, 1]), while the probability is essentially 0 if
p ∈ [0.43, 0.57]. If p ∈ [0.43, 0.57] ∩Abad the other criteria apply.
Note: The discriminatory power of the evaluation rules (ER 1a), (ER 1b), and (ER 2) is rather
high, even at the voundary to Abad. It could be an option to omit evaluation criterion (ER 3) if
the device is ressource-constraint, possibly by simultaneously increasing the number N of basic
tests.

1158[Example: Scenario II, numerical values] Tab. 15 underlines the different aims of the particular
evaluation rules; cf. par. 1133. It is obvious that in Scenario II far fewer online tests suffice than
in Scenario I.

1159
206 A Proposal for Functionality Classes for Random Number Generators

Version 2.35 - DRAFT

5.6 Linux /dev/random and /dev/urandom

Note: The online test schemes specified in pars. 1125 and 1130 restart after N basic tests or
after a noise alarm has occurred (provided that the noise alarm turned out to be erroneous).
The limitation to at most N basic tests was introduced to simplify the computation of the
probabilities for noise alarms. Of course, alternative designs where a test suite continues until a
noise alarm occurs can also be appropriate.

1160 If the online test separates the sets Abad and Areal better than the χ2 test in this subsection,
simpler online test (procedures) can be applied. An example would be the online test discussed
in Subsect. 5.4.3, see pars. 1036, for suitable parameters s/µ and σ/µ.

1161 [Example] The designer expects only a few requests for internal random numbers per day. To save
time and energy needed to perform continuous online test the PTRNG design buffers internal
random numbers that are ready for output. As long as the buffer does not require fresh internal
random numbers random numbers generated by the PTRNG are discarded and not tested. The
buffer is refilled when the number of remaining internal random numbers falls below a specified
lower bound. Then the online tests are applied again.

1162 [Example, ctd.] Such an approach is principally acceptable but the online test has to adjusted
to this situation. In particular, it does not suffice, e.g., to apply the online test procedure from
par. 1130 and to continue the online test suite where it was interrupted after the buffer had
been filled last time. The reason is that between the subsequent basic tests a large period of
time may have been elapsed. Thus, one aim of the online test suite, detecting slow drifts of
the parameters, cannot be guaranteed. However, it could be an option to apply an emergency
test first (without outputting internal random numbers), and then to resume with continuously
applied online tests.

5.6 Linux /dev/random and /dev/urandom

1163 The Linux operating system includes two RNG interfaces as part of the kernel:

• the random number generator /dev/random/

• the random number generator /dev/urandom/

1164 [Linux kernel versions 5.6 to 5.16] Figure 24 provides a schematic overview of both /dev/random/
and /dev/urandom/. Both RNGs extract entropy from different non-physical noise sources that
either depend on actions of the user or on internal system tasks. The bottom line of Figure 24
lists several possible non-physical noise sources. Every single event (e.g., keyboard and mouse
actions; access to hard disk; interrupt timestamps) is mapped to a bit string. The bit strings
are mixed into a register called input_pool using a linear-feedback shift register. For the inter-
rupt noise source, there is an additional register per CPU called fast_pool that accumulates
several interrupt timestamps before its content is mixed into the input_pool. The entropy of
the incoming raw random numbers is estimated using conservative heuristic rules and an ’en-
tropy counter’ keeps track of the entropy supposedly contained in the input_pool at any time.
Upon internal request, seed material is generated from the input_pool using an output function

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

207

5 Examples

Time variance
calculation with

add_timer_randomness

Time variance
calculation with

add_timer_randomness

ChaCha20ChaCha20

struct crng_state

input_poolinput_pool

struct entropy_store

/dev/random
getrandom()

/dev/urandom
getrandom()

5 th and following
1 st / 2 nd / 3 rd / 4 th snapshot

fast_pool

struct
fast_pool

add_input
_randomness

add_interrupt
_randomness

add_disk
_randomness

add_device
_randomness

add_hwgenerator
_randomness

Scheduler
noise

User Space

Kernel Space

get_random_bytes

Figure 24: Functional design of the Linux NPTRNG (as of kernel version 5.6); source:
[Linux_RNG_2022]

based on SHA-1 (with feedback into the input_pool). The number of bits returned from the
input_pool is thereby limited by the current amount of entropy and subsequently subtracted
from the entropy counter. Both /dev/random and /dev/urandom use a DRNG based on the
ChaCha20 cipher, which is seeded using the input_pool.

1165[up to Linux kernel 5.5] Up to Linux kernel version 5.5, /dev/random used an additional register
(first the so-called called blocking_pool and later the internal state of the ChaCha20-based
DRNG), which was seeded by the input_pool and had its own entropy counter. A blocking
mechanism prevented the output of internal random numbers if the blocking_pool did not con-
tain enough ’unconsumed’ entropy. In other words, /dev/random required that the input_pool
and the blocking_pool, resp. the internal state of the ChaCha20-based DRBG, were updated
continuously as they could not output more bits than entropy that has (probably) been harvested
by the noise sources. In contrast, /dev/urandom did not apply a blocking mechanism.

1166[blocking vs. non-blocking] As mentioned in par. 1165, up to Linux kernel 5.5 /dev/random
applied a blocking mechanism, a necessary feature of an NPTRNG to be NTG.1-compliant. As
of Linux kernel version 5.6 to kernel version 5.17 this strategy was changed. Currently, it is
taken care that /dev/random blocks until the ChaCha20-DRNG is seeded properly. After this
time no more blocking is applied. This increases the output rate of /dev/random but prevents
NTG.1-compliance. Under suitable circumstances compliance with functionality class DRG.3 is
possible. In contrast, /dev/urandom does not apply any blocking mechanism, not even for the
initial seeding procedure.

1167Since /dev/random and /dev/urandom are used by many cryptographic applications, in 2012
the BSI has initiated a permanent study in which /dev/random and /dev/urandom have been

208 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

5.6 Linux /dev/random and /dev/urandom

evaluated for each Linux kernel. The results are contained in the reports [Linux_RNG_2016]
(treating the Linux kernels 3.2.0 and 3.5 to 4.8), [Linux_RNG_2020] (treating the Linux kernels
4.9 to 5.5), and [Linux_RNG_2022] (treating the Linux kernels as of 5.6). All documents are
available on the BSI website. While the first report is in German the second and the third
document are in English. The document [Linux_RNG_2022] is continuously supplemented by
evaluation results for new kernels.

1168 The documents [Linux_RNG_2016], [Linux_RNG_2020], and [Linux_RNG_2022] do not only
contain the final results of the evaluations but also explain details of the evaluation methodol-
ogy. The general methodology is also applicable to other RNG designs that use non-physical
noise sources. The evaluation entails a detailed description and analysis of all components of
/dev/random, including the non-physical noise sources and entropy gathering functions, the in-
put, output, and state transition functions of the entropy pools, the heuristics utilized by the
entropy counter, and the ChaCha20-based DRNG. The analysis concludes that /dev/random
significantly underestimates the collected entropy. The theoretical considerations are supple-
mented by empirical entropy estimates. A suite of entropy estimators is thereby applied to the
raw random numbers recorded from the non-physical noise sources of an instrumented Linux
kernel during boot time and regular operation.

1169 The document [Linux_RNG_overview] provides a table that lists the compliance of /dev/random
to the functionality classes NTG.1 or DRG.3 for the Linux kernel versions beginning with 3.5.
These results are yet only applicable to the RNG /dev/random if several requirements are met;
cf. [Linux_RNG_overview], Notes, for details. In particular,

• The Linux system runs on a x86 platform.

• The CPU of the system has the RDTSC instruction.

• The clock frequency of the CPU is at least 1 GHz.

• The Linux system is not running in a virtual machine.

• The source files of the kernel that are relevant to /dev/random are unchanged as compared
to the analyzed upstream version.

It is part of an evaluation to confirm these requirements.
Note: The class definitions refer to [AIS2031An_11].

1170 Table 16 summarizes the results from [Linux_RNG_overview].

1171 The report [RNG_virtual_env] considers random number generation in virtual environments.

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

209

5 Examples

Table 16: Conformity of /dev/random to NTG.1 and DRG.3; see [Linux_RNG_overview]

Linux kernel Conformity to functionality class
3.5 – 3.14 NTG.1
3.15 – 3.16 —
3.17 – 3.19 NTG.1
4.1 – 4.20 NTG.1
5.1 – 5.5 NTG.1
5.6 – 5.17 DRG.3

210 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

Glossary

Glossary

additional input Any data that are input to a hybrid DRNG between invocations of the seeding
procedure or reseeding procedure. These data may be provided by an internal or external
noise source; they may or may not contain entropy (e.g. predictable, low-entropy, high-
entropy; they may be provided by a reliable source or be under the control of an adversary).

adversary a malicious entity whose goal is to determine, to guess, or to influence the output of
an RNG. The term attacker is used synonymously.

algorithmic post-processing A type of post-processing that is normally used for the purpose
of increasing the entropy per data bit (entropy extraction). It is usually applied to the raw
random numbers. The name is chosen to distinguish it from an analog transformation (e.g.
amplification, band-pass filter).
Note 1: Viewed as a mathematical function, algorithmic post-processing algorithms usually
have small domains and small ranges.
Note 2: Typical examples of algorithmic post-processing algorithms: XORing bits or binary
vectors, modular addition, linear feedback shift registers. Cryptographic algorithms are also
permitted; cf. cryptographic post-processing for differentiation.

attacker synonym for adversary.

backtracking resistance Term from SP 800-90[A,B,C]
Note: Backtracking resistance is similar to enhanced backward secrecy.

backward secrecy Assurance that previous internal random numbers cannot be determined
with practical computational effort from knowledge of current or subsequent internal ran-
dom numbers.

biased A value that is chosen from a sample space is said to be biased if one value is more likely
to be chosen than another value. Contrast with unbiased.

bit string A finite sequence of ones and zeroes.

black box An idealized mechanism that accepts inputs and produces outputs. It is designed
such that an observer cannot see inside the box or determine exactly what is happening
inside that box. In contrast to a glass box.

compression rate (average) ratio between the average input bit length of the cryptographic
post-processing algorithm and the bit length of the resulting internal random numbers per
(short) time interval; ideally holds for each internal random number.

computational security Security against an adversary with bounded computing power. Quan-
tified by the security level (of cryptographic mechanisms).

consuming application An application that uses random outputs from an RNG.

cryptographic State transition functions and output functions are considered cryptographic if
they are composed of cryptographic primitives (e.g. block ciphers or hash functions).
Note: Incrementation by 1, simple XOR-additions, additions and multiplications in small
moduli, LFSRs, and projections, for example, are not viewed as cryptographic.

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

211

Glossary

cryptographic post-processing Stateful post-processing (i.e., with memory) for the purpose
of gaining DRNG security properties (computational security). It is usually applied to
intermediate random numbers, or to internal random numbers of a separate TRNG. It can
also be applied to raw random numbers.
Note: By the definition given in this document, cryptographic post-processing is always
stateful.

das-random number Digitized-analog-signal random number. A bit string that results di-
rectly from the digitization of analog noise signals in a PTRNG. Das-random numbers
constitute a special case of raw random numbers.

deterministic RNG An RNG that produces random numbers by applying a deterministic
algorithm from a secret initial value called a seed, along with other possible additional
inputs.
Note 1: A deterministic RNG at least has access to a randomness source initially.
Note 2: equivalent to DRBG (SP 800-90)
Note 3: This document uses the abbreviation DRNG
.

digitization The process of generating raw discrete digital values from non-deterministic events
(e.g. analog noise sources) within a noise source.
Note 1: Raw discrete digital values are called raw random numbers.
Note 2: In addition to the actual conversion of analog data into digital values, the digiti-
zation mechanism may include elementary operations like skipping values (thinning out),
dropping bits (e.g. casting 10-bit-values to bytes by cutting the two least significant bits),
or counting.

digitization process see digitization.

effective internal state The security-critical part of the internal state of a DRNG that an
adversary does not know and that he cannot determine or guess (with probability that is
significantly greater than indicated by its size (assuming optimal encoding) even if he has
seen many random numbers.

enhanced backward secrecy Assurance that the knowledge of the current internal state of an
RNG does not allow an adversary to derive with practical computational effort knowledge
about previous output values.
Note 1: The notion of enhanced backward secrecy is trivial for memoryless RNGs. There-
fore, it is only a useful notion for DRNGs and hybrid PTRNGs, the security of which rests
at least in part on cryptographic properties of the state transition function and the output
function of the RNG
Note 2: A term related to enhanced backward secrecy is backtracking resistance (from
NIST SP 800-90[A,B,C]).

enhanced forward secrecy Assurance that it is not feasible to determine future internal ran-
dom numbers after sufficient entropy has been mixed into the internal state, given knowl-
edge of the current internal state.
Note 1: Pure DRNGs are unable to achieve enhanced forward secrecy. Unlike forward
secrecy and backward secrecy as well as enhanced backward secrecy, enhanced forward
secrecy rests entirely on the ability of a continuous reseeding process to supply as much
entropy as is required to make the prediction of future outputs infeasible.

212 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

Glossary

Note 2: A term related to enhanced forward secrecy is prediction resistance (from NIST
SP 800-90[A,B,C]).

entropy A measure of disorder, randomness, or variability in a closed system (see par. 500).
Note 1: The entropy of a random variable X is a mathematical measure of the amount of
information gained by an observation of X.
Note 2: The most common concepts are the Shannon entropy and the min-entropy. In this
document, the Shannon entropy and the min-entropy are used, depending on the context
Note 3: Min-entropy is the measure used in SP 800-90.

entropy extraction The process of increasing the entropy per data bit. Requires compression.

entropy source The combination of a noise source, health tests, and optional conditioning
component that produce bitstrings containing entropy. A distinction is made between en-
tropy sources having physical noise sources and those having non-physical noise sources.
Note 1: The terms ‘entropy source’, ‘health test’, and ‘conditioning’ belong to SP 800-90
[A,B,C].
Note 2: In the terminology of AIS 20/31 health tests comprise start-up tests, online tests,
and total failure tests while conditioning components correspond to postprocessing algo-
rithms. In the terminology of SP 800-90 [A,B,C] health tests comprise continuous tests
and startup tests.
Note 3: A PTG.2-compliant PTRNG can be viewed as a (coarse) equivalent to a physical
entropy source that generates random numbers whose entropy per bit is very close to 1.

external random number Internal random numbers that have been output by an RNG, i.e.,
those internal random number bits that are actually delivered to a consuming application.
Note 1: (DRNG): Some bits of the last internal random number of a request might be cut
off.
Note 2: (PTRNG): If the PTRNG runs continuously, many internal random numbers might
never be output.

false positive In this context, an online test, total failure test, or start-up test signaling an
error even though the component was actually working correctly.

forward secrecy Assurance that the knowledge of subsequent internal random numbers cannot
be determined with practical computational effort from current or previous internal random
numbers.

fresh entropy A bitstring that is output from a non-deterministic randomness source which
has not been previously used to generate output or has otherwise been made externally
available.
Note: The randomness source should be compliant with PTG.2, PTG.3, or NTG.1.

glass box An idealized mechanism that accepts inputs and produces outputs. It is designed
such that an observer can see inside the box and can determine exactly what is going on.
In contrast to a black box.

hybrid DRNG A DRNG accepting additional input during operation or being able to trigger
reseeding procedures.
Note: The second condition requires that the DRNG has access to a true RNG.

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

213

Glossary

hybrid PTRNG A PTRNG with a cryptographic post-processing (with memory). Usually the
goal is to increase the computational complexity of the output sequence (computational
security), and possibly also to increase the entropy per bit by data compression.
Note: A cryptographic post-processing may be viewed as an additional security anchor for
the case where the entropy per output bit is smaller than assumed.

hybrid RNG An RNG that uses design elements from both DRNGs and TRNGs.
Note: This requires a stateful post-processing with memory. See also hybrid DRNG, and
hybrid PTRNG.

ideal RNG A mathematical construct that generates independent and uniformly distributed
random numbers.

information-theoretic security Security against an adversary with unlimited computing power
due to lack of information. Requires fresh entropy.

intermediate random number (PTG.3- and NTG.1-specific term) input data for crypto-
graphic post-processing.
Example: Consider a PTG.3-compliant RNGs that consists of a PTG.2-compliant PTRNG
with DRG.3-compliant cryptographic post-processing. Here, the intermediate random
numbers equal the internal random numbers generated by the PTG.2-compliant PTRNG.

internal random number Final stage of the random numbers of an RNG that are ready to
be output. The sequence of internal random numbers depends only on the noise source,
seeding procedure, reseeding procedure, or additional input. Compare to external random
numbers.

internal state The collection of all secret and non-secret digitized information of an RNG as
stored in memory at a given point in time.
Note: This also applies to post-processing algorithms for TRNGs.

Kerckhoffs’s principle Security analysis is made under the basic assumption that the design
and public keys of a cryptosystem are known by an adversary. Only secret keys and seeds
are assumed to be unknown by an adversary.

known-answer test A test that uses a fixed input/output pair to test the correctness of a
deterministic mechanism.

min-entropy A measure of entropy based on the minimal (worst-case) gain of information from
an observation (see par. 504).

multi-target attack A scenario in which an adversary applies guesses or the results of a pre-
computation to attack many instances of the same cryptosystem at once in hope that at
least one instance succumbs to the attack.

noise alarm Consequence of an application of an online test that suggests (e.g., due to a failure
of a statistical test) that the quality of the generated random numbers is not sufficiently
good. A noise alarm can be a false positive.

noise source A source of unpredictable data that outputs raw discrete digital values. The
digitization mechanism is considered part of the noise source. A distinction is made between
physical noise sources and non-physical noise sources
Note: In AIS 31 raw discrete digital values are called raw random numbers.

214 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

Glossary

non-physical noise source A noise source that typically exploits system data and/or user in-
teraction to produce digitized random data.
Note 1: It is usually infeasible to determine a sufficiently precise characterization of non
physical noise sources. Therefore, designers have to resort to heuristics to obtain a conser-
vative entropy lower bound.
Note 2: Non-physical noise sources are used by non-physical true RNGs (NPTRNGs)
Note 3: Examples for system data: RAM data or system time of a PC, output of API
functions. Examples for interaction: key strokes, mouse movement, etc.

non-physical true RNG A true RNG with a non-physical noise source.

one-way function A function with the property that it is easy to compute the output for a
given input but it is computationally infeasible to find, for a given output, an input, which
maps to this output [ISO_11770-3].

online test A quality check of the random numbers (usually the raw random numbers) while
a PTRNG is in operation; usually realized by a statistical test or by a test procedure that
applies several statistical tests; often used synonymously for online test procedure.

online test procedure consists of one or several statistical tests (online test), evaluation rules,
a calling scheme, and the specified consequences of a noise alarm.

online test scheme synonym for online test procedure.

p-value The p-value quantifies the probability that the test values are at least as extreme as
the particular value that has just been observed (tail probability) if the null hypothesis is
true. If this p-value is smaller than a pre-defined bound, the null hypothesis is rejected
(see par. 733).

personalization string An optional input value to a DRNG during instantiation to make one
RNG instance behave differently from other instantiations.
Note: Can be a secret parameter or public parameter.

physical noise source A noise source that exploits physical phenomena (thermal noise, shot
noise, jitter, metastability, radioactive decay etc.) from dedicated hardware designs (using
diodes, ring oscillators etc.) or physical experiments to produce digitized random data.
Note: Dedicated hardware designs can use general-purpose components (like diodes, logic
gates etc.) if the designer is able to understand, describe and quantify the characteristics
of the design that are relevant for the generation of random numbers.
Note: Physical noise sources are used by physical true RNGs (PTRNGs).

physical true RNG A TRNG that uses a physical noise source.
Note 1: We use the shorthand ‘physical RNG’ instead of ‘physical true RNG’ because all
physical RNGs are, by definition, true RNGs.
Note 2: We use the abbreviation “PTRNG” instead of “PRNG” to avoid confusion with
pseudorandom number generators.

post-processing Generic term for any kind of transformation applied to random numbers of
different stages in the generation of internal random numbers in a TRNG (e.g., to raw
random numbers).
Note 1: Post-processing can have different goals: reducing bias or dependencies, statistical
inconspicuousness, entropy extraction, DRNG fallback (computational security), etc.

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

215

Glossary

Note 2: In this document we distinguish between algorithmic post-processing and crypto-
graphic post-processing
Note 3: Post-processing is related to conditioning function in SP 800-90.

prediction resistance Term from SP 800-90[A,B,C]
Note: Prediction resistance is similar to enhanced forward secrecy.

pseudorandom number generator Another term for a deterministic RNG.

pure DRNG A DRNG that does not accept input except during the seeding procedure or
(externally triggered) reseeding procedure.
Note 1: Identical seed values result in identical internal random numbers
Note 2: A pure DRNG is not able to trigger a reseeding procedure.

pure PTRNG A PTRNG for that any post-postprocessing is non-cryptographic or stateless
cryptographic.
Note: A total failure of a pure PTRNG’s noise source typically results in constant output
or periodic patterns if no post-processing or stateless post-processing is implemented, or
in outputs of a weak DRNG if a simple (non-cryptographic) algorithmic post-processing is
implemented.

random number generator A group of components or an algorithm that outputs sequences
of discrete values (usually represented as bit strings called internal random numbers).

random variable Mathematical construct that models probabilistic behavior. A real-valued
random variable X is a function that assigns a value of R to each outcome in the sample
space Ω, i.e., X : Ω → R.

raw random number Raw random numbers are discrete values (usually bits, bit strings, or
integers) which are derived at discrete points in time from a noise source of a PTRNG or
NPTRNG. Raw random numbers have not been significantly post-processed.
Note: For certain noise sources it may not be obvious which discrete values should be
interpreted as the raw random numbers. For a meaningful analysis it is recommended to
choose the earliest possible stage.

request Atomic (i.e., non-interruptible) generate operation of internal random numbers that is
completed by the update of the state transition function. Within a request at most 219

random bits are generated and output.
Note: If possible, a request should be terminated in a short time period.

reseed To refresh the internal state of a DRNG with seed material. The seed material should
contain sufficient entropy to allow recovery from a possible compromise.
Note: (verb), corresponds to reseeding procedure.

reseeding procedure Refreshing of the internal state of an DRNG with sufficient entropy to
allow recovery from a possible compromise.
Note: A reseeding procedure may either utilize or ignore the previous internal state, but
the former is recommended by this document. Occasionally, the first type of reseeding is
called seed update.

secret parameter An optional input value to the seeding procedure or reseeding procedureof
a DRNG or initialization of the cryptographic post-processing of a PTRNG to achieve
additional security against adversaries who are not in possession of this value.

216 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

Glossary

security boundary A physical or conceptual perimeter that confines the secure domain which
an adversary cannot observe or influence in a malicious way (according to the chosen threat
model).

security level (of cryptographic mechanisms) A cryptographic mechanism achieves a se-
curity level of n bits if costs which are equivalent to 2n calculations of the encryption
function of an efficient block cipher (e.g. AES) are tied to each attack against the mech-
anism which breaks the security objective of the mechanism with a high probability of
success.

seed Initializing the internal state of a DRNG with seed material. The seed material should
contain sufficient entropy to meet security requirements.
Note: (verb), corresponds to seeding procedure.

seed material A bit string that is used as input to a DRNG. The seed material determines a
portion of the internal state of a DRNG.
Note: This definition also applies to the cryptographic post-processing algorithm (with
memory) of a TRNG.

seeding procedure Procedure for seeding (initialization) of the internal state of a DRNG.

seedlife The period between the (re)seeding of the internal state of an RNG (typically, of a
DRNG) and reseeding the internal state with the next seed value or uninstantiation of the
DRNG.

self test synonym for start-up test.

Shannon entropy A measure of entropy based on the expected (average) gain of information
from an observation (see par. 502).

start-up test The start-up test is applied when the PTRNG has been started. It is intended
to detect severe statistical weaknesses and total failures.

stationarily distributed In general this property of a sequence of random variables means
that they form a stationary stochastic process. In the context of AIS 31 the term may also
mean a relaxed condition called time-local stationarity if the random variables describe the
behavior of a physical noise source.

stationary Depending on the context, the term stationary has two closely related, separate
meanings in this document. For a stochastic process, it has the usual meaning time-
invariance (see par. 456). For a physical noise source (which can never satisfy this condition
in a strict mathematical sense), we mean a relaxed condition that is more precisely denoted
as time-local stationarity (see pars. 653 to 656).

statistical inconspicuousness The application of standard statistical tests does not distin-
guish the generated random numbers from ideal random numbers.

stochastic model A stochastic model provides a partial mathematical description (of the rel-
evant properties) of a (physical) noise source using random variables. It allows the ver-
ification of a (lower) entropy bound for the output data (internal random numbers or
intermediate random numbers). Formally, a stochastic model consists of a family of prob-
ability distributions that contains the true distribution of the noise source output (raw
random numbers) or of suitably defined auxiliary random variables during the lifetime of
the physical RNG, even if the quality of the digitized data goes down. The stochastic
model is based on and justified by the understanding of the noise source.

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

217

Acronyms

time-local stationarity (AIS 31-specific term, refers to the distribution of random numbers)
A sequence of random variables X1, X2, . . . is called ’time-local’ stationarily distributed
(often, loosely ’stationarily distributed’ if the context is clear) if this sequence may be
viewed as stationarily distributed at least over ‘short’ time-scales (in absolute time) that
are yet ’large’ compared to the sample size of the online tests and the evaluator tests.

total failure The noise source is broken and delivers no or at most a small fraction of its
previous entropy.
Note 1: Depending on the concrete design and digitization, a total failure of the noise
source may result in constant or short-period sequences of raw random numbers.
Note 2: It is possible that the raw random numbers still contain entropy due to noise from
other components (e.g. an amplifier), but this scenario still constitutes a total failure..

total failure alarm Consequence of a failed total failure test.

total failure test A test that reliably detects total failures and prevents output of low-entropy
random numbers
Note: A total failure test is usually realized by physical measurements or by a statistical
test. Due to the low entropy a total failure can usually be detected very reliably and the
probability of a false positive is usually small.

true RNG A device or mechanism for which the output values depend on a noise source.

unbiased A random variable is said to be unbiased if all values of the finite sample space are
chosen with the same probability. Contrast with biased.
Note: The terms unbiased and uniformly distributed are used synonymously.

uniformly distributed a random variable X with a finite range is called uniformly distributed
if X assumes each value with identical probability.
Note: The terms uniformly distributed and unbiased are used synonymously.

uninstantiation Uninstantiating an instance of a DRNG means that this instance does no
longer exist. In particular, the internal state and secret parameters are deleted.

widely recognized cryptographic primitive A cryptographic primitive is considered widely
recognized if it has undergone diversified scientific review from many researchers and if
the cryptographic community has no serious doubts concerning its strength in relevant
operational circumstances.

with memory Property of a post-processing algorithm. It means that the post-processing is
stateful, i.e. has a state that retains information from previous invocations or steps.

Acronyms

AES advanced encryption standard.

ANSSI Agence nationale de la sécurité des systèmes d’information.

218 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

Abbreviations from Common Criteria

BSI Bundesamt für Sicherheit in der Informationstechnik.

das digitized analog noise signal.

DRNG deterministic RNG.

ECC Elliptic-curve cryptography.

ECDSA Elliptic Curve Digital Signature Algorithm.

iid independent and identically distributed.

KAT known-answer test.

LFSR linear-feedback shift register.

NIST National Institute of Standards and Technology.

NPTRNG non-physical true RNG.

OFB Output feedback.

PRNG pseudorandom number generator.

PTRNG physical true RNG.

RNG random number generator.

RSA Rivest–Shamir–Adleman cryptosystem.

SHA Secure Hash Algorithm.

TRNG true RNG.

Abbreviations from Common Criteria

ADV Assurance Development.

AVA Assurance Vulnerability Analysis.

CC Common Criteria.

CEM Common Evaluation Methodology.

EAL Evaluation Assurance Level.

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

219

Symbols

FCS Functional Class Cryptographic Support.

ITSEC Information Technology Security Evaluation Criteria.

ITSEM Information Technology Security Evaluation Manual.

PP Protection Profile.

SFR Security Functional Requirement.

ST Security Target.

TOE Target of Evaluation.

TSF TOE Security Functionality.

Symbols

A×B Cartesian product of the sets A and B.

B (n, p) Binomial distribution with parameters n and p.

N (0, 1) Standard normal (Gaussian) distribution with mean 0 and variance 1.

N
(
µ, σ2) Normal (Gaussian) distribution with mean µ and variance σ2.

Pλ Poisson distribution with parameter λ.

X∥Y Concatenation of two strings X and Y . The strings X and Y are either both bit strings,
or both byte strings.

Φ(·) Cumulative distribution of the standard normal (Gaussian) distribution with mean 0 and
variance 1; Φ(x) = 1√

2pi

∫ x

−∞ e−0.5t2
dt.

Prob (X = x) Probability that the random variable X assumes the value x.

Prob (x) Probability of the value x (short notation of Prob (X = x) if it is clear which random
variable is concerned).

⌈x⌉ Ceiling: the smallest integer greater than or equal to x, ⌈x⌉ = min {n ∈ N | x ≤ n}.

⌊x⌋ Floor: the largest integer less than or equal to x, ⌊x⌋ = max {n ∈ N | n ≤ x}.

|X| For a finite set X the notation |X| denotes its cardinality. If X is a string |X| denotes its
length.

N Set of natural numbers, = {1, 2, . . .}.

N0 Set of natural numbers with zero, = {0, 1, 2, . . .}.

Z Set of integers.

220 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

Symbols

Zn {0, 1, . . . , n− 1}.

⊕ Addition in GF (2), 0 ⊕ 0 = 0, 0 ⊕ 1 = 1, 1 ⊕ 0 = 1, 1 ⊕ 1 = 1.

πw (x) The projection of a vector x = (x1, x2, . . . , xn) onto the coordinates w =
{
i1, i2, . . . , i|w|

}
⊆

{1, . . . , n}. That is, πw (x) =
(
xi1 , xi2 , . . . , xi|w|

)
.

g ◦ f composition of mappings f and g.

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

221

Symbols

222 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

References

References

[AIS20] BSI. Funktionalitätsklassen und Evaluationsmethodologie für deter-
ministische Zufallszahlengeneratoren. Version 3.0 (15.05.2013).
https://www.bsi.bund.de/dok/6618284.

[AIS2031An_11] W. Killmann and W. Schindler. A proposal for: Functionality classes
for random number generators. Version 2.0 (18.09.2011), Mathematical-
technical reference of [AIS20] and [AIS31],
https://www.bsi.bund.de/dok/ais-20-31-appx-2011.

[AIS20An_99] W. Schindler. AIS 20: Functionality classes and evaluation methodol-
ogy for deterministic random number generators. Version 2.0 (02.12.1999),
Mathematical-technical reference of [AIS20], English translation.
https://www.bsi.bund.de/dok/ais-20-appx-1999.

[AIS31] BSI. Funktionalitätsklassen und Evaluationsmethodologie für physikalis-
che Zufallszahlengeneratoren. Version 3 (15.05.2020).
https://www.bsi.bund.de/dok/6618252.

[AIS31An_01] W. Killmann and W. Schindler. A proposal for: Functionality classes
and evaluation methodology for true (physical) random number gen-
erators. Version 3.1 (25.09.2001), English translation.
https://www.bsi.bund.de/dok/ais-31-appx-2001.

[AIS46_ECC] BSI. AIS 46 — Minimum Requirements for Evaluating Side-Channel
Attack Resistance of Elliptic Curve Implementations. Version 2.0 (16.11.2016).

[ASPB+18] E.N. Allini et al. “Evaluation and Monitoring of Free Running Oscil-
lators Serving as Source of Randomness”. In: IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2018.3 (2018), pp. 214–242.

[BeFV10] F. Bernard, V. Fischer, and B. Valtchanov. “Mathematical model of
physical RNGs based on coherent sampling”. In: Tatra Mountains
Mathematical Publications 45.1 (2010), pp. 1–14. url: https : / /
tatra.mat.savba.sk/Full/45/01be-f-v.pdf.

[BuLu08] M. Bucci and R. Luzzi. “Fully Digital Random Bit Generators for
Cryptographic Applications, IEEE Transactions on Circuits and Sys-
tems I”. In: Regular Papers 5 (3 2008), pp. 861–875.

[BuLu16] M. Bucci and R. Luzzi. “A Fully-Digital Chaos-Based Random Bit
Generator”. In: The New Codebreakers: Essays Dedicated to David
Kahn on the Occasion of His 85th Birthday. Ed. by P.Y.A. Ryan, D.
Naccache, and J.-J. Quisquater. Vol. 9100. Lecture Notes in Computer
Science. Springer, 2016, pp. 396–414.

[CFPZ09] C. Chevalier et al. “Optimal Randomness Extraction from a Diffie-
Hellman Element”. In: Proceedings of the 28th Annual International
Conference on Advances in Cryptology: the Theory and Applications
of Cryptographic Techniques. EUROCRYPT09. Cologne, Germany:
Springer-Verlag, 2009, pp. 572–589.

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

223

https://www.bsi.bund.de/dok/6618284
https://www.bsi.bund.de/dok/ais-20-31-appx-2011
https://www.bsi.bund.de/dok/ais-20-appx-1999
https://www.bsi.bund.de/dok/6618252
https://www.bsi.bund.de/dok/ais-31-appx-2001
https://tatra.mat.savba.sk/Full/45/01be-f-v.pdf
https://tatra.mat.savba.sk/Full/45/01be-f-v.pdf

References

[CoNa98] J.-S. Coron and D. Naccache. “An Accurate Evaluation of Maurer’s
Universal Test”. In: Proceedings of the Selected Areas in Cryptography.
SAC ’98.
https://dl.acm.org/citation.cfm?id=646554.694437. London,
UK, UK: Springer-Verlag, 1999, pp. 57–71.

[Coro99] J.-S. Coron. “On the Security of Random Sources”. In: Proceedings of
the Second International Workshop on Practice and Theory in Public
Key Cryptography. PKC ’99.
https://dl.acm.org/citation.cfm?id=648116.746453. London,
UK, UK: Springer, 1999, pp. 29–42.

[Cox62] David Roxbee Cox. Renewal theory. London: Methuen, 1962.
[DaRo87] W.B. Davenport Jr and W.L. Root. “An Introduction to the Theory of

Random Signals and Noise (Institute of Electrical and Electronics En-
gineers, New York, 1987)”. In: Author Affiliations Kazumasa Takada,
Akira Himeno, Ken-ichi Yukimatsu NTT Communications Switching
Laboratories, Nippon Telegraph and Telephone Corporation (), pp. 9–
11.

[DiBi07] M. Dichtl. “Bad and Good Ways of Post-processing Biased Physical
Random Numbers”. In: Fast Software Encryption, 14th International
Workshop, FSE 2007, Luxembourg, Luxembourg, March 26-28, 2007,
Revised Selected Papers. Ed. by A. Biryukov. Vol. 4593. Lecture Notes
in Computer Science. Springer, 2007, pp. 137–152. doi: 10.1007/978-
3-540-74619-5_9. url: https://doi.org/10.1007/978-3-540-
74619-5_9.

[Fell65] W. Feller. An Introduction to Probability Theory and Its Application
(Vol. 2). Wiley, 1965.

[FiBB19] V. Fischer, F. Bernard, and N. Bochard. “Modern random number
generator design - Case study on a secured PLL-based TRNG”. In: it
– Information Technology 61.1 (2019), pp. 3–13. doi: 10.1515/itit-
2018-0025.

[FiDr02] V. Fischer and M. Drutarovsky. “True Random Number Generator
Embedded in Reconfigurable Hardware”. In: Cryptographic Hardware
and Embedded Systems - CHES 2002. Vol. 2523. LNCS. Redwood
Shores, CA, USA. Springer Verlag, 2002, pp. 415–430.

[Flod89] P. Flajolet and A. Odlyzko. “Random mapping statistics”. In: Ad-
vances in cryptology – EUROCRYPT’89. Springer. 1990, pp. 329–
354.

[GaSt77] P. Gänssler and W. Stute. Wahrscheinlichkeitstheorie. Springer, 1977.
[Geor15] H.-G. Georgii. Stochastik — Einführung in die Wahrscheinlichkeits-

theorie und Statistik. 5th. De Gruyter, 2015.
[Golo64] S.W. Golomb. “Random permutations”. In: Bull. Amer. Math. Soc 70

(1964).
[HaLP34] G.H. Hardy, J.E. Littlewood, and G. Pòlya. Inequalities. 1934.
[HoRo48] W. Hoeffding and H. Robbins. “The central limit theorem for depen-

dent random variables”. In: Duke Math. J. 15 (1948), pp. 773–780.

224 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

https://dl.acm.org/citation.cfm?id=646554.694437
https://dl.acm.org/citation.cfm?id=648116.746453
https://doi.org/10.1007/978-3-540-74619-5_9
https://doi.org/10.1007/978-3-540-74619-5_9
https://doi.org/10.1007/978-3-540-74619-5_9
https://doi.org/10.1007/978-3-540-74619-5_9
https://doi.org/10.1515/itit-2018-0025
https://doi.org/10.1515/itit-2018-0025

References

[ISO_11770-3] ISO / IEC 11770-3: Information security — Key management — Part
3: Mechanisms using asymmetric techniques. 2021.

[ISO_18031] ISO / IEC 18031: Information technology – Security Techniques. Ran-
dom Bit Generation. 2011 / Cor 1: 2014 / A1: 2017.

[ISO_20543] ISO / IEC 20543: Information technology – Security Techniques. Test
and Analysis Methods for Random Bit Generators within ISO / IEC
19790 and ISO / IEC 15408. 2019.

[Jitter-RNG] Stephan Müller. CPU Time Jitter Based Non-Physical True Random
Number Generator. (July 2022).
https://www.chronox.de/jent/doc/CPU-Jitter-NPTRNG.pdf.

[Jone04] G.L. Jones. “On the Markov Chain Central Limit Theorem”. In: Prob-
ability Surveys 1 (2004), pp. 299–320.

[KaTa75] S. Karlin and H.M. Taylor. A First Course in Stochastic Processes.
2nd edition. London: Academic Press, 1975.

[KiSc08] W. Killmann and W. Schindler. “A Design for a Physical RNG with
Robust Entropy Estimators.” In: CHES 2008. Ed. by E. Oswald and
P. Rohatgi. Vol. 5154. Lecture Notes in Computer Science. Springer,
2008, pp. 146–163.

[KoSC78] V.F. Kolchin, B.A. Sevast’yanov, and V.P. Chistyakov. Random Allo-
cations. V.H. Winston, 1978.

[Lach08] P. Lacharme. “Post-Processing Functions for a Biased Physical Ran-
dom Number Generator”. In: Fast Software Encryption, 15th Inter-
national Workshop, FSE 2008, Lausanne, Switzerland, February 10-
13, 2008, Revised Selected Papers. Ed. by K. Nyberg. Vol. 5086. Lec-
ture Notes in Computer Science. Springer, 2008, pp. 334–342. doi:
10.1007/978-3-540-71039-4_21. url: https://doi.org/10.
1007/978-3-540-71039-4_21.

[Lall86] S.P. Lalley. “Renewal Theorem for a Class of Stationary Sequences”.
In: Probab. Th. Rel. Fields 72 (1986), pp. 195–213.

[Linux_RNG_2016] S. Müller and G. Krummeck and M. Romsey: Dokumentation und
Analyse des Linux-Pseudozufallszahlengenerators. Version 5.5 (includes
the Linux kernels 3.2.0 and 3.5 to 4.8), report, produced by atsec in-
formation security GmbH, by order of Bundesamts für Sicherheit in
der Informationstechnik (BSI), last updated: November 2016.
https://www.bsi.bund.de/LinuxRNG.

[Linux_RNG_2020] S. Müller: Documentation and Analysis of the Linux Random Number
Generator. Version 3.6 (includes the Linux kernels 4.9 to 5.5), report,
produced by atsec information security GmbH, by order of Bundesamts
für Sicherheit in der Informationstechnik (BSI), last updated: July
2020.
www.bsi.bund.de/LinuxRNG.

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

225

https://www.chronox.de/jent/doc/CPU-Jitter-NPTRNG.pdf
https://doi.org/10.1007/978-3-540-71039-4_21
https://doi.org/10.1007/978-3-540-71039-4_21
https://doi.org/10.1007/978-3-540-71039-4_21
https://www.bsi.bund.de/LinuxRNG
www.bsi.bund.de/LinuxRNG

References

[Linux_RNG_2022] S. Müller: Documentation and Analysis of the Linux Random Num-
ber Generator. Version 4.11 (includes the Linux kernels 5.6 to 5.17),
report, produced by atsec information security GmbH, by order of Bun-
desamts für Sicherheit in der Informationstechnik (BSI), last updated:
April 2022.
www.bsi.bund.de/LinuxRNG.

[Linux_RNG_overview] Overview of Linux kernels with NTG.1- or DRG.3-compliant random
number generator /dev/random, Bundesamts für Sicherheit in der In-
formationstechnik (BSI), last updated: April 2022.
www.bsi.bund.de/LinuxRNG.

[Maur92] U. Maurer. “A universal statistical test for random bit generators”.
In: J. Cryptol. 5.2 (1992), pp. 89–105.

[Neue04] D. Neuenschwander. Probabilistic and Statistical Methods in Cryptol-
ogy, An Introduction by Selected Topics. Vol. 3028. Lecture Notes in
Computer Science. Springer, 2004.

[Plia99] J. Pliam. “The Disparity between Work and Entropy in Cryptology”.
In: (1998). Appeared in the THEORY OF CRYPTOGRAPHY LI-
BRARY and has been included in the ePrint Archive.
pliam\spacefactor\@m{}ima.umn.edu. 10500 received November
9th, 1998. Revised, February 1st, 1999. https://eprint.iacr.org/
1998/024.

[PuWi68] Purdom, P.W. and Williams, J.H. “Cycle Length in a Random Func-
tion”. In: Transactions of the American Mathematical Society 2.133
(547-551), pp. 88–100.

[RNG_virtual_env] S. Müller and G. Krummeck and H. Kurth: Analysis of random num-
ber generation in virtual environments. Report, produced by atsec in-
formation security GmbH, by order of Bundesamts für Sicherheit in
der Informationstechnik (BSI), Version 1.0, October 21, 2016.
https://www.bsi.bund.de/dok/randomness-in-vms.

[SP800-22] A. Rukhin et al.: A statistical test suite for random and pseudoran-
dom number generators for cryptographic applications, NIST Special
Publication 800-22 (with rev 1a, 2010 revisions dated May 15, 2001).

[SP800-90A] Recommendation for Random Number Generation Using Determinis-
tic Random Bit Generators, NIST Special Publication 800-90A (June
2015).
https://doi.org/10.6028/NIST.SP.800-90Ar1.

[SP800-90B] Recommendation for the Entropy Sources Used for Random Bit Gen-
eration, NIST Special Publication 800-90A (January 2018).
https://doi.org/10.6028/NIST.SP.800-90B.

[SP800-90C] Recommendation for Random Bit Generator (RBG) Constructions,
NIST Special Publication 800-90C (Draft) (April 2016).
https://csrc.nist.gov/publications/drafts/800-90/sp800_
90c_second_draft.pdf.

226 A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

www.bsi.bund.de/LinuxRNG
www.bsi.bund.de/LinuxRNG
pliam\spacefactor \@m {}ima.umn.edu
https://eprint.iacr.org/1998/024
https://eprint.iacr.org/1998/024
https://www.bsi.bund.de/dok/randomness-in-vms
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.6028/NIST.SP.800-90B
https://csrc.nist.gov/publications/drafts/800-90/sp800_90c_second_draft.pdf
https://csrc.nist.gov/publications/drafts/800-90/sp800_90c_second_draft.pdf

References

[Schi01] W. Schindler. “Efficient Online Tests for True Random Number Gen-
erators.” In: CHES 2001. Ed. by Ç.K. Koç, D. Naccache, and C.
Paar. Vol. 2162. Lecture Notes in Computer Science. Springer, 2001,
pp. 103–117.

[Schi09a] W. Schindler. “Random Number Generators for Cryptographic Appli-
cations”. In: Cryptographic Engineering. Ed. by Ç.K. Koç. Springer,
2009, pp. 5–23.

[Schi09b] W. Schindler. “Evaluation Criteria for Physical Random Number Gen-
erators”. In: Cryptographic Engineering. Ed. by ¸C.K. Ko¸c. Springer,
2009, pp. 25–54.

[Shev11] I. Shevtsova. “On the absolute constants in the Berry Esseen type in-
equalities for identically distributed summands”. In: arXiv:1111.6554
(2011).

[TR-02102] BSI, TR-02102, Technical Guideline Cryptographic Mechanisms, (cur-
rent version, courtesy translation), https: // bsi. bund. de/ TR-
02102 .

A Proposal for Functionality Classes for Random Number Generators
Version 2.35 - DRAFT

227

https://bsi.bund.de/TR-02102
https://bsi.bund.de/TR-02102

	Introduction
	Foreword
	Character of this Document
	Structure of this Document

	AIS 20 and AIS 31 — Scope, Limits, RNG Classes, and Concepts
	Scope and Limits of the AIS 20 and AIS 31
	RNG classification and functionality classes
	Stochastic model for PTRNGs
	Other RNG standards

	Functionality classes
	Evaluation of the RNG: General aspects
	Overview over the functionality classes
	DRNG: Functionality classes
	DRNG: Main Differences from AIS2031An11
	DRG.[2,3,4]: Definitions, requirements, and justification
	Functionality Class DRG.2
	Functionality Class DRG.3
	Functionality Class DRG.4

	PTRNGs: Functionality classes
	PTRNG: Main Differences from AIS2031An11
	PTG.[2,3]: Definitions, requirements, and justification
	Functionality Class PTG.2
	Functionality Class PTG.3

	NPTRNG: Functionality classes
	NPTRNG: Main Differences to AIS2031An11
	NTG.1: Definitions, requirements, and justification
	Functionality Class NTG.1
	Security functional requirements for the NPTRNG class NTG.1

	Cross-class Topics

	Mathematical Background
	Randomness and Random Experiments
	Probability, stochastics, random variables
	Definitions and basic concepts
	Useful theorems and facts

	Entropy and Guess Work
	Entropy
	Guess Work and Work Factor

	Random mappings
	Iteration of random mappings: statistical properties
	Impact on the work factor and on the entropy

	Stochastic model, online test, total failure test, start-up test
	Stochastic model: motivation and definition
	Example: Stochastic model for coin tossing
	Online test
	Total failure test
	Start-up test

	Evaluator Blackbox Test Suites
	Specification of Statistical Tests
	The test suite Trrn
	The test suite Tirn

	Examples
	Examples of Algorithmic Post-processing
	Fixed compression rate
	Von Neumann unbiasing
	Thinning out

	Evaluation of DRNGs: Miscellaneous aspects
	AES in OFB mode
	Pure and hybrid DRNGs and a (too) simple state transition function
	One-way functions derived from the AES block cipher

	NIST Approved Designs SP800-90A: Conformity analysis with regard to DRG.3 and DRG.4
	Security Evaluation of the Hash-DRBG SP800-90A

	Noise Sources and Stochastic Models
	Examples of physical and non-physical noise sources
	PTRNG with two noisy diodes
	Sampling events with iid intermediate time intervals – Design A
	Sampling events with iid intermediate time intervals – Design B
	PTRNG exploiting radioactive decay
	A PLL-based physical noise source

	Online tests
	A look at single statistical tests
	A more sophisticated online test procedure

	Linux /dev/random and /dev/urandom

	Glossary
	Acronyms
	Abbreviations from Common Criteria
	Symbols
	References

