
Technical Guideline TR-03112-7

eCard-API-Framework – Protocols

Version 1.1.5

7. April 2015

Bundesamt für Sicherheit in der Informationstechnik
Postfach 20 03 63
53133 Bonn

E-Mail: ecard.api@bsi.bund.de
Internet: https://www.bsi.bund.de
© Bundesamt für Sicherheit in der Informationstechnik 2015

Contents
1 Overview of the eCard-API-Framework.. 6

1.1 Key Words.. 6

1.2 XML-Schema.. 7

2 Connection establishment in distributed systems... 8

2.1 General security requirements.. 8

2.2 Connection establishment for SOAP binding.. 8

2.3 Connection Establishment for PAOS binding.. 9
2.3.1 Setting up a Trusted Channel.. 10
2.3.2 PAOS Communication.. 10
2.3.3 Session Termination.. 11

2.4 TC_API_Open... 11
2.4.1 Security mechanisms for the channel established with TC_API_Open...11

2.5 TC_API_Close... 13

2.6 StartPAOS.. 13

3 ISO/IEC 24727 protocols.. 14

3.1 PIN Compare... 14
3.1.1 Marker.. 15
3.1.2 DIDCreate... 23
3.1.3 DIDUpdate.. 24
3.1.4 DIDGet.. 24
3.1.5 DIDAuthenticate.. 24
3.1.6 Non-supported functions... 25

3.2 Mutual authentication.. 25
3.2.1 Marker.. 26
3.2.2 DIDCreate... 27
3.2.3 DIDUpdate.. 28
3.2.4 DIDGet.. 28
3.2.5 CardApplicationStartSession... 28
3.2.6 DIDAuthenticate.. 29
3.2.7 Non-supported functions... 30
3.2.8 Minimum requirements in terms of algorithms..30

3.3 Password Authenticated Connection Establishment...31
3.3.1 Marker.. 31
3.3.2 DIDCreate... 32
3.3.3 DIDUpdate.. 32
3.3.4 DIDGet.. 32
3.3.5 DIDAuthenticate.. 32
3.3.6 CardApplicationStartSession... 35
3.3.7 Non-supported functions... 35

3.4 Chip Authentication... 35
3.4.1 Marker.. 35
3.4.2 DIDCreate... 36
3.4.3 DIDUpdate.. 37
3.4.4 DIDGet.. 37
3.4.5 DIDAuthenticate.. 37

Bundesamt für Sicherheit in der Informationstechnik 3

3.4.6 Non-supported functions... 39

3.5 Terminal Authentication.. 39
3.5.1 Marker.. 39
3.5.2 DIDCreate... 40
3.5.3 DIDUpdate.. 40
3.5.4 DIDGet.. 40
3.5.5 DIDAuthenticate.. 40
3.5.6 Non-supported functions... 43

3.6 Extended Access Control.. 43
3.6.1 EAC protocol specification.. 43
3.6.2 Marker.. 44
3.6.3 Call and return of CardApplicationStartSession..44
3.6.4 Overview of EAC protocol sequence.. 49
3.6.5 DIDCreate, DIDUpdate and DIDGet... 56
3.6.6 Non-supported functions... 56

3.7 Restricted Identification... 56
3.7.1 Marker.. 56
3.7.2 DIDCreate... 57
3.7.3 DIDUpdate.. 57
3.7.4 DIDGet.. 57
3.7.5 DIDAuthenticate.. 57
3.7.6 Non-supported functions... 58

3.8 RSA Authentication.. 58
3.8.1 Marker.. 59
3.8.2 DIDCreate... 62
3.8.3 DIDUpdate.. 62
3.8.4 DIDGet.. 62
3.8.5 CardApplicationStartSession... 62
3.8.6 DIDAuthenticate.. 63
3.8.7 Verification of the certificate path... 63
3.8.8 Invocation of INTERNAL AUTHENTICATE... 64
3.8.9 Invocation of EXTERNAL AUTHENTICATE... 65
3.8.10 VerifyCertificate... 65
3.8.11 Non-supported functions... 65
3.8.12 Minimum requirements in terms of algorithms..65

3.9 Generic cryptography.. 66
3.9.1 Marker.. 67
3.9.2 DIDCreate... 71
3.9.3 DIDUpdate.. 71
3.9.4 DIDGet.. 71
3.9.5 Encipher.. 71
3.9.6 Decipher.. 71
3.9.7 GetRandom.. 71
3.9.8 Hash... 71
3.9.9 Sign.. 71
3.9.10 VerifySignature... 72
3.9.11 VerifyCertificate... 72
3.9.12 DIDAuthenticate.. 72
3.9.13 Non-supported functions... 73

4 Bundesamt für Sicherheit in der Informationstechnik

4 Protocols for GetCertificate... 73

4.1 GetCertificate by means of Simple Enrollment Protocol..73

5 Basic Update Protocol.. 76

Table of Figures
Figure 1: Connection establishment for PAOS binding... 9
Figure 2: Message Sequence after CardApplicationStartSession(EACSession)...49
Figure 3: Basic Update Protocol.. 76

Bundesamt für Sicherheit in der Informationstechnik 5

1 Overview of the eCard-API-Framework

The objective of the eCard-API-Framework is the provision of a simple and homogeneous interface to
enable standardised use of the various smart cards (eCards) for different applications.

The eCard-API-Framework is sub-divided into the following layers:

• Application-Layer

• Identity-Layer

• Service-Access-Layer

• Terminal-Layer

The Application-Layer contains the various applications which use the eCard-API-Framework to access the
eCards and their associated functions. Application-specific "convenience interfaces", in which the recurring
invocation sequences may be encapsulated in application-specific calls, may also exist in this layer. However,
these interfaces are currently not within the scope of the e-Card-API-framework.

The Identity-Layer comprises the eCard-Interface and the Management interface, and therefore functions
for the use and management of electronic identities as well as for management of the
eCard-API-Framework.

The eCard-Interface specified in Part 2 of this Guideline allows to request certificates as well as the
encryption, signature and time-stamping of documents.

In the Management-Interface specified in Part 3 of this Guideline, functions for updating the framework and
the management of trusted identities, smart cards, card terminals, and default behaviour are available.

The Service-Access-Layer provides, in particular, functions for cryptographic primitives and biometric
mechanisms in connection with cryptographic tokens, and comprises the ISO24727-3-Interface and the
Support-Interface.

The ISO24727-3-Interface defined in Part 4 of this Guideline is a webservice-based implementation of the
standard of the same name [ISO24727-3]. This interface contains functions to establish (cryptographically
protected) connections to smart cards, to manage card applications, to read or write data, to perform
cryptographic operations and to manage the respective key material (in the form of so-called "differential
identities"). In the process, all functions which use or manage "differential identities" are parameterised by
means of protocol-specific object identifiers so that the different protocols which are defined in the present
document MAY be used with a standardised interface.

The Support-Interface specified in Part 5 of this Guideline contains a range of supporting functions.

The Terminal-Layer primarily contains the IFD-Interface specified in Part 6 of this Guideline. This layer
takes over the generalisation of specific card terminal types and various interfaces as well as communication
with the smart card. For the user it is unimportant whether the card is addressed by PC/SC, a SICCT terminal
or a proprietary interface, or whether it has contacts or is contact-less.

1.1 Key Words

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in
[RFC2119]. The key word “CONDITIONAL” is to be interpreted as follows:

6 Bundesamt für Sicherheit in der Informationstechnik

CONDITIONAL: The usage of an item is dependent on the usage of other items. It is therefore further
qualified under which conditions the item is REQUIRED or RECOMMENDED.

1.2 XML-Schema

A XML-Schema is provided together with this Technical Guideline. In case of incongruencies, the
specifications in this text take precedence. The graphical representations of the XML-Schema illustrate the
schema. Note that the text of this Guideline might further restrict the presence or mulitplicity of elements as
compared to the schema definition.

Bundesamt für Sicherheit in der Informationstechnik 7

2 Connection establishment in distributed systems

Some of the protocols specified here involve two instances of the eCard-API-Framework, which run on
different systems (Server and Client, which in general both contain a SAL (Server-SAL/Client-SAL, resp.) and
additional program logic) and communicate with each other via potentially insecure networks. Therefore,
the relevant aspects of security have to be taken into consideration when setting up the transport channel.

2.1 General security requirements

To secure the communication between the different modules and instances of the eCard-API-Framework the
TLS protocol is used. The cryptographic algorithms and security parameters MUST meet the requirements
set out in [TR-03116], part 4.

For communication between different modules of the eCard-API-Framework X.509 certificates MAY be used,
whereby the associated private keys are to be adequately protected. Alternatively, anonymous TLS cipher
suites, such as TLS_DH_anon from [RFC4346] or TLS_ECDH_anon from [RFC4492], MAY be used, although
in this case appropriate security measures are necessary in the operational environment in order to avert
man-in-the-middle attacks while the connection is being established.

In both cases there MUST be an exclusive binding of the communication context at application level to the
TLS channel which has been established in this process. This communication context is established on
connection to the IFD layer via the function EstablishContext and represented by the
ContextHandle (cf. Part 6 of this Guideline, Section 3.1.1). When connecting to the SAL, this
communication context corresponds to a connection to the card application established by means of
CardApplicationConnect, which is represented by a ConnectionHandle (cf. Part 4 of this Guideline,
Section 3.2.1).

As such, one single TLS channel is typically sufficient to establish communication between a SAL and the
IFD layer — irrespective of the number of card terminals and cards connected — whereas a separate TLS
channel is required for every connection to a card application for communication to take place between the
Identity-Layer or the Application-Layer and the SAL.

2.2 Connection establishment for SOAP binding

When using the SOAP binding [SOAPv1.1], the connection is established simply by setting up a
TLS-protected channel between the user of the web service (service consumer) and the provider of the web
service (service provider) via which web service messages MAY henceforth be exchanged. In this case the
service consumer and service provider take the roles of TLS/http client and TLS/http server, respectively.

Activation of this protocol is indicated by the URI urn:ietf:rfc:5246 for version TLS 1.2 or urn:ietf:rfc:4346 for
TLS 1.1 in the Protocol-parameter of the PathSecurity element (see alsoPart 4 of this Guideline and
Section 2.4.1).

8 Bundesamt für Sicherheit in der Informationstechnik

2.3 Connection Establishment for PAOS binding

When using the PAOS binding [PAOSv2.0], however, a more complex process is required to establish the
connection as, in this case, the TLS/http server acts as the user of the web service (service consumer), the
TLS/http client acts as the provider of the web service (service provider) and the TLS/http client MUST
initiate the connection.

The general connection sequence is shown in Figure 1. The procedure which enables the Client to establish a
connection with the Server is described in the following sections.

Bundesamt für Sicherheit in der Informationstechnik 9

Figure 1: Connection establishment for PAOS binding

2.3.1 Setting up a Trusted Channel

Server and Client share the following parameters necessary to establish a trusted channel:

• SessionIdentifier (REQUIRED)
A unique identifier of the authentication session.

• PSK (CONDITIONAL)
A cryptographically strong pre-shared key if required by the used TLS-Cipher Suite.

The Trusted Channel is established by two calls to TC_API_Open to the Server-SAL and the Client-SAL,
respectively:

• The Server sends a TC_API_Open call to the Server-SAL with ChannelHandle parameter set as
follows:

◦ ProtocolTerminationPoint is not present or is set to http://127.0.0.1 for localhost.

◦ SessionIdentifier SHALL contain a unique identifier of the authentication session generated
by the Server.

◦ Binding is set to urn:liberty:paos:2006-08 and indicates the need to establish a PAOS
connection according to [PAOSv2.0].

◦ PathSecurity specifies security measures required while establishing the PAOS connection
(cf. Section 2.4.1). If the Protocol-element is set to urn:ietf:rfc:4279, the
Parameters-element SHALL contain the pre-shared key PSK.

• The Client sends a TC_API_Open call to the Client-SAL with the following parameters:

◦ ServerAddress – is REQUIRED and specifies the address of the Server-SAL.

◦ SessionIdentifier – is REQUIRED and specifies the unique identifier of the session, which
has been generated by the Server.

◦ Binding – is OPTIONAL and indicates the web service binding, which is to be used for the
established communication channel. If this parameter is omitted the default value
urn:liberty:paos:2006-08 is assumed and the binding specified in [PAOSv2.0] is used.

◦ PathSecurity specifies security measures required while establishing the PAOS connection
(cf. Section 2.4.1). If the Protocol-element is set to urn:ietf:rfc:4279, the
Parameters-element SHALL contain the pre-shared key PSK.

Note: Both calls may be internal calls if Server/Server-SAL and/or Client/Client-SAL are integrated components.

2.3.2 PAOS Communication

The PAOS connection from the Client-SAL to the Server-SAL is finally established in this step.

The Request-Response Message Exchange Pattern (cf. Section 4 of [PAOSv2.0]) is used for communication
between Client-SAL and Server-SAL. Hence the Client-SAL sends an HTTP POST or GET request with a
PAOS-specific HTTP-header (cf. Section 9.3.1 of [PAOSv2.0]) to the Server-SAL. The information contained in
the PAOS-specific HTTP-header indicates which PAOS version is supported (e.g. urn:liberty:paos:2003-08 or
urn:liberty:paos:2006-08) and which service is to be invoked at the eService indicated by the name space
defined in the corresponding WSDL (e.g. urn:iso:std:iso-iec:24727:tech:schema).

Note: If an error occurs at any point in the chain of Request-Response Pattern, including the user aborting the
procedure, the error MUST be conveyed to the other communication partner before the connection is closed.

10 Bundesamt für Sicherheit in der Informationstechnik

The SessionIdentifier is transmitted as part of a SOAP-enveloped StartPAOS-call (refer to Section
2.6), which SHALL contain information about the card terminals and connected cards available at the client.

2.3.3 Session Termination

In order to terminate the PAOS-connection the Server sends TC_API_Close to the Server -SAL, which
results in an HTTP POST Response to the Client, which SHALL contain a SOAP-enveloped
StartPAOSResponse-element (refer to Section 2.6).

2.4 TC_API_Open

The function TC_API_Open can be used to initiate the establishment of a connection with a specific
binding (e.g. [PAOSv2.0]) and specific security parameters between two systems. If successful, there will be a
communication channel to the specified system which may be used to transmit calls.

Input:

• ChannelHandle [ChannelHandleType] (REQUIRED)
Specifies the system (cf. ProtocolTerminationPoint) with which a connection is to be
established or the system (cf. SessionIdentifier) from which a connection is to be accepted. If
both elements are omitted, the called SAL will generate a SessionIdentifier and return it in
TC_API_OpenResponse. Furthermore the Binding and PathSecurity MAY be specified
within the provided ChannelHandle.
The specific characteristics of the ChannelHandle when establishing a secure PAOS-based
connection, are detailed in Section 2.4.1.

Output:

• ChannelHandle [ChannelHandleType] (CONDITIONAL)
The ChannelHandle is returned if its content has changed.

Error codes:

• /resultminor/al/common#noPermission

• /resultminor/al/common#internalError

• /resultminor/al/common#parameterError

• /resultminor/dp#nodeNotReachable

• /resultminor/dp#timeout

• /resultminor/dp#unknownProtocol

• /resultminor/dp#unknownWebserviceBinding

2.4.1 Security mechanisms for the channel established with TC_API_Open

Depending on the specific purpose for which a communication channel is intended, certain fundamental
security requirements MUST be met when setting one up with TC_API_Open and appropriate security
mechanisms, which are addressed by duly configured PathSecurity elements, MUST be deployed.

Bundesamt für Sicherheit in der Informationstechnik 11

Furthermore appropriate security measures MUST be taken on a client system to ensure that a
TC_API_Open invocation to the Client-SAL MUST NOT be accepted directly from a remote system but
only from localhost.

2.4.1.1 TLS

The usage of TLS to set up a secure channel is indicated by the URI urn:ietf:rfc:5246 for version TLS 1.2 or
urn:ietf:rfc:4346 for TLS 1.1. The supported Cipher Suites, certificate verification and handshake MUST
follow the requirements from [TR-03116], part 4.

2.4.1.2 TLS with pre-shared keys

This section details a specific form of the PathSecurity element, which is used to establish a PAOS
connection protected with ”pre-shared keys” via TLS using TC_API_Open.

In this procedure a TLS channel is established between the two SAL instances in accordance with [RFC4279]
(or subsequent RFCs specifying PSK cipher suites), whereby a previously exchanged secret – the “pre-shared
key” – is incorporated in the session key used.

TLS with pre-shared key is indicated by stating the URI urn:ietf:rfc:4279 in the protocol element within
PathSecurity. The SessionIdentifier is used as psk_identity. In this case the (otherwise
optional) Parameters element in PathSecurity MUST be of the type TLS_PSK_ParameterType
which contains the following elements:

• PSK [hexBinary] (REQUIRED)
Contains the value of the pre-shared key which is incorporated, in the manner specified in
[RFC4279], into the session key of the TLS channel being established.

• CipherSuite [string, 0..*] (OPTIONAL)
If present, MUST contain a series of *_PSK_* cipher suites according to [TR-03116], part 4, shown as
a string. Implementations MUST support TLS_RSA_PSK_WITH_AES_256_CBC_SHA. Additional
PSK cipher suites according to [TR-03116], Part 4, MAY be supported.

2.4.1.3 Error codes

The following error messages MAY also occur in addition to the ResultMinor values listed in section 2.4:

• .../dp#trustedChannelEstablishmentFailed

• .../dp#unknownProtocol

• .../dp#unknownCipherSuite

• .../dp#unknownWebserviceBinding

• .../sal#unknownDIDName

• .../sal#securityConditionsNotSatisfied

• …/il/signature#certificateNotFound

• …/il/signature#certificateFormatNotCorrectWarning

• …/il/signature#invalidCertificateReference

• …/il/signature#certificatePathNotValidatedWarning

• …/il/signature#certificateStatusNotCheckedWarning

• …/il/signature#improperRevocationInformationWarning

12 Bundesamt für Sicherheit in der Informationstechnik

• …/il/signature#invalidCertificatePath

• …/il/signature#certificateRevoked

• …/il/signature#invalidCertificateExtension

2.5 TC_API_Close

The function TC_API_Close is used to actively close a previously established connection between two
systems. The communication channel may no longer be used; the ChannelHandle looses its validity.

Input:

• ChannelHandle [ChannelHandleType] (REQUIRED)
Specifies the connection which is to be closed down.

This function has no output and uses the following error codes:

• /resultminor/al/common#noPermission

• /resultminor/al/common#internalError

• /resultminor/al/common#parameterError

• /resultminor/dp#communicationError

• /resultminor/dp#unknownChannelHandle

2.6 StartPAOS

The function StartPAOS is used for the establishment of a PAOS connection according to [PAOSv2.0]. In
order to avoid the additional transmission of the otherwise necessary SAL-calls CardApplicationPath
and CardApplicationConnect the Client-SAL SHALL incorporate information about connected card
terminals and card applications in form of ConnectionHandle-elements into the StartPAOS-structure.

Input:

• SessionIdentifier [string] (REQUIRED)
Allows to identify the session between the eService-SAL and the Client-SAL.

• ConnectionHandle [ConnectionHandleType, 1..*] (REQUIRED)
SHALL occur for each connected card application and each empty card terminal slot available at the
client. If the Client supports only one type of card application, the Client MAY send a dummy
ConnectionHandle, containing the CardApplication-element (see Part 4 of this Guideline)
identifying the supported card application and containing no further information.

• UserAgent (REQUIRED)
SHALL contain information identifying the used Client. MUST NOT contain any information about
the user, the computer of the user or any software installed on the computer of the user apart from
the Client.

◦ Name [string] (REQUIRED)
SHALL contain the name of the Client. SHALL NOT contain any version information.

◦ VersionMajor [integer] (REQUIRED)
SHALL contain the major version of the Client.

Bundesamt für Sicherheit in der Informationstechnik 13

◦ VersionMinor [integer] (REQUIRED)
SHALL contain the minor version of the Client.

◦ VersionSubminor [integer, 0..1] (OPTIONAL)
If present, SHALL contain the subminor version of the Client.

• SupportedAPIVersions [1..*] (REQUIRED)
SHALL contain version numbers of supported versions of the eCard-API-specification.

◦ Major [integer] (REQUIRED)

◦ Minor [integer, 0..1] (OPTIONAL)
If not present, all minor version corresponding to the given major version are supported.

◦ Subminor [integer, 0..1] (OPTIONAL)
If not present, all subminor version corresponding to the given major/minor version are
supported.

Compliance to this version of the eCard-API-Framework SHALL be indicated by
(Major.Minor.Subminor) = (1.1.5).

• SupportedDIDProtocols [anyURI, 0..*] (OPTIONAL)
If present, SHALL contain a list of supported DIDProtocols.

This function has no output and uses the following error codes:

• /resultminor/al/common#noPermission

• /resultminor/al/common#internalError

• /resultminor/al/common#parameterError

• /resultminor/dp#nodeNotReachable

• /resultminor/dp#timeout

Note: If the Server SAL aborts the process for which the connection was set up (e.g. due to an internal error or
unexpected/incorrect messages from the Client SAL), the Server SAL SHALL send a StartPAOSResponse
indicating the error before closing the connection.

3 ISO/IEC 24727 protocols

This section contains the protocol-specific definitions of the Crypto and Differential Identity Services (cf.
Sections 3.5 and 3.6 of Part 4 of this Guideline) for some authentication protocols in accordance with
[ISO24727-3], as required for the use of typical signature cards, electronic health insurance cards, healthcare
professional ID cards and the planned electronic identity cards.

Note that the protocol identifies the used cryptographic protocol including the used commands as well as
the secure messaging to be used after successful completion of the cryptographic protocol.

3.1 PIN Compare

Authentication of a user is performed by means of a PIN in this protocol, which is also specified in abridged
form in Annex A.9 of [ISO24727-3].

The identifier for this protocol is urn:oid:1.3.162.15480.3.0.9 for iso(1) identified-organization (3) CEN (162)
CEN 15480 (15480) part3(3) annex-a(0) pin-compare(9).

14 Bundesamt für Sicherheit in der Informationstechnik

The following types are used to specify the generic structures from Part 4 of this Guideline for this protocol
in more detail.

3.1.1 Marker

This type specifies the structure of the DID marker for this authentication protocol.

Name Description

PinRef Contains the key reference of the PIN. Details on the KeyRefType are provided below.

PinValue MAY contain the value of the PIN. If this value is missing despite being required, it is
input at the terminal.

The PIN needs to be stated in the following cases:

• When creating the PIN object with DIDCreate (see Sec tion 3.1.2).

• When changing the PIN with DIDUpdate (see Section 3.1.3) and

◦ CHANGE REFERENCE DATA (i.e. unblockingPassword bit in pwdFlags
(cf. Part 6 of this Guideline) is not set)

◦ RESET RETRY COUNTER (i.e. the unblockingPassword bit in pwdFlags
is set) in the following cases:

▪ P1='00' (indicated by the absence of resetRetryCounter1 and
resetRetryCounter2 in the PasswordFlags bit string) or

▪ P1='02' (indicated by the setting of resetRetryCounter1 and the
absence of resetRetryCounter2 in the PasswordFlags bit string)

Password
Attributes

Is an optional element which MAY contain the PasswordAttributes defined in
[ISO7816-15]. For details please refer to Part 6 of this Guideline.

iso:
StateInfo

MAY contain information about the designated states if more than one possible state is
defined for the key object. Details on the iso:StateInfo element are provided below.

Bundesamt für Sicherheit in der Informationstechnik 15

The KeyRefType is used for the specification of markers (e.g. in the PinCompareMarkerType,
MutualAuthMarkerType, RSAAuthMarkerType and the CryptoMarkerType).

Name Description

KeyRef Contains the reference to the key object.

Protected Is an optional element with which key objects MAY be marked as particularly sensitive
(e.g. private signature key or PIN for qualified electronic signature). If such key objects
exist in a CardInfo file, they MUST be covered by a signature issued by a trustworthy
organisation, and any attempt to access a key object of this type from an unsigned part of
a CardInfo file will result in an error message during import of the CardInfo file (cf.
Part 3 of this Guideline).

The iso:StateInfo -element is of type StateInfoType and is used to specify states of key objects
and a procedure which allows to recognize the current state of the key object. A status is uniquely
identified by the necessary attribute StateName.

Name Description

StateRecog
nition

Indicates the sequence of calls to the card through which the current state of the key
object can be determined, if the card supports this. The CardCallSequenceType is
explained in greater detail below. The commands in the respective
StateRecognition elements SHOULD be selected in such a way as to permit the clear
identification of the state of the key object.

State This element is present for each state of the key object. More details concerning this
element are provided below (see page 21).

16 Bundesamt für Sicherheit in der Informationstechnik

The CardCallSequenceType contains a sequence of CardCall -elements, which allow to specify a
command and a set of possible response pairs for either APDUs or API-calls as defined in [TR-03112-4] or
[TR-03112-6] for example.

While the CommandAPDU / ResponseAPDU - alternative may be used to identify the card type (cf.
[TR-03112-4]) or send statically defined commands to a smart card, the APICall / APIResponse -
alternative is more powerful and allows to invoke arbitrary API-calls, which may also involve the user (see
ModifyVerificationData defined in [TR-03112-6] for example).

As a CardCall- element contains a request and a sequence of possible responses it MAY be used to
specify a tree structure, which is traversed in order to recognize the state of a key object or a card type (cf.
[TR-03112-4], Annex A.3-A.4).

Name Description

CardCall Defines a call to the smart card which is given by a CommandAPDU/APICall- element
and a sequence of possible ResponseAPDU/APIResponse elements.

The sequence of the CardCall elements is to be understood as an AND operation when
identifying a status or card type.

Command
APDU

Contains the APDU command which is to be sent to the card (cf. [ISO7816-4], [ISO7816-8]
and [ISO7816-9]).

For security reasons no APDUs with CLA values '0x' or '1x' SHOULD be used, where x is
any half byte, nor should the INS values '20', '21', '24', '2C' and '22' be used, as this would
correspond to the smart card commands VERIFY, CHANGE REFERENCE DATA, RESET
RETRY COUNTER and MANAGE SECURITY ENVIRONMENT (see [ISO7816-4], Sections
7.5.6 - 7.5.11), which an attacker could use to decrement the retry counter in the event of
a malicious "card or status detection" and thereby provoke a denial-of-service attack
under some circumstances.

In each case such APDUs MUST be denied if the CardCall element is not signed by a
trustworthy body (cf. Signature element in [TR-03112-4], Annex A.7).

Response
APDU

Defines a sequence of valid replies from the smart card for the identification of a certain
status or smart card type.

Bundesamt für Sicherheit in der Informationstechnik 17

The sequence of the ResponseAPDU elements allows to traverse a tree structure.

The structure of the ResponseAPDUType is explained in detail below.

APICall Contains an arbitrary API-call, as defined in [TR-03112-4] or [TR-03112-6] for example.

API
Response

MAY appear multiple times and contain a corresponding response. Note that the
APIResponse -element MAY contain a decision element similar to the
iso:Conclusion -element explained below such that it is possible to construct a
decision tree using API-calls and responses.

The ResponseAPDU element is part of a CardCall element and specifies a possible reply from an eCard
when invoking a CommandAPDU. The ResponseAPDU comprises an (optional) Body, a Trailer (if
successful equal to '9000') and a iso:Conclusion -element, which is present if and only if the
CardCall -element is used to specify a decision tree structure.

The structure of the DataMaskType defined below allows any parts to be filtered out of the body
element and use this information to check for matching data.

Name Description

Body MAY contain information indicating which part of the data returned by the smart
card is relevant to check for matching data. Further details on the DataMaskType
are provided below.

Trailer Contains the expected status of the invocation (if successful '9000').

iso:Conclusion The iso:Conclusion- element represents the leaf of the decision tree and
allows to determine a specific state or card type or conclude that another sequence
of iso:CardCall -elements is necessary. Further details on this element are
provided below.

18 Bundesamt für Sicherheit in der Informationstechnik

The body element is of the type DataMaskType and MAY be part of the ResponseAPDU element and
MAY contain a Tag element and either MatchingData or a structured DataObject of the type
DataMaskType.

Name Description

Tag MAY contain the tag under which the expected value (or another structured data object)
is filed.

Matching
Data

Specifies which parts of the returned data are relevant in terms of checking for matching
data. The detailed structure of the MatchingData is explained below.

DataObject Is of the type DataMaskType and therefore again contains information on the selective
filtering of a complex data object, thus allowing analysis of TLV-encoded structures
irrespective of how they are nested.

The MatchingData structure makes it possible to specify which parts of a data object returned in the
body are relevant for the comparison.

Name Description

Offset MAY optionally contain an offset which is taken into account when determining
the relevant value. For example, an offset of '03' and a mask xy would have the same
effect as a mask '00 00 00 xy '.

Length MAY contain the length of the value relevant for the comparison.

Bundesamt für Sicherheit in der Informationstechnik 19

MatchingValue Contains the value which is either identical to the value returned by the eCard or
contained therein.

The optional attribute MatchingRule of the type MatchingRuleType in the
MatchingDataType determines whether to check if the values are equal or
contained. This type is defined as follows:

<simpleType name = "MatchingRuleType">
 <restriction base = "string">
 <enumeration value = "Equals" />
 <enumeration value = "Contains" />
 </ restriction>
</ simpleType>

If this attribute is omitted then Equals is the default setting.

Mask The OPTIONAL Mask element, which is linked conjunctively with the
MatchingValue element and the data returned by the card, makes it possible to
filter out the significant parts of the data.

The iso:Conclusion- element is part of the ResponseAPDU -element.

Name Description

RecognizedState This element is present, if a state of a key object is recognized in an
unambiguous manner and hence no further iso:CardCall -elements are
necessary.

RecognizedCardType In a similar manner this element is present, if a card type is recognized in an
unambiguous manner (cf. [TR-03112-4], Annex A).

iso:CardCall If the decision process is not finished there will be one or more
iso:CardCall -elements, which imply a recursion.

20 Bundesamt für Sicherheit in der Informationstechnik

The State -element is part of the StateInfo -element (see page 16) and it is present for each state of
the key object.

The State -element has a number of important attributes as explained in the following:

• StateName – is a required identifier of the state.

• StateClass – specifies the type of the state, where the following types are possible:

◦ Operational – means that the key object is usable in this state.

◦ NotOperational – means that the key object is not usable in this state. If the SAL
recognizes that the key object is in such a state it MUST try to determine an appropriate
sequence of StateTransition -elements, which lead to an operational state. If there is no
path to an operational (or at least indetermined) state, the user MUST be informed
accordingly.

◦ RecognitionNecessary – means that the class of the state is indetermined, which means
that it is not clear whether the recognized state is operational or not, and the SAL MUST start
the recognition procedure defined by the set of iso:CardCall -elements.

Name Description

RetryCounter Is an OPTIONAL element which contains the current value of the retry counter for
the key object in accordance with [ISO7816-4], Table 34.

UsageCounter Is an OPTIONAL element which contains the current value of the UsageCounter
for the key object in accordance with [ISO7816-4], Table 34.

StateTransitio
n

Contains information on the various state transitions provided for the key object.
Further details on the StateTransition element are provided below.

Bundesamt für Sicherheit in der Informationstechnik 21

Each State -element defined above may contain an arbitrary number of StateTransition elements,
which describe the possible transitions to other states. The StateTransition element has a mandatory
TargetState attribute, used to refer to the StateName attribute of an existing state (cf. StateType
above).

Transitions between states are triggered by events, which are described by a sequence of
DIDAuthenticationState, RetryCounter, UsageCounter and FixedProcedure elements and
MAY contain additional UpdateCounter -elements to update the values of the RetryCounter and
UsageCounter variables, which MUST be maintained by the SAL to support cards, which do not allow
to retrieve those values from the card.

Name Description

DIDAuthentication
State

Indicates that the transition from one state to another is triggered by using the
DID stated in this element. Details on the DIDAuthenticationStateType
are provided below.

RetryCounter Indicates that the transition from one state to another is triggered by reaching
the value stated for the RetryCounter of the key object.

Note that some cards do not allow to retrieve the current value of the
RetryCounter of a key object and hence the SAL MUST maintain a
corresponding variable and update it according to the UpdateCounter
element described below.

UsageCounter Indicates that the transition from one state to another is triggered by reaching
the value stated for the UsageCounter of the key object.

Note that some cards do not allow to retrieve the current value of the
UsageCounter of a key object and hence the SAL MUST maintain a
corresponding variable and update it according to the UpdateCounter
element described below.

FixedProcedure Indicates that the transition from one state to another is triggered by executing
a fixed sequence of smart card commands. Details on the
CardCallSequenceType are provided on page 17.

22 Bundesamt für Sicherheit in der Informationstechnik

UpdateCounter The UpdateCounter -element is used to manage the RetryCounter
and/or UsageCounter variables, which MUST be maintained by the SAL to
support cards, which do not allow to retrieve those values from the card.

The UpdateCounterType is an extension of the builtin integer type with
two mandatory attributes:

• operation either has the value set or add to indicate, whether the
provided value is to be set or added to the current value

• variable either has the value RetryCounter or UsageCounter
to indicate which variable is to be updated

The DIDAuthenticationStateType is used in the specification of access rights (cf.
SecurityCondition in [TR-03112-4]) and in the specification of state transitions (cf.
StateTransition above).

Name Description

DIDName Specifies the name of the DID required for authentication on transition from
one state to another.

DIDScope MAY, if required, resolve ambiguities between local and global DIDs.

DIDState Specifies the required authentication status and MUST be allocated with the
value True when specifying state transitions.

DIDStateQualifier MAY contain further information which is evaluated when using
certificate-based authentication procedures.

3.1.2 DIDCreate

With DIDCreate use is made of DIDCreationData of the type PinCompareMarkerType.

Bundesamt für Sicherheit in der Informationstechnik 23

3.1.3 DIDUpdate

This type specifies the structure of the DIDUpdateDataType for the PIN Compare protocol.

Name Description

OldPinOrPUK MAY contain the old PIN or the Personal Unblocking Key (PUK).

If this information is missing despite being required then it is input at the terminal.

This information is needed if the settings in the pwdFlags element (cf. [TR-03112-6])
are as follows:

• The exchangeRefData bit is set but not the unblockingPassword bit
(i.e. it is a normal PIN which can only be changed by entering the old PIN
(CHANGE REFERENCE DATA with P1='00', cf. [ISO7816-4], Section 7.5.7)) or

• The unblockingPassword bit is set but not the resetRetryCounter1
bit (i.e. it is a PUK which MUST be presented upon the RESET RETRY
COUNTER command with P1='00' or P1='01' (cf. [ISO7816-4], Section 7.5.10)).

Marker Contains the new marker for the PinCompare protocol. Details on this element can
be found in Section 3.1.1.

3.1.4 DIDGet

In the case of DIDGet there is a return of DIDDiscoveryData of the type PinCompareMarkerType,
although the PinValue element is omitted, and the current reading of any RetryCounter or Usage
Counter which may be defined is stated in the first StateInfo element which describes the current
status.

3.1.5 DIDAuthenticate

The protocol is processed by a single invocation of DIDAuthenticate with the following entry:

This type specifies the structure of the DIDAuthenticationDataType for the PIN Compare protocol

24 Bundesamt für Sicherheit in der Informationstechnik

when DIDAuthenticate is called.

Name Description

Pin MAY contain the value of the PIN. If this element is missing, it is input at the terminal.

The return to DIDAuthenticateResponse is as follows:

This type specifies the structure of the DIDAuthenticationDataType for the PIN Compare protocol
when DIDAuthenticate is returned.

Name Description

RetryCounter If user verification failed, this contains the current value of the RetryCounter.

3.1.6 Non-supported functions

The following functions are not supported with this protocol and, when called up, relay an error message to
this effect /resultminor/sal#inappropriateProtocolForAction:

• CardApplicationStartSession

• Encipher

• Decipher

• GetRandom

• Hash

• Sign

• VerifySignature

• VerifyCertificate

3.2 Mutual authentication

This protocol is specified in similar form in Annex A.12 of [ISO24727-3], Section 16.1.1 [eGK-1] and Section
8.8 of [EN14890-1] and provides the framework for mutual authentication with the exchange of keys using
symmetric algorithms.

The identifier for this protocol is urn:oid:1.3.162.15480.3.0.12 for iso(1) identified-organization (3) CEN (162)
CEN 15480 (15480) part3(3) annex-a(0) client-application-mutual-authentication-wke(12).

The generic structures from [TR-03112-4] are more closely specified for this protocol by the following types.

Bundesamt für Sicherheit in der Informationstechnik 25

3.2.1 Marker

This type specifies the structure of the DID marker for this authentication protocol.

26 Bundesamt für Sicherheit in der Informationstechnik

Name Description

EncryptionAlgorithm MAY s pecify the encryption algorithm to be used for connection
establishment.

MacAlgorithm MAY specify the MAC algorithm to be used for connection
establishment.

EncryptionAlgorithm
ForSessionKey

MAY specify the encryption algorithm to be used for connection
establishment.

MacAlgorithmForSessionKey MAY specify the MAC algorithm to be used for secure messaging.

DerivationAlgorithm
SessionKeysAndCounter

MAY specify the algorithm required to derive the session key and
counters.

CardAlgId MAY specify the algorithms to be used for this protocol by a single
card-specific algorithm identifier.

K_enc MAY contain the encryption key to be used for connection
establishment.

K_mac MAY contain the MAC key to be used for connection establishment.

DIV_IFD MAY contain an initialisation vector for the employment of the
symmetrical algorithms. If there is no entry, a sequence of 0x00
bytes which is suitable for the respective algorithm is used as an
initialisation vector.

KeyEncMacRef Contains the key reference to the symmetrical key pair (for
encryption and MAC computation). The KeyRefType is described
on page 16.

SecurityEnvironment
Identifier

Is an optional element by means of which a security environment
which deviates from the standard MAY be specified.

ICCSNRef MAY contain a reference to the serial number of the card. If this
reference is known otherwise, the entry MAY be omitted here.

The DataRefType is defined as follows:

If it is a transparent file, the DSIName MAY be omitted.

3.2.2 DIDCreate

DIDCreate uses DIDCreationData of type MutualAuthMarkerType.

Bundesamt für Sicherheit in der Informationstechnik 27

3.2.3 DIDUpdate

DIDUpdate uses DIDUpdateData of type MutualAuthMarkerType.

3.2.4 DIDGet

DIDGet uses DIDDiscoveryData of type MutualAuthMarkerType.

3.2.5 CardApplicationStartSession

A session to the ICC is established when CardApplicationStartSession is invoked with the optional
parameter of the StartSessionInputType, which MAY be subsequently used with the
ConnectionHandle returned in the StartSessionOutputType.

This type specifies the structure of the DIDAuthenticationDataType when
CardApplicationStartSession is called up.

Name Description

SharedSecurityState If this flag is set to True, any channel which may have been established
between the client application (or a SAM assigned to it) and the ICC is
also used with the returned ConnectionHandle. If no such channel
exists then one is established. If this element is missing or if it is False, a
new logical channel is always established to the ICC. If the card does not
support any logical channels, an error
/resultminor/sal#functionNotSupported is returned.

DisableImplicitAuth If authentication is necessary for access to the specified DIDs, this MAY be
implicitly initiated by default (if this element is missing or is False). If
this flag is set to True, the necessary authentication is not implicitly
initiated and hence the error /
resultminor/sal#securityConditionsNotSatisfied MAY occur.

28 Bundesamt für Sicherheit in der Informationstechnik

This type specifies the structure of the DIDAuthenticationDataType in
CardApplicationStartSessionResponse.

Name Description

ConnectionHandle Enables use of the session opened within
CardApplicationStartSession in future function calls. If the call
does not create a new logical channel to the ICC (cf.
SharedSecurityState above) this element MAY be omitted.

The procedure for setting up a session is approximately as follows:

1. Identify DID information for ICC by means of DIDGet and read out ICCSN by means of
DataSetSelect and DSIRead.

2. Request a random number from ICC, form the challenge from the random number and ICCSN and
invoke DIDAuthenticate for InternalAuthenticate on SAM.

3. Invocation of DIDAuthenticate for MutualAuthenticate on ICC with result from step 2.

4. Invocation of DIDAuthenticate for ExternalAuthenticate on SAM with result from Step 3.

3.2.6 DIDAuthenticate

DIDAuthenticate is used in this protocol for the following purposes:

• To invoke InternalAuthenticate

• To invoke MutualAuthenticate

• To invoke ExternalAuthenticate

3.2.6.1 To invoke InternalAuthenticate

This type specifies the structure of the DIDAuthenticationDataType for the Mutual Authentication
protocol when DIDAuthenticate is invoked to request INTERNAL AUTHENTICATE.

Name Description

Challenge Contains the challenge of the communication partner which is to be
encrypted and assigned a MAC when INTERNAL AUTHENTICATE is
requested.

3.2.6.2 To invoke MutualAuthenticate

The return to DIDAuthenticateResponse after INTERNAL AUTHENTICATE, which also serves as the
input for the next step (DIDAuthenticate for MUTUAL AUTHENTICATE), is as follows in this case:

Bundesamt für Sicherheit in der Informationstechnik 29

This type specifies the structure of the DIDAuthenticationDataType for the Mutual Authentication
protocol when DIDAuthenticate is returned after INTERNAL AUTHENTICATE or before MUTUAL
AUTHENTICATE.

Name Description

InternalCryptogram Contains the cryptogram generated in the previous step.

3.2.6.3 To invoke ExternalAuthenticate

The return to DIDAuthenticateResponse after MUTUAL AUTHENTICATE, which also serves as the
input for the next step (DIDAuthenticate for EXTERNAL AUTHENTICATE), is as follows in this case:

This type specifies the structure of the DIDAuthenticationDataType for the Mutual Authentication
protocol when DIDAuthenticate is invoked to request EXTERNAL AUTHENTICATE.

Name Description

MutualCryptogram Contains the cryptogram generated in the previous step.

3.2.7 Non-supported functions

The following functions are not supported with this protocol and return a corresponding error message
/resultminor/sal#inappropriateProtocolForAction when called up:

• Encipher

• Decipher

• Hash

• Sign

• VerifySignature

• VerifyCertificate

3.2.8 Minimum requirements in terms of algorithms

This authentication protocol MAY be used with various cryptographic algorithms, but the following
algorithms MUST be supported as a minimum in accordance with [eGK-1]:

30 Bundesamt für Sicherheit in der Informationstechnik

• EncryptionAlgorithm
urn:oid:1.2.840.113549.3.7 for des-EDE3-CBC ::= { iso(1) member-body(2) us(840) rsadsi(113549)
encryptionAlgorithm(3) des-ede3-cbc(7)}

• MacAlgorithm
urn:oid:1.2.840.113549.3.7 for des-EDE3-CBC ::= { iso(1) member-body(2) us(840) rsadsi(113549)
encryptionAlgorithm(3) des-ede3-cbc(7)}

• DerivationAlgorithmSessionKeysAndCounter
urn:oid:1.2.840.63.0 for x9-63-scheme ::= { iso(1) member-body(2) US(840) ansi-x9-63(63)
schemes(0) }

• MacAlgorithmForSessionKey
urn:oid:1.2.840.113549.3.7 for des-EDE3-CBC ::= { iso(1) member-body(2) us(840) rsadsi(113549)
encryptionAlgorithm(3) des-ede3-cbc(7)}

• EncryptionAlgorithmForSessionKey
urn:oid:1.2.840.113549.3.7 for des-EDE3-CBC ::= { iso(1) member-body(2) us(840) rsadsi(113549)
encryptionAlgorithm(3) des-ede3-cbc(7)}

3.3 Password Authenticated Connection Establishment

This protocol, defined in [TR-03110], provides a secure connection establishment between terminal and chip
card based on weak passwords, e.g. PIN.

This protocol is identified by the URI urn:oid:0.4.0.127.0.7.2.2.4.

3.3.1 Marker

This type specifies the structure of the DID marker for the PACE protocol.

Bundesamt für Sicherheit in der Informationstechnik 31

Name Description

PasswordRef Contains the key reference of the PACE password.

PasswordValue MAY contain the value of the password. If this element is missing, it is captured at
the terminal.

minLength MAY contain the minimum length of the password.

maxLength MAY contain the maximum length of the password.

iso:StateInfo MAY contain information on the designated states if more than one state is defined
for the password object. Further details on the iso:StateInfo element are
provided on page 16.

The DIDStateQualifier (see [TR-03112-4]) contains the Certificate Holder Authorization Template as
defined in [TR-03110], i.e. including tag and length coding.

3.3.2 DIDCreate

DIDCreate uses DIDCreationData of type PACEMarkerType. If the password is missing, it is captured
at the terminal or SAL.

3.3.3 DIDUpdate

The DIDUpdate function for the PACE protocol uses DIDUpdateData of the PACEMarkerType and is
used to change the status of the password object (e.g. to reset the retry counter) or to change a PACE
password.

If the current state is not operational it is necessary to initiate appropriate operations (cf.
StateTransition) to move to an operational state. Once an operational state has been reached, the
password MAY be changed. If the PasswordValue element is missing it is captured at an appropriate
terminal.

3.3.4 DIDGet

In the case of DIDGet the DIDDiscoveryData of type PACEMarkerType are returned. Here the
PasswordValue element is omitted, and the current value of a RetryCounter or UsageCounter is
provided in the first State element.

3.3.5 DIDAuthenticate

The protocol is processed by a single invocation of DIDAuthenticate with the following entry:

32 Bundesamt für Sicherheit in der Informationstechnik

The PACEDIDAuthenticateInputType specifies the structure of the
DIDAuthenticationDataType for the PACE protocol when DIDAuthenticate is invoked.

Name Description

Password MAY contain the value of the password. If this element is missing, it is captured at
the terminal or SAL. In the case of a remote terminal any password transmitted in
this element is ignored and a warning (…/sal/PACE#PasswordIgnoredWarning) is
returned.

If the password entry fails, this MUST be duly displayed to the user on the client
system so that the user MAY re-enter the password and, if necessary, reset the retry
counter (cf. [TR-03110], Part 2) or cancel the entry.

In the process the user SHOULD also be informed of the remaining number of
attempts allowed to enter the password and, where applicable, be given the
opportunity to reset the operating error counter. If the password entry process is
cancelled after an incorrect entry and the number of remaining attempts to enter
the password correctly is therefore known in the PICC SAL, this MUST be returned
in the RetryCounter element.

Certificate MAY contain the certificate of the terminal if a Terminal Authentication is to follow
PACE. The relevant contents of the certificate (at least the Certification Authority
Reference, Certificate Holder Reference, Certificate Holder Authorization Template
(CHAT) including user-friendly display of rights, Certificate Effective Date,
Certificate Expiration Date and, where present, Certificate Extensions) MUST be duly
displayed to the user before the password is entered. The user MUST also be given
the opportunity at this point to impose further restrictions on the CHAT and
therefore on the effective access rights to the terminal or to cancel the operation
without entering a password. The eCard-API-Framework MUST provide an
appropriate user interface for these purposes.

Certificate MAY contain a series of descriptors of the certificate

Bundesamt für Sicherheit in der Informationstechnik 33

Description (CertificateDescription, cf. [TR-03110], Part 3), the hash value of which is
contained in the certificate as an extension.

RequestedCHAT If the full rights specified in the certificate should not be used, a CHAT already
restricted by the eService MAY be transferred to the user. It SHOULD be possible,
applying the principle of data economy, to configure which CHAT is to be
transferred with which certificates and in which cases.

ReturnEF
CardAccess

MAY be used to request the return of the ASN.1-encoded SecurityInfos from
the EF.CardAccess file (cf. [TR-03110], Part 3).

If this element is absent or FALSE, no SecurityInfos are returned. If this
element is set but no EF.CardAccess file is available on the card, a warning is
returned (…/sal/PACE#EFCardAccessNotFoundWarning).

The return in DIDAuthenticateResponse is of the PACEDIDAuthenticateOutputType and is as
follows:

This type specifies the structure of the DIDAuthenticationDataType for the PACE protocol when
DIDAuthenticate is returned.

Name Description

RetryCounter If the user verification process failed, this contains the current value of the
RetryCounter.

CertificateHolder
Authorization
Template

If the user has imposed further restrictions on the CHAT transmitted by the
eService, such that the actual access rights do not correspond with the access
rights which might potentially ensue from the certificate, the eService SAL
SHOULD be informed of the CHAT restricted by the user in this manner.

Certification
Authority
Reference

Contains up to two references to the certification authority, which MAY be
used in the context of the Terminal Authentication to verify the terminal
certificate. If two references are returned, the first reference is the more
current of the two.

EFCardAccess MAY contain the ASN.1-encoded SecurityInfos from the

34 Bundesamt für Sicherheit in der Informationstechnik

EF.CardAccess file (cf. [TR-03110], Part 3).

3.3.6 CardApplicationStartSession

The execution of the PACE protocol MAY also be initiated by invoking
CardApplicationStartSession. In this case the AuthenticationProtocolData elements are of
the PACEDIDAuthenticateInputType described above on invocation and of the
PACEDIDAuthenticateOutputType on their return.

3.3.7 Non-supported functions

The following functions are not supported with this protocol and return a corresponding error message
/resultminor/sal#inappropriateProtocolForAction when invoked:

• Encipher

• Decipher

• GetRandom

• Hash

• Sign

• VerifySignature

• VerifyCertificate

3.4 Chip Authentication

Chip Authentication is defined in [TR-03110]. Two versions of this protocol must be distinguished:

• The Chip Authentication in Version 2 MUST be preceded Terminal Authentication, and therefore the
fresh key pair does not have to be generated during Chip Authentication.

• For the generation of secure messaging keys, K Enc and K MAC, a random value r PICC,CA selected by the
PICC is included.

• In Version 2 an explicit authentication process occurs, whereas authentication in Version 1 is
implicit.

This protocol is identified by the URI urn:oid:0.4.0.127.0.7.2.2.3.

3.4.1 Marker

Bundesamt für Sicherheit in der Informationstechnik 35

This type specifies the structure of the DID marker for the Chip Authentication protocol.

Name Description

KeyId MAY contain the local key identifier, if the PICC provides multiple public keys for Chip
Authentication..

3.4.2 DIDCreate

This type specifies the structure of the DIDUpdateDataType for the Chip Authentication protocol.

Name Description

KeyInfo Contains information on the private key for the Chip Authentication protocol (details on
CAKeyInfoType are given below).

Marker Contains the marker for the Chip Authentication protocol (see Section 3.4.1). If the
generateFlag alternative is selected in the KeyInfo element described below, and if the
CAPublicKey element is also contained in the Marker (see above), this is ignored and a
corresponding warning is returned (…/sal/ChipAuth#PublicKeyIgnoredWarning).

The CAKeyInfoType is used for the definition of DIDUpdateDataType.

Name Description

PrivateKey
Value

The private key for the Chip Authentication protocol MAY be imported by means of
this element. Details on the KeyValueType are provided below.

generateFlag This element MAY be used to initiate random generation of the private key in the card.

36 Bundesamt für Sicherheit in der Informationstechnik

The KeyValueType contains key information and an optional format specification.

Name Description

KeyValue Contains the value of the key (in the specified format).

Format MAY contain the URI of the format employed.

3.4.3 DIDUpdate

In the case of DIDUpdate the DIDUpdateData are of Type CAUpdateDataType defined above.

3.4.4 DIDGet

In the case of DIDGet there is a return of DIDStructure containing data of the type CAMarkerType.

3.4.5 DIDAuthenticate

The Chip Authentication protocol is implemented by the following request sequence:

1. DIDGet MAY be used to obtain the Marker (cf. Section 3.4.1) of the card which especially contains
the domain parameters and the public key.

2. An ephemeral key pair is then generated in Version 1 of the protocol using the domain parameters.
In Version 2 of the protocol the key pair was previously generated in the scope of Terminal
Authentication. In each case DIDAuthenticate is now invoked on the PICC SAL by the eService
SAL, whereby the AuthenticationProtocolData element is of the CAInputType (see below)
and contains the public key of the terminal.

3. The card and the terminal are now able to calculate the key that was jointly agreed on. The card also
calculates the hash value of the public key of the terminal and, if Version 2 of the Chip
Authentication protocol is running, compares this with the key received from the terminal during
Terminal Authentication. In this case (Version 2), in response to the DIDAuthenticate request, a
AuthenticationProtocolData element of type CAAuthenticationTokenType, which is
explained below, is sent by the card in step 2. Otherwise (Version 1) the returned
AuthenticationProtocolData is empty.

4. Apart from this, Passive Authentication MUST be performed directly after (Version 1) or before
(Version 2) the execution of the Chip Authentication protocol to ensure the authenticity of the card's
public key. The SAL (of the eService) is responsible for checking the signature stored in
EF.CardSecurity and, where applicable, for checking corresponding certificates up to a
trustworthy root.

Bundesamt für Sicherheit in der Informationstechnik 37

This type specifies the structure of the CAInputType used in step 2.

Name Description

PublicKey Contains the public key of the terminal. The structure of the
SubjectPublicKeyInfoType is explained below.

The PublicKey element above and the RootKey element in the TADIDUpdateDataType (cf. page 40)
is of the SubjectPublicKeyInfoType.

Name Description

Algorithm Specifies the algorithm used. The structure of the
AlgorithmIdentifierType is described below.

SubjectPublicKey Contains the public key.

The AlgorithmIdentifierType is used for the definition of the SubjectPublicKeyInfoType
above.

Name Description

Algorithm Contains the URI of the algorithm.

Parameters Contains the parameters required for the respective algorithm.

38 Bundesamt für Sicherheit in der Informationstechnik

This type specifies the structure of the CAAuthenticationTokenType used in step 3.

Name Description

AuthenticationToken Contains the authentication token (T PICC).

Nonce Contains the random number (r PICC,CA).

3.4.6 Non-supported functions

The following functions are not supported with this protocol and return a corresponding error message
/resultminor/sal#inappropriateProtocolForAction when called:

• CardApplicationStartSession

• Encipher

• Decipher

• GetRandom

• Hash

• Sign

• VerifySignature

• VerifyCertificate

3.5 Terminal Authentication

Terminal Authentication is defined in [TR-03110]. Two versions of this protocol must be distinguished:

• In Version 2 of Terminal Authentication a key pair is generated and committed to for use in a
subsequent Chip Authentication Version 2.

This protocol is identified by the URI urn:oid:0.4.0.127.0.7.2.2.2.

3.5.1 Marker

There is only an empty DID marker for the Terminal Authentication protocol, because the necessary
information is entirely contained in the standardized EF.CardAccess and EF.CardSecurity files.

The DIDStateQualifier (see [TR-03112-4]) MUST contain the Certificate Holder Authorization
Template as defined in [TR-03110], i .e. including tag and length coding.

Bundesamt für Sicherheit in der Informationstechnik 39

3.5.2 DIDCreate

This type specifies the structure of the DIDUpdateDataType for the Terminal Authentication protocol.

Name Description

RootKey Contains the trusted root key. The structure of the
SubjectPublicKeyInfoType is explained on page 38.

3.5.3 DIDUpdate

DIDUpdate uses the DIDUpdateDataType defined above.

3.5.4 DIDGet

In the case of DIDGet there is a return of DIDStructure containing data of the type TAMarkerType.

3.5.5 DIDAuthenticate

The protocol is implemented by the following requests of DIDAuthenticate from the terminal to the
card:

1. When DIDAuthenticate is first invoked with AuthenticationProtocolData of the
TADIDAuthInputType, the certificate chain is transmitted along with the hash value (in Version
2) of the newly generated public key as well as any other auxiliary data which may require
authentication (e.g. for age verification).

2. The returned AuthenticationProtocolData are of type TADIDAuthOutputType and
contain the "card identity" ID PICC (IDPICC) and the random number r PICC,TA (Challenge).

3. When DIDAuthenticate is invoked for the second time with
AuthenticationProtocolData of the TADIDAuthExternalAuthType, the signature
generated by the terminal is ultimately transmitted to the card for verification.

40 Bundesamt für Sicherheit in der Informationstechnik

The type specifies the structure of the TADIDAuthInputType used in the first step.

Name Description

Certificate Contains a certificate.

CertificateType MAY specify the type of certificate (cf. VerifyCertificate in [TR-03112-4]).

Authenticated
AuxiliaryData

MAY contain additional data which are used to check the validity of the card or
for age verification. These data MUST be provided in the form specified in
[TR-03110], Part 3. For each piece of data transmitted for additional verification
after successful Terminal Authentication, a Verify command is requested (e.g.
with OID 0.4.0.127.0.7.3.1.4.1 (id-auxiliaryData-1) for age verification, with
0.4.0.127.0.7.3.1.4.2 (id-auxiliaryData-2) for the document validity verification or
with 0.4.0.127.0.7.3.1.4.3 (id-auxiliaryData-3) to verify municipality citizenship, cf.
also [TR-03110], Part 3). The corresponding result of these verification steps is
returned in the Result element of the response of the second
DIDAuthenticate request (cf. also TADIDAuthExternalAuthType , page 42).

If the specified DID only supports Version 1 of the Terminal Authentication
protocol, the warning
…/sal/FunctionalityByCurrentProtocolVersionNotSupportedWarning is returned.

Compressed
Ephemeral
PublicKey

MAY contain the compressed public key of the key pair which has been newly
generated by the terminal. In accordance with [TR-03110], Part 3, this MAY either
be the SHA-1 hash value (Diffie-Hellman) or the x -coordinate of the group
element (Elliptic Curve Diffie-Hellman).

If the specified DID only supports Version 1 of the Terminal Authentication
protocol, the warning
…/sal/FunctionalityByCurrentProtocolVersionNotSupportedWarning is returned.

Bundesamt für Sicherheit in der Informationstechnik 41

This type specifies the structure of the TADIDAuthOutputType returned by the card in step 2.

Name Description

Challenge Contains the random number generated by the card r PICC,TA.

IDPICC MAY contain the "card identity" ID PICC. As stipulated in [TR-03110], Section 4.4, this
involves the Doc# from the MRZ in case of BAC or the compressed ephemeral public
keys of the PICC in case of PACE. In the case of a loyal-stack configuration, where the
card identity is already known to the terminal, this element MAY be omitted.

This type specifies the structure of the TADIDAuthExternalAuthType sent in step 3, which is verified
by the card.

Name Description

Signature Is the signature of the terminal which has to be verified by the card in the scope of
Terminal Authentication.

The results of the verification of this signature and, where applicable, of the additional
verification steps (cf. Authenticated AuxiliaryData, page 41) are returned following this
invocation of DIDAuthenticate. If these additional verification steps fail, the
following warnings

• …/sal/EAC#AgeVerificationFailedWarning

• …/sal/EAC#DocumentValidityVerificationFailedWarning

• …/sal/EAC#CommunityVerificationFailedWarning

are returned.

In addition, the VERIFY commands which may be required to check the additional data for the PICC
validity check or for the age verification by means of APDUs protected by secure messaging and the
Transmit function are sent to the card (cf. [TR-03110], Part 3).

42 Bundesamt für Sicherheit in der Informationstechnik

3.5.6 Non-supported functions

The following functions are not supported with this protocol and return a corresponding error message
/resultminor/sal#inappropriateProtocolForAction when invoked:

• CardApplicationStartSession

• Encipher

• Decipher

• GetRandom

• Hash

• Sign

• VerifySignature

3.6 Extended Access Control

This protocol specified in [TR-03110] forms the framework for mutual authentication with keys exchanged
using the Extended Access Control protocol.

The identifier for this protocol is urn:oid:1.3.162.15480.3.0.14 for iso(1) identified-organization (3) CEN (162)
CEN 15480 (15480) part3(3) annex-a(0) extended-access-control-protocol(14)

The following protocol variant is available for this purpose:

• urn:oid:1.3.162.15480.3.0.14.2 for EAC Version 2 in accordance with [TR-03110], which comprises the
following sub-protocols:

◦ Password Authenticated Connection Establishment (PACE) in accordance with [TR-03110]

◦ Chip Authentication version 2 (CA) in accordance with [TR-03110]

◦ Terminal Authentication version 2 (TA) in accordance with [TR-03110]

◦ Restricted Identification (RI) in accordance with [TR-03110]

3.6.1 EAC protocol specification

The Extended Access Control (EAC) protocol is specified in the following sections:

• Marker

• Call and return of CardApplicationStartSession

• Overview of EAC protocol sequence

• Phase 1 - Extended PACE protocol

• Phase 2 - Combination of Terminal and Chip Authentication

• Phase 2b - Optional additional message with signature forwarded separately

• Secure messaging with APDU batches

Bundesamt für Sicherheit in der Informationstechnik 43

3.6.2 Marker

A DID for the EAC protocol has the following marker structure, making reference only to existing DIDs for
the PACE, Chip Authentication, Terminal Authentication and, where applicable, the Restricted Identification
protocol.

This type specifies the structure of the DID marker for the EAC protocol.

Name Description

PACEDID Contains a reference to a DID for the PACE protocol in Version 2 (details on such DIDs are
given in Section 3.3).

CADID Contains a reference to a DID for the Chip Authentication protocol (details on such DIDs are
given in Section 3.4).

TADID Contains a reference to a DID for the Terminal Authentication protocol (details on such
DIDs are given in Section 3.5).

RIDID MAY contain a reference to a DID for the Restricted Identification protocol (details on such
DIDs are given in Section 3.7).

The DIDStateQualifier (see [TR-03112-4]) MUST contain the Certificate Holder Authorization
Template as defined in [TR-03110], i.e. including tag and length coding.

3.6.3 Call and return of CardApplicationStartSession

The protected channel to the card by means of EAC is established by requesting
CardApplicationStartSession with a corresponding DID for the EAC protocol. In this context the
DIDName refers to the DID on the PICC with the marker structure defined in Section 3.6.2. The
AuthenticationProtocolData are of type EACSessionInputType explained in more detail below,
through which the optional test sequences for age verification, document validity and municipality
citizenship MAY be specified and / or the generation of a sector-specific pseudonym MAY be requested.

If required, a differentiation MAY also be made between different eService keys (with different certificates
and authorisations) using the SAMConnectionHandle. Handles for the keys/certificates, which are
currently available to the eService SAL are returned without additional parameters when
CardApplicationPath is called.

44 Bundesamt für Sicherheit in der Informationstechnik

This type specifies the structure of the AuthenticationProtocolData when
CardApplicationStartSession is called up with the EAC protocol.

Name Description

RequiredAge MAY be used for age verification with a specific minimum age. If this element
is missing, the age is not verified. This element is converted by the eService
SAL into the format required for the PICC (cf.
AuthenticatedAuxiliaryData in TADIDAuthInputType in Section
3.5.5 and [TR-03110], Part 3).

If the age verification process fails, a warning is returned in the
AgeVerification element explained below
(…/sal/mEAC#AgeVerificationFailedWarning).

RequiredCommunity MAY be used to check whether the citizen is affiliated with a certain
municipality.

If the community affiliation process fails, a warning is returned in the
CommunityVerification element explained below
(…/sal/mEAC#CommunityVerificationFailedWarning).

Bundesamt für Sicherheit in der Informationstechnik 45

If this element is missing, the citizenship is not checked.

VerifyDocument
Validity

MAY specify whether the current document validity will be checked. If this
element is missing or FALSE, the document validity is not checked. This
element is converted by the eService SAL into the format required for the
PICC (cf. Authenticated-AuxiliaryData in TADIDAuthInputType
in Section 3.5.5 and [TR-03110], Part 3).

If the document validity check fails, the warning
(…/sal/mEAC#DocumentValidityVerificationFailed) is returned.

PerformRestricted
Identification

MAY specify whether the sector-specific pseudonym is to be calculated once
the trustworthy channel has been established between the eService and PICC
with the Restricted Identification protocol.

RequiredCHAT If the eService does not want to use the full access rights provided by the
CHAT of the addressed certificate or leave it up to the configuration of the
eService-SAL, it MAY explicitly specify the required CHAT here.

OptionalCHAT In a similar manner the eService MAY specify optional access rights.

DataSetToBeRead In order to minimise the number of messages which have to be sent via the
network, it is possible to send the necessary APDUs for the Restricted
Identification protocol together with the APDUs for the data readout in one
single Transmit request (cf. [TR-03112-6]). To allow this, the data groups
which are to be read out must be specified when invoking
CardApplicationStartSession, with one DataSetToBeRead
element available for each data set to be read out.

TransactionInfo This element MAY contain transaction-related information, which MUST be
displayed in the eID-PIN dialogue before the PACE-protocol is performed.

In response to the CardApplicationStartSession request, a
CardApplicationStartSessionResponse is returned with AuthenticationProtocolData of
the EACSessionOutputType.

46 Bundesamt für Sicherheit in der Informationstechnik

This type specifies the structure of the AuthenticationProtocolData in
CardApplicationStartSessionResponse with the EAC protocol.

Name Description

AgeVerification If a RequiredAge element was transferred on invocation, the result of the
age verification is returned in this element. If the check was successful, the
returned URI is …/resultmajor#ok, whereas the error code returned if the age
verification failed is …/sal/EAC#AgeVerificationFailedWarning.

Community
Verification

If a RequiredCommunity element was transferred on invocation, the result
of the citizenship check is returned in this element. If the check was successful,
the returned URI is …/resultmajor#ok, whereas the error code returned if the
citizenship check failed is …/sal/EAC#CommunityVerific ationFailedWarning.

DocumentValidity
Verification

If the document validity check was requested with the
VerifyDocumentValidity element, which is assigned the status True,
the result of this check is returned in this element. If the check is successful,
the returned URI is …/resultmajor#ok, whereas the error code
…/sal/EAC#DocumentValidityVerificationFailed is re turned if the document
validity check fails.

SectorSpecific
Identifier

If the PerformRestrictedIdentification element was used to request
the calculation of the sector-specific pseudonym, this is returned here.

DataSet In response to each DataSet request either its content or an error message,
indicating that readout was unsuccessful is returned. The precise structure of
this element is explained in detail below.

Bundesamt für Sicherheit in der Informationstechnik 47

For each DataSetToBeRead element in the request, a corresponding DataSet element is returned.

Name Description

DataSetName Contains the name of the DataSet.

dss:Result Contains the result of the request. If the DataSet readout was successful, the URI
returned in the ResultMajor element is …/resultmajor#ok.

If the process fails, the URI returned in the ResultMajor element is
…/resultmajor#error and, in addition, further details are returned in the
ResultMinor element as to the cause of the error, distinguishing between the
following cases:

• /resultminor/sal#unknownDataSetName

• /resultminor/sal#securityConditionsNotSatisfied

• /resultminor/sal#prerequisitesNotSatisfied

DSI Is available once for each Data Structure for Interoperability contained in the
DataSet. See below for details.

The DSI element is part of DataSet.

Name Description

DSIName Contains the name of the Data Structure for Interoperability (DSI).

dss:Result Contains the result of the request. If the DSI readout was successful, the message
returned in the ResultMajor element is …/resultmajor#ok.

If the process fails, the message returned in the ResultMajor element is
…/resultmajor#error and, in addition, further details are returned in the
ResultMinor element as to the cause of the error, distinguishing between the

48 Bundesamt für Sicherheit in der Informationstechnik

following cases:

• /resultminor/sal#unknownDSIName

• /resultminor/sal#prerequisitesNotSatisfied

• /resultminor/sal#securityConditionsNotSatisfied

DSIContent The content of the DSI is returned here if the process is successful.

3.6.4 Overview of EAC protocol sequence

The sequence between both SAL instances after invocation of CardApplicationStartSession on the
eService SAL is shown in Figure 2.

3.6.4.1 Phase 1 - Extended PACE protocol

The eService-SAL invokes DIDAuthenticate with the DIDName provided for PACE (cf. PACEDID element
in Section 3.6.2) and AuthenticationProtocolData of the EAC1InputType explained in more detail
below.

The eService certificate, the corresponding DV certificate and additional link certificates are transferred in
this process and MAY be verified by the client SAL. If the verification fails, the user MUST be informed
accordingly and the authentication protocol MUST be aborted.

Bundesamt für Sicherheit in der Informationstechnik 49

Figure 2: Message Sequence after CardApplicationStartSession(EACSession)

The DIDAuthenticate-message also contains corresponding certificate descriptions (see specification of
the ASN.1-based CertificateDescription structure in [TR-03110], Part 3), information about the
required and optional Card Holder Authorization Template (CHAT) (RequiredCHAT and OptionalCHAT),
the AuthenticatedAuxiliaryData prepared for the chip and additional TransactionInfo, if
required.

The file EF.CardAccess is read out and, following the PACE protocol process, the challenge for the
Terminal Authentication is requested from the chip.

The data described are returned in the AuthenticationProtocolData of type EAC1OutputType,
which is explained in more detail below. If this process is successful the ASN.1-encoded SecurityInfo
structure from EF.CardAccess and the “card identity” ID PICC (see [TR-03110], Part 2) is returned.

If the CertificateHolderAuthorizationTemplate (CHAT) has been further restricted by the user it
will be returned. If the client SAL has not been able to build a PICC-verifiable certificate chain there will be
up to two CertificationAuthorityReference elements, which specify the root keys that are
available for the certificate verification on the PICC. The SecurityInfos structure from the
EF.CardAccess file contains the domain parameters which are used in the next step to generate a fresh
key pair.

The EAC1InputType specifies the structure of the DIDAuthenticationDataType for the "Extended
PACE protocol" on invoking DIDAuthenticate within the EAC protocol (EAC).

Name Description

Certificate MUST contain exactly one eService certificate and the corresponding DV
certificate. Additional link-certificates MAY be included. The eService SAL
SHOULD include all link-certificates known to the eService.

The client SAL MAY pre-verify the eService certificate according to [TR-03110],
Part 3, before display. In this case the client SAL MUST maintain trust point(s)

50 Bundesamt für Sicherheit in der Informationstechnik

according to [TR-03110], Part 3 (the role of MRTD chip must be performed by the
client SAL). This includes secure storage of the trust point(s) and update of trust
point(s) according to the rules in [TR-03110], Part 3. If the verification fails, the
user MUST be informed accordingly and the authentication protocol MUST be
aborted.

Certificate
Description

The client SAL MUST check that exactly one
CertificateDescription-element is present and MUST display the content
of this element in a suitable manner before capturing the PIN and performing the
PACE-protocol.

RequiredCHAT Specifies the data, which are required by the eService.

If the full rights specified in the certificate are not supposed to be used, a CHAT
already restricted by the eService MAY be transferred to the client SAL. It
SHOULD be possible, applying the principle of data-minimization, to configure
the eService SAL to dictate which CHAT is transferred with which certificates and
in which cases.

OptionalCHAT Specifies the data, which are requested by the eService, but which transmission
may be supressed by the user.

Authenticated
AuxiliaryData

MAY contain additional data which are used to check the validity of the card,
verify the age or check municipality citizenship.

These data MUST be relayed in the form specified in [TR-03110], Part 3. For each
piece of data transmitted for additional verification after successful Terminal
Authentication, a Verify command is requested (e.g. with OID
0.4.0.127.0.7.3.1.4.1 (id-auxiliaryData-1) for age verification, with
0.4.0.127.0.7.3.1.4.2 (id-auxiliaryData-2) for the document validity check or with
0.4.0.127.0.7.3.1.4.3 (id-auxiliaryData-3) to check municipality citizenship, cf. also
[TR-03110], Part 3.

TransactionInfo This element MAY contain transaction-related information, which MUST be
displayed in the eID-PIN dialogue before the PACE-protocol is performed.

A DIDAuthenticateResponse element with AuthenticationProtocolData of type
EAC1OutputType is returned in response to this request:

Bundesamt für Sicherheit in der Informationstechnik 51

This type specifies the structure of the DIDAuthenticationDataType for the PACE protocol when
DIDAuthenticate is returned.

Name Description

CertificateHolder
Authorization
Template

If the user has imposed further restrictions on the CHAT transmitted by the
eService, such that the actual access rights do not correspond with the access
rights which might potentially ensue from the certificate, the eService SAL
MUST be informed of the CHAT restricted by the user in this manner.

Certification
AuthorityReference

As part of the Terminal Authentication the client SAL SHALL build a
PICC-verfiable certificate chain from the certificates provided by the eService.
The client SAL MAY also use certificates known to the client from other
sources (e.g. internal certificate stores) to build a chain.

This element MUST be present if the client SAL is not able to build a
PICC-verifiable certificate chain. In that case the element contains up to two
references to the certification authority, which are provided by the chip (see
[TR-03110], Part 3). If two references are returned, the first reference is the
more current of the two.

EFCardAccess MUST contain the ASN.1-coded SecurityInfos from the
EF.CardAccess file (cf. [TR-03110], Table A.1).

IDPICC MUST contain the “card identity” IDPICC. As stipulated in [TR-03110], Part 2,
this involves the compressed ephemeral public key of the PICC in case of
PACE. The eService SAL MUST check that this element occurs exactly once.

Challenge MUST contain the random number generated by the PICC, rPICC,TA, which is
signed by the eService SAL during the Terminal Authentication. The eService
SAL MUST check that this element occurs exactly once.

52 Bundesamt für Sicherheit in der Informationstechnik

3.6.4.2 Phase 2 - Combination of Terminal and Chip Authentication

Using the Chip Authentication domain parameters (see SecurityInfo structure above), the eService SAL
generates a fresh key pair in the next step, forms an appropriate chain of additionally required certificates
and finally, where required, signs the Challenge which has been transmitted.

The eService SAL then invokes DIDAuthenticate for the CADID (cf. Section 3.6.2) and relays
AuthenticationProtocolData of type EAC2InputType, which is described in more detail below, to
the client SAL. In addition to the certificate chain applicable to the PICC, this element contains the newly
generated public key EphemeralPublicKey. The certificate chain is verified by the PICC.

The signature generated by the terminal (Signature) is checked by means of EXTERNAL AUTHENTICATE.
The file EF.CardSecurity is read out and Chip Authentication is executed by invoking MSE:SET AT and
GENERAL AUTHENTICATE. The results of these actions (EF.CardSecurity, authentication token and nonce)
are returned to the eService SAL in AuthenticationProtocolData of type EAC2OutputType, which
is explained in more detail below.

Note: Non-conforming eService SALs might omit the signature in EAC2InputType. In this case, the Client SAL
SHALL return the Challenge again in EAC2OutputType.

This type specifies the structure of the EAC2InputType which is used in the EAC protocol on the second
request of DIDAuthenticate.

Name Description

Certificate The Certificate element MAY occur any number of times and contains
a certificate in each case so that, together with the eService certificate
already transmitted, the resulting overall chain is one which is verifiable by
the PICC.

The sender MUST NOT include an eService certificate. The receiver MUST
ignore eService certificates contained in this element.

The receiver MAY additionally use certificates known to the receiver to
build a complete certificate chain.

This element MUST be provided if the element
CertificationAuthorityReference in EAC1OutputType is

Bundesamt für Sicherheit in der Informationstechnik 53

present. If the element CertificationAuthorityReference is not
present, the client SAL SHALL build a chain from the certificates
transmitted in Phase 1 which is verifiable by the PICC.

EphemeralPublicKey MUST contain the public key of the key pair newly generated by the
eService SAL. The key SHALL be encoded as unsigned integer (DH keys) or
elliptic curve point (ECDH keys) according to [TR-03110], Part 3, Appendix
D. In case of ECDH keys this implies the uncompressed encoding according
to [TR-03111], i.e. including encoding indicator 0x04.

The client SAL MUST check that this element occurs exactly once.

Signature MUST contain the signature generated by the eService SAL during Terminal
Authentication.

AuthenticationProtocolData of type EAC2OutputType are returned in the subsequent
DIDAuthenticateResponse.

This type specifies the structure of the EAC2OutputType which is used in the EAC protocol on the
second request of DIDAuthenticate. If the Challenge has already been returned in the previous
message (cf. EAC1OutputType), the elements EFCardSecurity, AuthenticationToken and
Nonce are returned. Otherwise the Challenge element is returned at this point.

Name Description

EFCardSecurity Contains a SignedData structure in accordance with [RFC3852] which
contains the full SecurityInfo structure in the content data
(EncapsulatedContentInfo). This signature is checked by the eService
SAL during Passive Authentication.

The eService SAL MUST check that this element occurs exactly once.

AuthenticationToken Contains the authentication token (T PICC).

The eService SAL MUST check that this element occurs exactly once.

Nonce Contains the random number (r PICC,CA).

54 Bundesamt für Sicherheit in der Informationstechnik

The eService SAL MUST check that this element occurs exactly once.

Challenge SHALL contain the Challenge from the PICC if no signature was sent to the
client SAL in EAC2InputType.

If a Challenge is included in this message although a signature was sent to
the client SAL in EAC2InputType, the eService SAL MUST abort the
authentication procedure.

3.6.4.3 Phase 2b - Conditional additional message with signature

If the signature has not already been transmitted with EAC2InputType, an additional invocation of
DIDAuthenticate with AuthenticationProtocolData of type EACAdditionalMessageType is
required to transmit the terminal signature to the PICC where it is checked by invoking EXTERNAL
AUTHENTICATE.

The file EF.CardSecurity is read out and Chip Authentication is executed by invoking MSE:SET AT and
GENERAL AUTHENTICATE. The result of these actions is then returned to the eService SAL in
AuthenticationProtocolData of type EAC2OutputType, as detailed above.

This type specifies the structure of the EACAdditionalInputType which is used in the optional
additional message that is required if the Challenge was not included in the first phase.

Name Description

Signature SHALL contain the signature generated by the eService SAL during Terminal
Authentication.

AuthenticationProtocolData of type EAC2OutputType (cf. Section 3.6.4.2) are returned in the
subsequent DIDAuthenticateResponse and in this case the elements EFCardSecurity,
AuthenticationToken and Nonce MUST be included.

3.6.4.4 Secure messaging with APDU batches

If the signature extracted from EFCardSecurity (Passive Authentication) and the authentication token
generated in the Chip Authentication process are verified, the eService SAL MAY then communicate with the
PICC via APDUs protected by secure messaging in order to — according to the information requested by
means of CardApplicationStartSession — request the generation of the sector-specific pseudonym,
perform additional checks or read out certain data stored on the PICC. The APDUs required for this MAY be
calculated in advance by the eService SAL and transferred as a batch using the Transmit function from
Part 6 of this Guideline via the network to the IFD-Layer on the side of the PICC. The IFD-Layer on the side
of the PICC in turn sends the APDUs prepared by the eService SAL to the PICC in sequence and logs the
respective response APDUs, which are ultimately sent back to the eService SAL as a collective batch in the
TransmitResponse.

Bundesamt für Sicherheit in der Informationstechnik 55

3.6.5 DIDCreate, DIDUpdate and DIDGet

The requests of DIDCreate, DIDUpdate and DIDGet each use an element of the EACMarkerType as the
input parameter (with DIDCreate and DIDUpdate) or the output parameter (with DIDGet), respectively.

3.6.6 Non-supported functions

The following functions are not supported with this protocol and return a corresponding error message
/resultminor/sal#inappropriateProtocolForAction when invoked:

• DIDAuthenticate

• Encipher

• Decipher

• GetRandom

• Hash

• Sign

• VerifySignature

• VerifyCertificate

3.7 Restricted Identification

The Restricted Identification protocol is used to generate a sector-specific pseudonym and is defined in
[TR-03110].

3.7.1 Marker

This type specifies the structure of the DID marker for the Restricted Identification protocol.

Name Description

KeyId MAY contain the local key identifier, if the PICC provides multiple keys for Restricted
Identification.

56 Bundesamt für Sicherheit in der Informationstechnik

3.7.2 DIDCreate

This type specifies the structure of the DIDUpdateDataType for the Restricted Identification pro tocol.

Name Description

KeyInfo Contains information on the key material for the DID. Details on the CAKeyInfoType are
given on page 36.

Marker Contains additional information on the DID. Details on the RIMarkerType are given in
Section 3.7.1.

3.7.3 DIDUpdate

DIDUpdate uses the RIDIDUpdateDataType defined above.

3.7.4 DIDGet

DIDGet returns a DIDStructure, which contains a marker of type RIMarkerType.

3.7.5 DIDAuthenticate

For cards, which do not require secure messaging for performing the Restricted Identification protocol, this
protocol is implemented by taking the following steps:

• The sector-specific public key of the terminal for Restricted Identification including the domain
parameters is transmitted to the card in a DIDAuthenticate request, whereby the
AuthenticationProtocolData is of type RIDIDAuthInputType.

• The card calculates the sector-specific pseudonym and returns it in
DIDAuthenticateResponse, which contains AuthenticationProtocolData of type
RIDIDAuthOutputType.

The type specifies the structure of the RIDIDAuthInputType used in step 1.

Name Description

Bundesamt für Sicherheit in der Informationstechnik 57

SectorPublicKey Contains the sector-specific public key including the domain parameters, as
specified in [TR-03110], Part 3.

The type specifies the structure of the RIDIDAuthOutputType used in step 2.

Name Description

SectorSpecificIdentifier Contains the sector-specific pseudonym.

3.7.6 Non-supported functions

The following functions are not supported with this protocol and return a corresponding error message
/resultminor/sal#inappropriateProtocolForAction when called:

• CardApplicationStartSession

• Encipher

• Decipher

• GetRandom

• Hash

• Sign

• VerifySignature

3.8 RSA Authentication

This protocol is specified in a similar form in Annex A.15 of [ISO24727-3], Section 16 of [eGK-1] and Section
8.4 of [EN14890-1] and provides the framework for mutual authentication with an optional exchange of keys
using the RSA algorithm.

The identifier for this protocol is urn:oid:1.3.162.15480.3.0.15 for iso(1) identified-organization (3) CEN (162)
CEN 15480 (15480) part3(3) annex-a(0) key-transport-with-mutual-authentication(15).

The generic structures from [TR-03112-4] section 3.5 are complemented by the specification of the following
types.

58 Bundesamt für Sicherheit in der Informationstechnik

3.8.1 Marker

Bundesamt für Sicherheit in der Informationstechnik 59

This type specifies the structure of the DID marker for this authentication protocol.

Name Description

EncryptionAlgorithm MAY contain a URI for the encryption algorithm to be used in the scope
of the optional key exchange. Alternatively it is possible to specify the
CardAlgId below, which implies which encryption algorithm is to be
used by the card.

SignatureAlgorithm Specifies the signature algorithm to be used for mutual authentication.
Alternatively it is possible to specify the CardAlgId below, which
implies which signature algorithm is to be used by the card.

DerivationAlgorithm
SessionKeysAndCounter

MAY s pecify the algorithm required to derive the session key and
counters. Alternatively it is possible to specify the CardAlgId below,
which implies which derivation algorithm is to be used by the card.

MacAlgorithm
ForSessionKey

MAY s pecify the MAC algorithm to be used for secure messaging.
Alternatively it is possible to specify the CardAlgId below, which
implies which MAC algorithm is to be used for secure messaging by the
card.

EncryptionAlgorithm
ForSessionKey

MAY s pecify the encryption algorithm to be used for secure messaging.
Alternatively it is possible to specify the CardAlgId below, which
implies which encryption algorithm is to be used for secure messaging
by the card.

CardAlgId MAY contain a card-specific algorithm identifier, which implies what

60 Bundesamt für Sicherheit in der Informationstechnik

kind of algorithms are to be used by the card for asymmetric
encryption, signature generation, session key derivation,
MAC-calculation and message encryption. Please refer to [eGK-1], Table
168 for the possible algorithm identifiers supported by the German
eHealth-card.

If this parameter is present, the other algorithm-parameters SHOULD
be omitted.

KeySize MAY contain the bit length of the RSA modulus.

PrivateKeyValue MAY contain the private key. The structure of the KeyValueType is
explained on page 37.

PublicKeyValue MAY c ontain the public key of the DID, if the generateFlag
alternative has not been selected. The structure of the KeyValueType
is explained on page 37.

generateFlag MAY s pecify that the key pair belonging to the DID is to be generated
on the card.

NonceSize MAY contain the byte length of the challenges to be used in this
authentication protocol.

KeyRef MUST contain the reference of the private key of the DID.

RootRef MAY contain the reference of the trustworthy root key of the DID. If this
element is omitted, the reference to the root key MUST be provided by
the certificate requiring verification.

SecurityEnvironment
Identifier

Is an OPTIONAL element by means of which a security environment
which deviates from the standard environment MAY be specified.

CertificateRef MAY contain a sequence of references to certificates which are stored on
the card. If these are card-verifiable certificates which are to be used to
verify the certificate path with the VERIFY CERTIFICATE command
from [ISO7816-8] (Section 11.11), they SHOULD be specified in the
sequence required to verify the certificate path, i.e. starting from a
trustworthy root. Further details on the CertificateRefType MAY
be found below.

ICCSNRef MAY contain a reference to the serial number of the card. The
DataRefType is explained on page 27. If this reference is known
otherwise, e.g. by a CardInfo file (cf. [TR-03112-4], Annex A), the
element MAY be omitted here.

LegacyKeyName MAY contain a name which can be used to address the DID in a legacy
application, e.g. a Microsoft Cryptographic API provider.

Bundesamt für Sicherheit in der Informationstechnik 61

CertificateRef is part of the RSAAuthQualifierType and contains a reference to a certificate
stored on the card. This type extends the DataRefType by adding the CertificateType element.

Name Description

CertificateType MAY specify the type of certificate. The following certificate types are defined
here:

• urn:ietf:rfc:3280 - for X.509 public key certificates in accordance with
[RFC3280]

• urn:ietf:rfc:3281 - for X.509-based attribute certificates in accordance
with [RFC3281]

• urn:iso:std:iso-iec:7816:-8:tech:certificate: <aid>: <cpi> for a
card-variable certificate, whereby <aid> contains the application
identifier of a registered card application and <cpi> contains a
corresponding certificate profile identifier (tag '5F29').

3.8.2 DIDCreate

With DIDCreate use is made of DIDCreationData of the RSAAuthMarkerType.

3.8.3 DIDUpdate

With DIDUpdate use is made of DIDUpdateData of the RSAAuthMarkerType.

3.8.4 DIDGet

With DIDGet use is made of DIDDiscoveryData of the RSAAuthMarkerType.

3.8.5 CardApplicationStartSession

The optional parameters on request and return of CardApplicationStartSession are explained in
Section 3.2.5.

62 Bundesamt für Sicherheit in der Informationstechnik

The procedure for setting up a session is approximately defined as follows (refer to [eGK-1] for details):

1. Determine DID information for ICC by means of DIDGet and read out corresponding certificates
using DataSetSelect and DSIRead.

2. Invoke DIDAuthenticate to verify certificate path on SAM by successive invocations of
VerifyCertificate with the certificates determined in step 1.

3. Determine DID information for SAM by means of DIDGet and read out corresponding certificates
using DataSetSelect and DSIRead.

4. Invoke DIDAuthenticate to verify certificate path on ICC by successive invocations of
VerifyCertificate with the certificates determined in step 3.

5. Request a Challenge from SAM and invoke DIDAuthenticate for INTERNAL AUTHENTICATE
on ICC.

6. Invoke DIDAuthenticate for EXTERNAL AUTHENTICATE on SAM with result from step 5.

7. Request a Challenge from ICC and invoke DIDAuthenticate for INTERNAL AUTHENTICATE on
SAM.

8. Invoke DIDAuthenticate for EXTERNAL AUTHENTICATE on ICC with result from step 7.

If the ICC under considerations requires that the establishment of a secure session is to be logged in a certain
file on the card, this task MUST be performed within the call of the CardApplicationStartSession
-function. Note that this requirement especially exists for the German eHealth-card (refer to [eGK-1] and
[eGK-2]) and hence the establishment of a secure session with CardApplicationStartSession MUST
be logged in the elementary file EF.Logging (refer to Section 6.3.4 of [eGK-2]).

3.8.6 DIDAuthenticate

DIDAuthenticate is used in this protocol for the following purposes:

• To verify the certificate path

• To invoke INTERNAL AUTHENTICATE

• To invoke EXTERNAL AUTHENTICATE

3.8.7 Verification of the certificate path

This type specifies the structure of the DIDAuthenticationDataType for the RSA Key Transport
protocol on invocation of DIDAuthenticate for verification of the certificate path and contains a
sequence of certificates which are used in the specified sequence to verify the certificate path — starting
from a common root.

Bundesamt für Sicherheit in der Informationstechnik 63

Name Description

Certificate Contains a certificate.

CertificateType MAY specify which type of certificate is involved (cf. VerifyCertificate in
[TR-03112-4]).

3.8.8 Invocation of INTERNAL AUTHENTICATE

This type specifies the structure of the DIDAuthenticationDataType for the RSA Authentication
protocol when DIDAuthenticate is invoked to invoke INTERNAL AUTHENTICATE.

Name Description

ExternalPublicKeyRef Contains the key reference of the public key of the message recipient.

In the case of the electronic health insurance card (cf. [eGK-2]), for
example, this key reference consists of two zero bytes and the
counterpart ICCSN which is stored in EF.GDO.

Challenge Contains the challenge of the communication partner which is to be
signed by invoking INTERNAL AUTHENTICATE.

In this case the return to DIDAuthenticateResponse is as follows:

This type specifies the structure of the DIDAuthenticationDataType for the RSA Authentication
protocol when DIDAuthenticate is returned after INTERNAL AUTHENTICATE.

Name Description

Signature Contains the signature generated during this request.

64 Bundesamt für Sicherheit in der Informationstechnik

3.8.9 Invocation of EXTERNAL AUTHENTICATE

 This type specifies the structure of the DIDAuthenticationDataType for the RSA Authentication
protocol when DIDAuthenticate is invoked to invoke EXTERNAL AUTHENTICATE.

Name Description

MutualCryptogram Contains the signature to be verified by means of EXTERNAL
AUTHENTICATE.

3.8.10 VerifyCertificate

The certificate which has been transmitted is checked against the public key of the trustworthy root
referenced in RootCert.

3.8.11 Non-supported functions

The following functions are not supported with this protocol and return a corresponding error message
/resultminor/sal#inappropriateProtocolForAction when called:

• Encipher

• Decipher

• Hash

• Sign

• VerifySignature

3.8.12 Minimum requirements in terms of algorithms

This authentication protocol MAY basically be used with various cryptographic algorithms but the following
algorithms MUST be supported as a minimum in accordance with [eGK-1]:

• EncryptionAlgorithm
urn:oid:1.2.840.113549.1.1.1 for RSA encryption ::= {iso(1) member-body(2) us(840) rsadsi(113549)
pkcs(1) pkcs-1(1) rsa-encryption(1)}

• SignatureAlgorithm
urn:oid:1.3.36.3.4.3.2.1 for sigS-ISO9796-2rndWithsha1 ::= {iso(1) identified-organization(3)
teletrust(36) algorithm(3) signatureScheme(4) sigS-ISO9796-2rnd(3) sigS-ISO9796-2rndWithrsa(2)
sigS-ISO9796-2rndWithsha1(1)}
urn:oid:1.3.36.3.4.3.2.4 for sigS-ISO9796-2rndWithsha256 ::= {iso(1) identified-organization(3)
teletrust(36) algorithm(3) signatureScheme(4) sigS-ISO9796-2rnd(3) sigS-ISO9796-2rndWithrsa(2)
sigS-ISO9796-2rndWithsha256(4)}

Bundesamt für Sicherheit in der Informationstechnik 65

• DerivationAlgorithmSessionKeysAndCounter
urn:oid :1.3.162.14890.1.1.1 1 for CEN14890-KDF-Simple ::= { iso(1) identified-organization (3) CEN
(162) CEN 14890 (15480) part-1 (1) key-derivation (1) simple-scheme (1)} in accordance with Section
8.4.2 from [EN14890-1]

• MacAlgorithmForSessionKey
urn:oid:1.2.840.113549.3.7 for des-EDE3-CBC ::= { iso(1) member-body(2) us(840) rsadsi(113549)
encryptionAlgorithm(3) des-ede3-cbc(7)}

• EncryptionAlgorithmForSessionKey
urn:oid:1.2.840.113549.3.7 for des-EDE3-CBC ::= { iso(1) member-body(2) us(840) rsadsi(113549)
encryptionAlgorithm(3) des-ede3-cbc(7)}

3.9 Generic cryptography

Cryptographic operations can be used independently from specific authentication procedures under this
generic protocol.

The identifier for this protocol is urn:oid:1.3.162.15480.3.0.25 for iso(1) identified-organization (3) CEN (162)
CEN 15480 (15480) part3(3 annex-a(0) generic-cryptography (25).

The generic structures from [TR-03112-4] are complemented by the definition of the following types.

1 Note that this URI is not yet formally assigned.

66 Bundesamt für Sicherheit in der Informationstechnik

3.9.1 Marker

This type specifies the structure of the DID marker for this generic protocol.

Name Description

AlgorithmInfo Contains information about the cryptographic algorithms supported by
the DID. See below for details.

KeyInfo MAY contain information on the DID key material. See below for details.

SignatureGeneration
Info

MAY contain information about the sequence of the smart card commands
required for the DID to generate signatures, if the DID corresponds to a
signature key. The SignatureGenerationType is defined as follows:

<simpleType name = "SignatureGenerationType">
 <list>
 <simpleType>
 <restriction base = "token">

 <enumeration value = "MSE_RESTORE" />
 <enumeration value = "MSE_HASH" />
 <enumeration value = "PSO_HASH" />
 <enumeration value = "MSE_KEY" />
 <enumeration value = "MSE_DS" />
 <enumeration value = "MSE_KEY_DS" />
 <enumeration value = "PSO_CDS" />

Bundesamt für Sicherheit in der Informationstechnik 67

 <enumeration value = "INT_AUTH" />
 </ restriction>
 </ simpleType>
 </ list>
</ simpleType>

The definition of this type allows to specify an ordered list of smart card
commands, which are necessary to generate a signature with the specific
DID.

HashGenerationInfo MAY contain information about the details required for the DID to
calculate hash values, if the DID is meant to calculate hash values. The
HashGenerationInfoType is defined as follows:

<simpleType name = "HashGenerationInfoType">
 <restriction base = "string">
 <enumeration value = "NotOnCard" />
 <enumeration value = "CompletelyOnCard" />
 <enumeration value = "LastRoundOnCard" />
 </ restriction>
</ simpleType>

CertificateRef MAY contain a sequence of references to certificates which are stored on
the card. Further details about the CertificateRefType are provided
on page 62.

LegacyKeyName MAY contain a name which can be used to address the DID in a legacy
application, e.g. a Microsoft Cryptographic API provider.

iso: StateInfo MAY contain information about the designated states of the key object, if
more than one state is defined.

More details about the iso:StateInfo -element are provided on page
16.

68 Bundesamt für Sicherheit in der Informationstechnik

The AlgorithmInfo element is part of the CryptoMarkerType and contains information about the
cryptographic algorithm supported by the DID. The AlgorithmInfoType is based on the
AlgorithmInfo structure from [ISO7816-15].

Name Description

Algorithm MAY contain a textual descriptor for the algorithm.

AlgorithmIdentifier MAY c ontain the unambiguous descriptor for the cryptographic algorithm
in the form of a URI and, if required, further parameters for the algorithm.
Further information on the AlgorithmIdentifierType is given on
page 38.

SupportedOperations Specifies the cryptographic operations for which the DID MAY be used. The
SupportedOperationsType is defined as follows (cf. [ISO7816-15]):

<simpleType name = "SupportedOperationsType">
 <union memberTypes = "iso:BitString">
 <simpleType>
 <list>
 <simpleType>
 <restriction base = "token">
 <enumeration value = "Compute-checksum" />
 <enumeration value = "Compute-signature" />
 <enumeration value = "Verify-checksum" />
 <enumeration value = "Verify-signature" />
 <enumeration value = "Encipher" />
 <enumeration value = "Decipher" />
 <enumeration value = "Hash" />
 <enumeration value = "Derive-key" />
 </ restriction>
 </ simpleType>
 </ list>
 </ simpleType>
 </ union>
</ simpleType>

CardAlgRef MAY contain the card-specific cryptographic mechanism reference ac
cording to [ISO7816-4] (Table 33) and hence the content of the
CardAlgRef -element MUST be used in an MSE-command with Tag ‘80’.

HashAlgRef MAY contain the card-specific reference for a hash algorithm, if the present
AlgorithmInfo -element refers to a signature algorithm and
CardAlgRef does not implicitly specify the hash algorithm, which is to be
used for the signature generation.

Bundesamt für Sicherheit in der Informationstechnik 69

The KeyInfo element is part of the CryptoMarkerType and contains information about the DID key
material.

Name Description

KeyRef MAY contain the key reference of the DID on the card. Details on the
KeyRefType are given on page 16.

KeySize MAY contain the relevant bit length of the cryptographic key.

NonceSize MAY contain the length of the random numbers in bytes which can be requested
via GetRandom.

SecretKeyValue Contains the value of a secret key. The structure of the KeyValueType is
explained on page 37.

PrivateKeyValue MAY contain the private key. The structure of the KeyValueType is explained
on page 37.

PublicKeyValue Contains the public key of the DID if the generateFlag alternative has not
been selected. The structure of the KeyValueType is explained on page 37.

generateFlag Specifies that the key material belonging to the DID is to be generated on the
card. If this alternative is not selected, either the SecretKeyValue element is
present or at least the PublicKeyValue element and, where applicable, (if the
DID is to be used for signature generation or decryption) the
PrivateKeyValue element as well.

70 Bundesamt für Sicherheit in der Informationstechnik

3.9.2 DIDCreate

DIDCreate uses DIDCreationData of type CryptoMarkerType.

3.9.3 DIDUpdate

DIDUpdate uses DIDUpdateData of type CryptoMarkerType.

3.9.4 DIDGet

DIDGet uses DIDDiscoveryData of type CryptoMarkerType.

3.9.5 Encipher

If this operation is supported by the DID (cf. SupportedOperations element, page 69) the plain text is
encrypted with the public or secret key assigned to the DID.

3.9.6 Decipher

If this operation is supported by the DID (cf. SupportedOperations element, page 69) the cipher text is
decrypted with the private or secret key assigned to the DID.

3.9.7 GetRandom

Generates a random number of the required length (NonceSize bytes) and returns it:

random = RNG (NonceSize)

3.9.8 Hash

If this operation is supported by the DID (cf. SupportedOperations element, page 69) a hash value is
generated from the message using the relevant algorithm. For this purpose the calculation is either
performed entirely on the card, partly on the card or not on the card (cf. HashGenerationInfo on page
68).

Note that h ash values for data streams MAY be calculated using DIDAuthenticate (cf. Section 3.9.12).

3.9.9 Sign

If this operation is supported by the DID (cf. SupportedOperations element, page 69) a signature is
generated for the provided message using the specified DID. For this purpose the series of smart card
commands specified in the SignatureGenerationInfo element (see page 67) is transmitted to the
smart card.

Bundesamt für Sicherheit in der Informationstechnik 71

3.9.10 VerifySignature

The provided signature is verified using the public key referenced with DIDName.

3.9.11 VerifyCertificate

The certificate which has been transmitted is checked against the public key of the trustworthy root key
referenced in RootCert.

3.9.12 DIDAuthenticate

The DIDAuthenticate function of the Generic Crypto protocol MAY be used in an iterative manner to
calculate hash values of data streams or large volumes of data.

 This type specifies the structure of the HashInputTypes which is used when invoking
DIDAuthenticate.

Name Description

Data Contains the data which are used for the calculation of the hash value.

HashHandle Is an optional element, which is used to be able to link several requests of
DIDAuthenticate. This might be needed, for example, to calculate hash values for
large volumes of data or data streams with several requests from DIDAuthenticate.

It is necessary to differentiate between the following four cases:

• No HashHandle and More=FALSE (or not available) – the HashValue
calculated from the data is the only output parameter.

• No HashHandle and More=TRUE – a new HashHandle is returned.

• HashHandl e exists and More=FALSE (or not available) – the data transmitted
are also included in the calculation of the hash value and the completely
calculated HashValue is returned.

• HashHandle exists and More=TRUE – the data transmitted are also included
in the calculation of the hash value and the trans mitted HashHandle is
returned.

72 Bundesamt für Sicherheit in der Informationstechnik

More More=TRUE specifies that the hash value is not yet to be returned, because further calls
of DIDAuthenticate are expected and therefore a HashHandle is returned.

If this element is missing, this is equivalent to the default value More=FALSE and, as a
result, any existing HashHandle will lose its validity and a HashValue will be
returned.

The DIDAuthenticateResponse returns data of the HashOutputType in the
AuthenticationProtocolData element:

This type specifies the structure of the HashOutputType, which is returned in the
AuthenticationProtocolData element of the DIDAuthenticateResponse.

Name Description

HashValue Is the calculated hash value.

HashHandle Is a handle which MAY be transmitted with the next invocation of DIDAuthenticate
so that the hash value MAY be calculated iteratively.

3.9.13 Non-supported functions

The following functions are not supported with this protocol and return a corresponding error message
/resultminor/sal#inappropriateProtocolForAction when invoked:

• CardApplicationStartSession

4 Protocols for GetCertificate

4.1 GetCertificate by means of Simple Enrollment Protocol

In the scope of this protocol, a key pair is generated on the card and used with other information about the
subsequent certificate holder to generate a self-signed certificate request in accordance with [RFC2314]
(PKCS #10), which is sent by means of the Simple Enrollment Protocol specified in [ISIS-MTT-2] to a specific
URL of the certification authority.

If the process is successful, the expected response from the certification authority, in addition to the status
message, is a certificate chain in a CMS container [RFC3369] with MIME type application/pkcs7-mime.

Bundesamt für Sicherheit in der Informationstechnik 73

This protocol has the following URI:
http://www.bsi.bund.de/ecard/api/1.0/protocols/GetCertificate#SimpleEnrollme
ntProtocol

The function GetCertificate is invoked with an element of the SimpleEnrollmentInputType.

This type specifies the structure of the ProtocolDataType when GetCertificate is invoked for
this protocol.

Name Description

ConnectionHandle Contains a handle that is used to address the connection which has
been established to a card application.

DIDName In general addresses a certain differential identity (DID) in the card
application or the alpha card application specified via the Con
nectionHandle. In this case it MUST be a DID for a public key
protocol (cf. Section 3.8 and 3.9). Otherwise an error message is
returned /resultminor/sal#inappropriateProtocolForAction.

DIDScope Is an optional parameter which resolves any ambiguity between local
and global DIDs with the same name. If the DID is already
unambigously specified by the DIDName, this element MAY be
omitted.

DIDUpdateData MAY contain information which is required for the implicit generation
of the corresponding differential identity with DIDCreate. If the only
requirement is to create a new certificate for an existing DID then this
element is omitted. See DIDCreate in [TR-03112-4] and the relevant
detailed specifications in section 3.8.2 and 3.9.2.

74 Bundesamt für Sicherheit in der Informationstechnik

http://www.bsi.bund.de/ecard/api/1.0/protocols/GetCertificate#SimpleEnrollmentProtocol
http://www.bsi.bund.de/ecard/api/1.0/protocols/GetCertificate#SimpleEnrollmentProtocol

RegistrationData MAY contain additional data which are to be included in the certificate.
See below for details.

CertificationAuthority Contains the address of the certification authority (cf.
CardApplicationPath in [TR-03112-4]).

TransactionIdentifier MAY contain a "ticket", which establishes the logical connection to a
previous (unsuccessful) request of GetCertificate.

RegistrationData is part of the SimpleEnrollmentInputType and contains data which are to be
included in the certificate.

Name Description

Subject MAY contain the name of the certificate holder. If this element is missing, a
corresponding error message or warning
/resultminor/il/certificateRequest#subjectMissing MAY be returned and/or a
random pseudonym MAY be selected for this purpose.

Attribute MAY contain any sequence of attributes, which are represented by a pair consisting
of Type and Value. The attributes defined in [ISIS-MTT-2] SHOULD be supported.

The GetCertificate function returns an element of the SimpleEnrollmentOutputType.

This type specifies the structure of the ProtocolDataType when GetCertificate is returned for
this protocol.

Name Description

TransactionIdentifier If the required certificate can not be returned immediately this element
MAY be used in subsequent requests.

dss:Base64Data In case of success this element contains the certificates generated by the
certification authority. These certificates MUST be returned as a CMS
Container [RFC3369] with MIME type application/pkcs7-mime.

Bundesamt für Sicherheit in der Informationstechnik 75

Furthermore the returned certificates SHOULD be stored in the
DataSets on the card, if applicable, or the certificate database of the
eCard-API-Framework (cf. AddCertificate in [TR-03112-3]).

When GetCertificate is called with an element of the SimpleCertificateEnrollmentType, the
following errors and warnings MAY occur in addition to the errors which MAY occur due to the
DIDCreate, DIDUpdate, DataSetSelect, DSIWrite and AddCertificate functions:

• /resultminor/il/certificateRequest#unknownAttribute

• /resultminor/il/certificateRequest#creationOfCertificateRequestFailed

• /resultminor/il/certificateRequest#submissionFailed

• /resultminor/il/certificateRequest#unknownTransactionID

• /resultminor/il/certificateRequest#certificateDownloadFailed

• /resultminor/il/certificateRequest#subjectMissing

5 Basic Update Protocol

When FrameworkUpdate (cf. [TR-03112-3]) is invoked, the “Basic Update Protocol” is performed with the
update server specified in the default configuration. As shown in Figure 3, this protocol MAY use a trusted
channel in order to invoke the function CheckFrameworkUpdate on the update server, whereby the
information described in more detail below is transferred to the modules currently installed
(InstalledModule elements). In response the update server sends the information set out in greater

76 Bundesamt für Sicherheit in der Informationstechnik

Figure 3: Basic Update Protocol

detail below to the new modules available which are finally returned in response to FrameworkUpdate to
the client application (NewModule elements).

Next the eCard-API-Framework downloads the files required for the update, verifies the authenticity and
integrity of the update files and finally runs the update installer. In the last step, the results of the update
procedure are returned to the client application.

The input and output parameters of the CheckFrameworkUpdate -function are specified on the basis of
the ModuleInfoType given as follows:

The ModulInfoType acts as a basic type for the messages exchanged within the Basic Update Protocol.

Name Description

ModuleName Contains the name of the module.

MajorVersion Contains the main version number of the module.

MinorVersion Contains the secondary version number of the module.

SubminorVersion Contains the lower-level secondary version number of the module.

Name CheckFrameworkUpdate

Description The CheckFrameworkUpdate function is used to determine which updates are
available for the existing installation of the eCard-API-Framework.

Invocation
parameters

Request of the GetFrameworkUpdate function.

Name Description

InstalledModule Is available for each module currently installed and provides a
more detailed description (see below for details).

Bundesamt für Sicherheit in der Informationstechnik 77

The InstalledModule element is of the InstalledModuleInfoType, which
extends the ModuleInfoType explained above by adding the OSVersion element:

Name Description

OSVersion Specifies the version of the operating system used to run the
respective module of the eCard-API-Framework.

Return

Return of the GetFrameworkUpdateResponse function.

Name Description

dss:Result Contains the status information and the errors relating to
an executed action. This element is described in more detail
below.

UpdateModule Contains information on the available update modules (see
below for details).

78 Bundesamt für Sicherheit in der Informationstechnik

The UpdateModule element is of the UpdateModuleInfoType, which extends the
ModuleInfoType explained above by adding the following element:

Name Description

Description MAY contain a description of the module requiring updating.

UpdatePriority Specifies how urgent the update is. The
UpdatePriorityType is defined as follows:

<simpleType name = "UpdatePriorityType">
 <restriction base = "string">
 <enumeration value="Mandatory" />
 <enumeration value="Recommended" />
 <enumeration value="Optional" />
 </ restriction>
</ simpleType>

File Contains information on the individual files which are
required for the first installation or the update of this module
(see below for details).

Bundesamt für Sicherheit in der Informationstechnik 79

The File element is part of the UpdateModuleInfoType.

Name Description

SourceURL Specifies the URL of the update file under consideration. Note
that it MAY be a local address and hence it would be possible
to run an update of the framework with the mechanism
presented here without any network connection.

UpdateAction Specifies what will happen with this file. The
UpdateActionType is specified as follows:

<simpleType name = "UpdateActionType">
 <restriction base = "string">
 <enumeration value = "Execute" />
 <enumeration value = "Copy" />
 </ restriction>
</ simpleType>

DestinationURL Specifies the target address, if the file is to be copied.

Status information and errors in connection with CheckFrameworkUpdate (cf.
[TR-03112-1] sections 3.1 and 3.2).

Name Error code

ResultMajor • /resultmajor#ok

• /resultmajor#error

• /resultmajor#warning

80 Bundesamt für Sicherheit in der Informationstechnik

ResultMinor • /resultminor/al/common#noPermission

• /resultminor/al/common#internalError

• /resultminor/al/common#parameterError

• /resultminor/dp#unknownChannelHandle

• /resultminor/dp#communicationError

• /resultminor/dp#trustedChannelEstablishmentFailed

• /resultminor/dp#unknownProtocol

• /resultminor/dp#unknownWebserviceBinding

• /
resultminor/al/FrameworkUpdate#serviceNotAvailable

• /resultminor/al/FrameworkUpdate#unknownModule

• /
resultminor/al/FrameworkUpdate#invalidVersionNum
ber

• /
resultminor/al/FrameworkUpdate#operationSystemNo
tSupported

ResultMessage MAY, if required, contain more detailed information on the
error which has occurred.

Precondition

Postcondition

Note The address to be used to invoke CheckFrameworkUpdate, the web service binding
and corresponding PathSecurity- parameters are specified by the configuration of
the default parameters (cf. GetDefaultParameters in [TR-03112-3]).

Bundesamt für Sicherheit in der Informationstechnik 81

References
[TR-03110] BSI: Technische Richtlinie TR-03110: Advanced Security Mechanisms for Machine

Readable Travel Documents
[TR-03111] BSI: Technische Richtlinie TR-03111, Elliptic Curve Cryptography (ECC)
[TR-03112-4] BSI: Technische Richtlinie TR-03112-4: eCard-API-Framework – Part 4:

ISO24727-3-Interface
[TR-03116] BSI: Technische Richtlinie TR-03116: Kryptographische Vorgaben für eCard-Projekte der

Bundesregierung
[TR-03112-1] BSI: TR-03112-1: eCard-API-Framework – Part 1: Overview and Generic Mechanisms
[TR-03112-3] BSI: TR-03112-3: eCard-API-Framework – Part 3: Management-Interface
[TR-03112-6] BSI: TR-03112-6: eCard-API-Framework – Part 6: IFD-Interface
[EN14890-1] CEN: EN14890-1: Application Interface for smart cards used as secure signature creation

devices - Part 1: Basic services
[eGK-1] gematik: Specification of the electronic health insurance card - Part 1: Commands,

algorithms and functions of the operating system platform, Version 2.2.2
[eGK-2] gematik: Specification of the electronic health insurance card - Part 2: Applications and

application-specific structures, Version 2.2.1
[RFC2119] IETF: RFC 2119: S. Bradner: Key words for use in RFCs to Indicate Requirement Levels
[RFC2314] IETF: RFC 2314: B. Kaliski: PKCS#10: Certification Request Syntax
[RFC3280] IETF: RFC 3280: R. Housley, W. Polk, W. Ford, D. Solo: Internet X.509 Public Key

Infrastructure, Certificate and Certificate Revocation List (CRL) Profile
[RFC3281] IETF: RFC 3281: S. Farrell, R. Housley: An Internet Attribute Certificate Profile for

Authorization
[RFC3369] IETF: RFC 3369: R. Housley: Cryptographic Message Syntax (CMS)
[RFC3852] IETF: RFC 3852: R. Housley: Cryptographic message syntax (CMS)
[RFC4279] IETF: RFC 4279: P. Eronen, H. Tschofenig: Pre-Shared Key Ciphersuites for Transport

Layer Security (TLS)
[RFC4346] IETF: RFC 4346: T. Dierks, E. Rescorla: The Transport Layer Security (TLS) Protocol,

Version 1.1
[RFC4492] IETF: RFC 4492: S. Blake-Wilson, N. Bolyard, V. Guptam, C. Hawk, und B. Moeller: Elliptic

Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS)
[ISO24727-3] ISO: ISO/IEC 24727-3: Identification Cards — Integrated Circuit Cards Programming

Interfaces — Part 3: Application Interface
[ISO7816-15] ISO: ISO/IEC 7816-15: Identification cards - Integrated circuit(s) cards with contacts —

Part 15: Cryptographic information application
[ISO7816-4] ISO: ISO/IEC 7816-4: Identification cards — Integrated circuit cards — Part

4:Organization, security and commands for interchange
[ISO7816-8] ISO: ISO/IEC 7816-8: Identification cards — Integrated circuit cards — Part 8: Security

related interindustry commands
[ISO7816-9] ISO: ISO/IEC 7816-9: Identification cards - Integrated circuit cards - Part 9: Commands

for card management
[PAOSv2.0] Liberty Alliance Project: Liberty Reverse HTTP Binding for SOAP Specification, Version

v2.0
[ISIS-MTT-2] TeLeTrust: ISIS-MTT Specification - Part 2: PKI Management, Version 1.1
[SOAPv1.1] W3C: W3C Note: Simple Object Access Protocol (SOAP) 1.1

82 Bundesamt für Sicherheit in der Informationstechnik

	1 Overview of the eCard-API-Framework
	1.1 Key Words
	1.2 XML-Schema

	2 Connection establishment in distributed systems
	2.1 General security requirements
	2.2 Connection establishment for SOAP binding
	2.3 Connection Establishment for PAOS binding
	2.3.1 Setting up a Trusted Channel
	2.3.2 PAOS Communication
	2.3.3 Session Termination

	2.4 TC_API_Open
	2.4.1 Security mechanisms for the channel established with TC_API_Open
	2.4.1.1 TLS
	2.4.1.2 TLS with pre-shared keys
	2.4.1.3 Error codes

	2.5 TC_API_Close
	2.6 StartPAOS

	3 ISO/IEC 24727 protocols
	3.1 PIN Compare
	3.1.1 Marker
	3.1.2 DIDCreate
	3.1.3 DIDUpdate
	3.1.4 DIDGet
	3.1.5 DIDAuthenticate
	3.1.6 Non-supported functions

	3.2 Mutual authentication
	3.2.1 Marker
	3.2.2 DIDCreate
	3.2.3 DIDUpdate
	3.2.4 DIDGet
	3.2.5 CardApplicationStartSession
	3.2.6 DIDAuthenticate
	3.2.6.1 To invoke InternalAuthenticate
	3.2.6.2 To invoke MutualAuthenticate
	3.2.6.3 To invoke ExternalAuthenticate

	3.2.7 Non-supported functions
	3.2.8 Minimum requirements in terms of algorithms

	3.3 Password Authenticated Connection Establishment
	3.3.1 Marker
	3.3.2 DIDCreate
	3.3.3 DIDUpdate
	3.3.4 DIDGet
	3.3.5 DIDAuthenticate
	3.3.6 CardApplicationStartSession
	3.3.7 Non-supported functions

	3.4 Chip Authentication
	3.4.1 Marker
	3.4.2 DIDCreate
	3.4.3 DIDUpdate
	3.4.4 DIDGet
	3.4.5 DIDAuthenticate
	3.4.6 Non-supported functions

	3.5 Terminal Authentication
	3.5.1 Marker
	3.5.2 DIDCreate
	3.5.3 DIDUpdate
	3.5.4 DIDGet
	3.5.5 DIDAuthenticate
	3.5.6 Non-supported functions

	3.6 Extended Access Control
	3.6.1 EAC protocol specification
	3.6.2 Marker
	3.6.3 Call and return of CardApplicationStartSession
	3.6.4 Overview of EAC protocol sequence
	3.6.4.1 Phase 1 ‑ Extended PACE protocol
	3.6.4.2 Phase 2 ‑ Combination of Terminal and Chip Authentication
	3.6.4.3 Phase 2b - Conditional additional message with signature
	3.6.4.4 Secure messaging with APDU batches

	3.6.5 DIDCreate, DIDUpdate and DIDGet
	3.6.6 Non-supported functions

	3.7 Restricted Identification
	3.7.1 Marker
	3.7.2 DIDCreate
	3.7.3 DIDUpdate
	3.7.4 DIDGet
	3.7.5 DIDAuthenticate
	3.7.6 Non-supported functions

	3.8 RSA Authentication
	3.8.1 Marker
	3.8.2 DIDCreate
	3.8.3 DIDUpdate
	3.8.4 DIDGet
	3.8.5 CardApplicationStartSession
	3.8.6 DIDAuthenticate
	3.8.7 Verification of the certificate path
	3.8.8 Invocation of INTERNAL AUTHENTICATE
	3.8.9 Invocation of EXTERNAL AUTHENTICATE
	3.8.10 VerifyCertificate
	3.8.11 Non-supported functions
	3.8.12 Minimum requirements in terms of algorithms

	3.9 Generic cryptography
	3.9.1 Marker
	3.9.2 DIDCreate
	3.9.3 DIDUpdate
	3.9.4 DIDGet
	3.9.5 Encipher
	3.9.6 Decipher
	3.9.7 GetRandom
	3.9.8 Hash
	3.9.9 Sign
	3.9.10 VerifySignature
	3.9.11 VerifyCertificate
	3.9.12 DIDAuthenticate
	3.9.13 Non-supported functions

	4 Protocols for GetCertificate
	4.1 GetCertificate by means of Simple Enrollment Protocol

	5 Basic Update Protocol

