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Introduction

The potential benefits which formal methods contribute to IT-security have been early identified by 
the  BSI through several  previous  studies.  The book continues  and complements  this  long-term 
effort towards safer and more secure products and contains the results of the BSI-Study 875.

Computer-based systems are increasingly assigned mission- and life-critical tasks; their intrinsic 
complexity is steadily growing; at the same time, guaranteeing their safety is increasingly difficult, 
while  they  are  exposed  to  a  growing  number  of  security  threats.  This  situation  has  severe 
consequences: it is estimated that faulty software annually costs between 22 and 60 billion dollars 
to the US economy, and there is no clear indication that this figure is decreasing, quite the contrary.

The  software crisis anticipated at the 1969 NATO conference in Garmisch-Partenkirchen appears 
nowadays in the form of a  software quality  crisis,  in  the sense that it  is  extremely difficult  to 
produce reliable software at acceptable cost — even the largest software vendors being unable to 
deliver  products  free  from  major  flaws  and  vulnerabilities.  In  other  words,  the  crisis  seems 
qualitative rather than quantitative.

This book provides a comprehensive survey about formal methods, their state of the art, and their 
application to the development of computer-based systems, with a particular focus on the formal 
verification of life-critical and mission-critical systems to which also security-systems belong. It is 
also a technical reference book guide-lining to the systematic design of high assurance systems, 
with a comparative analysis  of methods and tools contributing to a better  understanding of the 
scientific/engineering  problem  to  solve  and  their  capacity  to  deliver  well-founded  proofs  that 
systems  are correct, predictable, and highly reliable under all circumstances.

The scientific literature on formal methods is vast, diverse, and fragmented. There are thousands of 
conference papers and journal articles, most of which usually focus on particular topics, but only a 
few  papers  about  formal  methods  in  general.  There  are  also  a  number  of  books  that  handle 
particular formal methods, particular verification techniques, or mainstream verification tools, as 
well  as applications  of formal methods to a particular domain.  There was a  crucial  need for a 
comprehensive, yet coherent synthesis of this situation. That was the reason why Study 875 was 
launched.

The authors of the book are internationally renowned experts in the field of formal methods; they 
are formal  methods developers  and high-assurance systems evaluators  themselves.  The book is 
written gradually progressing from more general to specific topics of the subject with examples to 
help the reader visualize the intricacies involved in the choice of appropriate methods for each 
certain evaluation task and in his forming an objective judgment about the quality of the expected 
results. In the next lines central topics covered by the book are listed in a partly extended but not 
exhaustive summary over the book's contents.

History and Scope of Formal Methods

In  the  first  chapter,  various  possible  reasons  which  can  lead  to  failures  and  malfunctions  of 
computer-based systems are discussed. Emphasis is given on systems' growing complexity and as 
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far as security is concerned, the fact that systems mostly operate in an open world connected to the 
Internet.

Organizational and technical approaches to ensure that computer-based systems operate according 
to expectations are discussed. Here the fact is underlined that the approaches usually focus more on 
the design process than on the product itself and together with techniques which rely heavily on 
testing to detect (certain but not all) design and programming mistakes, they constitute the empirical 
methods to ensure system quality.

Formal  methods  can  be  seen  as  a  scientist's  reaction  against  empirical  approaches  to  quality 
assurance.  The authors  propose  the  following definition:  Formal  methods  in  a  broad sense are 
mathematically  well-founded  techniques  designed  to  assist  the  development  of  complex 
computer-based systems; in principle, formal methods aim at building zero-defect systems, or at 
finding defects in existing systems, or at establishing that existing systems are zero-defect.

Examples  given in  the book make obvious that  the formal  verification of microprocessors and 
avionic-, space-, railway-, etc. systems have already been common practice since many years. The 
application of formal methods is part of the recommendation of international technical standards, 
whereby standards  could  get  themselves  improved  through  the  application  of  formal  methods, 
when in some cases  formal verifications that were mandated  by a standard occasionally manifested 
flaws in the standard-itself, IEEE-Standards making no exception.

An overview about famous system-failures that caused huge financial losses and sometimes loss of 
human lives too, follows. It is complemented by thirty carefully selected success stories, which 
expand over the last thirty years and describe how the use of formal methods has helped the timely 
discovery of errors in safety-critical systems as well as in security systems and protocols. 

However,  despite  these  successes,  formal  methods  are  not  routinely  used  in  industry  (nor  in 
academia!),  with the notable exception of two classes of application domains,  in which formal 
methods play a significant role:

• Those mission-critical systems for which mistakes are particularly costly, and difficult or 
impossible to correct after the system is released: this is the case of hardware circuits and 
architectures, to which the technique of software patches is generally not applicable. 

• Those  life-critical  systems  for  which  formal  methods  are  legally  required  by  technical 
standards or certification authorities: this is the case of civil avionics, railways, and nuclear 
energy, for instance.

High-security information systems, are subject to strict certification constraints, such as the ISO 
15408  standard  (Common  Criteria  for  Information  Technology  Security  Evaluation)  and  its 
Evaluation Assurance Levels. Although Common Criteria require formal methods at  the highest 
certification  levels  (EAL7 and EAL7+),  such levels  of  security  are  rarely reached  in  practice.  
Official  statistics  indicate  that,  between  1998 and 2011,  only 4  out  of  1599 certified  products 
reached the highest levels (2 products certified EAL7 and 2 products certified EAL7+).

The use of  formal  methods in  industrial  projects  remains  punctual,  mostly intended to solving 
particular issues. There is no general consensus on which formal methods should be used, nor for 
which development activities. The present book deals extensively with these questions. The market 
for really formal methods is currently very much a niche and suffers from the well-known negative 
feedback loop effect: software vendors hesitate to invest in tools because the market is too small 
and, as long there are no industrial-strength tools, the user demand for formal methods remains low.  
However, in spite of the economic difficulties of commercial tool vendors, the technical impact of 
formal methods remains highly positive. The authors name sources with data collected from the 
industry to quantify concrete  benefits  in  product  quality,  cost  and time to market  when formal 
methods are employed in development.

The book is  mainly about  those formal  methods that are the best candidates for going beyond 



conventional techniques currently used in industry in order to produce low- (or even zero-) defect 
computer-based systems. 

Taxonomical Classification

In the second chapter (Scope and Taxonomies) the authors provide a comprehensive overview of 
formal methods covering all the scientific branches, and of application domains for which formal 
methods have been developed. This chapter also defines the perimeter of the study by listing those 
aspects considered to be out of scope of the book, together with the reasons justifying this choice.

The authors follow a multi-level strategy to achieve a manifold presentation of a large and fast 
developing  discipline:  following  the  plan  of  the  project  requirements,  they  categorize  formal 
methods  in  different  taxonomies,  emphasizing  a  different  focus  in  each  case.  The  accordingly 
different  considerations,  assumptions  and concerns  from a system's  engineer  point  of  view are 
paradigmatically  demonstrated,  suggesting  various  method  selection  criteria  in  each  case. 
Taxonomy specific informations complement each other to deliver a global picture of the subject.

For  instance,  in  the  taxonomy  based  on  application  domains,  formal  methods  are  classified 
according to their mission in separate application fields. In hardware engineering, for instance, it is 
comprehensible for the reader that alongside with correctness and efficiency, verification concepts 
like  cycle  accuracy,  instruction  set,  pipeline,  circuit  retiming  etc.,  which  have  no  direct 
correspondence  in  software  verification,  are  important.  Furthermore,  hardware-description 
languages  incorporate  concepts  of  electronics  and  are  significantly  different  from  mainstream 
languages  for  software,  another  reason  to  justify  their  taxonomic  separation.   However  a 
methodological separation between hardware and software is described by the authors as neither 
total nor permanent. As hardware architectures increasingly incorporate massive parallelism and 
decentralized  interconnection  topologies,  they  face  the  same  problems  as  distributed  software 
applications. These problems can be addressed using formal techniques (e.g.,  asynchronous and 
synchronous  process  calculi,  model  checking  etc.)  that  are  equally  relevant  to  software  and 
telecommunication systems.

Because of  the  ever-increasing complexity of  circuits  made possible  by silicon integration and 
technology advances, the design and verification of circuits has to be accomplished nowadays at a 
higher  level  of abstraction than before.  Higher-level  languages applied for this  purpose borrow 
many features  from software  programming  languages  like  C,  C++,  or  Java.  Although  at  their 
beginning  formal  methods  were  about  very  simple,  often  idealized  algorithmic  languages  or 
high-level very abstract system models (e.g., Petri nets), as time passes, formal methods get closer 
to  details  of systems.  Recent  approaches  go as  down as assembly code,  C code with involved 
features  such as  pointers  and threads,  to  realistically model  platform characteristics  (hardware, 
operating systems, middleware etc.).

Formal Methods and Hardware-Design

Formal methods have been traditionally an integral  part  of hardware-design methodologies  and 
major hardware design companies hire formal methods experts and use formal verification tools 
(e.g.,  model  checkers  and/or  theorem  provers)  as  part  of  their  industrial  processes.  Global 
corporations, such as IBM or Intel for example, have their own research laboratories to develop 
in-house system verification tools. Examples of typical verification cases with the respective issues 
handled in the according taxonomical classes are presented and discussed in this part of the book. 
Yet not all methods developed for the design and analysis of systems are formal, and sometimes 
methods that are formal, are not necessarily called  formal methods.  There is also a call for the 
reader's awareness about  the existence of multiple definitions in the experts vocabulary to formally 
describe qualities of systems, which is also the reason why in the book a skillfully reduced number 
of concepts has been followed, so that no confusions can arise when reading the book.



Formal verification produces answers as to whether systems properly implement desired properties, 
also important,  produces  explanatory diagnostics  in  case of non satisfaction.  Significant  is  that 
negative properties too, which specify what a system should not do, can be formulated and proved. 
Formal methods simplify  quality assurance steps in the design flow, for example requirements 
validation, is in conventional methodologies mostly an empirical, slow, and labor-intensive process 
involving  human  experts.  Conventional  validation  is  therefore  problematic  when  requirements 
change rapidly and frequently. In a formal design flow, requirements and system models can be 
expressed in languages with a well-defined syntax and a mathematical semantics. Ambiguities and 
contradictions in specifications, a well-known issue in the case of informal and semi-formal design, 
are  in  this  way precluded  and  automated  tool  support  for  verification  and validation  becomes 
possible.  The  significance  of  the  difference  between  manual  and  automatic  design  steps  is 
explained,  the  manual  steps  being  more  error  prone  and typical  of  conventional  methods.  The 
significance of the languages used to implement models, prototypes and systems is then discussed.

Mainstream Modeling and Secure Programming Languages

Mainstream modeling languages like SysML or UML can help overview the system's  behavior 
displaying execution traces of the system's successful or erroneous interactions with its environment 
in semi-formal notations but they lack precise semantics and therefore do not enable proofs and 
automated  reasoning.  The  risks  of  such  mainstream  programming  languages  are  discussed, 
especially  that  they  can  allow  constructs  which  are  imprecise  making  security  issues 
implementation-dependent and potentially unsafe, in the sense that any single part of a program 
may provoke a failure of the entire program, e.g., corrupting the memory or call stack, or potentially 
insecure, because there is no built-in protection against misuse, thus leading to vulnerabilities such 
as buffer overflows, unchecked malicious inputs, etc. Safe and secure programming languages to 
avoid risky nondeterministic program behavior coming from the lack of formal semantics are in this 
context  discussed.  They provide a  higher  level  of  abstraction,  type  safety,  memory safety,  and, 
possibly,  a formal semantics. Such languages eliminate certain classes of errors and are said to 
allow writing  correct-by-construction programs with respect  to  certain important  safety/security 
properties; they also enable code-checking tools to detect such errors automatically. Alternatively, it 
is recommended to resort to what is called best code practices or safe/secure subsets of mainstream 
languages prohibiting risk-prone constructs, (like MISRA C, and JavaCard for Java). The trade-off 
of safe/secure languages is that they possess limited expressiveness and may forbid certain rightful 
programs that the compiler rejects. In this respect, certification guidelines for safety-critical systems 
rule out potentially unsafe language features (such as nondeterminism, recursion, dynamic memory 
allocation, etc.) unless the correctness of programs using these features is mathematically proven — 
which, in practice, dissuades programmers from using these features.

The Issue of Nondeterminism

As a central issue in formal methods theory and practice, the essential kinds of nondeterminism and 
their effects in system modeling are also discussed. Nondeterminism and formal semantics are not 
incompatible  notions,  as  certain  formal  semantics  (e.g.,  in  the  theory  of  concurrent  systems) 
perfectly describe nondeterministic aspects of system behavior. An enumeration of important cases 
ensuing nondeterminism in models is provided supporting the reader's understanding of the point.

Systems using asynchronous parallelism, for example, or randomized algorithms specifically rely 
on  nondeterminism,  whereby  random  choice  is  just  a  technique  among  others  to  implement 
nondeterminism. Although traditional sequential programming languages are missing constructs to 
express  nondeterminism,  there  exist  modeling  languages  that  provide  built-in  support  for  the 
selection of  one possible  future out  of  several  ones,  and even for  backtracking,  which permits 
reversion of past decisions in the model.



Conventional Quality Assurance Tools

The analysis tools of conventional methodologies are discussed, as they are increasingly part of 
compilers and integrated development environments, and enhance quality by quickly finding errors 
or vulnerabilities.

Static analysis tools usually check compliance with best coding practices and coding standards, and 
also  check  generic  and  specific  system  properties  not  directly  derived  from  system  initial 
requirements. Their limitation consists in the fact that they only search for certain classes of errors,  
possibly also failing to find errors in these classes, and neglect other kinds of mistakes. They also 
are known to usually generate false positives, which need to be processed manually, possibly with 
the help of error-filtering tools. To overcome these limitations, analyses of a greater algorithmic 
complexity, based on formal methods are required.

The controversial field of software metrics to quantify design complexity is critically discussed as 
possibly the only analysis tool not necessarily enhancing quality in any way.

Dynamic analysis tools (among which simulation and testing tools) check dynamic properties, such 
as unexpected or invalid outputs, run-time errors etc. which are out of reach for static analysis tools. 
Testing and simulation are the main quality assurance techniques used in industry and have much in 
common, the main difference being that simulation operates on virtual design artifacts (namely, 
models) whereas testing operates on real design artifacts (namely, actual implementations, such as 
circuits or programs). Simulation enables to check a system against its requirements at each stage of 
the design flow, permitting also validation of environment assumptions in experiments that compare 
models and reality.

Testing can be either used for validation purposes, at the end of a design flow, or for verification 
purpose,  to  check  whether  a  given  real  design  artifact  correctly  implements  its  higher-level 
specifications, expressed as models or properties, in which case one speaks of conformance testing. 
Testing  approaches  specifically  addressing  security  issues  are  presented  such  as  read  access 
violations,  write  access  violations,  null  pointer  dereferences,  divisions  by  zero,  etc.  and  the 
distinction  between  normal  range  tests,  which  exercise  a  system  in  ordinary  conditions,  and 
robustness tests,  which trigger abnormal inputs and faults  arising from inside or outside of the 
system.

The main limitation of dynamic analysis is the huge (or even infinite) number of execution paths of  
an artifact/system; therefore, only a finite number of execution paths (specified in a test suite) can 
be simulated, tested, or executed.

Questions to the effectiveness and completeness of test suites are discussed in conjunction to test 
selection criteria, which are  the standard way to quantify the goodness and adequacy of simulations 
or tests. Functional coverage, a crucial metric to ensure compliance of design artifacts with their 
specifications, delivers one criterion but, being a black-box approach, it cannot detect internal issues 
of the examined artifacts, like dead code or the existence of unwanted functionalities not intended 
by the high-level specifications.

Such issues are addressed by structural coverage,  which is helpful for detecting dead code and 
highlighting  code  fragments  that  have  not  been  properly  exercised.  However,  it  has  a  low 
correlation  with  functionality  defects  and,  in  particular,  cannot  expose  omissions  and 
unimplemented features. Moreover, test suites whose production is primarily driven by structural 
coverage goals are also not always efficient, the reasons are extendedly clarified in the book. A 
combination  of  functional  coverage  over  the  specification  with  structural  coverage  over  the 
implementation of an artifact/system delivers better results.

In conventional methodologies, functional coverage is not easy to define and, in practice, obtaining 
a good coverage is  difficult.  In most ordinary projects,  testing only exercises about half  of the 
source  code.  When  full  coverage  is  required  (e.g.,  in  aerospace,  microprocessors, 



telecommunication systems, etc.) developing and executing appropriate test suites is expensive and 
often exceeds 50% of the overall project cost. As the size and complexity of modern systems grow 
continuously,  traditional  approaches  to  writing  and maintaining  test  suites  become increasingly 
problematic, technically and economically, especially when it is a manual process that needs to be 
repeated as often as the design artifacts evolve.

The difference between directed and random tests is in what follows explained. Many algorithms 
for automated test generation have been at times proposed,  some of which are implemented in 
commercial  tools.  They  support  directed  and  random  test  generation.  As  far  as  security  is 
concerned, a particular form of random testing is fuzzing (or fuzz testing), which seeks to provoke 
unexpected behavior and, even in its least sophisticated forms, is particularly effective in finding 
numerous security defects in complex software, (such as Unix and Microsoft Windows NT services, 
or Acrobat Adobe Reader)

Systematic comparison between coverage-directed and random test suite production strategies has 
been  the  source  of  a  number  of  publications  referenced in  the  book:  this  comparison delivers 
somehow contradictory and inconclusive results. In certain cases, coverage-based tests fail to detect 
significant percentages of errors in design artifacts: therefore, coverage tests alone, even in a highly 
rigorous form, do not provide a reliable metrics for measuring test efficiency. Profound and very 
well  substantiated arguments to reason about  this  state of things are  offered to  the reader  with 
parallel naming of some conventional alternative tactics, such as approaches combining random and 
coverage  based  tests,  whereby  randomness  is  introduced  in  a  constrained  manner,  to  exercise 
interesting scenarios not planned originally.

Formal Methods and System Analysis Tools

Simulation and testing remain the main analysis techniques used in industry but cannot provide 
strong guarantees about the functional correctness, performance, safety, or security of a system. The 
current trend is to use formal methods to complement (and, in certain cases, completely substitute) 
those conventional techniques. Because conventional simulation does not provide sufficient quality 
assurance,  formal  methods  are  fully  established  to  complement,  enhance,  and  even  replace 
simulation-based  techniques,  as  formal  methods  can  handle  issues  not  plausibly  resolved  with 
conventional methods.

Enhancing Simulation

Formal methods enable a precise definition of functional coverage, which can be measured in terms 
of assertions,  properties,  and/or requirements that have been verified.  Moreover,  they provide a 
better coverage than simulation: while simulation hunts for bugs observing only selected traces, 
formal  methods (symbolic  simulation,  equivalence checking,  model  checking,  theorem proving, 
etc.)  examine all  possible behaviors,  i.e.,  consider the entire state space and can thus prove or 
disprove properties for all  possible behaviors,  under any sequence of legal input stimuli  for all 
reachable  design  states,  and  all  possible  execution  paths.  So  doing,  subtle  bugs  missed  by 
simulation (false negatives) can be discovered.

Even when exhaustive verification is not feasible, the effectiveness of simulation can be greatly 
enhanced by automatically generating sequences of input stimuli that satisfy stated constraints so as 
to ensure a given level of coverage. Because the negation of properties is also formally verifiable, 
one can try to verify negated properties using a model checker: if counterexamples are in this way 
produced, exhibiting execution paths on which negation of a property P evaluates to true, these 
paths can be added to the simulation test bench to improve it; in such a case the design and the  
property P are incompatible, and at least one of them must be revised.

Improving of the simulation testbench can be also achieved in other ways: A translation of the 
simulation testbench into a set of (automatically generated) temporal logic formulas which can be, 



for instance, based on occurrences of events in simulation traces, is another way of formal methods 
to improve a simulation testbench. Then, a model checker is used to check these formulas on the 
design. If a formula evaluates to false, a counterexample is generated, which highlights parts of the 
design not already covered by the simulation testbench.

Simulation  can  always  be  performed  on  formal  specifications  provided  they  are  written  in  an 
executable language, or formulated in executable models. Therefore when applying formal methods 
one fully retains  all  advantages of simulation.  Additionally,  by giving semantics  a  central  role, 
formal methods improve the practice of simulation ensuring that simulator implementations are 
semantically well-founded and compatible with other tools used in the design flow (e.g., compilers, 
verification tools, etc.). 

Replacing Simulation

In hardware-design flow all stages of the design deliver examples to the replacement of simulation.

Conventional simulation cannot handle  efficiently asynchronous logic which is necessary because 
of its advantages in terms of speed, low power, and security. Formal methods, especially, model 
checking, enable the detection of concurrency issues (such as deadlocks) and also give assurance 
about the correctness  of asynchronous circuits.

At register transfer and gate levels, formal methods are applied in the form of equivalence checkers 
for the logical comparison of two hardware models (one at the register transfer level,, the other at 
the gate level) to prove the absence of synthesis errors. Equivalence checking has almost replaced 
gate-level simulation nowadays.

At behavioral level formal methods (especially model checking and symbolic simulation) are also 
increasingly  used.  The  design  which  has  to  be  examined  is  expressed  in  the  same  hardware 
description language (e.g., VHDL or Verilog) used for conventional simulation. Properties must be 
formally specified using assertions,  such as  SVA (SystemVerilog Assertions),  or temporal  logic 
formulas, e.g., using PSL (Property Specification Language). Modern environments enable these 
properties to be checked using either simulation or formal verification techniques.

Also at the (more abstract) algorithmic level, complex designs involving asynchronous concurrency 
can also be specified using dedicated languages specifically designed and optimized for, e.g., model 
checking verification.  This  is  often  the  case,  for  instance,  with  cache  coherence  protocols  and 
crucial coordinating blocks of multiprocessor architectures.

At system level, formal methods enhance the capabilities of languages (such as SystemC/TLM) 
initially  intended  for  simulation  and  hardware-software  co-simulation  purposes.  For  instance, 
certain SystemC models can be verified using model checking, which improves simulation speed 
and coverage.

In a recent work done at Intel, the execution cluster of the Intel Core i7 processor (including full 
datapath, control and state validation) was formally verified. Formal verification based on symbolic 
execution  provided  results  that  were  competitive  with  traditional  testing-based  methods  in 
timeliness and validation cost, and at least comparable, if not superior, in quality, leading to a lower 
number of bugs escaping to silicon than for any other processor cluster analyzed with conventional 
simulation. The conclusion was that the value of formal verification primarily comes from its ability 
to cover every possible behavior, and that in areas where a verifier can concentrate on verification, 
the effort to carry out formal verification is comparable to thorough coverage-based validation.

Simulation has been for long the sole technique for evaluating the performance and dependability of 
complex  systems,  especially  embedded  systems.  Dedicated  formal  methods  have  been  now 
developed,  which  combine  mathematical  techniques  (probabilities,  discrete-time  and 
continuous-time  Markov chains,  stochastic  processes,  queuing  theory,  etc.)  with  system design 
concepts (components and modularity, parallel composition and concurrency, etc.). These formal 



methods  enable  to  describe  systems  whose  behavior  is  nondeterministic,  probabilistic,  and/or 
stochastic, as well as systems that consume resources (time, memory, energy, etc.). 

Performance  evaluation  tools  based  on  formal  methods  have  been  developed,  and  traditional 
verification  tools  have  been  extended  with  probabilistic  or  Markovian  analyses  to  support 
performance evaluation. These tools have been successfully applied — also in combination with 
simulation-based techniques — to nontrivial problems.

If the system under analysis is not too large, analysis algorithms based on model checking and 
known as  probabilistic  or  stochastic  model  checking  can  compute  numerical  probabilities  and 
resource consumption values. These results — possibly given as a [min, max] interval if the system 
is non-deterministic — are usually faster to obtain and more precise than using simulation,  the 
accuracy of which strongly depends on the number of simulation runs.

In practice,  however,  formal  methods cannot exhaustively analyze complex systems because of 
undecidability  issues  (for  infinite-state  systems)  or  due  to  the  state  explosion  problem  (for 
finite-state  systems).  Many research efforts  aim at  overcoming limitations  and providing better 
scalability to large systems using, e.g., compositional approaches. Against state explosion, formal 
methods apply symbolic state space representation techniques, as well as compositional techniques 
that exploit  the structure of the system to compute global (i.e.,  system-wide) results from local 
results obtained by analyzing each component individually.

Regarding simulation of heterogeneous systems, which are used to describe and control physical 
world processes and computer  software and hardware,  modeling formalisms with mathematical 
foundations have been proposed, such as timed automata and hybrid automata,  and thoroughly 
studied during the last twenty years leading to major theoretical results regarding decidability and 
complexity. For the analysis of such models, dedicated abstractions, temporal logics, equivalence 
relations, and algorithms combining verification technology (e.g.,  model checking and symbolic 
simulation), control theory (e.g., optimal control), and probabilistic/stochastic analyses have been 
developed and implemented in software tools. .

A notable  effect  is  that  mainstream  simulation  tools  are  now  equipped  with  formal  methods 
extensions. For instance, Mathworks' Simulink design suite now includes a formal proof and static 
analysis engine (developed by Prover Technology AB) that verifies properties and generates tests, 
enhancing simulation coverage and finding errors that would be hard to detect using simulation 
only. Potential difficulties connected with the application of formal methods instead of simulation 
are also discussed in the book, especially scalability issues that may affect automation in tools usage 
when examining large, hybrid  systems.

Yet, despite recent progress and successful applications of formal methods to realistic examples, 
simulation and cosimulation often remain the main analysis technique used in industry and  are 
likely to stay for long; the challenge is now to to combine them with formal methods for more 
efficient and better results.

Differentiated Use of Formal Methods and Levels of Rigor for System 
Analysis

Formal methods are prescribed or recommended in many safety and/or security standards when 
higher levels of quality assurance than that of conventional approaches are demanded.

System analysis can be done at different levels of rigor, depending on the design steps and quality 
steps  followed.  These levels of rigor  are  presented in  detail  and discussed in  the book,  with a 
warning about differences of interpretation between , for example USA and Europe. It is extremely 
rare  that  a  system is  entirely designed and proved using  formal  methods.  This  holds  even for 
hardware design, for which formal verification is part of industrial methodologies. Formal methods 
bring little added value if applied to problems for which conventional methodologies are effective. 



Thus, formal methods should be primarily applied to the most involved parts of the system, e.g., to 
evaluate  major  design  decisions  and  analyze  complex  algorithms  that  cannot  be  satisfactorily 
tackled using conventional methodologies.

Partially formal design flows

In  partially-formal  designs,  formal  methods  are  applied  to  carefully  selected   development 
problems,  and  only  where  formal  methods  can  successfully  compete  with  conventional 
methodologies. These cases are explicitly addressed in the book, ranging from formal checking of 
the most critical safety and/or security properties of a system, to checking of problems that cannot 
be satisfactorily tackled using informal or semi-formal approaches (e.g., parallelism, real-time, fault 
tolerance, etc.) and to reducing costs by replacing the most expensive conventional analyses (e.g., 
testing, reviews) by cheaper or more effective automated approaches based on formal methods. 
Lightweight formal methods are discussed as characteristic of partially-formal design flows, often 
focused on requirements and performing rapid V&V (Verification and Validation) analyses using 
formal methods at low or moderate levels of rigor. Although partially-formal design flows cannot 
guarantee the absence of errors, they increase confidence in security products by revealing defects 
undetected when using conventional techniques.

For the different stages in the design flow different kinds of formal methods find their usefulness: 
while on early design artifacts, one usually expresses and checks global properties, on late design 
artifacts, one more likely checks local properties, such as assertions and absence of run-time errors. 
Thus, formal methods are useful on both early and late design artifacts.  When applied to late design 
artifacts, formal methods have the merit of checking the real final software. But the properties to 
check are often derived from the requirements produced during the early design steps, and to verify 
late design artifacts against properties that have not been checked before might lack thoroughness. 

Fully formal design flows

In its simplest and most ideal form, a fully-formal design flow can be seen as the formal equivalent 
of the waterfall model used in conventional design flows. It consists in a chain of design artifacts,  
all of which are formal, and such that consistency is mathematically preserved all along the chain. 
The authors underline conditions for the traceability(feasibility) of fully-formal descending flow: 
the  system under  design  should  be  kept  simple,  the  design  flow should  be  seamless  to  avoid 
semantic  gaps,  and the  design  steps  should  be  small  enough so  that  their  verification  remains 
feasible. As a contrast, conventional design flows often deal with overly complex systems, rely on 
multiple semantically incompatible languages and formalisms, and tolerate big design steps, the 
correctness of which is often not checked at each step, but only globally during the late steps of the 
design flow (e.g., integration testing). 

In fully-formal design flows, design steps are closely intertwined with quality steps. At each step, 
one checks the existence of a mathematical relation between the upper (more abstract)  and the 
lower (more concrete) design artifacts. If the step is correct, the lower design artifact is said to 
refine the upper one; this is the essence of refinement-based methods. In descending design flows, 
(from abstract to more concrete models of the system) new system properties are introduced (after 
refinement for example) to more accurately describe relations between system components, which 
in turn creates  proof obligations (or derived requirements, or verification conditions) as discussed 
in the book. Refinement monotonicity,  preorder relations, behavioral equivalence and branching 
bisimulation  are  discussed,  indicating  the  practical  relevance  of  fully  formal  design  steps  to 
correctness proofs. Equivalence and/or preorder relations should hold all along the flow of models, 
and  satisfaction  relations  should  be  verified  between  each  model  and  its  corresponding  set  of 
properties.

The authors  explain why formal  design flows can be better  described as  Petri  nets  rather  than 



graphs, and why a single and exclusive model-based flow is ruled out when it comes to real systems 
design,  giving  its  place  to  parallel  progressing   flows,  one  of  models  and  one  of  properties 
originating  from  the  same  top-level  requirements.  The  usage  of  software  tools  is  advised  for 
managing  collection  of  properties,  checking  their  consistency  and  ensuring  their  traceability 
throughout all system development steps, from initial requirements to implementation code.

Formalizing requirements

The central role of choice of languages or models to describe systems specifications is highlighted. 
Using  a  single  formal  language  to  describe  all  steps  and  all  parts  of  a  system would  be  an 
impossible task, as languages possess expressiveness for certain types of requirements while being 
clumsy  for  others.  Language  unification  remains  still  an  open  topic  of  research;  a  proper 
combination of different languages (and different analysis tools) is advised to be a more realistic 
option.

Model-  and  property-oriented  specifications  are  compared.  Formalization  of  requirements  is 
described as a difficult task requiring experience with the chosen formal method, but the usage of a 
formal  notation   brings  many advantages  in  return:  it  reveals  many hidden defects  (especially 
ambiguities and incompleteness issues, i.e., vague or missing elements) already before any step of 
verification has been applied.

Abstraction steps

Abstraction steps  can be used in both ascending flows (to establish formal models of an already 
existing system, producing formal design artifacts from possibly informal or semi-formal ones) and 
descending flows (to perform verification by abstracting away irrelevant details).  In the former 
case, one seeks to better understand how a system works and, possibly, demonstrate that a system 
was properly designed. One produces retroactive models to formally prove the security/safety of 
critical systems, even if these systems have been developed conventionally. This is significant for 
certification and evaluation purposes: rather than constructing an entire ascending flow back to the 
initial requirements, one merely seeks to efficiently analyze a given lower design artifact observing 
its properties on a higher level. Upper design artifacts produced by such abstraction steps are only 
useful to single verification-steps and are not necessarily intended to represent or document the 
system entirely.

The application of an abstraction step to a lower design artifact is based on the expectation that 
formal verification can become tractable on the upper design artifact if it  was difficult or even 
infeasible  on  the  lower.  If  several  properties  are  to  be  verified  several  upper  models  can  be 
produced,  each  model  tailored  specifically to  a  particular  property or  class  of  properties.  Such 
property-driven abstractions are a powerful means to break down verification complexity. 

The specifics of abstraction are discussed in detail with reference to their strengths and limitations. 
Exact  abstractions  are  ideal  from  a  methodological  point  of  view;  in  practice  however, 
undecidability  results  (namely,  Gödel's  incompleteness  theorem  and  Rice's  theorem)  make  it 
impossible to automatically prove important properties for any arbitrary system. In order to have 
automatic abstraction steps when building the upper design artifact, one is often forced to consider 
abstractions that  are  inexact,  i.e.,  that deliberately loose information of the lower artifact,  even 
though such information is relevant to the property to be verified.

Conservative,  (or  weakly  preserving)  abstractions  avoid  the  risk  of  false  negatives,  whereas 
unsound (or too coarse) abstractions may introduce false negatives. A suitable abstraction does not 
only depend  on  the  models  and  properties  to  be  analyzed;  it  must  also  take  into  account  the 
strengths and limitations of the chosen verification technology. 



Formal quality steps and the correctness of systems

Formal methodologies produce design artifacts of higher quality, but even fully-formal design flows 
do not suppress the need for quality steps to guarantee that consistency is preserved from end to 
end.  Such  quality  steps  play  a  central  role  in  formal  methodologies,  being  more  thorough, 
systematic,  and  diverse  than  in  conventional  methodologies.  They  are  based  on  mathematical 
theories  and sophisticated  algorithms  seldom used  in  conventional  methodologies.  In  a  formal 
design flow it is not always easy to distinguish between design steps and quality steps: in general, a 
design  step  is  immediately followed by a  corresponding  quality  step;  in  many cases,  both  are 
performed simultaneously, according to Dijkstra's recommendation to  develop proof and program 
hand in hand.

To  ensure  that  a  system  is  correct,  one  follows  either  the  correct-by-construction  or  the 
correct-by-verification approaches. 

For  instance,  in  a  correct-by-construction  approach,  the  use  of  safe  or  secure  programming 
languages  guarantees  the  absence  of  certain  classes  of  errors  or  vulnerabilities  to  the  cost  of 
expressiveness and/or performance, and thus reduces or suppresses certain quality steps. Also, there 
is no need for performing quality steps when the translation tools (e.g., compilers, code generators, 
synthesis tools, model extractors, etc.) used in automatic design steps, have been formally proven to 
be correct, or if they produce machine-checkable proofs that the outputs they generate are correct 
(the  CompCert  C  compiler  is  a  typical  example).  The  authors  explain  in  great  detail  how 
methodologies of formal design flows allow to divide complex proofs into simpler ones. When 
formal  components  are  endowed with semantically-oriented behavioral  interfaces  richer  than in 
conventional methodologies, theoretical results guarantee that a design artifact having certain global 
properties  can  be  decomposed  into  components  having  certain  local  properties,  or  that  a 
composition  of  components  automatically  satisfies  certain  global  properties  if  the  components 
satisfy  certain  local  properties  and  are  assembled  in  a  certain  way.  Other  theoretical  results 
guarantee that a component in a system can be replaced by another component, still preserving  all 
properties of interest of the system, if a behavioral equivalence or preorder relation exists between 
the replaced and the replacing components. Such results are useful for design and quality steps, but 
also for long-term maintenance steps. 

Correct-by-construction approaches are not always possible, as explained in the book. In such a 
case correct-by-verification approaches are necessary. We detail this in the next section.

Choosing Adequate Formal Methods for Verification

Formal  methods  are  primarily  oriented  towards  verification  but  they  can  also  contribute  to 
validation, both at the beginning of the design flow (i.e., with requirement validation) and at the end 
(e.g., with testing, run-time validation, post-silicon validation, etc.). System properties evolve all 
along the design flow and it is by no means mandatory to use the same formal technique(s) to verify 
all properties. Certain properties are best dealt with, e.g., model checking or abstract interpretation, 
while other properties need to be checked manually or using theorem proving. If some properties 
cannot  be  verified  formally,  they  can  be  subject  to  less  stringent  analyses  (such  as  testing  or 
run-time analysis) so that, even if they are not exhaustive, can still  greatly benefit from formal 
methods.

The authors give also a profound substantiation to the question of how to select an appropriate 
formal verification technique for a given quality step. Because most useful verification problems are 
undecidable, no software tool can solve them in full generality.  To be tractable, computer-aided 
analyses must be restricted in one way or another. One must accept restrictions on at least one out of 
three  desirable  criteria:  expressiveness,  accuracy,  and automation.  However  these  three  criteria 
often  conflict  with  each other:  in  many cases,  there  is  a  trade-off  between expressiveness  and 
accuracy, as well as between expressiveness and automation. Therefore, the choice of a particular 



formal verification technique should be necessarily the decision taken after a careful examination of 
the design artifacts (models and properties) under study and the quality goals to be achieved. Based 
on  the  way  in  which  theorem  provers,  model  checkers,  etc.  can  be  effectively  applied,  the 
conventional distinction between static and dynamic analyses becomes less relevant in the case of 
formal quality steps. 

Instead,  new  criteria  for  comparing  formal  verification  techniques  are  stated:  their  degree  of 
generality, their degree of accuracy, and their automation.

1. Certain verification approaches are general, in the sense that they can address a large class 
of  verification  questions,  whereas  other  approaches  are  specific,  being specialized  for  a 
given  verification  problem.  Dedicated  algorithms  are  often  more  accurate  and/or 
computationally efficient while general-purpose verification tools may be easier to integrate 
in existing design flows, benefit from larger user communities, and can be optimized for 
handling particular situations efficiently.

2. The reasons why completely automatic verification steps can be impossible are highlighted, 
together with alternative approaches combining human insight and machine support.

3. The accuracy of the formal quality steps encompasses various aspects, starting with the fact 
that verification techniques, depending on the problem, are not always capable of producing 
any result  at  all.  Because some verification problems are semi-decidable,  software tools 
(e.g.,  theorem provers) implement semi-decision procedures that may either give correct 
results  or  never  terminate.  Because  abstractions  are  often  used  to  replace  undecidable 
problems by decidable or semi-decidable ones, verification algorithms may be classified into 
exact ones, which precisely answer the given question, and approximate ones, the results of 
which are subject  to  under-  and/or  over-approximations.  In the first  case the results  are 
guaranteed to contain real errors while under-approximations and over-approximations may 
contain  false  positives  or  false  negatives,  respectively.

The authors suggest a classification of formal quality steps according to their  degree of 
ambition with respect to a desirable property. One distinguishes:

• Methods able to establish that the property holds on all possible executions of the 
system, therewith aiming at verifying, proving that the system under design is correct 
(or safe, or secure, etc.), which is the original motivation behind formal methods;

• Methods showing that the property does not hold on some executions of the system. 
These methods aim at falsifying the property by exhibiting situations in which the 
system under design is  incorrect (or unsafe,  or insecure,  etc.)  with respect to the 
property. Simulation, testing, run-time and log analyses, as known from conventional 
methodologies,  are  typical  examples  of  such  methods  that  search  for  design  or 
programming mistakes, and which are usually referred to as bug hunting.

• Bug  hunting  is  effective  at  finding  mistakes  but  provides  no  guarantee  that  the 
system is correct after all reported errors have been fixed. Yet, it enhances the quality 
of  the  system,  especially  when  more  ambitious  methods  fail  to  establish  the 
correctness of the system.

Formal quality steps produce diagnostics that justify why a verification result is true or false. When 
a result is true, diagnostics enable to cross check its correctness. In case of false, diagnostics help 
human  users  to  understand  why  a  design  artifact  is  incorrect,  or  even  to  conclude  about  the 
occurrence of false positives. If a security property does not hold, a suitable diagnostics provides a 
corresponding attack scenario. When a run-time error may occur, or an assertion (or precondition or 
postcondition) may be violated, a suitable diagnostics should provide the execution path(s) leading 
to this problem, and so on. The methodological role of diagnostics is extensively discussed, as it is a 
significant advancement for quality assessment.



Quality steps  should also be  controlled on their  correctness.  Large systems proofs  are  lengthy, 
detailed, and thus likely to contain mistakes. Theorem provers produce machine-readable proofs 
that can be separately verified by a proof checker. Because proof checkers are much simpler than 
theorem  provers,  their  correctness  can  be  formally  demonstrated,  either  manually  or  even 
automatically, thus providing sound foundations to proof checking activities.

To the issue that verification tools themselves might contain mistakes the authors comment that 
tools having a large user community are unlikely to have serious errors not previously reported, and 
fixed. Ideally, verification tools should be themselves proven to be correct or, at least, qualified 
according to rigorous criteria. But, even if errors can occur in quality steps as well as in design 
steps, and even if current verification tools cannot be trusted as infallible oracles, such errors do not 
have a high probability to occur in practice, and there are ways to detect and cope with them. In any 
case, the possibility of such errors cannot be seen as a serious obstacle against formal quality steps.

Innovation of Formal Methods in the Praxis

In conventional methodologies, testing is intensively used for verification and validation purposes, 
but  suffers  from  the  three  main  drawbacks  of  dynamic  analyses:  false  negatives,  insufficient 
coverage, and high costs, as it is the most expensive activity in conventional design flows. Although 
testing and formal methods pursue similar goals (namely quality control and quality assurance), 
they  have  been  originally  developed  in  separate  communities  following  radically  different 
principles:  testing focuses on correctness checking in an empirical,  yet pragmatic way, whereas 
formal methods primarily insist on rigorous, scientifically well founded approaches for correctness 
verification.  For  long,  testing  and  formal  methods  have  been  seen  as  competitors,  but  they 
progressively cross-fertilized each other in a fruitful combination of empirical and mathematical 
approaches. There is an abundant literature on the subject, referenced in the book.

Formal  methods  provide  a  conceptual  framework  for  testing,  based  on   four  concepts: 
specifications, implementations, tests and oracles, with theories to formally relate the specifications 
and the execution traces generated by implementations. Oracles check the results of the tests to 
determine  if  an  execution  run  of  a  given  implementation  is  compatible  or  not  with  the 
specifications;  the concept  of  oracle,  often ignored or  overlooked,  is  made explicit  so that  the 
relationship between oracles, tests, and specifications can be investigated.

Formal methods also contribute to enhance the process of testing, which consists of two main tasks: 
the production of test suites and their execution, most of the effort focused on the generation of test 
suites, which can be made more automatic and systematic using formal methods. There are two 
main approaches: model-based testing, in which the tests for an implementation are derived from a 
higher level specification, and code-based testing, in which the tests are directly generated from an 
implementation given in source code or even as executable code or byte code. Conventional testing 
tools often have problems in handling nondeterminism and only explore a small subset of feasible 
paths. Formal approaches to testing (based on, e.g., model checking or symbolic execution) try to 
address this problem by systematically covering all reachable states or path of a design artifact.

The fundamental concept of symbolic execution was introduced already in the mid 70s as a means 
to automatically generate tests for software programs. Symbolic execution enables to handle data 
types whose number of values is infinite or too large to be feasibly enumerated. This issue arises 
both in hardware and software: exhaustively testing all inputs is impossible for, e.g., a floating-point 
instruction of an Intel processor or a parser for reading image/video files (these files are huge — 
only enumerating all possible combinations of their 1000 first bits would be time prohibitive). The 
static test generation problem consists in exploring this execution tree to reach a set of program 
points specified by a given test criterion (e.g., all statements or all branches in structural coverage). 
This problem is undecidable in the general case but, in many cases of practical interest, decision 
procedures exist (implemented in constraint solvers or theorem provers) that can be applied to the 
constraints  accumulated  along each path,  namely to  identify infeasible  paths  (i.e.,  paths  whose 



constraints cannot be satisfied) or to find concrete input values that make a given path feasible.

For long, symbolic execution has been impractical for automated test generation but since the 90s 
and especially the  2000s,  this  research  topic has  received renewed interest  due to  advances  in 
program  analysis,  constraint  solvers,  and  theorem  provers,  and  due  to  increased  computing 
capabilities provided by modern hardware. Frameworks for symbolic testing have been designed 
and various tools have been implemented using constraint logic programming and/or satisfiability 
techniques. Due to algorithmic advances, symbolic execution has become the core technology of 
several professional test generation tools. However, it has practical limitations, also discussed in the 
book.

In model-based testing, formal specifications can be used as a basis for test generation, as these 
specifications are written in abstract, precise languages well suited for analysis. So doing, test suites 
are generated from early design artifacts (i.e., models) to be applied to late design artifacts (i.e., 
implementations). In this way tests can be produced before the source code of the design artifact  
under test has been written, thus enabling division and parallelization of work between testers and 
implementers.  Various  techniques  have  also  been  proposed  to  derive  correct-by-construction 
oracles,  i.e.,  oracles derived from formal  specifications and free from false negatives and false 
positives.

In particular, dedicated test generation tools have been developed that, given a model, produce test 
cases  using  exhaustive  state-space  exploration  techniques  borrowed  from  model  checking, 
following  user-specified  test  purposes  (e.g.,  traces  or  automata  derived  from  high-level 
requirements) and/or coverage obligations to guide test generation. 

Alternative  to  model-based  testing  is  code-based  testing,  which  does  not  require  a  formal 
specification, but uses internally formal methods and verification technology. Code-based testing 
initially targeted small sequential programs with simple data types, but has progressively evolved 
to support high-level language features, such as multi-threading and complex data structures. 

The emergence of new powerful solvers in the 2000s, contributed to blur the traditional distinction 
between static  and dynamic analyses  by extending dynamic test  generation with symbolic  data 
manipulation or, symmetrically, by enhancing static test generation with concrete data collected at 
run-time. Such approaches are collectively referred to as concolic testing (a mix between concrete 
and symbolic). In combination with a theorem prover to generate new data inputs to force paths for 
program executions according to criteria set,  one checks for run-time errors, verifies assertions, 
preconditions and postconditions while executing the program.

The success of concolic testing can be measured in the impressive number of tool implementations 
for the various kinds of programs to be tested (C code, Java code, .NET bytecode, x86 object code, 
etc.). Such implementations vary depending on the kind of analysis performed (test generation or 
bug hunting), the test criterion used as a stop condition, the level of precision sought, the type of 
license (proprietary or public domain, closed or open source), etc. 

Many of these tools can be used to detect either correctness bugs or security vulnerabilities. The 
authors  give  a  list  of  security-oriented  tools  implementing  various  ideas  of  formal  methods, 
symbolic  execution  and  concolic  testing,  white-box  fuzzing  and  taint  analysis  which  have 
discovered numerous security flaws (e.g.,  buffer  overflows,  memory access  violations,  numeric 
overflows and conversion errors, vulnerabilities to SQL injection and cross-site scripting attacks, 
etc.) in Linux, Windows, Android, and Web applications.

One of the listed tools, SAGE, searches for crashes and vulnerabilities in Windows applications that 
read files (e.g., image processors, media players, file decoders, document parsers, etc.) and has been 
running non-stop since 2008 on a dedicated cluster of 100 machines at Microsoft security testing 
labs to analyze hundreds of applications. SAGE found roughly one third of all the bugs discovered 
by file fuzzing during the development of Windows 7; because SAGE was typically run last, those 
bugs were missed by all earlier quality steps, including static analysis and black-box fuzzing. SAGE 



is  so  effective  at  finding  bugs  that  the  number  of  crashing  test  cases  exceeds  human  analysis 
capabilities and required the development of specific software internally at Microsoft for triage, 
selection, and exploitation.

Today,  formal  approaches  to  testing  benefit  from positive  factors,  among which  the  increasing 
availability of formal specifications and models, the efficiency of verification technology (model 
checkers,  theorem  provers,  solvers,  etc.),  and  the  computational  power  provided  by  modern 
computers. Yet, these approaches only recently started their dissemination in industry, although the 
essential  ideas of testing (such as symbolic  execution)  were formulated three decades ago, and 
despite the large amount of academic research; in many industrial projects, test generation is still, to 
a large extent, performed manually — a situation that is about to change.

Numerous studies comparing formal methods and testing led to an academic consensus that both 
approaches are complementary. However, recent advances increasingly blur the classical distinction 
between verification and testing, as  state space exploration algorithms (traditionally pertaining to 
verification) have been integrated in testing tools, while verification tools (such as software model 
checkers) operate directly at the implementation level (i.e., source code, bytecode, or object code) 
in the same way as testing.

Moreover, the aforementioned consensus has been recently challenged by a series of publications 
originating from leading worldwide industrial  companies.  These publications  report  that  formal 
methods clearly outperform certain testing activities and can replace them in the design flow. 

A first reason is that formal methods (formal verification, formal refinement, etc.) provide better 
quality control and quality assurance than conventional testing. For example, proofs conducted on Z 
specifications  and  SPARK  code  were  more  efficient  at  detecting  errors  than  unit  testing  and 
provided crucial assurance that the code was free of run-time exceptions. Other formal approaches, 
especially model checking, can detect intermittent, near simultaneous, or combinatorial sequences 
of failures that would be very difficult to detect through testing, leading to the conclusions that 
model checking is more cost effective than testing in finding design errors and that the time spent  
model checking is recovered several times over by avoiding rework during unit and integration  
testing.

Another reason reducing the amount of testing stems from correct-by-construction approaches: it is 
not necessary to test design artifacts produced in a way that guarantees their correctness. Testing on 
executable code is considered unnecessary if the code has been produced by a qualified or provably 
correct compiler from an upper artifact which has been previously formally verified. Consequently, 
formal  verifications  performed  at  source  code  level  (using,  e.g.,  theorem  proving  or  abstract 
interpretation)  may,  together  with a  provably-correct  compiler,  render  certain tests  useless.  The 
book references reports testifying that conventional unit testing of C functions could be omitted by 
combining a certified C compiler and a theorem prover to establish that each C function satisfies a 
set of properties ensuring exhaustive structural code coverage and absence of dead code. 

Yet,  as the authors point out,  certain testing activities not subsumed by formal verification and 
formal refinement will certainly remain in the foreseeable future.

Conclusions

The landscape of formal methods has faced major evolutions since year 2000, which make them 
applicable to the analysis of complex hardware and software that is relevant for both security and 
safety point of view. For this reason, it was important for our Agency to order a survey of recent 
advances. Twelve years later, the present book is a follow-up to the previous survey ordered by the 
BSI in 2000.

Contrary to many books that give of formal methods a restrictive vision by limiting their scope to a 
few  approaches  and  their  specific  mathematical  details,  this  book  tries  to  present  a  complete 



account of formal methods in all their diversity, together with their connections to related fields, 
such  as  modeling  and  programming  languages,  compiler  technology,  mathematical  logics, 
computer-aided verification, and performance evaluation. The scientific matters of formal methods 
have evolved in so many directions that another book of the same size would be necessary to go 
into the specific details of all formal approaches. In consequence, this book contains a very rich 
bibliography and URL-links to further treatises.

In the past decades, formal methods have not yet been widely adopted in industry, due to multiple 
languages and algorithmic approaches, lack of robustness and user-friendliness of available tools, 
absence of guarantee for success or data about the return on investment in case of use of formal 
methods,  among other  reasons.  Also,  formal  methods have been advertised too  early and their 
merits often exaggerated, at a time where neither languages nor tools were mature enough to meet 
the high expectations placed on them — with early results ranging from mitigated success (e.g., the 
SIFT aircraft control system) to bitter disappointment (e.g., the VIPER microprocessor).

However, the foundational principles of formal methods are increasingly taught and understood. 
The concept of model has gained industrial acceptance through semi-formal approaches such as 
UML and model-driven architecture/model-driven engineering. The level of abstraction in system 
and software design increases, as well as the awareness of the need for appropriate development 
methodologies and formal analysis tools. The frontier of problems that formal methods can tackle is 
continuously pushed forward. Verification tasks that were out of reach one or two decades ago are 
now automated and performed routinely. A growing number of publications report about successful, 
well-targeted applications of formal methods in many diverse industrial domains.

The use of formal methods is admitted, recommended, and sometimes prescribed in safety- and 
security-related  standards  dealing,  e.g.,  with  avionics,  railways,  nuclear  energy,  and  secure 
information systems. Formal methods are therefore used in these industrial domains, but also in 
other  domains  not  subject  to  certification  obligations,  such  as  hardware  design,  where  formal 
methods  emerge  as  the  only  way  to  produce  reliable  systems  within  budget  and  schedule 
constraints.

At present that formal methods have gained industrial recognition, at least in the largest and most 
innovative companies, the point is no longer to question the usefulness of formal methods, but to 
discuss where and how formal specifications and verification methods can be introduced in design 
methodologies, and how the software tools developed in academia can be reused and adapted to 
various  applicative  contexts.  This  way,  formal  methods,  originally  touted  as  an  alternative  to 
conventional methodologies, will gradually get accepted, more as an evolution than a revolution.
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