
Summary of the book:
Formal Methods for Safe and Secure Computer Systems

Dr. A. Leventi-Peetz1

Introduction

The potential benefits which formal methods contribute to IT-security have been early identified by
the BSI through several previous studies. The book continues and complements this long-term
effort towards safer and more secure products and contains the results of the BSI-Study 875.

Computer-based systems are increasingly assigned mission- and life-critical tasks; their intrinsic
complexity is steadily growing; at the same time, guaranteeing their safety is increasingly difficult,
while they are exposed to a growing number of security threats. This situation has severe
consequences: it is estimated that faulty software annually costs between 22 and 60 billion dollars
to the US economy, and there is no clear indication that this figure is decreasing, quite the contrary.

The software crisis anticipated at the 1969 NATO conference in Garmisch-Partenkirchen appears
nowadays in the form of a software quality crisis, in the sense that it is extremely difficult to
produce reliable software at acceptable cost — even the largest software vendors being unable to
deliver products free from major flaws and vulnerabilities. In other words, the crisis seems
qualitative rather than quantitative.

This book provides a comprehensive survey about formal methods, their state of the art, and their
application to the development of computer-based systems, with a particular focus on the formal
verification of life-critical and mission-critical systems to which also security-systems belong. It is
also a technical reference book guide-lining to the systematic design of high assurance systems,
with a comparative analysis of methods and tools contributing to a better understanding of the
scientific/engineering problem to solve and their capacity to deliver well-founded proofs that
systems are correct, predictable, and highly reliable under all circumstances.

The scientific literature on formal methods is vast, diverse, and fragmented. There are thousands of
conference papers and journal articles, most of which usually focus on particular topics, but only a
few papers about formal methods in general. There are also a number of books that handle
particular formal methods, particular verification techniques, or mainstream verification tools, as
well as applications of formal methods to a particular domain. There was a crucial need for a
comprehensive, yet coherent synthesis of this situation. That was the reason why Study 875 was
launched.

The authors of the book are internationally renowned experts in the field of formal methods; they
are formal methods developers and high-assurance systems evaluators themselves. The book is
written gradually progressing from more general to specific topics of the subject with examples to
help the reader visualize the intricacies involved in the choice of appropriate methods for each
certain evaluation task and in his forming an objective judgment about the quality of the expected
results. In the next lines central topics covered by the book are listed in a partly extended but not
exhaustive summary over the book's contents.

History and Scope of Formal Methods

In the first chapter, various possible reasons which can lead to failures and malfunctions of
computer-based systems are discussed. Emphasis is given on systems' growing complexity and as

1 Benefited from comments by Dr. H. Garavel, editor of the book.

far as security is concerned, the fact that systems mostly operate in an open world connected to the
Internet.

Organizational and technical approaches to ensure that computer-based systems operate according
to expectations are discussed. Here the fact is underlined that the approaches usually focus more on
the design process than on the product itself and together with techniques which rely heavily on
testing to detect (certain but not all) design and programming mistakes, they constitute the empirical
methods to ensure system quality.

Formal methods can be seen as a scientist's reaction against empirical approaches to quality
assurance. The authors propose the following definition: Formal methods in a broad sense are
mathematically well-founded techniques designed to assist the development of complex
computer-based systems; in principle, formal methods aim at building zero-defect systems, or at
finding defects in existing systems, or at establishing that existing systems are zero-defect.

Examples given in the book make obvious that the formal verification of microprocessors and
avionic-, space-, railway-, etc. systems have already been common practice since many years. The
application of formal methods is part of the recommendation of international technical standards,
whereby standards could get themselves improved through the application of formal methods,
when in some cases formal verifications that were mandated by a standard occasionally manifested
flaws in the standard-itself, IEEE-Standards making no exception.

An overview about famous system-failures that caused huge financial losses and sometimes loss of
human lives too, follows. It is complemented by thirty carefully selected success stories, which
expand over the last thirty years and describe how the use of formal methods has helped the timely
discovery of errors in safety-critical systems as well as in security systems and protocols.

However, despite these successes, formal methods are not routinely used in industry (nor in
academia!), with the notable exception of two classes of application domains, in which formal
methods play a significant role:

• Those mission-critical systems for which mistakes are particularly costly, and difficult or
impossible to correct after the system is released: this is the case of hardware circuits and
architectures, to which the technique of software patches is generally not applicable.

• Those life-critical systems for which formal methods are legally required by technical
standards or certification authorities: this is the case of civil avionics, railways, and nuclear
energy, for instance.

High-security information systems, are subject to strict certification constraints, such as the ISO
15408 standard (Common Criteria for Information Technology Security Evaluation) and its
Evaluation Assurance Levels. Although Common Criteria require formal methods at the highest
certification levels (EAL7 and EAL7+), such levels of security are rarely reached in practice.
Official statistics indicate that, between 1998 and 2011, only 4 out of 1599 certified products
reached the highest levels (2 products certified EAL7 and 2 products certified EAL7+).

The use of formal methods in industrial projects remains punctual, mostly intended to solving
particular issues. There is no general consensus on which formal methods should be used, nor for
which development activities. The present book deals extensively with these questions. The market
for really formal methods is currently very much a niche and suffers from the well-known negative
feedback loop effect: software vendors hesitate to invest in tools because the market is too small
and, as long there are no industrial-strength tools, the user demand for formal methods remains low.
However, in spite of the economic difficulties of commercial tool vendors, the technical impact of
formal methods remains highly positive. The authors name sources with data collected from the
industry to quantify concrete benefits in product quality, cost and time to market when formal
methods are employed in development.

The book is mainly about those formal methods that are the best candidates for going beyond

conventional techniques currently used in industry in order to produce low- (or even zero-) defect
computer-based systems.

Taxonomical Classification

In the second chapter (Scope and Taxonomies) the authors provide a comprehensive overview of
formal methods covering all the scientific branches, and of application domains for which formal
methods have been developed. This chapter also defines the perimeter of the study by listing those
aspects considered to be out of scope of the book, together with the reasons justifying this choice.

The authors follow a multi-level strategy to achieve a manifold presentation of a large and fast
developing discipline: following the plan of the project requirements, they categorize formal
methods in different taxonomies, emphasizing a different focus in each case. The accordingly
different considerations, assumptions and concerns from a system's engineer point of view are
paradigmatically demonstrated, suggesting various method selection criteria in each case.
Taxonomy specific informations complement each other to deliver a global picture of the subject.

For instance, in the taxonomy based on application domains, formal methods are classified
according to their mission in separate application fields. In hardware engineering, for instance, it is
comprehensible for the reader that alongside with correctness and efficiency, verification concepts
like cycle accuracy, instruction set, pipeline, circuit retiming etc., which have no direct
correspondence in software verification, are important. Furthermore, hardware-description
languages incorporate concepts of electronics and are significantly different from mainstream
languages for software, another reason to justify their taxonomic separation. However a
methodological separation between hardware and software is described by the authors as neither
total nor permanent. As hardware architectures increasingly incorporate massive parallelism and
decentralized interconnection topologies, they face the same problems as distributed software
applications. These problems can be addressed using formal techniques (e.g., asynchronous and
synchronous process calculi, model checking etc.) that are equally relevant to software and
telecommunication systems.

Because of the ever-increasing complexity of circuits made possible by silicon integration and
technology advances, the design and verification of circuits has to be accomplished nowadays at a
higher level of abstraction than before. Higher-level languages applied for this purpose borrow
many features from software programming languages like C, C++, or Java. Although at their
beginning formal methods were about very simple, often idealized algorithmic languages or
high-level very abstract system models (e.g., Petri nets), as time passes, formal methods get closer
to details of systems. Recent approaches go as down as assembly code, C code with involved
features such as pointers and threads, to realistically model platform characteristics (hardware,
operating systems, middleware etc.).

Formal Methods and Hardware-Design

Formal methods have been traditionally an integral part of hardware-design methodologies and
major hardware design companies hire formal methods experts and use formal verification tools
(e.g., model checkers and/or theorem provers) as part of their industrial processes. Global
corporations, such as IBM or Intel for example, have their own research laboratories to develop
in-house system verification tools. Examples of typical verification cases with the respective issues
handled in the according taxonomical classes are presented and discussed in this part of the book.
Yet not all methods developed for the design and analysis of systems are formal, and sometimes
methods that are formal, are not necessarily called formal methods. There is also a call for the
reader's awareness about the existence of multiple definitions in the experts vocabulary to formally
describe qualities of systems, which is also the reason why in the book a skillfully reduced number
of concepts has been followed, so that no confusions can arise when reading the book.

Formal verification produces answers as to whether systems properly implement desired properties,
also important, produces explanatory diagnostics in case of non satisfaction. Significant is that
negative properties too, which specify what a system should not do, can be formulated and proved.
Formal methods simplify quality assurance steps in the design flow, for example requirements
validation, is in conventional methodologies mostly an empirical, slow, and labor-intensive process
involving human experts. Conventional validation is therefore problematic when requirements
change rapidly and frequently. In a formal design flow, requirements and system models can be
expressed in languages with a well-defined syntax and a mathematical semantics. Ambiguities and
contradictions in specifications, a well-known issue in the case of informal and semi-formal design,
are in this way precluded and automated tool support for verification and validation becomes
possible. The significance of the difference between manual and automatic design steps is
explained, the manual steps being more error prone and typical of conventional methods. The
significance of the languages used to implement models, prototypes and systems is then discussed.

Mainstream Modeling and Secure Programming Languages

Mainstream modeling languages like SysML or UML can help overview the system's behavior
displaying execution traces of the system's successful or erroneous interactions with its environment
in semi-formal notations but they lack precise semantics and therefore do not enable proofs and
automated reasoning. The risks of such mainstream programming languages are discussed,
especially that they can allow constructs which are imprecise making security issues
implementation-dependent and potentially unsafe, in the sense that any single part of a program
may provoke a failure of the entire program, e.g., corrupting the memory or call stack, or potentially
insecure, because there is no built-in protection against misuse, thus leading to vulnerabilities such
as buffer overflows, unchecked malicious inputs, etc. Safe and secure programming languages to
avoid risky nondeterministic program behavior coming from the lack of formal semantics are in this
context discussed. They provide a higher level of abstraction, type safety, memory safety, and,
possibly, a formal semantics. Such languages eliminate certain classes of errors and are said to
allow writing correct-by-construction programs with respect to certain important safety/security
properties; they also enable code-checking tools to detect such errors automatically. Alternatively, it
is recommended to resort to what is called best code practices or safe/secure subsets of mainstream
languages prohibiting risk-prone constructs, (like MISRA C, and JavaCard for Java). The trade-off
of safe/secure languages is that they possess limited expressiveness and may forbid certain rightful
programs that the compiler rejects. In this respect, certification guidelines for safety-critical systems
rule out potentially unsafe language features (such as nondeterminism, recursion, dynamic memory
allocation, etc.) unless the correctness of programs using these features is mathematically proven —
which, in practice, dissuades programmers from using these features.

The Issue of Nondeterminism

As a central issue in formal methods theory and practice, the essential kinds of nondeterminism and
their effects in system modeling are also discussed. Nondeterminism and formal semantics are not
incompatible notions, as certain formal semantics (e.g., in the theory of concurrent systems)
perfectly describe nondeterministic aspects of system behavior. An enumeration of important cases
ensuing nondeterminism in models is provided supporting the reader's understanding of the point.

Systems using asynchronous parallelism, for example, or randomized algorithms specifically rely
on nondeterminism, whereby random choice is just a technique among others to implement
nondeterminism. Although traditional sequential programming languages are missing constructs to
express nondeterminism, there exist modeling languages that provide built-in support for the
selection of one possible future out of several ones, and even for backtracking, which permits
reversion of past decisions in the model.

Conventional Quality Assurance Tools

The analysis tools of conventional methodologies are discussed, as they are increasingly part of
compilers and integrated development environments, and enhance quality by quickly finding errors
or vulnerabilities.

Static analysis tools usually check compliance with best coding practices and coding standards, and
also check generic and specific system properties not directly derived from system initial
requirements. Their limitation consists in the fact that they only search for certain classes of errors,
possibly also failing to find errors in these classes, and neglect other kinds of mistakes. They also
are known to usually generate false positives, which need to be processed manually, possibly with
the help of error-filtering tools. To overcome these limitations, analyses of a greater algorithmic
complexity, based on formal methods are required.

The controversial field of software metrics to quantify design complexity is critically discussed as
possibly the only analysis tool not necessarily enhancing quality in any way.

Dynamic analysis tools (among which simulation and testing tools) check dynamic properties, such
as unexpected or invalid outputs, run-time errors etc. which are out of reach for static analysis tools.
Testing and simulation are the main quality assurance techniques used in industry and have much in
common, the main difference being that simulation operates on virtual design artifacts (namely,
models) whereas testing operates on real design artifacts (namely, actual implementations, such as
circuits or programs). Simulation enables to check a system against its requirements at each stage of
the design flow, permitting also validation of environment assumptions in experiments that compare
models and reality.

Testing can be either used for validation purposes, at the end of a design flow, or for verification
purpose, to check whether a given real design artifact correctly implements its higher-level
specifications, expressed as models or properties, in which case one speaks of conformance testing.
Testing approaches specifically addressing security issues are presented such as read access
violations, write access violations, null pointer dereferences, divisions by zero, etc. and the
distinction between normal range tests, which exercise a system in ordinary conditions, and
robustness tests, which trigger abnormal inputs and faults arising from inside or outside of the
system.

The main limitation of dynamic analysis is the huge (or even infinite) number of execution paths of
an artifact/system; therefore, only a finite number of execution paths (specified in a test suite) can
be simulated, tested, or executed.

Questions to the effectiveness and completeness of test suites are discussed in conjunction to test
selection criteria, which are the standard way to quantify the goodness and adequacy of simulations
or tests. Functional coverage, a crucial metric to ensure compliance of design artifacts with their
specifications, delivers one criterion but, being a black-box approach, it cannot detect internal issues
of the examined artifacts, like dead code or the existence of unwanted functionalities not intended
by the high-level specifications.

Such issues are addressed by structural coverage, which is helpful for detecting dead code and
highlighting code fragments that have not been properly exercised. However, it has a low
correlation with functionality defects and, in particular, cannot expose omissions and
unimplemented features. Moreover, test suites whose production is primarily driven by structural
coverage goals are also not always efficient, the reasons are extendedly clarified in the book. A
combination of functional coverage over the specification with structural coverage over the
implementation of an artifact/system delivers better results.

In conventional methodologies, functional coverage is not easy to define and, in practice, obtaining
a good coverage is difficult. In most ordinary projects, testing only exercises about half of the
source code. When full coverage is required (e.g., in aerospace, microprocessors,

telecommunication systems, etc.) developing and executing appropriate test suites is expensive and
often exceeds 50% of the overall project cost. As the size and complexity of modern systems grow
continuously, traditional approaches to writing and maintaining test suites become increasingly
problematic, technically and economically, especially when it is a manual process that needs to be
repeated as often as the design artifacts evolve.

The difference between directed and random tests is in what follows explained. Many algorithms
for automated test generation have been at times proposed, some of which are implemented in
commercial tools. They support directed and random test generation. As far as security is
concerned, a particular form of random testing is fuzzing (or fuzz testing), which seeks to provoke
unexpected behavior and, even in its least sophisticated forms, is particularly effective in finding
numerous security defects in complex software, (such as Unix and Microsoft Windows NT services,
or Acrobat Adobe Reader)

Systematic comparison between coverage-directed and random test suite production strategies has
been the source of a number of publications referenced in the book: this comparison delivers
somehow contradictory and inconclusive results. In certain cases, coverage-based tests fail to detect
significant percentages of errors in design artifacts: therefore, coverage tests alone, even in a highly
rigorous form, do not provide a reliable metrics for measuring test efficiency. Profound and very
well substantiated arguments to reason about this state of things are offered to the reader with
parallel naming of some conventional alternative tactics, such as approaches combining random and
coverage based tests, whereby randomness is introduced in a constrained manner, to exercise
interesting scenarios not planned originally.

Formal Methods and System Analysis Tools

Simulation and testing remain the main analysis techniques used in industry but cannot provide
strong guarantees about the functional correctness, performance, safety, or security of a system. The
current trend is to use formal methods to complement (and, in certain cases, completely substitute)
those conventional techniques. Because conventional simulation does not provide sufficient quality
assurance, formal methods are fully established to complement, enhance, and even replace
simulation-based techniques, as formal methods can handle issues not plausibly resolved with
conventional methods.

Enhancing Simulation

Formal methods enable a precise definition of functional coverage, which can be measured in terms
of assertions, properties, and/or requirements that have been verified. Moreover, they provide a
better coverage than simulation: while simulation hunts for bugs observing only selected traces,
formal methods (symbolic simulation, equivalence checking, model checking, theorem proving,
etc.) examine all possible behaviors, i.e., consider the entire state space and can thus prove or
disprove properties for all possible behaviors, under any sequence of legal input stimuli for all
reachable design states, and all possible execution paths. So doing, subtle bugs missed by
simulation (false negatives) can be discovered.

Even when exhaustive verification is not feasible, the effectiveness of simulation can be greatly
enhanced by automatically generating sequences of input stimuli that satisfy stated constraints so as
to ensure a given level of coverage. Because the negation of properties is also formally verifiable,
one can try to verify negated properties using a model checker: if counterexamples are in this way
produced, exhibiting execution paths on which negation of a property P evaluates to true, these
paths can be added to the simulation test bench to improve it; in such a case the design and the
property P are incompatible, and at least one of them must be revised.

Improving of the simulation testbench can be also achieved in other ways: A translation of the
simulation testbench into a set of (automatically generated) temporal logic formulas which can be,

for instance, based on occurrences of events in simulation traces, is another way of formal methods
to improve a simulation testbench. Then, a model checker is used to check these formulas on the
design. If a formula evaluates to false, a counterexample is generated, which highlights parts of the
design not already covered by the simulation testbench.

Simulation can always be performed on formal specifications provided they are written in an
executable language, or formulated in executable models. Therefore when applying formal methods
one fully retains all advantages of simulation. Additionally, by giving semantics a central role,
formal methods improve the practice of simulation ensuring that simulator implementations are
semantically well-founded and compatible with other tools used in the design flow (e.g., compilers,
verification tools, etc.).

Replacing Simulation

In hardware-design flow all stages of the design deliver examples to the replacement of simulation.

Conventional simulation cannot handle efficiently asynchronous logic which is necessary because
of its advantages in terms of speed, low power, and security. Formal methods, especially, model
checking, enable the detection of concurrency issues (such as deadlocks) and also give assurance
about the correctness of asynchronous circuits.

At register transfer and gate levels, formal methods are applied in the form of equivalence checkers
for the logical comparison of two hardware models (one at the register transfer level,, the other at
the gate level) to prove the absence of synthesis errors. Equivalence checking has almost replaced
gate-level simulation nowadays.

At behavioral level formal methods (especially model checking and symbolic simulation) are also
increasingly used. The design which has to be examined is expressed in the same hardware
description language (e.g., VHDL or Verilog) used for conventional simulation. Properties must be
formally specified using assertions, such as SVA (SystemVerilog Assertions), or temporal logic
formulas, e.g., using PSL (Property Specification Language). Modern environments enable these
properties to be checked using either simulation or formal verification techniques.

Also at the (more abstract) algorithmic level, complex designs involving asynchronous concurrency
can also be specified using dedicated languages specifically designed and optimized for, e.g., model
checking verification. This is often the case, for instance, with cache coherence protocols and
crucial coordinating blocks of multiprocessor architectures.

At system level, formal methods enhance the capabilities of languages (such as SystemC/TLM)
initially intended for simulation and hardware-software co-simulation purposes. For instance,
certain SystemC models can be verified using model checking, which improves simulation speed
and coverage.

In a recent work done at Intel, the execution cluster of the Intel Core i7 processor (including full
datapath, control and state validation) was formally verified. Formal verification based on symbolic
execution provided results that were competitive with traditional testing-based methods in
timeliness and validation cost, and at least comparable, if not superior, in quality, leading to a lower
number of bugs escaping to silicon than for any other processor cluster analyzed with conventional
simulation. The conclusion was that the value of formal verification primarily comes from its ability
to cover every possible behavior, and that in areas where a verifier can concentrate on verification,
the effort to carry out formal verification is comparable to thorough coverage-based validation.

Simulation has been for long the sole technique for evaluating the performance and dependability of
complex systems, especially embedded systems. Dedicated formal methods have been now
developed, which combine mathematical techniques (probabilities, discrete-time and
continuous-time Markov chains, stochastic processes, queuing theory, etc.) with system design
concepts (components and modularity, parallel composition and concurrency, etc.). These formal

methods enable to describe systems whose behavior is nondeterministic, probabilistic, and/or
stochastic, as well as systems that consume resources (time, memory, energy, etc.).

Performance evaluation tools based on formal methods have been developed, and traditional
verification tools have been extended with probabilistic or Markovian analyses to support
performance evaluation. These tools have been successfully applied — also in combination with
simulation-based techniques — to nontrivial problems.

If the system under analysis is not too large, analysis algorithms based on model checking and
known as probabilistic or stochastic model checking can compute numerical probabilities and
resource consumption values. These results — possibly given as a [min, max] interval if the system
is non-deterministic — are usually faster to obtain and more precise than using simulation, the
accuracy of which strongly depends on the number of simulation runs.

In practice, however, formal methods cannot exhaustively analyze complex systems because of
undecidability issues (for infinite-state systems) or due to the state explosion problem (for
finite-state systems). Many research efforts aim at overcoming limitations and providing better
scalability to large systems using, e.g., compositional approaches. Against state explosion, formal
methods apply symbolic state space representation techniques, as well as compositional techniques
that exploit the structure of the system to compute global (i.e., system-wide) results from local
results obtained by analyzing each component individually.

Regarding simulation of heterogeneous systems, which are used to describe and control physical
world processes and computer software and hardware, modeling formalisms with mathematical
foundations have been proposed, such as timed automata and hybrid automata, and thoroughly
studied during the last twenty years leading to major theoretical results regarding decidability and
complexity. For the analysis of such models, dedicated abstractions, temporal logics, equivalence
relations, and algorithms combining verification technology (e.g., model checking and symbolic
simulation), control theory (e.g., optimal control), and probabilistic/stochastic analyses have been
developed and implemented in software tools. .

A notable effect is that mainstream simulation tools are now equipped with formal methods
extensions. For instance, Mathworks' Simulink design suite now includes a formal proof and static
analysis engine (developed by Prover Technology AB) that verifies properties and generates tests,
enhancing simulation coverage and finding errors that would be hard to detect using simulation
only. Potential difficulties connected with the application of formal methods instead of simulation
are also discussed in the book, especially scalability issues that may affect automation in tools usage
when examining large, hybrid systems.

Yet, despite recent progress and successful applications of formal methods to realistic examples,
simulation and cosimulation often remain the main analysis technique used in industry and are
likely to stay for long; the challenge is now to to combine them with formal methods for more
efficient and better results.

Differentiated Use of Formal Methods and Levels of Rigor for System
Analysis

Formal methods are prescribed or recommended in many safety and/or security standards when
higher levels of quality assurance than that of conventional approaches are demanded.

System analysis can be done at different levels of rigor, depending on the design steps and quality
steps followed. These levels of rigor are presented in detail and discussed in the book, with a
warning about differences of interpretation between , for example USA and Europe. It is extremely
rare that a system is entirely designed and proved using formal methods. This holds even for
hardware design, for which formal verification is part of industrial methodologies. Formal methods
bring little added value if applied to problems for which conventional methodologies are effective.

Thus, formal methods should be primarily applied to the most involved parts of the system, e.g., to
evaluate major design decisions and analyze complex algorithms that cannot be satisfactorily
tackled using conventional methodologies.

Partially formal design flows

In partially-formal designs, formal methods are applied to carefully selected development
problems, and only where formal methods can successfully compete with conventional
methodologies. These cases are explicitly addressed in the book, ranging from formal checking of
the most critical safety and/or security properties of a system, to checking of problems that cannot
be satisfactorily tackled using informal or semi-formal approaches (e.g., parallelism, real-time, fault
tolerance, etc.) and to reducing costs by replacing the most expensive conventional analyses (e.g.,
testing, reviews) by cheaper or more effective automated approaches based on formal methods.
Lightweight formal methods are discussed as characteristic of partially-formal design flows, often
focused on requirements and performing rapid V&V (Verification and Validation) analyses using
formal methods at low or moderate levels of rigor. Although partially-formal design flows cannot
guarantee the absence of errors, they increase confidence in security products by revealing defects
undetected when using conventional techniques.

For the different stages in the design flow different kinds of formal methods find their usefulness:
while on early design artifacts, one usually expresses and checks global properties, on late design
artifacts, one more likely checks local properties, such as assertions and absence of run-time errors.
Thus, formal methods are useful on both early and late design artifacts. When applied to late design
artifacts, formal methods have the merit of checking the real final software. But the properties to
check are often derived from the requirements produced during the early design steps, and to verify
late design artifacts against properties that have not been checked before might lack thoroughness.

Fully formal design flows

In its simplest and most ideal form, a fully-formal design flow can be seen as the formal equivalent
of the waterfall model used in conventional design flows. It consists in a chain of design artifacts,
all of which are formal, and such that consistency is mathematically preserved all along the chain.
The authors underline conditions for the traceability(feasibility) of fully-formal descending flow:
the system under design should be kept simple, the design flow should be seamless to avoid
semantic gaps, and the design steps should be small enough so that their verification remains
feasible. As a contrast, conventional design flows often deal with overly complex systems, rely on
multiple semantically incompatible languages and formalisms, and tolerate big design steps, the
correctness of which is often not checked at each step, but only globally during the late steps of the
design flow (e.g., integration testing).

In fully-formal design flows, design steps are closely intertwined with quality steps. At each step,
one checks the existence of a mathematical relation between the upper (more abstract) and the
lower (more concrete) design artifacts. If the step is correct, the lower design artifact is said to
refine the upper one; this is the essence of refinement-based methods. In descending design flows,
(from abstract to more concrete models of the system) new system properties are introduced (after
refinement for example) to more accurately describe relations between system components, which
in turn creates proof obligations (or derived requirements, or verification conditions) as discussed
in the book. Refinement monotonicity, preorder relations, behavioral equivalence and branching
bisimulation are discussed, indicating the practical relevance of fully formal design steps to
correctness proofs. Equivalence and/or preorder relations should hold all along the flow of models,
and satisfaction relations should be verified between each model and its corresponding set of
properties.

The authors explain why formal design flows can be better described as Petri nets rather than

graphs, and why a single and exclusive model-based flow is ruled out when it comes to real systems
design, giving its place to parallel progressing flows, one of models and one of properties
originating from the same top-level requirements. The usage of software tools is advised for
managing collection of properties, checking their consistency and ensuring their traceability
throughout all system development steps, from initial requirements to implementation code.

Formalizing requirements

The central role of choice of languages or models to describe systems specifications is highlighted.
Using a single formal language to describe all steps and all parts of a system would be an
impossible task, as languages possess expressiveness for certain types of requirements while being
clumsy for others. Language unification remains still an open topic of research; a proper
combination of different languages (and different analysis tools) is advised to be a more realistic
option.

Model- and property-oriented specifications are compared. Formalization of requirements is
described as a difficult task requiring experience with the chosen formal method, but the usage of a
formal notation brings many advantages in return: it reveals many hidden defects (especially
ambiguities and incompleteness issues, i.e., vague or missing elements) already before any step of
verification has been applied.

Abstraction steps

Abstraction steps can be used in both ascending flows (to establish formal models of an already
existing system, producing formal design artifacts from possibly informal or semi-formal ones) and
descending flows (to perform verification by abstracting away irrelevant details). In the former
case, one seeks to better understand how a system works and, possibly, demonstrate that a system
was properly designed. One produces retroactive models to formally prove the security/safety of
critical systems, even if these systems have been developed conventionally. This is significant for
certification and evaluation purposes: rather than constructing an entire ascending flow back to the
initial requirements, one merely seeks to efficiently analyze a given lower design artifact observing
its properties on a higher level. Upper design artifacts produced by such abstraction steps are only
useful to single verification-steps and are not necessarily intended to represent or document the
system entirely.

The application of an abstraction step to a lower design artifact is based on the expectation that
formal verification can become tractable on the upper design artifact if it was difficult or even
infeasible on the lower. If several properties are to be verified several upper models can be
produced, each model tailored specifically to a particular property or class of properties. Such
property-driven abstractions are a powerful means to break down verification complexity.

The specifics of abstraction are discussed in detail with reference to their strengths and limitations.
Exact abstractions are ideal from a methodological point of view; in practice however,
undecidability results (namely, Gödel's incompleteness theorem and Rice's theorem) make it
impossible to automatically prove important properties for any arbitrary system. In order to have
automatic abstraction steps when building the upper design artifact, one is often forced to consider
abstractions that are inexact, i.e., that deliberately loose information of the lower artifact, even
though such information is relevant to the property to be verified.

Conservative, (or weakly preserving) abstractions avoid the risk of false negatives, whereas
unsound (or too coarse) abstractions may introduce false negatives. A suitable abstraction does not
only depend on the models and properties to be analyzed; it must also take into account the
strengths and limitations of the chosen verification technology.

Formal quality steps and the correctness of systems

Formal methodologies produce design artifacts of higher quality, but even fully-formal design flows
do not suppress the need for quality steps to guarantee that consistency is preserved from end to
end. Such quality steps play a central role in formal methodologies, being more thorough,
systematic, and diverse than in conventional methodologies. They are based on mathematical
theories and sophisticated algorithms seldom used in conventional methodologies. In a formal
design flow it is not always easy to distinguish between design steps and quality steps: in general, a
design step is immediately followed by a corresponding quality step; in many cases, both are
performed simultaneously, according to Dijkstra's recommendation to develop proof and program
hand in hand.

To ensure that a system is correct, one follows either the correct-by-construction or the
correct-by-verification approaches.

For instance, in a correct-by-construction approach, the use of safe or secure programming
languages guarantees the absence of certain classes of errors or vulnerabilities to the cost of
expressiveness and/or performance, and thus reduces or suppresses certain quality steps. Also, there
is no need for performing quality steps when the translation tools (e.g., compilers, code generators,
synthesis tools, model extractors, etc.) used in automatic design steps, have been formally proven to
be correct, or if they produce machine-checkable proofs that the outputs they generate are correct
(the CompCert C compiler is a typical example). The authors explain in great detail how
methodologies of formal design flows allow to divide complex proofs into simpler ones. When
formal components are endowed with semantically-oriented behavioral interfaces richer than in
conventional methodologies, theoretical results guarantee that a design artifact having certain global
properties can be decomposed into components having certain local properties, or that a
composition of components automatically satisfies certain global properties if the components
satisfy certain local properties and are assembled in a certain way. Other theoretical results
guarantee that a component in a system can be replaced by another component, still preserving all
properties of interest of the system, if a behavioral equivalence or preorder relation exists between
the replaced and the replacing components. Such results are useful for design and quality steps, but
also for long-term maintenance steps.

Correct-by-construction approaches are not always possible, as explained in the book. In such a
case correct-by-verification approaches are necessary. We detail this in the next section.

Choosing Adequate Formal Methods for Verification

Formal methods are primarily oriented towards verification but they can also contribute to
validation, both at the beginning of the design flow (i.e., with requirement validation) and at the end
(e.g., with testing, run-time validation, post-silicon validation, etc.). System properties evolve all
along the design flow and it is by no means mandatory to use the same formal technique(s) to verify
all properties. Certain properties are best dealt with, e.g., model checking or abstract interpretation,
while other properties need to be checked manually or using theorem proving. If some properties
cannot be verified formally, they can be subject to less stringent analyses (such as testing or
run-time analysis) so that, even if they are not exhaustive, can still greatly benefit from formal
methods.

The authors give also a profound substantiation to the question of how to select an appropriate
formal verification technique for a given quality step. Because most useful verification problems are
undecidable, no software tool can solve them in full generality. To be tractable, computer-aided
analyses must be restricted in one way or another. One must accept restrictions on at least one out of
three desirable criteria: expressiveness, accuracy, and automation. However these three criteria
often conflict with each other: in many cases, there is a trade-off between expressiveness and
accuracy, as well as between expressiveness and automation. Therefore, the choice of a particular

formal verification technique should be necessarily the decision taken after a careful examination of
the design artifacts (models and properties) under study and the quality goals to be achieved. Based
on the way in which theorem provers, model checkers, etc. can be effectively applied, the
conventional distinction between static and dynamic analyses becomes less relevant in the case of
formal quality steps.

Instead, new criteria for comparing formal verification techniques are stated: their degree of
generality, their degree of accuracy, and their automation.

1. Certain verification approaches are general, in the sense that they can address a large class
of verification questions, whereas other approaches are specific, being specialized for a
given verification problem. Dedicated algorithms are often more accurate and/or
computationally efficient while general-purpose verification tools may be easier to integrate
in existing design flows, benefit from larger user communities, and can be optimized for
handling particular situations efficiently.

2. The reasons why completely automatic verification steps can be impossible are highlighted,
together with alternative approaches combining human insight and machine support.

3. The accuracy of the formal quality steps encompasses various aspects, starting with the fact
that verification techniques, depending on the problem, are not always capable of producing
any result at all. Because some verification problems are semi-decidable, software tools
(e.g., theorem provers) implement semi-decision procedures that may either give correct
results or never terminate. Because abstractions are often used to replace undecidable
problems by decidable or semi-decidable ones, verification algorithms may be classified into
exact ones, which precisely answer the given question, and approximate ones, the results of
which are subject to under- and/or over-approximations. In the first case the results are
guaranteed to contain real errors while under-approximations and over-approximations may
contain false positives or false negatives, respectively.

The authors suggest a classification of formal quality steps according to their degree of
ambition with respect to a desirable property. One distinguishes:

• Methods able to establish that the property holds on all possible executions of the
system, therewith aiming at verifying, proving that the system under design is correct
(or safe, or secure, etc.), which is the original motivation behind formal methods;

• Methods showing that the property does not hold on some executions of the system.
These methods aim at falsifying the property by exhibiting situations in which the
system under design is incorrect (or unsafe, or insecure, etc.) with respect to the
property. Simulation, testing, run-time and log analyses, as known from conventional
methodologies, are typical examples of such methods that search for design or
programming mistakes, and which are usually referred to as bug hunting.

• Bug hunting is effective at finding mistakes but provides no guarantee that the
system is correct after all reported errors have been fixed. Yet, it enhances the quality
of the system, especially when more ambitious methods fail to establish the
correctness of the system.

Formal quality steps produce diagnostics that justify why a verification result is true or false. When
a result is true, diagnostics enable to cross check its correctness. In case of false, diagnostics help
human users to understand why a design artifact is incorrect, or even to conclude about the
occurrence of false positives. If a security property does not hold, a suitable diagnostics provides a
corresponding attack scenario. When a run-time error may occur, or an assertion (or precondition or
postcondition) may be violated, a suitable diagnostics should provide the execution path(s) leading
to this problem, and so on. The methodological role of diagnostics is extensively discussed, as it is a
significant advancement for quality assessment.

Quality steps should also be controlled on their correctness. Large systems proofs are lengthy,
detailed, and thus likely to contain mistakes. Theorem provers produce machine-readable proofs
that can be separately verified by a proof checker. Because proof checkers are much simpler than
theorem provers, their correctness can be formally demonstrated, either manually or even
automatically, thus providing sound foundations to proof checking activities.

To the issue that verification tools themselves might contain mistakes the authors comment that
tools having a large user community are unlikely to have serious errors not previously reported, and
fixed. Ideally, verification tools should be themselves proven to be correct or, at least, qualified
according to rigorous criteria. But, even if errors can occur in quality steps as well as in design
steps, and even if current verification tools cannot be trusted as infallible oracles, such errors do not
have a high probability to occur in practice, and there are ways to detect and cope with them. In any
case, the possibility of such errors cannot be seen as a serious obstacle against formal quality steps.

Innovation of Formal Methods in the Praxis

In conventional methodologies, testing is intensively used for verification and validation purposes,
but suffers from the three main drawbacks of dynamic analyses: false negatives, insufficient
coverage, and high costs, as it is the most expensive activity in conventional design flows. Although
testing and formal methods pursue similar goals (namely quality control and quality assurance),
they have been originally developed in separate communities following radically different
principles: testing focuses on correctness checking in an empirical, yet pragmatic way, whereas
formal methods primarily insist on rigorous, scientifically well founded approaches for correctness
verification. For long, testing and formal methods have been seen as competitors, but they
progressively cross-fertilized each other in a fruitful combination of empirical and mathematical
approaches. There is an abundant literature on the subject, referenced in the book.

Formal methods provide a conceptual framework for testing, based on four concepts:
specifications, implementations, tests and oracles, with theories to formally relate the specifications
and the execution traces generated by implementations. Oracles check the results of the tests to
determine if an execution run of a given implementation is compatible or not with the
specifications; the concept of oracle, often ignored or overlooked, is made explicit so that the
relationship between oracles, tests, and specifications can be investigated.

Formal methods also contribute to enhance the process of testing, which consists of two main tasks:
the production of test suites and their execution, most of the effort focused on the generation of test
suites, which can be made more automatic and systematic using formal methods. There are two
main approaches: model-based testing, in which the tests for an implementation are derived from a
higher level specification, and code-based testing, in which the tests are directly generated from an
implementation given in source code or even as executable code or byte code. Conventional testing
tools often have problems in handling nondeterminism and only explore a small subset of feasible
paths. Formal approaches to testing (based on, e.g., model checking or symbolic execution) try to
address this problem by systematically covering all reachable states or path of a design artifact.

The fundamental concept of symbolic execution was introduced already in the mid 70s as a means
to automatically generate tests for software programs. Symbolic execution enables to handle data
types whose number of values is infinite or too large to be feasibly enumerated. This issue arises
both in hardware and software: exhaustively testing all inputs is impossible for, e.g., a floating-point
instruction of an Intel processor or a parser for reading image/video files (these files are huge —
only enumerating all possible combinations of their 1000 first bits would be time prohibitive). The
static test generation problem consists in exploring this execution tree to reach a set of program
points specified by a given test criterion (e.g., all statements or all branches in structural coverage).
This problem is undecidable in the general case but, in many cases of practical interest, decision
procedures exist (implemented in constraint solvers or theorem provers) that can be applied to the
constraints accumulated along each path, namely to identify infeasible paths (i.e., paths whose

constraints cannot be satisfied) or to find concrete input values that make a given path feasible.

For long, symbolic execution has been impractical for automated test generation but since the 90s
and especially the 2000s, this research topic has received renewed interest due to advances in
program analysis, constraint solvers, and theorem provers, and due to increased computing
capabilities provided by modern hardware. Frameworks for symbolic testing have been designed
and various tools have been implemented using constraint logic programming and/or satisfiability
techniques. Due to algorithmic advances, symbolic execution has become the core technology of
several professional test generation tools. However, it has practical limitations, also discussed in the
book.

In model-based testing, formal specifications can be used as a basis for test generation, as these
specifications are written in abstract, precise languages well suited for analysis. So doing, test suites
are generated from early design artifacts (i.e., models) to be applied to late design artifacts (i.e.,
implementations). In this way tests can be produced before the source code of the design artifact
under test has been written, thus enabling division and parallelization of work between testers and
implementers. Various techniques have also been proposed to derive correct-by-construction
oracles, i.e., oracles derived from formal specifications and free from false negatives and false
positives.

In particular, dedicated test generation tools have been developed that, given a model, produce test
cases using exhaustive state-space exploration techniques borrowed from model checking,
following user-specified test purposes (e.g., traces or automata derived from high-level
requirements) and/or coverage obligations to guide test generation.

Alternative to model-based testing is code-based testing, which does not require a formal
specification, but uses internally formal methods and verification technology. Code-based testing
initially targeted small sequential programs with simple data types, but has progressively evolved
to support high-level language features, such as multi-threading and complex data structures.

The emergence of new powerful solvers in the 2000s, contributed to blur the traditional distinction
between static and dynamic analyses by extending dynamic test generation with symbolic data
manipulation or, symmetrically, by enhancing static test generation with concrete data collected at
run-time. Such approaches are collectively referred to as concolic testing (a mix between concrete
and symbolic). In combination with a theorem prover to generate new data inputs to force paths for
program executions according to criteria set, one checks for run-time errors, verifies assertions,
preconditions and postconditions while executing the program.

The success of concolic testing can be measured in the impressive number of tool implementations
for the various kinds of programs to be tested (C code, Java code, .NET bytecode, x86 object code,
etc.). Such implementations vary depending on the kind of analysis performed (test generation or
bug hunting), the test criterion used as a stop condition, the level of precision sought, the type of
license (proprietary or public domain, closed or open source), etc.

Many of these tools can be used to detect either correctness bugs or security vulnerabilities. The
authors give a list of security-oriented tools implementing various ideas of formal methods,
symbolic execution and concolic testing, white-box fuzzing and taint analysis which have
discovered numerous security flaws (e.g., buffer overflows, memory access violations, numeric
overflows and conversion errors, vulnerabilities to SQL injection and cross-site scripting attacks,
etc.) in Linux, Windows, Android, and Web applications.

One of the listed tools, SAGE, searches for crashes and vulnerabilities in Windows applications that
read files (e.g., image processors, media players, file decoders, document parsers, etc.) and has been
running non-stop since 2008 on a dedicated cluster of 100 machines at Microsoft security testing
labs to analyze hundreds of applications. SAGE found roughly one third of all the bugs discovered
by file fuzzing during the development of Windows 7; because SAGE was typically run last, those
bugs were missed by all earlier quality steps, including static analysis and black-box fuzzing. SAGE

is so effective at finding bugs that the number of crashing test cases exceeds human analysis
capabilities and required the development of specific software internally at Microsoft for triage,
selection, and exploitation.

Today, formal approaches to testing benefit from positive factors, among which the increasing
availability of formal specifications and models, the efficiency of verification technology (model
checkers, theorem provers, solvers, etc.), and the computational power provided by modern
computers. Yet, these approaches only recently started their dissemination in industry, although the
essential ideas of testing (such as symbolic execution) were formulated three decades ago, and
despite the large amount of academic research; in many industrial projects, test generation is still, to
a large extent, performed manually — a situation that is about to change.

Numerous studies comparing formal methods and testing led to an academic consensus that both
approaches are complementary. However, recent advances increasingly blur the classical distinction
between verification and testing, as state space exploration algorithms (traditionally pertaining to
verification) have been integrated in testing tools, while verification tools (such as software model
checkers) operate directly at the implementation level (i.e., source code, bytecode, or object code)
in the same way as testing.

Moreover, the aforementioned consensus has been recently challenged by a series of publications
originating from leading worldwide industrial companies. These publications report that formal
methods clearly outperform certain testing activities and can replace them in the design flow.

A first reason is that formal methods (formal verification, formal refinement, etc.) provide better
quality control and quality assurance than conventional testing. For example, proofs conducted on Z
specifications and SPARK code were more efficient at detecting errors than unit testing and
provided crucial assurance that the code was free of run-time exceptions. Other formal approaches,
especially model checking, can detect intermittent, near simultaneous, or combinatorial sequences
of failures that would be very difficult to detect through testing, leading to the conclusions that
model checking is more cost effective than testing in finding design errors and that the time spent
model checking is recovered several times over by avoiding rework during unit and integration
testing.

Another reason reducing the amount of testing stems from correct-by-construction approaches: it is
not necessary to test design artifacts produced in a way that guarantees their correctness. Testing on
executable code is considered unnecessary if the code has been produced by a qualified or provably
correct compiler from an upper artifact which has been previously formally verified. Consequently,
formal verifications performed at source code level (using, e.g., theorem proving or abstract
interpretation) may, together with a provably-correct compiler, render certain tests useless. The
book references reports testifying that conventional unit testing of C functions could be omitted by
combining a certified C compiler and a theorem prover to establish that each C function satisfies a
set of properties ensuring exhaustive structural code coverage and absence of dead code.

Yet, as the authors point out, certain testing activities not subsumed by formal verification and
formal refinement will certainly remain in the foreseeable future.

Conclusions

The landscape of formal methods has faced major evolutions since year 2000, which make them
applicable to the analysis of complex hardware and software that is relevant for both security and
safety point of view. For this reason, it was important for our Agency to order a survey of recent
advances. Twelve years later, the present book is a follow-up to the previous survey ordered by the
BSI in 2000.

Contrary to many books that give of formal methods a restrictive vision by limiting their scope to a
few approaches and their specific mathematical details, this book tries to present a complete

account of formal methods in all their diversity, together with their connections to related fields,
such as modeling and programming languages, compiler technology, mathematical logics,
computer-aided verification, and performance evaluation. The scientific matters of formal methods
have evolved in so many directions that another book of the same size would be necessary to go
into the specific details of all formal approaches. In consequence, this book contains a very rich
bibliography and URL-links to further treatises.

In the past decades, formal methods have not yet been widely adopted in industry, due to multiple
languages and algorithmic approaches, lack of robustness and user-friendliness of available tools,
absence of guarantee for success or data about the return on investment in case of use of formal
methods, among other reasons. Also, formal methods have been advertised too early and their
merits often exaggerated, at a time where neither languages nor tools were mature enough to meet
the high expectations placed on them — with early results ranging from mitigated success (e.g., the
SIFT aircraft control system) to bitter disappointment (e.g., the VIPER microprocessor).

However, the foundational principles of formal methods are increasingly taught and understood.
The concept of model has gained industrial acceptance through semi-formal approaches such as
UML and model-driven architecture/model-driven engineering. The level of abstraction in system
and software design increases, as well as the awareness of the need for appropriate development
methodologies and formal analysis tools. The frontier of problems that formal methods can tackle is
continuously pushed forward. Verification tasks that were out of reach one or two decades ago are
now automated and performed routinely. A growing number of publications report about successful,
well-targeted applications of formal methods in many diverse industrial domains.

The use of formal methods is admitted, recommended, and sometimes prescribed in safety- and
security-related standards dealing, e.g., with avionics, railways, nuclear energy, and secure
information systems. Formal methods are therefore used in these industrial domains, but also in
other domains not subject to certification obligations, such as hardware design, where formal
methods emerge as the only way to produce reliable systems within budget and schedule
constraints.

At present that formal methods have gained industrial recognition, at least in the largest and most
innovative companies, the point is no longer to question the usefulness of formal methods, but to
discuss where and how formal specifications and verification methods can be introduced in design
methodologies, and how the software tools developed in academia can be reused and adapted to
various applicative contexts. This way, formal methods, originally touted as an alternative to
conventional methodologies, will gradually get accepted, more as an evolution than a revolution.

	Summary of the book: Formal Methods for Safe and Secure Computer Systems
	Introduction
	History and Scope of Formal Methods
	Taxonomical Classification
	Formal Methods and Hardware-Design
	Mainstream Modeling and Secure Programming Languages
	The Issue of Nondeterminism

	Conventional Quality Assurance Tools
	Formal Methods and System Analysis Tools
	Enhancing Simulation
	Replacing Simulation

	Differentiated Use of Formal Methods and Levels of Rigor for System Analysis
	Partially formal design flows
	Fully formal design flows
	Formalizing requirements
	Abstraction steps

	Formal quality steps and the correctness of systems
	Choosing Adequate Formal Methods for Verification
	Innovation of Formal Methods in the Praxis
	Conclusions

