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This study discusses the current state of affairs in the theoretical aspects and physical implementation of
guantum computing, with a focus on applications in cryptanalysis. It is designed to be an orientation for
scientists with a connection to one of the fields involved—such as mathematicians, computer scientists. These
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The executive summary and the conclusions to each chapter provide actionable information to decision makers.
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PART 1: Synopsis and Introduction

PART I: Synopsis and introduction

In this first part, we provide an executive summary of the study and define the underlying evaluation systems.
To summarize, we introduce quantum computing and describe its relevance for cryptanalysis. Upon sketching
the nature of quantum computing hardware and quantum algorithms, we discuss noteworthy recent
developments and end with the study's conclusions. While the bulk of the study is composed in English, we
provide both a German summary (Chapter 1) and an English summary (Chapter 2). Subsequently, Chapter 3
presents evaluation systems used for categorizing quantum hardware and algorithms.
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Deutsche Zusammenfassung 1

1 Deutsche Zusammenfassung

1.1 Was ist ein Quantencomputer?

Heutige Computer behandeln Informationen gemal den Gesetzen der klassischen Physik: Register und
Speicherinhalte haben zu jedem Zeitpunkt einen einzigen Wert. Dies gilt ungeachtet der Tatsache, dass die
Bauelemente eines Computers wie Transistoren auf den Gesetzen der Quantenphysik basieren.

In einem Quantencomputer wird die Information selbst quantenmechanisch behandelt: Register und
Speicherinhalte kénnen mehrere Werte gleichzeitig in Uberlagerung enthalten, und Maschinenbefehle wirken
sich simultan auf all diese Werte aus. Damit arbeitet bereits ein einziger Quantenprozessor intrinsisch
hochgradig parallel, ohne parallelisierte Hardware wie mehrere Prozessorkerne zu bendétigen. Dadurch Iasst sich
prinzipiell eine Quantenbeschleunigung, auch Quanteniiberlegenheit genannt, erreichen. Diese bezeichnet die
Realisierung von Berechnungen auf einem Quantencomputer, die von klassischen Rechnern nur unter
prohibitivem Aufwand reproduziert werden kénnen.

Nutzung dieser Parallelitdt erfordert allerdings Umgang mit dem probabilistischen Charakter der Quantenphysik
und das Kompilieren von Algorithmen in quantenmechanisch erlaubte Gatter (Quantenschaltkreise). Aus diesem
Grund erfordert die Nutzung der Quantenbeschleunigung zunachst die Entdeckung geeigneter Algorithmen. Zu
diesen gehoren bisher die schnelle Datenbanksuche, das Durchsuchen von Graphen, die Losung linearer
Gleichungssysteme, Anwendungen der schnellen Fouriertransformation einschlielich Faktorisierung und
Berechnung diskreter Logarithmen, und die Simulation von Quantensystemen einschlieBlich Chemikalien und
neuer Materialien, sowie Maschinenlernen und Optimierung. Fiir einige dieser Anwendungen, insbesondere die
letztgenannten, ist die Quantifizierung der erreichbaren Quantenbeschleunigung noch Gegenstand aktueller
Forschung. Quantencomputer sind — aufgrund der moglichen Anwendungen aber auch aufgrund der
aufwandigen Hardware — auf der Ebene von Rechenzentrumstechnologie und Hochstleistungsrechnen
anzusiedeln und keine Biiro- oder gar mobile Technologie. Entsprechend sind die leistungsfahigsten
Quantencomputer unserer Tage GrolRgerate fiir Forschung und Entwicklung — sie erlauben die Entwicklung und
Validierung von Algorithmen, sind aber (noch) nicht jenseits der Wissenschaft disruptiv.

Quantencomputer wurden zunéchst als hypothetische, theoretische Konstruktion eingefiihrt. Inzwischen, nach
mehr als 25 Jahren Entwicklung seit den ersten Laborexperimenten, konsolidiert sich das Feld der
Hardwareplattformen und Zugriff auf Quantenprozessoren wird als Dienstleistung von mehreren Firmen
angeboten; zudem wird eine sehr spezielle Quantencomputerplattform, das “Quantenannealing”, auch als
Hardware kommerziell angeboten. Obgleich noch in einem friihen Entwicklungsstadium, erlauben all diese
Quantenprozessoren die Entwicklung und Evaluation von Quantenalgorithmen.

Der Stand des Gebietes kann als Ara der friihen Quanteniiberlegenheit bezeichnet werden. Diese Uberlegenheit
wurde an mehreren Stellen fir sehr spezielle Benchmarkingprobleme erreicht. Nach aktuellem Wissensstand
sind die Anforderungen, um bei anwendungsorientierten Problemen Quanteniiberlegenheit zu erreichen
deutlich héher. Unsere Studie untersucht diese Fragestellung fir die Kryptoanalyse.

1.2 Relevanz von Quantencomputern fiir die Kryptoanalyse

Ein GroRteil der heute auf breiter Basis eingesetzten asymmetrischen kryptographischen Verfahren kann nicht
mebhr als sicher betrachtet werden, sobald die Faktorisierung groBer Ganzzahlen und die Berechnung
sogenannter diskreter Logarithmen effizient moglich ist. Dies erklart das signifikante Interesse an
Quantencomputern in der kryptoanalytischen Forschung — Peter Shor zeigte Mitte der 90er Jahre erstmals, dass
beide Probleme asymptotisch effizient geldst werden kdnnen, wenn ein hinreichend groRer und verlasslicher
Quantencomputer verfligbar ist. Die Effizienz der Shor-Algorithmen beruht unter anderem auf der geschickten
Nutzung von quantenmechanischer Uberlagerung mehrerer Werte, einer Technik, die mit klassischen Bits nicht
realisierbar ist. Quantencomputer verwenden als elementare Einheit Quantenbits, kurz Qubits, bei denen den
klassischen Werten 0 und 1 lediglich die Rolle von Basiswerten zukommt, und der Wert eines Qubits gewichtete
Anteile beider Basiswerte simultan innehaben kann. In dhnlicher Weise werden klassische Bitregister durch
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komplexe Quantenregister ersetzt, die effiziente hochdimensionale Berechnungen ermdglichen. Aus praktischer
Sicht stellt sich die Frage, wie groR ein Quantencomputer sein muss, um real eingesetzte kryptographische
Verfahren, etwa die RSA-Verfahren oder solche basierend auf elliptischen Kurven, zu gefahrden. Hierzu ist eine
genaue Analyse bekannter Quantenalgorithmen erforderlich. Die abstrakten Schritte eines Quantenalgorithmus
miussen fur das konkret angegriffene Verfahren (effizient) in Elementarschritte umgesetzt werden, die wiederum
auf realer Hardware abbildbar sind.

Detaillierte Kostenanalysen sind erst in geringem Umfang in der Literatur verfligbar, und es ist realistisch
anzunehmen, dass die bislang veroffentlichten Quantenschaltkreise noch weiter optimiert werden kénnen. Aber
die verfiigbaren Arbeiten lassen es bereits machbar erscheinen, die Shor-Algorithmen fir kryptographisch
interessante Parameterwahlen in Quantenschaltkreise moderater Komplexitat zu tGbersetzen.

Konkret werden nach aktuellem Forschungsstand fur einen Angriff auf 2048 Bit RSA insgesamt 1.4-10%°
Elementarschritte auf 4098 logischen Qubits bendtigt, vgl. Kapitel 4 (siehe Table 4.2/Table 4.4); andere Trade-
offs zwischen der Anzahl der Rechenschritte und der Anzahl der Qubits sind moglich. Wiederum nach aktuellem
Forschungsstand fiir den diskreten Logarithmus auf einer elliptischen Kurve (iber 256 Bit werden 6.5-10%3
Rechenschritte auf 2330 logischen Qubits benétigt, vgl. Kapitel 4 (Tabellen 12.11 und 4.1). Logische Qubits
sollten nicht mit physikalischen Qubits verwechselt werden, deren Konzept und Bedeutung wir in Abschnitt 1.3
besprechen, und die um GroRenordnungen hoher liegt. Nach einer aktuellen Abschatzung werden 20.000.000
physikalische Qubits als hinreichend fiir einen Angriff auf 2048 Bit RSA mit einer Laufzeit von acht Stunden
betrachtet [GE21] (siehe auch Abschnitt 4.5.2).

Flr die symmetrische Kryptographie bieten Quantencomputer ebenfalls neue kryptoanalytische Mdoglichkeiten,
aber mit den momentan bekannten Algorithmen sind die Auswirkungen deutlich weniger spektakuldr als im
asymmetrischen Fall. Auch hier kann davon ausgegangen werden, dass die besten vorhandenen quantitativen
Aussagen, etwa zur Schlisselsuche bei AES-128, noch verbessert werden (es wurden bereits mehrere
Optimierungen vorgeschlagen), aber eine VergréBerung der Schliisselldange auf 256 Bit erscheint momentan eine
wirksame Gegenmalnahme. Weitere Quantenangriffe auf symmetrische Primitive sind bekannt, aber hierbei
werden zum Teil Angriffsmodelle verwendet, die bei heute genutzten Implementierungen nicht realistisch sind.

Abbildung 1.1: Die augenblicklich fiihrenden Quantencomputing-Plattformen — mikroskopische Perspektive. Links:
Prozessor bestehend aus integrierten supraleitenden Schaltkreisen. (Foto links: Julian Kelly, Google.) Mitte: Lineare
lonenfalle; Elektroden zum Fangen (Stébe) und Linsen zum Einstrahlen von Lasern fiir Quantenlogik (links und rechts).
Rechts: Die gleiche lonenfalle eingebettet in ihre Vakuumapparatur. (Fotos mittig und rechts: Jiirgen Eschner,
Universitdt des Saarlandes.)

1.3 Hardware und Algorithmen fiir Quantencomputer

Die gesicherten Erkenntnisse Uber Quantenalgorithmen waren nicht relevant, wiirde nicht gleichzeitig Hardware
entwickelt werden. Es wird eine ganze Reihe von Hardwareplattformen weltweit verfolgt, die sehr
unterschiedlich sind — etwa vergleichbar mit dem Ubergang von mechanischen zu elektronischen Computern.
Die augenblicklich fuhrenden Plattformen (siehe Abbildung 1.1) sind
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[ERY

lonenfallen — eine Plattform die u.a. mit der Technologie von Atomuhren verwandt ist.

2. Integrierte Schaltkreise aus Supraleitern — eine Plattform, die Ahnlichkeit mit aktuellen Computerchips hat,
jedoch aus anderen Materialien besteht und bei sehr tiefen Temperaturen betrieben wird. Hier ist vor allem
eine spezielle Variante, ndmlich das sogenannte zweidimensionale (2D) Transmon, ein Vorreiter.

3. Es wird eine Vielzahl weiterer Plattformen erforscht, die zwar im Augenblick weniger weit fortgeschritten
sind, aber teils eine steile Entwicklung zeigen. Dazu gehéren Donatoren in Silizium-Strukturen,
Quantenpunkte in Halbleitern, gezielt dotierte kiinstliche Diamanten, auch Farbzentren genannt, neutrale
Rydberg-Atome in Laserfeldern und photonische Systeme. Es sei darauf hingewiesen, dass Technologien, die
derzeit nicht in groBem Umfang verfolgt werden, wie molekulare Qubits oder Elektronen, die auf Helium
gefangen sind, in einer alten Version dieser Studie behandelt sind [WSL+20].

4. Die fuhrenden Plattformen werden zunehmend in industriellen oder 6ffentlich-privaten Partnerschaften
erforscht und entwickelt. Dies spiegelt einerseits die Notwendigkeit fortlaufender Grundlagenforschung
wider, ermoglicht aber andererseits die Entwicklung von funktionalen und vielschichtigen integrierten
Systemen mit Prototypcharakter. Leider sind Teile der industriellen Forschung als Geschaftsgeheimnisse nicht
zur Bewertung zuganglich

I Algorithmus |
Y Y

| Zahle 2-Qubit Gatter | | Clifford Gatter + T-Gatter (E) |
A v

I Logische Qubits und Gatter (D) |

v

| Fehlertoleranz-Analyse (C) |

Bunianuawa)dw)
apang

-]

| Fidelitatsanalyse (B) |
'y

| Grundlegende Operationen (A) I
A

| Hardware |

Abbildung 1.2: Abhédngigkeitsgraph fiir Quantencomputer zwischen Algorithmen und Hardware. Daraus ergibt sich das
hier verwendete Schichtenmodell zur Bewertung von Quantencomputerplattformen basierend auf NISQ [links, Stufen
(A) und (B)] bzw. anhand demonstrierter Schritte zur Fehlertoleranz [rechts, Stufen (A) bis (E)]. Dieses Modell ist in
Kapitel 3 im Detail eingefiihrt.

Die wichtigste strukturelle Herausforderung des Gebietes ist dabei die Fehleranfalligkeit von
Quantencomputern. Diese geht liber das rein Technologische hinaus und ist grundsatzlicher Natur — der
besondere Gliicksfall der geringen Fehleranfalligkeit von klassischen Digitalrechnern tritt hier nicht ein. Auf der
einen Seite zeigen belastbare Theorien, dass Quantencomputer kryptoanalytische Aufgaben bewaltigen kénnen,
wenn sie aktiv fehlerkorrigiert werden. Auf der anderen Seite steht eine jlingere Erforschung kryptoanalytischer
Anwendungen mit Quantencomputern, die nicht fehlerkorrigiert werden — auf diese Entwicklung gehen wir
weiter unten ein. Ein konsistentes theoretisches Geriist der Fehlerkorrektur wurde entwickelt. Seine praktische
Umsetzung ist Gegenstand intensiver Forschung und erste Erfolge wurden bereits erzielt. Diese Fehlerkorrektur
beeintrachtigt die grundsatzliche Effizienz von Quantencomputing nicht, ist aber trotzdem durch einen enormen
Overhead gekennzeichnet — die logischen Quantenbits (Qubits), die einen Algorithmus beschreiben, bestehen
aus einer grofRen Zahl von Bauelementen, die physikalische Qubits darstellen. Auch bei groRem Fortschritt ist
davon auszugehen, dass der Bau eines leistungsfahigen fehlertoleranten Quantencomputers nicht nur eine
wissenschaftlich-technische Herausforderung darstellt, sondern im Ergebnis eine GroRanlage vom Umfang eines
Rechenzentrums ware.

Fehlerkorrektur ist dann effektiv, wenn alle Elemente der Hardware unter einer nativen Fehlerschwelle bleiben,
welche je nach Methode und in den glnstigsten Fallen zwischen 0.1% und 1% liegt. Praktische Experimente und
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Demonstrationen in den letzten 18 Monaten haben auf kleiner Skala die wesentlichen Konzepte der
Fehlerkorrektur verifiziert und validiert, jedoch zeigt sich, dass in den meisten Fallen bestimme Funktionalitaten
der Hardware noch nicht unter der nétigen Schwelle liegen.

Forschungsergebnisse und die sie begleitenden Schlagzeilen kénnen im Kontext der bendtigten aktiven
Fehlerkorrektur evaluiert werden. Diese Studie enthalt darum ein Schichtenmodell zur Bewertung von
Quantencomputer-Kandidaten, veranschaulicht in Abbildung 1.2. Es beginnt mit der Demonstration von
Grundfunktionen (Schicht A) bis hin zur fehlertoleranten Implementierung von Algorithmen (Schicht E).

Wie Abbildung 1.3 verdeutlicht, ist das Feld an Plattformen dicht, und eine schnelle Veranderung der Bewertung
wird erwartet — in der Tat, klare Fortschritte wurden innerhalb weniger Jahre erreicht (vgl. Abbildung 1.3 mit der
dquivalenten Abbildung aus einer vorherigen Version dieser Studie [WSL+20]). Nach wie vor wird das Feld von
lonenfallen und 2D-Transmonen angefiihrt. Augenblicklich werden von diesen fiihrenden Plattformen einige
Elemente von Schicht D realisiert, wobei aber auch dort ein Element von Schicht C noch aussteht. Die Fertigung
supraleitender Schaltkreise ist, u.a. durch langjahrige Erfahrung mit verwandten Silizium-Strukturen,
technologisch weit entwickelt, und ldsst sich gut optimieren. Dies flihrt zu verfiigbaren Quantenprozessoren mit
Uber 400 Qubits. Diese groRten Quantencomputer-Systeme beruhen dabei auf 2D-Transmonen, alternative
Qubit-Schaltkreise werden aber weiterhin verfolgt und machen nennenswerte Fortschritte in der Entwicklung.

Auf die beiden fiihren Plattformen folgen Farbzentren und neutrale Rydberg-Atome. Bei dem hohen
Entwicklungsstand der Rydberg-Atome im Stufenmodell sollte darauf hingewiesen werden, dass die erreichten
Zahlen an Qubits pro Quantencomputer-Prozessor eine GroRRenordnung kleiner ist als die der zwei filhrenden
Plattformen. Zu den auRerdem relevanten Plattformen zahlen die am weitesten zuriickliegenden Halbleiter-
Quantenpunkte und Silizium-Donatoren, sowie die Photonen. Letztgenannte weisen eine grolle Unsicherheit —
dargestellt Gber die Breite in Abbildung 1.3 —im Entwicklungsstadium auf, was vor allem auf die bereits oben
angesprochene Verschlossenheit von privaten Unternehmen in diesem Bereich zuriickfiihren ist.

Dariiber hinaus enthdlt diese Studie ein Schichtenmodell zur Einstufung von Quantenalgorithmen, das in
Abbildung 1.4 gezeigt ist. Darin werden Algorithmen zunachst in zwei Kategorien unterteilt: einerseits
diejenigen, deren Laufzeitverhalten fiir groRe Eingaben unbekannt sind und deren Leistung durch Heuristiken
bestimmt werden missen, andererseits solche Algorithmen, fir die ein hinreichend solides Grundverstandnis
vorliegt, sodass eine Leistungsvorhersage fiir beliebig grofle Eingabewerte moglich ist. In beiden Féllen ist eine
Analyse vonnéten, um die Relevanz des Algorithmus in Bezug auf derzeit eingesetzte kryptografische Verfahren
vorherzusagen.

Vor der Etablierung fehlerkorrigierter Quantencomputer steht die Ara der “Noisy Intermediate-Scale Quantum
(NISQ) Technologies", in der man die Fehler nicht korrigiert (aber ggf. durch hardwarenahe Methoden mitigiert)
und darum nur auf eine begrenzte algorithmische Tiefe zuriickgreifen kann, die durch die
Fehlerwahrscheinlichkeit limitiert wird. In dieser Domane werden native Freiheitsgrade der Hardware und
alternative Programmierparadigmen kreativ genutzt. Die entstehenden Losungen sind im Allgemeinen von
heuristischer Natur und haben keinen mathematischen Konvergenzbeweis oder gar eine daraus abgeleitete
Ressourcenanalyse. Um das Gebiet der NISQ-Algorithmen weiter beobachten zu kdnnen, schlagen wir ein
separates Bewertungsschema vor. Da numerische Experimente in manchen Fallen Hinweise liefern kdnnen, sind
NISQ-Algorithmen in unserer Algorithmus-Bewertung haufig Kandidaten fir den “linken Zweig” in Abbildung 1.4.
Die geringe vorliegende Evidenz lasst bisher keine abschlieende Bewertung zu, erlaubt aber die vorsichtige
Vermutung geringer Relevanz fiir die Kryptoanalyse. Da dieses Gebiet weniger klar gegliedert ist als
fehlertolerantes Quantencomputing, missten hier etwaige disruptive Algorithmen direkt nach dem Passieren
von Schicht B evaluiert werden.

Im Kontext des fehlertoleranten Quantencomputing sind noch viele Entwicklungsschritte notig. Das Framing
eines “Rennens” in der Quantencomputerentwicklung in der Offentlichkeit ist darum nicht sachgerecht: Es sind
noch viele Schritte zu gehen, die idealerweise durch Kooperation erreicht wiirden — mit Wettbewerb allenfalls in
den Sprints bis zum nachsten Meilenstein.
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Abbildung 1.3: Einordnung verschiedener Plattformen im Schichtenmodell (siehe Abbildung 1.2). Die Breite der Ovale
quantifiziert die Variabilitét und die Ungewissheit (bspw. aufgrund fehlender belastbarer Veréffentlichungen von
Daten) der verschiedenen Plattformen. Atomphysikalisch/optische Systeme sind weif$ und Festkérpersysteme schwarz
hinterlegt.

Es ist zu beachten, dass inzwischen deutlich mehr alternative Entwicklungspfade und technologische Optionen
verfolgt werden als zur Zeit der vorherigen Versionen dieser Studie. Im Bereich Hardware werden einerseits die
bisher flihrenden Plattformen (Supraleiter und lonenfallen mit Surface- oder Color-Code) kontinuierlich
weiterentwickelt. Andererseits entstehen neue Hardwareplattformen (z.B. Rydberg-Atome) die in einigen
Aspekten bereits aufgeholt haben, andererseits aber auch neue Fehlerkorrekturmethoden (bosonische Codes
und effiziente LDPC-Codes). Diese Alternativen haben das Potenzial, schon bald eine Fiihrungsrolle einzunehmen
— es aber noch nicht realisiert. Ferner ist die Bewertung teilweise dadurch erschwert, dass viele Akteure aus der
Industrie wenig publizieren.

Der grolRe Aufwand der Fehlerkorrektur macht es fir akademische und industrielle Labors auf absehbare Zeit
unwahrscheinlich und vermutlich auch wirtschaftlich uninteressant, einen kryptographisch relevanten
Quantencomputer zu realisieren. Wenn jedoch eine grof3e Industrienation ihre Forschungsanstrengungen auf
dieses Ziel konzentrieren wiirde, dhnlich den Manhattan- und Apollo-Projekten des 20. Jahrhunderts, so
erscheint ein Quantencomputer mit wenigen Millionen physikalischer Qubits, der zumindest in 100 Tagen 2048-
Bit RSA brechen kann, erreichbar, wenn auch die physikalische Fehlerrate angemessen sinkt und in einen Bereich
von 1:10000 gebracht werden kann. Dies wére eine GroRanlage, die in mehrerlei Hinsicht technologische
Rekorde bendétigen wiirde und ggf. Zugriff auf seltene Materialien erfordert.

Die Forschung an Quantencomputern entwickelt sich sehr schnell, allerdings vor allen Dingen im Bereich der
Qubit-Zahl, wahrend Fortschritt bei den Fehlerraten deutlich langsamer ist. Letzterer ist aber entscheidend, um
Uberhaupt von der Fehlerkorrektur profitieren zu kdnnen — wie sich gerade an den neuen Experimenten zeigt,
die sich an den Details der Fehlerschwelle abarbeiten.
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A oder Mathemaij'lscher
Beweis
z.B.. Algorithmus aus Hegade ¢ z.B. Algorithmen nach Shor,
al. (2021) [HPAA+21] / \ Grover, Simon
e AN
B Datenermittlung Beweisbetrachtung
(numerische Simulation oder Experimente) (Annahmen, gebrauchte Ressourcen)
Gef. Fehler-
Datenanalyse korrektur nétig Datenanalyse
C (Ressourcen: Hardware -agnostische Vorhersage (Ressourcen: Hardware -agnostische Vorhersage der
der Rechenschritte fir realistische Anwendungen) asymptotischen Rechenschritte und Qubits)

Abbildung 1.4: Schichtenmodell zur Bewertung von Quantencomputer-Algorithmen basierend auf fehlertolerantem
Quantencomputing (links) bzw. NISQ (rechts).

1.4 Jiingste Entwicklungen

Die rasche Entwicklung von Quantencomputern hat ihre Bewertung anhand der Anforderungen der
Kryptoanalyse zu einem mehrdimensionalen Unterfangen gemacht.

Auf der Seite der Algorithmen ist der Shor-Algorithmus immer noch der Hauptkandidat mit einer rigorosen
Laufzeitanalyse im Hinblick auf einen zuganglichen Quantenvorteil. Stetige Fortschritte bei seiner
Implementierung und Kompilierung fiihren zu einer schrittweisen Verringerung der Hardwareanforderungen,
erfordern aber immer noch grofRe Gattertiefen von lber einer Billion fiir RSA 2048-Instanzen. Bei elliptischen
Kurve (iber 256 Bit ist die Situation dhnlich. Andererseits gibt es inzwischen eine breite Palette neuer
heuristischer Algorithmen, die oft an bestimmte Rechenmodelle angepasst sind, z. B. adiabatische
Quantenberechnungen oder Algorithmen mit geringer Tiefe fiir kurzfristig realisierbare Hardware, die nicht aktiv
fehlerkorrigiert wird. Diese werden zwar oft mit markigen Behauptungen angekiindigt, aber keiner von ihnen
wird mit einem Konvergenznachweis geliefert, der ein zentraler Bestandteil einer quantitativen Leistungsanalyse
ware. Das beste Surrogat dafiir, eine griindliche heuristische Skalierungsanalyse, ist ebenfalls fiir keinen dieser
Algorithmen veroffentlicht worden. Auch wenn sich viele dieser neuen Algorithmen moglicherweise als
Nebenprodukt des Quantenhypes herausstellen werden, ist es wichtig, sie weiter zu beobachten und zu
bewerten, moglicherweise in einer unabhangigen Benchmarking-Aktivitat.

Auf der Seite der Berechnungsmodelle, d. h. der mathematischen Modelle fiir die Durchfliihrung einer
Berechnung, stellen das gatterbasierte und das adiabatische Quantencomputing nach wie vor die wichtigsten
Pole dar, doch haben Variationen und Mischformen dieser beiden Modelle an Bedeutung gewonnen, oft in
Verbindung mit den Hardware-Plattformen, an die sie angepasst sind. Die meisten dieser Modelle sind in Bezug
auf ihre Berechnungskomplexitat gleichwertig. Allerdings ist die quantitative Leistungsanalyse eine grofRere
Herausforderung, insbesondere die Identifikation von Komponenten-Leistungsdaten, die es erlauben, groflere
Systeme beliebiger Plattformen zu vergleichen. Besonders erwahnenswert unter diesen nicht standardisierten
Rechenmodellen sind diejenigen, die mit dem photonischen Quantencomputing in Verbindung gebracht werden,
wie das GauRsche Boson-Sampling und das fusionsbasierte Quantencomputing.

Selbst innerhalb des Modells der gatterbasierten Quantenrechner ist die Unterscheidung zwischen
fehlertoleranten Quantencomputern auf der Grundlage der Quantenfehlerkorrektur und der verrauschten
Quanteninformatik im mittleren MaRstab (NISQ) entscheidend. Ersteres hat eine gut etablierte Leistung, aber
einen grofRen Overhead, wahrend letzteres effiziente nicht-fehlerkorrigierte Algorithmen von geringer Tiefe
beschreibt, die in der Regel eine externe klassische Optimierung beinhalten. Letztere ermoglichen den Zugang zu
einer reichhaltigeren Gattermenge und die gemeinsame Entwicklung von Software und Hardware, was bei
kleinen Problemfallen oft zu einer Gberraschend guten Leistung fiihren kann. Aufgrund der unbekannten
Skalierung dieser Algorithmen und auf der Grundlage groRerer theoretischer Argumente ist es jedoch
unwahrscheinlich, dass im NISQ-Bereich ein kryptoanalytischer Quantenvorteil erreicht werden kann. Dies
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unterstreicht den allgemeinen Punkt, dass Fehler derzeit das begrenzende Merkmal der gatterbasierten
Quantencomputertechnologie sind — und nicht die Anzahl der Qubits.

Der Bereich der Quantenfehlerkorrektur hat in dhnlicher Weise groRe Fortschritte gemacht: Treiber der groR
angelegten Entwicklung, der Surface Code und die Color Codes, werden schrittweise in Form von effizienteren
Decodern optimiert, die ihren Overhead reduzieren und Details verbessern. Andererseits konnten Techniken zur
Fehlervermeidung auf niedriger Ebene oder neue Codes aus der Familie der Low-Density-Parity-Check-Codes zu
schnelleren Fortschritten in diesem Bereich fiihren, die sich dramatisch auf unsere Extrapolation auswirken —
diese sind jedoch nicht hinreichend ausgearbeitet. Auf der experimentellen Seite werden diese
Fehlerkorrekturcodes in immer groReren Versuchsaufbauten getestet, und der Fehlerkorrekturfahrplan wird
immer weiter umgesetzt — etwas langsamer als erwartet, aber ohne Riickschlage und mit klaren weiteren
technologischen Schritten. Die am weitesten fortgeschrittenen Experimente demonstrieren die Wirksamkeit der
erweiterten Fehlerkorrekturcodes und zeigen einige erste fehlerkorrigierte Gatteroperationen.
Bemerkenswerterweise erreichen sie nicht die Gewinnschwelle, d. h. sie filhren nicht zu einem Gatterfehler des
korrigierten Gatters (oder Speichers), der niedriger ist als der der physikalischen Operation. Dies zeigt, wie
schwierig es ist, realistische Fehlerraten mit einer Vielzahl von Fehlermechanismen mit einem einzigen
durchschnittlichen Fehler zu vergleichen, wie er in der Fehlerkorrekturtheorie angenommen wird. Die
Angleichung dieser Aktivitaten ist auf dem Weg, und die nachsten Jahre werden Informationen liefern, um dies
realistischer zu bewerten.

Nach aktuellem Stand ist der Surface Code der optimale Fehlerkorrekturcode fiir supraleitende Qubits. Fiir
ionische Systeme ist der Color Code gegeniiber dem Surface Code vorteilhaft. Es gibt zwar vielversprechende
Entwicklungen bei den LDPC-Codes, aber fir einen klaren Vergleich fehlen wesentliche Komponenten und
Analysen - insbesondere Auswertungen geeigneter Decoder und damit zuverldssige Schwellenwertschatzungen.
Nur wenn diese Liicken geschlossen werden, kénnen solche neuartigen Codes einen Einfluss auf die Entwicklung
von fehlertolerantem Quantencomputing haben. Entwicklungen aus dem NISQ-Bereich wie Fehlermitigation
skalieren nicht in dem Sinn, dass sie nach aktuellem Stand fiir die groRen Aufgaben der Kryptoanalyse
nennenswerte Alternativen darstellen wiirden.

Im Juni 2023 hat IBM den Stand der Technik bei der Demonstration des Quantenvorteils auf vielen Ebenen
erheblich verbessert [KEA+23], Konsequenzen in Bezug auf Quanteniiberlegenheit werden debattiert
[TFSS23,BC23]. IBM hat einen vollstandig programmierbaren Prozessor von beispielloser GroRe (127 Qubits) mit
einem durchgangig sehr niedrigen Zwei-Qubit-Fehler verwendet. Anstelle einer synthetischen Aufgabe des
Samplings eines Schaltkreises haben sie ein Problem aus der Simulation von Quantenmagneten als Benchmark-
Algorithmus verwendet - der immer noch recht gut an die klassische Hardware angepasst ist. Insbesondere
wurde dieses Resultat mit Techniken der Fehlermitigation anstelle von Fehlerkorrektur erreicht. Bei der
Fehlermitigation handelt es sich um eine Methode, die es ermoglicht, den Fehler von NISQ-Quantenprozessoren
zu reduzieren, ohne das vollstandige Programm des fehlertoleranten Quantencomputings zu implementieren,
indem der Fehler des Algorithmus durch die Ausfiihrung mehrerer Versionen diagnostiziert und diese
Informationen dann zur Korrektur der Ausgabe verwendet werden. Die bekannten Methoden zur
Fehlerbegrenzung sind nicht skalierbar. In [KEA+23] wurde die bahnbrechende Methode von [KTC+19]
angewendet und auf ein neues Niveau gebracht. Dieses Ergebnis unterstreicht die Notwendigkeit, eine niedrige
Fehlerquote mit der GréRe des Prozessors zu kombinieren, um die Fehlerbegrenzung effizient zu gestalten. Bei
gleicher Fehlerrate hatten mehr Qubits das Ergebnis nicht verbessert.

Diese Arbeit ist ein bedeutender technischer Fortschritt auf vielen Ebenen. Vor allem zeigt sie das Potenzial der
Fehlerminderung, den Break-even-Punkt des Quantencomputers deutlich zu verbessern. Es ist nicht zu erwarten,
dass dies so weit geht, dass ein fehlerreduzierter Shor-Algorithmus die Kryptographie im NISQ-Zeitalter
beeinflusst, aber wenn es eine NISQ-freundlichere Alternative gabe (die wir bisher nicht identifiziert haben),
wiirde dies das Feld voranbringen und eine weitere Dimension in unserem Bewertungssystem schaffen.

Auf dem Gebiet der Plattformen fiir Quantencomputer sind Prozessoren basierend auf Supraleitern bzw.
gefangenen lonen immer noch klare Spitzenreiter. Trotz unterschiedlicher Basisparameter — supraleitende
Prozessoren haben kiirzere Koharenzzeiten, aber schnellere Operationen als lonenfallenprozessoren — ist ihre
algorithmische Leistung erstaunlich dhnlich. Beide Plattformen haben Fortschritte gemacht — supraleitende
Schaltkreise zeigen stetige Fortschritte als Systeme mit nur geringen Fortschritten bei den Koharenzzeiten,
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lonenfallen arbeiten an der Skalierung in dem Sinne, dass sie ihre starke Leistung in linearen Fallen auch in
zweidimensionalen Anordnungen reproduzieren kénnen. Es ist ein wichtiger aktueller Trend, dass mehr
Plattformen aufholen. Auf der Festkdrperseite erreichen Halbleiter-Qubits in kleinen Systemen eine hohe
Fidelitat, die sich noch nicht auf die Skalierung auswirkt (und es gibt bemerkenswerte Vielfalt bei der
Identifizierung der fiihrenden Halbleiterplattform), aber jetzt scheint es so weit zu sein, dass es keine
grundlegenden Hindernisse fiir weiteren Fortschritt gibt. Auf der atomaren Seite haben neutrale Atome in
Rydberg-Zustanden — urspringlich eine Plattform fir Quantensimulationen, d.h. nicht-universelle
Quantenberechnungen — grofRe Fortschritte bei bestimmten Klassen von NISQ-Algorithmen gemacht und
betreten nun das Feld der Quantencomputer-Plattformen mit vielen Qubits. Sie sind zwar noch nicht auf dem
Niveau der Spitzenreiter bei Standardkomponenten-Benchmarks, kénnten aber bald problemlos skalieren.
SchlieBlich gibt es Berichte lber grofRe Fortschritte bei photonischen Qubits, insbesondere im Bereich des GauR-
Boson-Samplings und potenziell anderer photonenangepasster Berechnungsmodelle wie Fusionsgatter — sie
kénnen jedoch nicht genau bewertet werden, da relevante Akteure die Leistung von Komponenten und
Teilsystemen nicht veroéffentlichen. Topologische Qubits haben nach einer Kontroverse lber die Datenselektion
in hoch angesehenen Arbeiten einen Riickschlag erlitten.

Die Normung von Quantentechnologien wird auf europaischer und internationaler Ebene von mehreren
Standardisierungsorganisationen vorangetrieben, wobei die Aktivitdaten in den letzten Jahren stark zugenommen
haben. Diese Initiativen bestehen aus offenen Gemeinschaften mit Vertretern aus dem privaten und 6ffentlichen
Sektor, die die Perspektiven von Wissenschaft, Industrie und Politik abdecken. So hat beispielsweise die Focus
Group on Quantum Technologies von CEN/CENELEC vor kurzem ihre Roadmap zu Quantentechnologien
veréffentlicht.! Auf der Grundlage dieser Arbeit wurde im Jahr 2023 das neue CEN/CENELEC JTC 22 gegriindet,
das nun Normen aus der Bedarfsanalyse ableitet. Zusammen mit Aktivitaten von ETSI werden diese
europaischen Normungsinitiativen dazu beitragen, auf internationaler Ebene in bestehenden und zukiinftigen
Komitees bei ISO/IEC, ITU, IEEE und anderen Standardisierungsorganisationen mitzuwirken und somit eine
starke Vertretung Europas zu schaffen. Ein Teil der Normungsarbeit zu Quantencomputern ist auf Benchmarks
ausgerichtet, die in dieser Studie diskutiert werden (siehe Kapitel 7), sowie auf eine Aufschliisselung der
einzelnen Komponenten, die sich auf die Diskussion der technischen Anforderungen an Quantencomputer in
dieser Studie bezieht (siehe Teil V).

Die Quanteninformatik wird derzeit in 6ffentlich-privaten Partnerschaften verschiedener Art betrieben. Starke
kommerzielle Akteure, die in der Lage (und willens) sind, die Systemintegration in groBem Mafstab selbst
durchzufiihren, stehen auf den Schultern von Programmen des 6ffentlichen Sektors. An diesen Programmen sind
Universitaten und Forschungsinstitute, aber auch Unternehmen beteiligt. Erfolgreiche Akteure bringen eine
integrierte Sichtweise auf Software und Hardware mit, was fir friihe Technologien wichtig ist, und die Fahigkeit,
schrittweises Engineering mit risikoreicher Forschung zu verbinden. Sie bendtigen Personen, die in der Lage sind,
hochwertige Ingenieurleistungen mit Quantenkenntnissen und der erforderlichen interdisziplindren Denkweise
zu verbinden, was im Allgemeinen schwer zu finden ist. Geografisch gesehen kommen die beeindruckendsten
Ergebnisse von nordamerikanischen Akteuren. Europa kommt schnell voran und nutzt sein technologisches
Potenzial seit dem Start des EU-Quantenflaggschiffs und der damit verbundenen nationalen Initiativen viel
besser als in der Vergangenheit. Vor allem in China sind inzwischen viele beeindruckende Leistungen zu
verzeichnen, die oft quantitativ weltweit fliihrend sind, auch wenn sie qualitativ (noch) kein Neuland betreten.
Australien und Japan sind starke Akteure in bestimmten Bereichen, und es gibt eine Reihe bemerkenswerter
Aktivitaten in anderen Landern, darunter Indien, Brasilien, Argentinien und Siidafrika. Das russische
Quantenprogramm hat (recht verniinftig) versucht, die traditionelle Starke der Wissenschaft aus der Sowjetéra
mit der Zusammenarbeit mit Forschern aus anderen Landern zu verbinden. Dieses wurde 2022 eingestellt, und
Russland ist jetzt bestenfalls ein kleiner Akteur.

1.5 Fazit

Mit Blick auf die Zukunft lautet die Schlussfolgerung der Studie einerseits, dass die Quanteninformatik stetige
Fortschritte in Richtung kryptoanalytische Relevanz macht, die nach dem etablierten Mainstream

lhttps://www.cencenelec.eu/areas-of-work/cen-cenelec-topics/quantum-technologies/
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(fehlertoleranter Shor-Algorithmus, der entweder auf einem supraleitenden System mit dem Surface Code oder
einem ionenbasierten System mit dem Color Code ausgefiihrt wird) mindestens ein Jahrzehnt, wahrscheinlicher
zwei, dauern wird - sofern keine Disruptionen stattfinden. Andererseits gibt es inzwischen eine Fille neuer
Entwicklungen bei den Algorithmen im NISQ-Bereich, aber auch der Fehlerkorrektur und -mitigation sowie der
Hardware, von denen noch keine einen echten Durchbruch darstellt. Das bedeutet aber, dass der Zehn-Jahres-
Horizont deutlich wahrscheinlicher werden kann, sollten sich hier aktuelle heuristische Ergebnisse verfestigen.

Auch die Vielfalt der Akteure und Ansatze macht Vorhersagen schwierig. Unternehmen hiten einige
Komponenten ihrer Technologie als Geschaftsgeheimnis - einige, selbst grofle Unternehmen, arbeiten im
Stealth-Modus. Die Quanteninformatik wird aus Griinden der Wettbewerbsfahigkeit oder der nationalen
Sicherheit gehiitet, so dass einige Entwicklungen natdrlich vertraulich bleiben. Es ist zwar unwahrscheinlich, dass
die als geheim eingestufte Forschung in qualitativer Hinsicht weit voraus ist, doch kénnte sich dies in Zukunft
andern.
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2.1 Basicidea

The often counterintuitive concepts of quantum physics are well understood and precisely confirmed in science.
The first applications of simple quantum physics have been known for a long time—transistor, laser, magnetic
resonance, nuclear technology, and others. These applications use a few quantum properties of an otherwise
macroscopic system (Quantum Technology 1.0). Currently, a new generation of Quantum Technologies 2.0 is
emerging, which uses many more unique properties of quantum physics and addresses single quantum
systems—one of them is the concept of a quantum computer. Quantum computers use the feature of quantum
physics like superposition — the system state can simultaneously occupy many if not all classically permitted
states — and entanglement — a correlation manifesting the non-locality of quantum physics — to speedup
computations.

There is an assortment of known quantum algorithms for cryptographic tasks. Most prominent are Shor's
algorithms for factoring integers and for the computation of discrete logarithms. Shor's algorithms represent
significant progress for standard asymmetric cryptographic protocols (including RSA and common elliptic curve-
based methods). In principle they permit the efficient reconstruction of a secret key from public data. Quantum
algorithms also permit improvements compared to classical techniques when analyzing symmetric cryptographic
protocols. Grover's method for the acceleration of a complete key search is probably the most well-known of
such algorithms. Nevertheless, cryptanalytic progress through quantum algorithms is significantly less
spectacular in the field of symmetric methods if one remains restricted to established threats, and they do not
endanger existing symmetric protocols from what is currently known. Besides the established threats (which
often rely on Grover’s algorithm), several quantum algorithms have been proposed, for which the computational
complexity—and thus a potential quantum speedup—is not established from a theoretical point of view. As long
as no theoretical proof of the complexity is known, an evaluation of these algorithms must be based on
heuristics. This study puts such algorithms into perspective.

Quantum computing was first proposed by Nobel laureate Richard Feynman in 1982 as a tool to simulate
guantum systems. This research field has expanded since the discovery of Shor's factoring algorithm in 1995,
which can be viewed as the starting point of the global activities towards constructing a quantum computer.
Since then, various physical platforms to realize such a computer are being pursued. Quantum computing is an
interdisciplinary research area between physics, computer science, and engineering, which is being pursued in
universities, research centers, and companies. Milestones such as the establishment of a division for quantum
information in the American Physical Society, or the establishment of a European Quantum Technology Flagship
program, have made quantum computing an established research discipline. A wealth of commercial offerings
from both startups and established companies has created a quantum industry.

2.2 Hardware platforms

Similar to the early days of classical computing, there exists a wide variety of hardware platform candidates for
guantum computing today. These, on the one hand, need to display detectable quantum effects—which means
they need to be small and isolated. On the other hand, they need to be operated as computers, i.e., their
technology needs to be scalable and permit access to write, read, and control. This brings together challenges
within science and engineering—isolation and access need to be provided simultaneously.

The structuring element for the selection of platforms by researchers and their evaluation is their sensitivity to
operational errors. The field of quantum error correction is driving architectures and overhead.

2.2.1 Global categories

Atomic platforms use elementary quantum systems such as single atoms, in which the laws of quantum
mechanics can be naturally resolved but where scaling and control are a challenge.
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Solid-state platforms use various types of integrated circuits which are naturally scalable and controllable, in
which the main challenge is the realization of quantum effects and their stabilization over a long time.

Momentarily, the most advanced platform in atomic physics is that of trapped ions. This technology is related to
the development of atomic clocks and inherits high precision resulting in low error rates. In the area of solid-
state platforms, the currently leading approach lies in the implementation of Josephson qubits—integrated
circuits made from superconducting metals such as Aluminum or Niobium.

Beyond those current leaders, there is a range of candidates that have the potential to catch up and overtake.
Most notably, these include silicon-based nanotechnology and trapped neutral atoms.

2.3  Algorithmic goals

Attacks using quantum computers frequently aim at the direct reconstruction of a secret key under rather
moderate assumptions—only access to a public key or a few plaintext-ciphertext pairs is assumed. Beyond that
also complex attacks using quantum technologies have been proposed, which on the one hand have impressive
potential, but on the other hand are based on assumptions that are not satisfied by real implementations. If one
allows the attacker to run the targeted implementation with inputs in superpositions, theoretically interesting
models of attack can be formulated, but this type of access is not given in classical implementations.

Mathematical proof

e.g., Shors algorithm or c.g., algorithm from Hegade

Simon’s algorithm / \ etal. (2021)
B Ascertain data Consider proof
(numerical simulation or experiments) (assumptions, required resources)

| |
} !

Qll.‘]l'lllll‘l‘l €rror

Data analysis correction required? FTQC-analysis
Cc (estimate number of calculation steps for (determine required resources, i.e. total number of
realistic use cases agnostic to hardware) fundamental quantum gates and qubits)

Figure 2.1: Evaluation scheme for quantum algorithms introduced in Chapter 3. Three levels A-C denote the algorithm’s
maturity, which is based on the current state of knowledge. There are two main types of algorithms, since an algorithm
can be based on mathematical proof or, if no proof is known, on heuristics. Section 3.2 gives a detailed description of
the evaluation levels.

A current focus in the literature on quantum cryptanalysis is a detailed cost analysis of (abstractly) known
attacks applied to relevant cryptographic instances (such as 2048-bit RSA, 256-bit elliptic curves, AES, or SHA-2).
Grover's and Shor's algorithms are fundamentally based on performing computations within the symmetric
primitive under attack or within the algebraic structure behind an asymmetric method on a quantum computer.
The relevant computations are expressed as quantum gates. The quantum gate model can then be the interface
to the underlying computational models. Even though the fundamental efficiency of Shor's algorithms is not
based on the details of the cryptographic protocol under attack, the details of the underlying quantum circuit
are essential for a quantitative cost estimate. In the case of computing a discrete logarithm on an elliptic curve,
for example, the curve arithmetic is mapped on quantum gates, which can be done in different ways.
Analogously, in factoring with Shor's method it is necessary to implement modular arithmetic with quantum
gates and in a Grover-based key search for AES, AES-encryption is implemented with quantum gates. In the
design of these rather complex circuits, one usually prepares a classical reversible implementation first, which is
then translated into elementary quantum gates (Clifford+T).

Typical optimization goals are the reduction of the qubit number, the circuit depth, and/or the gate count. In the
last case, one typically differentiates between gate types to consider different complexities in physical
implementations. We list relevant cost estimates from the literature. If robust quantum processors are provided,
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it is realistic to realize cryptographically relevant computations of discrete logarithms. Also factoring of larger
integers appears realistic. Key search in AES on the other hand appears to remain a large challenge even with
reliable quantum processors—the asymptotically exponential scaling of Grover's algorithms represents a serious
obstacle.

A few novel algorithmic ideas take the hardware adaptation to a different regime in proposing shallow
algorithms that could be executed on near-term hardware. “Shallow” refers to having a low number of
necessary time steps. These are typically quantum variational approaches (see Section 5.2.3), which are heuristic
in nature, i.e., there is no proof of convergence with associated models of computational cost that would allow a
precise extrapolation to large problem sizes. In the field of cryptanalysis, most algorithms of this kind have been
applied to integer factorization. For their evaluation, one must rely on scaling data, which—unfortunately—are
not frequently provided in sufficient quantity. We summarize the evaluation model in Figure 2.1.

2.4 Computational models

The concrete realization of quantum algorithms is discussed in different computational models. The most
relevant model for cryptanalysis is the fault tolerant implementation of the quantum gate model.

The quantum gate model resembles the operation of a classical computer: A sequence of logical operations, or
gates, taken from a universal gate set in a simple machine code is applied on a data register, which is read out at
the end of the computation. For an ideal implementation of this model, quantum speedup is mathematically
proven. Since a perfect, error-free implementation of such an algorithm is impossible, however, it is the goal of a
physical realization to approximate it as close as possible.

The fault-tolerant implementation of the gate model relates to the observation that quantum operations and
hardware are much more susceptible to error than their classical counterparts. It is thus necessary to correct
errors repeatedly during operation. This can in principle reduce the probability of an error in the result to an
acceptable, predetermined size. Quantum error correction has several peculiarities based on the analog
character of quantum operations and the invasive nature of quantum measurements. Still, a mathematical
framework of quantum error correction has been formulated, culminating in the use of the surface and color
codes. The overhead imposed by quantum error correction is significant and determines size and speed of
potential quantum computers without challenging basic speedup. Quantum error correction further sets a
threshold for the physical error rate, below which error correction is possible and effective. Hardware below this
threshold can thus be used to simulate an ideal quantum algorithm using error correction.

Before the realization of fault-tolerant quantum computation stands the era of Noisy Intermediate-Scale
Quantum (NISQ) Technologies. On these platforms errors are not actively corrected, because of which one can
only execute algorithms with a limited number of gates. Applications of such processors on non-self-referential
problems are currently being developed. They are found in the area of quantum simulation where on classical
architectures the memory needs are a limiting resource. These results have motivated the heuristic algorithms
mentioned above. In this framework, results on quantum advantage or quantum supremacy currently make
frequent headlines. Quantum advantage describes imminently reaching a state in which quantum computers
can no longer be simulated by current classical supercomputers. This point has been reached in 2019 using
synthetic benchmarks, later efforts for more efficient classical simulation notwithstanding.

The technique of quantum annealing, a variant of adiabatic quantum computing, is less demanding on hardware
than that of the gate model, and large processors up to 5000 units have been realized. The products of the
company D-Wave Systems are designed for a class of optimization problems and can be programmed in a
versatile way. In principle, quantum annealing can be applied to cryptanalytic problems and can lead to
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acceleration, but a key hardware element necessary for that has so far not been realized. Several platform-
specific models, such as one-way quantum computing, are evaluated separately.

| Algorithm |
Y v
| Count 2-qubit gates | l Clifford gates + T-gates (E) |
— ;
% I Logical qubits and gates (D) |
is ¥
% 8 | Fault tolerance analysis (C) |
v )
| Fidelity analysis (B) |
)
| Basic operation (A) |
)
| Hardware |

Figure 2.2: Sketch of interdependencies of our evaluation scheme. Hardware needs to pass checkpoints from below,
software is compiled from above. These checkpoints, labeled (A) through (E), form the levels of our hardware
evaluation scheme introduced in Chapter 3.

2.5 Evaluation along computational models

Similar to the software stack of modern computer architectures (from machine code to a user interface), we can
organize quantum computer evaluation from the bottom up: We propose to use five levels A through E, cf.
Figure 2.1. As indicated in the figure, if the quality of operations identified on level B allows to implement
cryptanalysis without error correction, the subsequent levels might be omitted via a direct (NISQ)
implementation.

A: Basic functionality Has the quantum computer candidate demonstrated all basic functionalities of quantum
processor (qubits, gates, initialization, coherence, readouts)? Were all these functionalities demonstrated in the
same experiment containing more than two qubits?

B: Quality of operations Has the error rate of all relevant operations been measured? Are they compatible with
error correction thresholds? Have all ingredients of a fault-tolerant architecture been demonstrated?

C: Error correction Has quantum error correction been demonstrated and is it effective? Are logical error rates
smaller than physical error rates?

D: Fault tolerant operation Have operations on logical qubits been implemented in a fault-tolerant way? Has
this been achieved for a universal set of gates (Clifford+T)?

E: Algorithms Have complex fault-tolerant algorithms and operations been implemented? Quantum error
correction requires spatial and temporal redundancy without reducing the efficiency of quantum computers.
Information gleaned on levels B and C allows to project the size and temporal overhead of future quantum
computers—this overhead is directly determined through the error rate of the underlying operations.

While many platforms have already accomplished significant elements of level D, specifically, the
implementation of fully error-corrected one- and two-qubit gates, they are missing the last element of level C,
namely, overcoming the break-even point of error correction.
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Figure 2.3: Evaluation of the main platforms following the developed scheme. Each oval’s width quantifies the
variability and uncertainty (e.g., due to the lack of peer-reviewed data) associated with the given platform. Entries
based on atomic/optical systems are shaded in white, while solid state systems are shaded in black.

2.6 Evaluation of platforms

To evaluate the potential of different platforms, this study describes a variety of known platforms for quantum
computing and categorizes them into the above scheme. Figure 2.3 summarizes the results of the current
evaluation. Part of the experimental setup of the leading platforms, superconducting qubits and atomic qubits,
are shown in Figure 2.4 and Figure 2.5.

We note that various platforms, which are currently not being widely pursued in the laboratory, are described
and evaluated in an older version of this study [WSL+20]. Among these are molecular qubits, and qubits based
on electrons captured on fluid helium.

2.6.1 Trapped ions

This is an atomic platform, in which single ions float in ultra-high vacuum held by slowly varying electric fields. It
is a well-controlled and strongly isolated quantum system. Research on trapped ions has already been applied
previously, e.g., in metrology in atomic clocks—an ideal starting point for low-level error operation. The
guantum information is stored in loosely bound outer electrons, whose states can be manipulated through laser
or microwave fields. lons can be trapped in chains of mutually repelling objects, and they can interact through
vibrations to implement multi-qubit logic operations. This is possible with high quality. Further scaling requires
changing from chains to complex two-dimensional arrays, for which the electrostatic trap is implemented as a

28 Federal Office for Information Security



Synopsis 2

chip surface. All ingredients of a quantum processor and high operational quality along with simple error
corrections have been demonstrated, this platform belongs to level C of our evaluation scheme.

?Ellll |III |'II .'|I

Figure 2.4: The currently leading quantum computing platforms - microscopic perspective. Left: Josephson processor
(image: Julian Kelly, Google). A linear array of 9 qubits (crosses) with nearest-neighbor coupling; explicitly shown are
the control lines (bottom) and readout lines (top). Middle: Linear ion traps: trap electrodes (rods) and lenses for laser
irradiation to implement quantum logic. Right: The same ion trap setup with its vacuum apparatus. (Image of ion trap:
Jiirgen Eschner, Saarland University.)

2.6.2 Superconducting circuits

This is a solid-state platform. It consists of integrated circuits made from superconducting metals and hence
must be operated at extremely low temperatures near absolute zero. Its key element is the superconducting
Josephson junction. Their typical size is in the range of a micrometer or below—orders of magnitude larger than
current transistors. This basic technology is also rooted in metrology, which again provides a good starting point
for reaching high operational quality. Superconducting elements can be assembled into different quantum
processor architectures, whose evolution has largely been driven by the requirement to maintain quantum
coherence as a necessary ingredient for error avoidance. Next to the necessary cooling infrastructure (which is
not an obstacle per se, but a complication) they have the control by microwaves in common. This platform is
currently attracting the most industrial interest.

Flux qubits are superconducting loops in which logical states are represented by circulating currents. They
resemble classical superconducting electronics more than other architectures. In some cases, flux qubits can
reach very long coherence times, and they can be easily coupled. It is challenging to fabricate these qubits
consistently and with predictable properties, which makes realizing the gate model a challenge. Their superior
connectivity makes them the leading platform for adiabatic quantum computing. For gate-based computing they
are on level B.

Planar transmons are single-Josephson junction resonators, whose electromagnetic oscillation states carry the
guantum information. This design is an evolutionary development from charge qubits. It allows coupling through
microwave resonators. Planar transmons reach very long coherence and can be flexibly coupled. They are planar
on a chip surface and so far, chains and simple networks have been demonstrated. Further integration requires
building control and read-out lines into the third dimension. Planar transmons have demonstrated simple
instances of error correction, so they are on level C.

Three dimensional transmons are resonators like their planar version, but they are surrounded by a
superconducting cavity at all sides. This increases coherence times, but also makes control more complicated
and gates slower. A variation of quantum error correction tailored to this platform has shown elements of level
C, but it cannot be firmly extrapolated as existence and numerical value of a threshold for this type of error
correction have not been shown.
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2.6.3 Neutral atoms

In contrast to ions, charge-neutral atoms cannot be trapped by electrical fields alone. However, trapping is
possible with much weaker, light-induced forces in optical tweezers. Especially Rydberg states—atomic states
with huge outer shell radii—allow for long distance interactions. These platforms are very large and feature low-
error rates, and they are reaching full programmability with some error correction and NISQ functionality
already shown —they are entering level C.

2.6.4 Semiconductors

Semiconductor technology — as an industrially relevant, spectacularly miniaturized, and highly integrated
platform — has a strong potential for quantum computer development. There is a variety of semiconductor
platforms. We describe the currently most promising types in this synopsis.

Semiconductor quantum dots are small, isolated areas, “artificial atoms,” in which single electrons can be
trapped so their spin degree of freedom can be used as a quantum bit. Multi-qubit logic can be realized with
interactions similar to those in magnetic materials. This platform has operational similarity with superconducting
circuits. They have now achieved high performance in small systems, too small for demonstration of convincing
error correction: level B.

Color centers are isolated defects in artificial diamonds. They can be used similarly to trapped ions, where the
diamond crystal acts as a trap. These defects carry a nuclear and an electronic degree of freedom, i.e., a single
center potentially contains two qubits and, in some cases, up to four. Color centers lead in quantum sensing, and
they are an important platform in quantum photonics. Having shown error correction puts NV centers into level
C, however, scaling beyond this may be a major obstacle due to currently non-scalable fabrication.

Single donors in Silicon have shown excellent single-qubit properties, and have reached good two-qubit
operations: level B.

2.6.5 Photonic platforms

Light cannot only be used as a control and communication channel for quantum computers but also to host
guantum information. Several important ingredients for quantum photonics have been developed in
neighboring areas. Its key challenge is the implementation of two-qubit gates, given that quanta of light
(photons) do not interact. Several indirect strategies can simulate this interaction, such as the use of special
media or measurement and post-processing. In one photon-adapted synthetic benchmark, quantum supremacy
as the pinnacle of level B has been reached. This peculiar balance of resources has led to a range of alternative
guantum computing protocols such as one-way or continuous variable quantum computing, which are better
adapted to the physical situation of this platform and are evaluated outside our main scheme.

2.6.6 State of the art

Currently, the leading platforms are all struggling at and around the threshold to the break-even point of error
correction while having verified most other concepts of fault-tolerant computation. This is attributed to
engineering challenges as well as the need for better adapted error correction methods. This observation again
confirms the importance of lower errors as the highest priority of the field, rather than larger systems.

Currently, such a quantum computer would be, even with an optimistic view of the near-term progress, a major
piece of research infrastructure—such as a soccer-field size hall with vibration-controlled optical tables or a large
array of cryostats containing the scarce isotope Helium 3.
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Figure 2.5: Infrastructure units for quantum computers in leading platforms. Left: Dilution cryostat optimized for large
cooling power and large wire-count for the operation of Josephson qubits (opened); qubits and other electronics units
are mounted on the copper plates on different temperatures, the rack on the left contains control electronics. (Image:
Edward Leonard Jr., University of Wisconsin-Madison); Right: Parts of a vibration-controlled optical table containing
two vacuum chambers for separate ion traps (Image: Jiirgen Eschner, Saarland University).

It is an interesting exercise to extrapolate what a concerted research program for building a quantum computer
could reach within the foreseeable future. With “concerted program” we mean that an industrialized nation
pools a lot of its research and development effort into such a project, comparable with the Apollo and
Manhattan programs in the US. Assuming that the current technical challenges are met—somewhat better
operations, sparse use of voluminous periphery, larger chip areas, inter-chip connects and upgrades to cryogenic
technology—it seems to be possible to have a computer with a Million planar transmons and a physical error
rate of 1:10000. This would allow to attack 2048 Bit RSA in a few hundred days. A faster attack (in one day)
would require connecting up to 1000 such units. This would require new technological solutions to connect
these units—which have been demonstrated but currently would be too slow. Also, the initial filling of these
machines with Helium 3 would require roughly the full annual industrial demand of Helium 3, likely requiring
new nuclear facilities to produce this isotope. The financial and human investment in such an effort would be by
far larger than current efforts in quantum computing. Progress in materials research towards lower errors would
bring these numbers down significantly.

An analogous activity in ion taps would require bringing the currently developed scalable trap technology to the
same quality as linear traps. If successful, building the required quantum processor occupying roughly a soccer
field would again require a concerted program.

2.7 Global activities and potential for development

Quantum computing is progressing fast. Traditionally, this area has been sponsored by the funding agencies of
the US military and intelligence community (IARPA, ARO, DARPA). There, one can perceive an increased focus on
very few leading platforms and larger research teams, as well as an increasing role of government laboratories.

The engineering challenges starting (at the latest) at level C go, in most places, beyond the capabilities of usual
university research. It is thus even more important for quantum computing development that laboratories
outside universities and companies enter the field, which are currently driving progress in particular for
Josephson qubits. These are large established technology corporations (IBM, Google) as well as financially strong
startups and SMEs and a range of small companies. There is some, though significantly less, business interest in
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other platforms. This should however not lead to the conclusion that the technological challenges for ion traps
cannot be mastered—but industry is less experienced in integrating such systems.

Significant investment of Intel goes into semiconductor platforms, which may lead to rapid process in the future.

There are notable government investments in quantum computers in a few countries. Australia continuously
invests in semiconductor platforms. The EU operates the flagship initiative for quantum technologies, one of
which is quantum computing, which is accompanied by large national programs. One of the largest government
programs for development of quantum technologies is implemented in China.

These have in common that they typically do not directly aim at cryptanalysis, but in many cases a universal,
fault tolerant quantum computer is the long-term goal, which can be used for cryptanalytic applications.

2.8 Risks

The evaluations and conclusions of this study reflect the current state of knowledge and assume continuous
progress. There can be disruptive discoveries that would dramatically change the study’s evaluation. Most
importantly, novel cryptographic algorithms that can be run on NISQ machines or dramatic breakthroughs in the
error rate of some platforms could act as a game changer. The latter has gotten more likely over the last years
given the development of the community.

2.9 Recent developments

The rapid development of quantum computers has turned its evaluation against the requirements of
cryptanalysis into a multidimensional undertaking.

On the side of algorithms, Shor’s algorithm is still the main candidate with a rigorous runtime analysis in terms of
having an accessible quantum advantage. Steady progress in its implementation and compilation lead to
gradually reduced hardware requirements, still asking for large gate depths more than one trillion for RSA 2048
instances. On the other hand, there is now a wide range of new heuristic algorithms that are often adapted to
specific computational models, e.g., adiabatic quantum computing or low-depth algorithms for near-term
hardware. While these are often announced with large fanfare, none of them comes with a proof of
convergence, which would be a central ingredient for a quantitative performance analysis. The best surrogate
for this, a thorough heuristic scaling analysis, has also not been published for any of these algorithms. While it is
conceivable that these new algorithms are merely a result of the euphoria experienced during the early rise of
guantum computing, it is important to further watch and evaluate them, potentially in an independent
benchmarking activity.

On the side of computational models, i.e., mathematical models of how a computation is carried out, gate-based
and adiabatic quantum computing still mark the most important extremes, but variations of these two have
become more important, often in conjunction with hardware platforms they are adapted to. While most of
these models are equivalent to one another in terms of their computational complexity, detailed mappings for
performance indicators that are needed for an absolute performance analysis are more challenging. Particularly
noteworthy among these nonstandard computational models are specifically those associated with photonic
guantum computing, such as Gaussian Boson sampling and fusion based quantum computing.

Even within the model of gate-based quantum computing, the distinction between fault-tolerant quantum
computers based on quantum error correction and noisy intermediate-scale quantum (NISQ) computing is
crucial. The former has well-established performance but large overhead, whereas the latter describes efficient
non-error corrected algorithms of low depth that usually involve external classical optimization. The latter allows
access to a richer gate-set and co-design of software and hardware that can often lead to surprisingly good
performance on small problem instances, yet, due to the unknown scaling of these algorithms and based on
larger theoretical arguments it is not likely that cryptanalytic quantum advantage can be reached in the NISQ
domain. This emphasizes the general point that errors are the limiting feature of gate-based quantum
computing technology currently — rather than qubit number.
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The field of error correction has similarly made advances in breadth: Drivers of large-scale development, the
surface code and the color codes get gradually improved in terms of better decoders reducing their overhead
and improving details. On the other hand, new codes out of the family of low-density parity-check codes or
bosonic codes could lead to more rapid progress in this field with a dramatic impact on our extrapolation. On the
experimental side, these error correction codes are being tested in larger and larger setups, and the error
correction roadmap is being implemented further and further. The most advanced experiments demonstrate the
effectiveness of enlarging error correction codes and show some first error-corrected gate operations. They do,
remarkably, not reach break-even, i.e., lead to a gate error of the corrected gate (or memory) lower than that of
the physical operation. This means the field is slightly behind schedule but did not suffer a setback as the next
technological steps towards that goal are well laid out. This reveals the subtlety of comparing realistic error rates
with a multitude of error mechanisms to a single average error as it is assumed in error correction theory.
Matching these activities is on its way, and the next few years will provide information to evaluate this more
realistically.

According to current literature, the surface code is the optimal error correction code for superconducting qubits.
For ionic systems, the color code has an edge over the surface code. While there are promising developments in
LDPC codes, essential components and analyses are missing for a clear comparison — in particular, evaluations of
suitable decoders and thus reliable threshold estimates. Such novel codes can only have an impact on the
development of fault tolerant quantum computing if these gaps are closed. Error mitigation methods as
proposed in NISQ do not scale in a way that is sufficient for the high demands of cryptanalysis.

In June 2023, IBM has significantly advanced the state of the art in demonstrating quantum advantage [KEA+23]
on many levels; its direct impact with respect to quantum advantage is being debated [TFSS23, BC23]. IBM has
used a fully programmable processor of unprecedented size (127 qubits) with a consistently very low two qubit
error. Instead of a fully synthetic circuit sampling problem, they have used a problem from the simulation of
guantum magnets as a benchmark algorithm - which is still rather well adapted to the classical hardware. Most
notably, they have used techniques of error mitigation rather than error correction to enhance their results.
Error mitigation is a method that allows to reduce the error of NISQ quantum processors without resorting to
full fault tolerance by diagnosing the error of the algorithm through running multiple versions of it and then
using this information to correct the output. As mentioned above, the known error mitigation methods do not
scale. In [KEA+23] the pioneering method of [KTC+19] was applied and taken to new levels. This result highlights
the necessity of combining low error rate with processor size to make error mitigation efficient. At the same
error rate, more qubits would not have improved the result.

This work is a significant technical advancement on many levels. Most notably, it shows the potential of error
mitigation to improve the break-even point of quantum computing significantly. It is not expected that this
would go so far that an error-mitigated Shor algorithm affects cryptography in the NISQ era, but if there was a
more NISQ-friendly alternative (which we have not identified so far) it would advance the field and create a
further dimension in our evaluation system.

In the area of platforms for quantum computers, processors based on superconducting circuits and trapped ions
are still clear front-runners. Despite having similar base parameters — superconducting processors have shorter
coherence times but faster operations than ion trap-based processors — their algorithmic performance is
surprisingly similar. Both platforms have been making progress — superconducting circuits are showing steady
progress as systems with only mild progress in coherence times, ion traps are working on scaling in the sense of
reproducing their strong performance in linear traps also in two-dimensional setups. It is a main current trend
that more platforms are catching up. On the solid-state side, semiconductor qubits are reaching high fidelities in
small systems that do not yet translate to scaling (and they are remarkable diverse in identifying which
semiconductor platform is leading) but now seem to be at the level where there are no basic obstacles. On the
atomic side, neutral atoms in Rydberg states — originally a platform for quantum simulation, i.e., non-universal
guantum computing — have made large advances on certain classes of NISQ algorithms and are entering the field
with large systems. While not yet being at the level of the front-runners on standard component benchmarks,
they could at some point scale with ease. Finally, there have been strong progress reports from photonic qubits
specifically in the field of Gaussian Boson sampling and potentially other photon-adapted computational models
like fusion gates - but they cannot be evaluated, since actors are very protective about component and
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subsystem performance. Topological qubits have suffered a setback after controversy over data selection in
previously celebrated papers.

Standardization of quantum technologies is pursued on a European and on an international level by several
standards development organizations (SDOs), with a strong increase of activity in recent years. These initiatives
are comprised of open communities with representatives from both private and public sectors, covering
perspectives from academia, industry, and policy makers. For instance, the Focus Group on Quantum
Technologies of CEN/CENELEC recently published its roadmap on quantum technologies?. Based on this work in
2023 the new CEN/CENELEC JTC22 on QT was founded, now deriving standards from the needs analysis.
Together with activities of ETSI, European standardization initiatives will contribute on an international level to
existing and future committees at ISO/IEC, ITU, IEEE and other SDOs and thus create a strong representation of
Europe. A part of the standardization work on quantum computers is geared towards benchmarks, which are
discussed in this study (see Section 7), and a breakdown of the individual components, which relates to the
discussion on technical requirements of quantum computers in this study (see Part IV).

Quantum computing is currently carried out in public-private partnerships of various kinds. Strong commercial
actors that are able (and willing) to stem large-scale system integration on their own are standing on the
shoulders of public-sector programs. Public sector-programs involve universities and research institutes but also
companies. Successful actors bring together an integrated view on software and hardware, which is important
for early technologies, and the capability to combine step-by-step engineering with high-risk research. They
require people who can bring together high-quality engineering with quantum-awareness and the required
interdisciplinary mindset, which are generally hard to come by. Geographically, the most impressive results
come from North American actors. Europe is moving ahead quickly, realizing its inherent potential a lot better
since the start of the EU Quantum Flagship and related national initiatives. Most notably, there are now a lot of
impressive achievements in China which are often quantitatively world-leading, even they are not (yet) breaking
qualitatively new ground. Australia and Japan are strong players in specific fields and there is a range of notable
activities in other countries, including India, Brazil, Argentina, and South Africa. The Russian quantum program
has attempted (quite sensibly) to combine the traditional strength in science dating back to the Soviet era with
collaboration with researchers based in other countries. This has stopped in 2022 and they are now a small
player at best.

2.10 Conclusions

Looking ahead, the conclusion of the study, on the one hand, is that quantum computing is making steady
progress towards cryptanalytic relevance which according to the reliable mainstream (fault-tolerant Shor
algorithm, executed either on a superconducting system with the surface code or an ion-based system with the
color code) will take at least one decade, more likely two. On the other hand, there are now a plethora of new
developments in algorithms (specifically in NISQ), error correction and mitigation as well as hardware, because
of which one can be much less confident of the above result than only a few years ago — a lot more can move
and surprise, and most of these results could accelerate the development.

The variety in actors is making predictions more difficult. Companies naturally guard some components of their
technology trade secrets —some even large ones are operating in stealth mode. Quantum computing is guarded
as a matter of competitiveness or national security, thus naturally keeping some developments confidential.
While it is unlikely that classified research is far and qualitatively ahead, this could change in the future.

Zhttps://www.cencenelec.eu/areas-of-work/cen-cenelec-topics/quantum-technologies/
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3  Evaluation systems for quantum hardware and
qguantum algorithms

In this chapter, two evaluation systems are introduced: one for quantum computing hardware and another for
guantum algorithms. To this end, we first provide some background information on different models of
guantum computation and quantum algorithms. The relevant background information covers quantum
hardware and quantum algorithms, gate-based and adiabatic quantum computing, and the distinction between
fault-tolerant vs Noisy Intermediate Scale Quantum (or NISQ) computing. At the end of this chapter, we also
discuss certain risks that pertain to our evaluation scheme.

3.1 Structure and requirements of an evaluation system

3.1.1 Introduction

| Algorithm |
v v
| Count 2-qubit gates | | Clifford gates + T-gates (E) |
—7 ¥
3 | Logical qubits and gates (D) |
39
23 Y
%” | Fault tolerance analysis (C) |
Y )
| Fidelity analysis (B) |
)
| Basic operation (A) |
y
| Hardware |

Figure 3.1: Sketch of interdependencies of our evaluation scheme. Hardware needs to pass checkpoints from below,
software is compiled from above. These checkpoints, labeled (A) through (E), form the levels of our hardware
evaluation scheme introduced in Section 3.3.

A quantum computer is a complex piece of technology that needs to function on many levels. Its basic
components—qubits—are intricate physical objects based on pushing some experimental modality to its
extremes. At the same time, quantum algorithms are quite complex structures to run, despite the expected
power of quantum computers. Figure 3.1 shows how these two concepts are connected in a dependency graph.
This graph shows a list of hardware levels, labeled (A) though (E), which are introduced below in Section 3.3. The
challenge of evaluating the status of quantum computer development is essentially an exercise in evaluating the
machine on all these levels and connecting them.

Over the last few years, the number of approaches to quantum computing has increased on the algorithmic side
and consolidated on the hardware side. This is driven by the creativity of a growing community and an increasing
hype. Specifically, the computational models in which algorithms can be formulated and the possibilities and
limitations of quantum hardware inspire each other. While many of these computational models are in principle
equivalent, precise determination of their potential for cryptanalysis and estimations of their development
require a more detailed analysis. The concept of quantum computation is divided into several categories. One
dividing line is the computational model, chiefly the distinction of adiabatic vs gate-based quantum computing
(see Section 3.1.3.) The other one addresses the intrinsic errors in quantum computing and how to take them
into account in the computing regimes of fault tolerant and NISQ computation (see Section 3.1.2).
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3.1.2 Fault tolerant quantum computation vs NISQ computation

The predicted computational power of quantum computers comes with the drawback of being confronted with
a wealth of error mechanisms. On the one hand, these are based on the analog character of stored data, on the
other hand on the exponential capacity of quantum computers that allows for much more places for errors to
occur. The traditional remedy is to store each logical qubit using multiple physical qubits and thereby correct
errors, thus enabling for the paradigm of fault-tolerant quantum computation. This computation is based on the
concept of quantum error correction, which makes the key prediction that the logical error rate can be reduced
arbitrarily by introducing overhead, if the physical error rate of a quantum computer is below a threshold p:.
This standard paradigm is the core of the hardware evaluation system introduced below and applied in Part IV.

In Ref. [Prel18], John Preskill describes the current experimentally available quantum computers as belonging to
what he calls the NISQ era, where NISQ is short for noisy intermediate scale quantum. NISQ computing has since
been broadly adopted as the name of the main alternative route for quantum computer applications, in which
no quantum error correction is employed. The NISQ category is generally considered to comprise quantum
computers with up to several hundreds of qubits [Pre18].

Preskill asked in as early as 2012, under what minimal requirements it is possible to outperform a classical
supercomputer using a quantum computer, or, in other words, at what point one could to reach quantum
supremacy [Prel2]. As a benchmark, current supercomputers can maximally simulate the time evolution of
about 50 qubits ([RMR+07,5SAG17,HS17,DRJ+19]). One would first expect these to be logical qubits in the sense
of error correction. The best error correction code (currently the surface code) has a threshold of p:, =~ 1%,
which means that for manageable overhead the community aims for errors below 1073, Of course, moderate
improvements beyond this number are conceivable, so we assume relevant errors to be upper bounded by p =~
107 in the foreseeable future. We note that usually the largest errors occur during two-qubit gates. Since most
errors will add up during the computation3, the maximal number of gates, Nmax, is upper-bounded by p?=~10°.

The maximal number of gatesis also bounded by decoherence, an effect that also targets idle qubits, which do
not undergo a quantum gate. The maximal number of gates is then further bound by Nmax < T2 /Tgate, Where Tgate
is the duration of a two-qubit gate (as the most demanding elementary gate) and T is the decoherence time of a
gubit. We note that estimating a the upper bound of Nnax in this case is less useful, since both the gate durations
and decoherence times vary strongly from one quantum computing platform to another.

One can thus ask whether quantum supremacy can be reached without error correction and by carrying out up
to p! = 10° gates. Indeed, [BIS+16] shows that such a quantum system can simulate quantum chaos in an
exponentially large dimension, and that simulating quantum chaos, specifically sampling from the Porter-
Thomas distribution is likely an NP-hard problem. In 2019, this has now been experimentally demonstrated by
Google [AAM+19]. Similar results have been obtained for variational quantum simulation [OBK+16], [DDW16],
[BWM+16]), where the quantum advantage comes from the need to store a complex quantum state (i.e.,
problems that on classical computers are memory-limited). Such developments, which highlight the potential
power of quantum computers, are a strong driver of near-term quantum computer development.

Reliably executing a quantum algorithm requires running it at a fixed and usable error rate of the binary input
and output of the algorithm. By fixed we mean that the error rate does not grow with a longer algorithm, by
usable we mean that a small number of runs of the algorithms should lead to an acceptable result. The
complexity of quantum algorithms that outperform classical supercomputers requires a large number of gates,
hence the number of logical quantum gates needs to be comparatively small. On the one hand, in classical
computers, where data encoding is strictly binary during the entire computation and energy barriers lower the
error rates to nearly negligible values, this can be reached in hardware. Quantum computers on the other hand,
while operating in a binary data space and having simple binary data as input and output, use superpositions and
entangled states during the computation, which are fragile to continuous errors. Similar to classical computers,
there is a quantum measurement of binary registers at the end of the calculation, and any accumulated errors
will result in a finite probability of obtaining a wrong outcome. Since there is no self-correcting energy barrier for

3Under certain circumstances errors may cancel one another during the execution of a quantum algorithm, which
would allow for longer gate sequences. Work on such error cancellation is discussed in Section 5.6.
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quantum computing (we will discuss a topological barrier below), intrinsic error rates of physical qubits cannot
be expected to ever be as low as required by algorithms, so one stands before the challenge of executing an
algorithm with faulty hardware.

This can be addressed with fault-tolerant quantum computing. Fault tolerant quantum computing draws a
distinction between the faulty physical qubits, which are used in a laboratory, and the low-error logical qubits in
which an algorithm is implemented. Logical qubits, each of which is redundantly encoded into multiple physical
qubits, are steadily error-corrected, resulting in logical errors rates that are below those of the physical
components. We will make sure that we clearly label—often by chapter—whether physical or logical qubits are
addressed. We will analogously talk about physical and logical operations depending on whether these are
operations on physical or logical qubits.

These two layers are connected by fault-tolerant quantum computing protocols. These have been developed for
more than two decades and their basic ideas are written in textbooks [NC00]. The efficiency of these techniques
has been dramatically improved by the introduction of the surface code, an error-correction scheme that uses
topological ideas to protect data—only errors that change topological properties of a state are not noticed. Note
that topological qubits (see end of Section 12.2.2.1) use these ideas on an elementary physical level, whereas
the surface code is assembled from ordinary qubits.

We describe basic notions of fault-tolerant computation in the introduction of Chapter 8. Here we already
highlight its main ingredients: i) error syndrome extraction and correction in a stabilized code space, which
includes reducing analog error probabilities to digital errors, ii) storage of logical qubits, iii) implementation of
“easy” logical operations (typically the full set of Clifford gates) and iv) implementation of the remaining gates
for forming a physical gate set, typically the T gate. These operations generally introduce a large overhead—a
logical gate requires repeated error correction and generally consists of many physical operations on many
physical qubits, all of which are in general faulty. For a well-designed code, there is a threshold theorem stating
that under generic assumptions of the error model, the logical error rate can be made arbitrarily small with finite
overhead, as long as physical error rates are below a certain threshold.

3.1.3 Gate-based vs adiabatic quantum computation

In 1980, Paul Benioff introduced the first formal descriptions of a quantum computer as a quantum Turing
machine [Ben80]. Several years later, David Deutsch formulated a description of a quantum computer that can
be viewed as a quantum equivalent to the gate-based classical computer [Deu89], which has been adopted as a
mainstream quantum computing paradigm [NC0O]. The basic idea behind this gate-based quantum computation
is that, while in a classical computer data is processed by the application of logic gates such as NOT, XOR and
NAND, quantum generalizations thereof (universal gate sets) are used similarly to process quantum information.

An alternative computational model is called adiabatic quantum computation [AL18b]. The concept in this case
is that the solution to a posed problem is encoded into the ground state of the quantum mechanical energy
function of a system, i.e., a Hamiltonian. In the case of quantum cryptanalysis, these Hamiltonians will be
diagonal in the computational basis — capturing the minimization of a binary function. If the problem in question
is nontrivial, this ground state will be difficult to determine using conventional methods. Instead, it can be found
using adiabatic quantum computation by first initializing a set of qubits into the ground state of a Hamiltonian
that can be understood analytically, and then transforming this Hamiltonian slowly until it equals the
Hamiltonian whose ground state we seek. Appendix 14 describes an exemplary adiabatic quantum algorithm for
factoring, which is designed to be run on gate-based quantum computers in a scheme called digitized adiabatic
quantum computation. To remain adiabatic, it is necessary that the runtime of the algorithm is long enough,
controlled by the inverse spacing of the lowest two eigenvalues of the Hamiltonian during the computation
(called the energy gap). Determining the runtime of an adiabatic algorithm is thus based on estimating the

energy gap.

It has been known since 2001 that adiabatic quantum computing can be simulated efficiently by quantum
circuits [vDMVO1]. In 2007 Aharonov et al. established that the converse direction also holds, i.e., the quantum
circuit model is polynomially equivalent to adiabatic quantum computation [AvDK+07]. This equivalence
assumes certain hardware prerequisites as well as the polynomial computational overhead. Adiabatic quantum
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computing belongs to the larger class of Hamiltonian computing models [Ken20], which also contain quantum
walks [Chi09], which so far have not been connected to cryptanalysis.

3.2  Evaluation scheme for quantum algorithms

Quantum algorithms can be grouped into different categories based on the following three properties. (i) For
certain algorithms, the termination behavior is mathematically proven. For instance, it has been established that
the required number of quantum gates for integer factoring represented by n digits using Shor’s algorithm (on
an ideal quantum computer) is upper bounded by a polynomial in n. In contrast, for several more recent
guantum algorithms for factoring integers, this scaling of the number of quantum gates is not known, and even
termination may not be certain. (ii) A second property is that of the use of quantum gate types: The proposed
set of gates for a given quantum algorithm can be a minimal set, which consists only of a few elementary gates,
or it may require a substantial number of distinct gates — which could either be compiled to a minimal gate set
or be directly provided by co-designed hardware. (iii) Finally, a third distinguishing characteristic of an algorithm
is whether it is proposed to be run on a NISQ computer, or if the usage of a fault tolerant scheme is required to
solve problems of relevant input sizes. This difference is not sharp, but in general NISQ-ready algorithms are
aimed at low depth between different readout and initialization cycles. Our evaluation scheme for quantum
algorithms described below in Section 3.2 distinguishes between quantum algorithms intended for either NISQ
computing or fault tolerant gate-based quantum computing.

The performance of a quantum algorithm strongly depends on the available hardware — not only by a single
performance parameter, but also in the sense that some algorithms are more suited to a specific hardware
platform than others. The crucial hardware properties go beyond the error rate, number of used qubits and
clock speed (or the duration of elementary quantum gates) of a quantum processor. The most important other
factors are the types of native quantum gates that can be carried out and the inter-qubit connectivity of the
device, which determines which qubits can be coupled.

In general, the ability to carry out many different native gates and to be able to connect many qubits is
beneficial. However, different quantum algorithms usually have different requirements on native quantum gates
and connectivities. In this context the notion of co-design comes into play, in which hardware and algorithms are
designed alongside one another to realize a special-purpose quantum computer that excels in running certain
types of algorithms. The principle of co-design is reviewed in Reference [LWS+21]. Co-Design and hardware
adaptation are crucial for the lowest software layer, i.e., for the error correction code in the case of fault-
tolerant quantum computing and for the full algorithm in the case of NISQ.

Figure 3.2 gives an overview of our level-based evaluation scheme concerning soundness and criticality of
guantum algorithms with relevance for cryptanalysis. As shown in Figure 3.2, this scheme consists of two vertical
threads and three horizontal layers labeled A, B and C. In layer A, one first determines whether an algorithm
belongs to the left or the right thread. This depends on the question if there is a known proof of the termination
properties of the algorithm, or if these properties need to be inferred by heuristics. The former and latter types
of algorithms will be assessed according to the left and right threads, respectively.

Algorithms with a known proof of termination, which belong to the thread on the left of Figure 3.2, are
evaluated as follows:

® A: Consider the theoretical assumptions of the proof of termination. Is the proof based on any controversial
unproven theorems or disputed conjectures?

e B: Consider the algorithm's assumptions on hardware resources, which are prerequisites to the result on
termination. Are these assumptions compatible with hardware that is currently being developed?

e (C: Carry out a rigorous resource analysis of the fault tolerant implementation of the algorithm. This will yield
the required numbers of qubits and the run time of the algorithm as a function of input size and error rate of
the quantum computer.
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Figure 3.2: Evaluation scheme for quantum algorithms. Three levels A-C denote the algorithm’s maturity, which is
based on the current state of knowledge. There are two main types of algorithms, since an algorithm can be based on
mathematical proof or, if no proof is known, on heuristics. Section 3.2 gives a detailed description of the evaluation
levels.

Turning to algorithms without a known proof of termination, note that these algorithms may be tested using
NISQ computation already. NISQ computers, described above Section 3.1.2, can only carry out a limited number
of quantum gates in a single run, since the lack of error correction results in an inevitable accumulation of errors
that will eventually spoil any calculation. After a maximum number Nmax of gates has been applied, the qubits
will be reset for the next run. As noted above, for a given gate error probability p, which is related to the fidelity
F=1-p, the maximum number of quantum gates is of the order of 1/p. For most quantum computing platforms,
single-qubit gates exhibit significantly smaller errors than two-qubit gates, because of which usually two-qubit
gate errors are used to estimate the number Nmax. As discussed above in Section 3.1.2, we assume the number
of realizable gates Nmaxto be bounded by p* =~ 10°.

To repeat, a NISQ algorithm can only be experimentally feasible if the number of quantum gates per run does
not exceed the current maximum number of implementable gate operations. As stated above, at the time being
this number is upper bounded by Nmax = 1000. For example, to feasibly run a factoring algorithm for a 1000-bit
integer N, n = logz(N) = 103, this implies that the number of gates should scale rather slowly. Indeed, if the
number of quantum gates were to scale as in the case of Shor’s algorithm (assuming perfect quantum gates)
with n3, this would result in n® = 10° gates, which lies many orders of magnitude outside the scope of current
NISQ devices. While this notion seems to limit NISQ algorithms significantly, it should be noted that algorithms
may feature multiple short runs (or gate sequences of low depth) on the quantum computer for a single
calculation. Reinitialization between one run and the next allows reusing the qubits anew. A popular class of
such algorithms, known as variational quantum algorithms, is reviewed in [CAB+21].

Based on the discussion above, we state the following set of criteria for our level-based evaluation scheme:
e A: Plausibility of NISQ algorithm.

First, the algorithm is evaluated based on its operating principles. Is the fundamental paradigm (e.g., adiabatic
guantum computation, or variational quantum factorization) of the algorithm established? Are there
technical difficulties with any part of the method? For example, if classical processing is a part of the
algorithm, how efficient is this part?

e B:lIsthere enough data available for an analysis of the algorithm’s asymptotic cost function?

Gather accessible data supporting the algorithm. The quantity of interest, the algorithm’s hardware-agnostic
cost function” is the number of required quantum gates as a function of input size. Such an analysis only

*For an impartial comparison, the cost function should be chosen agnostic to hardware. To this end, we choose the
number of computation steps, or the ratio of the algorithm's run time and the duration of a clock cycle.
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yields meaningful results if the amount of data (i) is large enough in number, and (ii) spans at least one
decade on both axes (cost function and size of input).

e (C: Does available data give an indication for critical asymptotic termination?

If there is adequate data, the scaling behavior of the cost function as a function of the input size can be
estimated. Relevance can be considered, if the predicted number of required quantum gates for breaking
relevant cryptography is within reach, i.e., of the order of p! = 10° gates). Note that any such result must be
treated merely as an indication of relevance, since numerical data cannot predict asymptotes with absolute
certainty.

If the number of quantum gates for cryptographically relevant input values exceeds the expected capabilities of
NISQ computers, the quantum algorithm may be executed on an error corrected quantum computer. This is
indicated by the horizontal arrow in level Cin Figure 3.2. In this case the evaluation will be carried out
following our FTQC analysis.

3.3 Evaluation scheme for quantum hardware

The scheme proposed here is constructed bottom up in the sense that high-level features can only be
successfully completed if all lower-level requirements have been met. We feel that this is important, given that
some types of engagement in quantum computing research trigger hyperbole and press releases that often
highlight advantages on one level only while omitting failure on other levels. Note that inside these levels there
are often multiple requirements; however, passing these requirements in a certain order is usually not critical.

Our hardware evaluation scheme is driven by the demands of FTQC as this is identified as being necessary for
proven cryptanalytic applications, but also contains the elements to evaluate NISQ. We now outline the
structure of the scheme in a preview that highlights how its different components work together.

3.3.1 Lowest level (A): Basic operation—do we have working qubits?

At the lowest hardware level, physical modalities encoding qubits can and will be vastly different. To make them
upwardly compatible, they need to function as qubits in the broadest sense. Here, the question is whether all
basic functionalities are present, which allows one to consider running a low-level quantum algorithm. From a
fault tolerant quantum computing point of view, these operations are deemed physical rather than logical. We
propose a set of criteria in Chapter 6, which are an extension and quantification of the well-known DiVincenzo
criteria. Platforms passing this test quantitatively will typically be able to demonstrate some basic quantum
algorithms with two to five qubits. Most promising platforms considered in this study have passed this lowest
level.

3.3.2 Intermediate level (B): Benchmarking—does our hardware meet fault
tolerance criteria?

Once basic qubits functionality is established, it is important to quantitatively evaluate the performance of given
hardware in a matter that is compatible with fault tolerance—but largely agnostic to hardware. Still, all
operations discussed here are physical operations. Hardware may drive the choice of computational model
(circuit based, adiabatic, cluster states) and fault tolerance scheme (surface or color code) but performance
needs to be quantified in a way that is compatible with the analysis of fault tolerance. These numbers are
essentially some qualitative statements about the architecture (how many operations can be parallelized? Can
measurement be used as qubit reset?) but boils down to fidelity measures of the basic operations in fault
tolerant computation—initialization, gate operations, and readout. There are established methods, though
improving these is work in progress. As reliable estimation of these parameters requires a quantum processor
with some basic functionality, in particular faithful measurement, and the ability to run at least in principle a
long gate sequence, it is important that processors have passed the level A to make meaningful statements.
Passing level B is not only required to proceed to level C in general, benchmarking also determines the design
parameters of the fault tolerance algorithms.
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In NISQ computation, we directly transition from this level to full algorithmic benchmarking, which can be
estimated by counting the two-qubit gates in the algorithm which consistently are limiting the total fidelity (cf.
Section 3.1.2).

3.3.3 Central element (C): Fault tolerance analysis—how much quantum volume
can we execute?

Once fault tolerance criteria are met from the intermediate level, it is known that adding more error correction
(i.e., larger codewords, larger code distances) will reduce the logical error rate. Thus, with information from the
next higher level (number of logical qubits and logical gate count) as well as below (architectural constraints and
operation fidelities of the physical qubits) we can estimate the number of physical qubits and the time to
execute an algorithm on given hardware thus estimate the effective physical size of the quantum computer that
can execute the effective logical volume of the algorithm of interest. We describe its principles along the main
technique, the surface code. We provide concrete numbers allowing physical resource estimates.

The improvement of logical error rate over the physical error rate can be achieved in different steps. This is
because there are independent types of qubit errors, and because error correcting codes need to fulfill a certain
error behavior as a function of the size of the code. Intermediate steps of level C are discussed in Section 8.6.1.

3.3.4 Compiled level (D): Elementary fault-tolerant gates

Transitioning to the software layer, algorithms need to be broken down into elementary gates on logical qubits.
The gate set of interest depends on whether active error correction is required — this is, indeed, assumed
throughout, except in the discussion of NISQ algorithms. The requirement is the ability to carry out a universal
gate set. Many gates can be executed straightforwardly without leaving code space, and these are relatively easy
to implement—in the case of the surface code, of one the best error correction codes known to date, these are
all the Clifford gates. Executing a general quantum algorithm that cannot be classically simulated requires at
least one non-Clifford gate that needs to be produced outside the code. As this is generally the by far most
resource-intensive step, a single non-Clifford gate, typically the T gate (a phase shift of w4 on one of the two
basis states). Accordingly, desired quantum algorithms are broken down into Clifford+T, i.e., gate counts for both
Clifford and T gates are given.

The execution of fault tolerant gates can be realized in different scenarios worth mentioning. First, the
realization of single qubit gates is simpler compared to two qubit gates. Second, the difficulty for carrying out
Clifford gates is significantly simpler than that of non-Clifford gates. Intermediate steps of level D are discussed
in Section 8.6.1.

3.3.5 Algorithmic level (E): Fault-tolerant algorithms

In a first step, cryptanalytic algorithms are commonly formulated at a high abstraction level. Details of
implementing the necessary arithmetic, e.g., on an elliptic curve, or how to perform the round function of a
block cipher with a superposition of inputs are not considered. To bring a quantum computer to use, the
portions of the algorithm that cannot be run on classical hardware need to be identified, and design decisions on
how to map abstract operations onto the available hardware need to be made. Just as with classical
implementations, different algorithmic choices are possible, e.g., for computing an inversion modulo a prime
number or for implementing an S-box. Different optimizations can be pursued—like minimizing the number of
logical qubits or reducing the circuit depth of a computation. Cryptanalytic algorithms tend to involve complex
operations, and as long as reliable libraries for elementary tasks are lacking, it seems prudent to organize the
algorithm at hand in such a way that debugging remains feasible when passing to the gate level.

3.3.6 Conclusions and application

Once the numbers of required qubits and elementary quantum gates for a given task are determined, which
means that we have a firm understanding of the algorithm’s size, we can estimate extensive operational
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parameters (volume, heat dissipation, power consumption, amounts of rare substances etc.). Moreover, we can
evaluate if scaling up requires hitherto non-existing technologies, for example if multiple experimental
infrastructural units need to be connected (multiple cryostats, multiple optical tables, multiple UHV systems).
This results in an assessment of the feasibility and scope of building such a machine, and according criteria for
such a construction are laid out in Chapter 10.

3.4 Risks of our evaluation scheme

Our evaluation scheme rests on the status of current research and knowledge. Some of these results are
extrapolations over many orders of magnitude in size and performance, specifically error rate. We would like to
succinctly describe the known risks that this scheme could be wrong, which can only be assessed as research,
mostly experimental research, progresses.

3.4.1 Risks that make quantum computers more reachable

1. We have assumed that cryptanalysis requires long skinny algorithms hence requiring error correction.
Discovery of an algorithm that trades time for memory in a way that can be addressed with a small number
of gates would make the target processor much smaller. This risk is medium, as more and more ideas are
appearing, even though so far none shows a clear path to quantum advantage.

2. Discovery of physical qubits with extremely low intrinsic error rate. In principle, this is possible - control of
gubits can be done with non-dissipative elements that do not produce errors. As the prime candidate,
topological qubits, have recently suffered from a serious setback, and as quantum errors are for fundamental
reasons more likely than classical errors, this risk is low.

3. Discovery of scalable qubits with long-distance interaction with the ability to implement high-dimensional
connectivity: This would lead to very high error thresholds and at least logarithmic savings (cf. Section 8.2.4).
Given the progress in neutral atoms, this risk is medium.

4. Discovery of accidental error avoidance in cryptographically relevant algorithms. This is related to the fact
that error estimates following the diamond norm are usually very conservative and can in NISQ often be
beaten by physics motivated error mitigation and co-design. However, current error mitigation is not
efficiently scalable and the dense structure of QFT as the most crucial step of Shor’s algorithm makes
circumventing this quite unlikely.

5. Implementation of novel, ultra-fast quantum computing platforms in timescales of femtoseconds or
attoseconds, the shortest directly accessible timescales in physics. This would speed up physical gate times
by three orders of magnitude, making long algorithms more accessible. This has been tried, unsuccessfully,
and it is not clear whether that speed advantage would translate into faster qubits as these systems are small
and usually have slow two-qubit gates.

6. Algorithmic innovations and optimization of the logical encoding: the task of finding the optimal encoding
(see [Jon13], or Section 8.2.2.2) and distillation structure (this is discussed in an older version of this study,
see Section 7.2.4.3 in [WSL+20]) is not done in full detail in our analysis. While we take reasonable
assumptions for required distance, distillation rounds or logical gate arrangement, an optimized version of a
fault-tolerant algorithm found from simulations can be made much more efficient in terms of required qubits
and error rates (see for example recent advances in [OC17], or different approaches to fault-tolerant Toffoli
gate implementations [Jon13]). These optimizations will be done for sure when thinking about implementing
large circuits, the correction will be a constant factor improvement (of maybe one or two orders of
magnitude).

7. Extreme progress in error correction with transversal T gates: very unlikely.

8. True scaling advantage of the surface code when using lattice surgery, see [FG18] and our Section 15.4.
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3.4.2 Risks that make quantum computers less reachable

1. Serious deviations in going from levels B to C: Even the best methods to measure operation fidelities on level
B reveal an incomplete picture. While there have been a number of demonstrations of active error correction
so far (such as [LCE+21,AAA+22,AWR+22,BHS+22,KLR+22,PHP+22]), we see that we need a significantly
higher resolution of the threshold — so this risk has partially materialized and is at least at an intermediate
level.

2. Discovery of new correlated error mechanisms: Error correction relies on multi-qubit errors being
exponentially (in the number of qubits) less likely than single-qubit errors. Note that this has partially
materialized due to ionizing radiation in superconducting qubits, which however can be mitigated. Discovery
of new error sources of this kind is still an intermediate risk.

3. Discovery of persistent non-Markovianity: Similar to spatial correlations also temporal error correlations are
difficult to catch. This is unlikely, as measurements usually destroy temporal correlations.

4. Insurmountable engineering problems: Assembling large processors cannot guarantee the same quality as
the components. The same would hold for temporal stability when scaling operation time, e.g., spurious
heating and drifts. Albeit analyzing these operational challenges is done based on what is known for the level
C platforms, there can be challenges that only appear while it is attempted.

5. Dominance of coherent errors: Albeit coherent errors have the same error correction threshold as
corresponding incoherent errors, the surface code scales less favorably below threshold, which may increase
the overhead. Intermediate risk.

6. Loss of interest in quantum computing in the international community: For potential costumers quantum
computation has to offer a real advantage, because of which there is need to attract more communication
towards out of field people such as well-educated software application designers. Quantum computation is
currently in a phase of steep rise in private and public funding - partially due to a certain media hype
enhanced by uncurbed claims of many companies - which leads to the inclusion of a broader community.
However, any economic uprising of new technologies brings with it the risk that investors lose interest, which
in this case would accordingly slow down progress considerably.
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PART II: Evaluation of algorithms

Subsequently we describe quantum algorithmic innovations that are relevant for judging the security of
currently prevalent cryptographic solutions. We focus on algorithms that can be applied to classical
implementations of cryptographic schemes, e.g., working of a public RSA modulus or leveraging a collection of
known plaintext-ciphertext pairs for a block cipher like AES. We also mention some attacks assuming a stronger
attack model, in which an adversary has superposition access to a cryptographic implementation that involves
an unknown secret key. While this stronger attack model enables insights about fundamental security
limitations, the assumed superposition access is not practical for cryptographic implementations commonly in
use today.

On the side of asymmetric cryptography, we focus on algorithmic innovations (i) to decompose integers into
prime factors, which are especially relevant for RSA-based solutions, and (ii) to compute discrete logarithms in
suitable finite groups, e.g., on elliptic curves over a finite prime field. The latter are, for instance, relevant for
popular digital signatures and key establishment solutions building on the famous Diffie-Hellman design.

On the side of symmetric cryptography, our emphasis is on quantum cryptanalytic insights on popular block
ciphers, especially AES, and cryptographic hash functions.

As noted in Section 3.2, quantum algorithms can be grouped in multiple categories. The perhaps most significant
distinguishing feature for different kinds of algorithms is whether the expected termination of the algorithm is
based on a mathematical proof or on heuristics. Another important distinction, which is currently of public
interest, is an algorithm's suitability for NISQ computers (see Section 3.1.2) and quantum annealers (see Section
9), as opposed to the need to employ error corrected or fault-tolerant quantum computers. It turns out that, at
the time being, these two qualitative features are not unrelated to one another. In the first place, the only
realistic implementation of algorithms with a known proof of termination requires the use of a fault tolerant
guantum computer. Such algorithms are analyzed in Chapter 4.
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Quantum attacks against symmetric and asymmetric primitives have quite different flavors. Based on our
current understanding, the cryptanalytic impact of quantum computing on established public-key encryption
schemes, digital signature solutions, and key-establishment protocols is much more severe than on popular
block ciphers or cryptographic hash functions. We start by a look at the quantum cryptanalysis of important
symmetric primitives.

4.1 Minimizing quantum circuits

When discussing quantum circuits, different elementary gate sets are possible, and it is common in the literature
to start out with classical reversible circuits, which are then translated (without further low-level optimization)
to a particular universal gate set. It is reasonable to assume that such “naively compiled” circuits can in general
be optimized further. Minimizing quantum circuits at the lower level is an active research area, and much
emphasis is currently placed on the Clifford+T gate set. The latter can be implemented in a fault-tolerant
manner, e.g., by means of surface codes [FFSG09, FMMC12]. Using number-theoretic tools, Kliuchnikov showed
how an arbitrary unitary transformation on n qubits can be approximated with precision € using a Clifford+T
circuit of size O(4"n(log(1€) + n)) and two ancillas [KIi13]. This approach is optimal, if the number of qubits is
fixed. For 4-bit circuits, the problem of finding optimal reversible decompositions has been solved already
[GFM10], and from a cryptanalytic angle this is rather useful. For instance, the S-boxes of the block cipher
Serpent operate on four bits, and in an exhaustive key search with Grover’s algorithm this result can be
leveraged to derive efficient quantum implementations of Serpent’s nonlinear part.

Heuristic techniques and manual optimization of quantum circuits have occurred regularly in the quantum
cryptanalytic literature. For instance, algorithmic tools from permutation group theory (cf. [GLRS16]) can be
leveraged on the level of reversible circuits: modeling NOT, CNOT, and Toffoli gates as generators of a
permutation group, expressing an AES S-box in these gates can be translated into a word problem. However,
over the years, more powerful software tools have emerged, and they find broader use in the quantum
cryptanalytic community, leading to improvements in the derivation of efficient quantum circuits. An interesting
example is work on AES by Jaques et al. [JNRV20], which leverages Q# for circuit optimization and resource
estimation. However, as discussed in recent work by Huang and Sun [HS22, Remark 3], such automated resource
estimation still requires some care, and software errors occur. Still, in view of the complexity and size of
guantum cryptanalytic circuits, it is reasonable to expect that automated tools will further gain popularity,
leading to improved/more efficient circuits.

In recent quantum cryptanalytic work, measurement-based uncomputation has gained popularity to implement
pertinent arithmetic (e.g., an AES S-box [JNRV20] or computations on an elliptic curve [HINRS20]). Instead of
translating Toffoli gates in a classical reversible circuit directly into a Clifford+T circuit, AND gates are used. To
realize such an AND gate (and thereby multiplication in GF(2)), an ancilla qubit is used, and uncomputation
involves the execution of gates conditioned on the outcome of a measurement. Key feature of this approach is
that — at the cost of a measurement and conditioned operations — T gates can be avoided. For instance, an AND
gate implementation described by Gidney [Gid18, Figure 3] involves 4 T gates (along with some Clifford gates),
and the uncomputation can be done without any T gates (but involves a measurement).

Because of the complex design space, developing suitable software tools to support the quantum circuit design
process is a natural approach to take. Recent work by Paler et al. [POB22] evidences that intuitive design
approaches may by misleading, e. g., reducing the number of T gates may end up being detrimental to the circuit
depth. Interestingly, the (classical) cost for optimizing large-scale quantum circuits can become non-trivial in itself.
Paler and Badmadjian [PB22] looked at the (energy) cost for optimizing multipliers as used in a large-scale
guantum circuit for mounting an attack with Shor’s algorithm. Their work suggests that, with the currently
available techniques, the energy cost for optimizing a multiplier may already for 8192-bit numbers approach the
magnitude of a Giga-Watt hour.
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4.2 Algorithmic innovations with relevance for symmetric
cryptography

Despite an increasing number of results on more sophisticated quantum attacks against symmetric building blocks,
Grover’s algorithm [Gro96] remains the most prominent quantum algorithm that is known to be applicable to the
analysis of symmetric cryptographic primitives. So, we start by looking at this search procedure. After addressing
its application to a key search for a block cipher, we discuss its use for preimage and collision attacks on prominent
hash functions. In terms of the evaluation scheme from Section 3.2, Grover’s algorithm is (A) provably correct, and
(B) its hardware requirements are compatible with hardware that is currently developed. The algorithm assumes
a fault tolerant implementation, and we address (C) available resource analyses for important cryptographic use
cases below.

4.2.1 Grover’s algorithm

Even though the running time improvement of this algorithm over a classical solution is only in the order of a
square root—and therefore, an exponential time bound still remains exponential—the speed-up is relevant
when quantifying security margins. In general, Grover’s algorithm is a versatile tool for hybrid attack strategies:
one tries to rephrase a(n exhaustive) search inside some classical cryptanalytic approach in such a way that the
requirements of Grover’s algorithm are met. Ideally, one can in this way expedite a time-critical component of
the classical attack with a quantum subroutine, possibly even with an asymptotic gain. Arguably the two most
prominent cryptanalytic applications of Grover’s algorithm are

e Speeding up an exhaustive key search against a block cipher.
e Speeding up a preimage search against a hash function.

Loosely speaking, Grover’s Algorithm can complete a search of a space of size 2" in 272 steps (with very high
probability), therewith offering a substantial speed-up over a classical search that would take on average 2"
steps. To protect against a Grover-based key search, doubling the key length (n) is a natural strategy to consider,
if this is feasible — Bhaumik et al. [BCFNP22] explore this in more detail.

At the core of Grover’s algorithm is a Grover operator which encodes a predicate that decides if a candidate
element meets our desired search criteria. If there are M elements satisfying this predicate in the search space
of size N, the Grover operator needs to be applied O((N/M)Y?) times. In the case of a uniquely characterized
secret key (through a collection of plaintext-ciphertext pairs), the total number of times the Grover operation
would need to be run can be calculated easily based on the key size. For a key of size n, this number is |(4) -
22|, or approximately 2™?, but this can only give a lower bound on the attack costs (qubits, gates, and depth), as
the implementation cost for the encryption scheme itself plays an essential role—the details of the Grover
operator depend on the targeted primitive.

So, while using a high-level description of Grover’s algorithm to compute the cost of breaking symmetric
cryptographic systems such as AES-k (k = 128,192, 256), MARS, SERPENT, SIMON, SPECK, etc. is the right
approach, the details of the cost can vary greatly and rely heavily on the key size as well as the implementation
complexity of the cryptographic system.

Note: Grover’s search algorithm was proved optimal for quantum searching, and it allows no non-trivial
parallelization [Zal99]; improvements would require an attack on the targeted cryptographic scheme itself.

In cryptographic terms, suppose we have a symmetric encryption scheme F that takes a 128-bit key k as input to
encrypt a plaintext P into a ciphertext C = F«(P). In order for Grover’s Algorithm to work, we would need a
plaintext-ciphertext pair (P,C) and a quantum realization of the symmetric key encryption scheme F. The result
of the algorithm will be the appropriate key k*, which when used in the encryption scheme yields the correct
ciphertext with high probability. To characterize the target key uniquely (or at least reduce the number of
candidates to a small set) multiple plaintext-ciphertext pairs may be needed—a typical estimate being 2 or 3.
This causes no fundamental difference for mounting the attack but impacts the amount of quantum resources
needed.
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Grover’s algorithm creates a superposition of all candidate keys, so that each key has equal probability. The
algorithm runs the superposition of keys through F*, which is a Boolean function that returns 1 if and only if the
key is the correct key and 0 otherwise. A key k being correct translates into the condition Fi(P) = C. Owing to the
superposition, each possible key is in effect tried simultaneously and the one correct key (here we are assuming
there is only one correct key) will be “tagged.” Once the correct key is “tagged,” the second phase of the Grover
algorithm, the transform, is run. This transform increases the likelihood of the correct key being produced when
measured. These two phases represent one iteration of the Grover algorithm. If the quantum key was measured
after just one iteration, it would not only fall out of superposition and thus end the ability to proceed, but also
the probability of the correct key being produced is only minimally more than that of producing a random key.
However, since each time the two phases are run, the probability increases, if measured after the correct
number of iterations, the correct key would be produced with high probability.

Note that to evaluate the Boolean function F*, the full encryption process must be implemented on the
quantum hardware and then its result can be compared to the known ciphertext. While the final comparison is a
simple and short quantum operation, the depth and cost of implementing the encryption scheme can vary
drastically and is needed at least once in each iteration of the algorithm. This means not only will, say AES-256,
take more iterations of Grover than AES-128, each iteration will probably require more quantum gates and
qubits, increasing the overall cost further. This additional cost may or may not be negligible in comparison to the
Grover operations, but for a system such as AES-128 which would take approximately 254 iterations of Grover, it
is a pertinent factor to consider in a quantitative analysis.

Case study: the AES family. The Advanced Encryption Standard (AES), designed in 1998 by Rijmen and Daemen
and accepted by NIST in 2001 [NIS01] as the replacement for DES (Data Encryption Standard) [NIS99] is a subset
of the Rijndael cipher[DR99]. AES encrypts with three different key sizes (128, 192, and 256 bit) and all three
have been adopted world-wide and are of cryptographic interest. In [GLRS16] a first cost analysis — at the logical
level — of implementing AES-128, AES-192, and AES-256 as a quantum circuit has been given. Since then, a series
of works identified improvements and different designs. A key design parameter is the handling of the S-box,
which is the only part of AES that requires the use of non-Clifford gates, and ignoring or using the algebraic
structure of this specific S-box allows various design approaches. In addition, different design choices can be
made, focusing on the circuit depth or the number of qubits.

Kim et al. [KHJ18] present a framework to explore time-space tradeoffs for quantum cryptanalytic attacks like a
key search in AES, explore different design choices in parallelizing a Grover-based attack or ensuring uniqueness
of the target key. In [JNRV20], Jaques et al. show how AND-gates and measurement-based uncomputation can
be leveraged to reduce the T-depth and overall depth in a key search for AES — at the cost of increasing the
number of qubits and introducing measurements. Recent work on efficient AES implementations as a quantum
circuit include [ZWS+20, CLCL22, JBS+22, WWL22, LGQW?23], and the values in the subsequent table are taken
from Jang et al.’s fairly comprehensive and recent work [JBS+22].

#CNOT gates | #1qCliff. gates | #T-gates T-depth #qubits overall depth

AES-128 310,416 33,248 196,560 | 120 10,000 769

AES-192 355,792 38,024 224952 | 144 10,576 919

AES-256 439,792 46,031 279,552 | 168 11,120 1076

Table 4.1: Quantum resources for implementing AES according to [JBS+22, Table 7] (depth-minimal design).
#qubits #(Clifford + T) gates overall depth

AES-128 10,001 1.619 - 2% 1.18-274

AES-192 19,505 1.722 - 2116 1.41 - 2106

AES-256 20,529 1.041 - 214 1.65 - 2138

Table 4.2: Quantum resources for a Grover-based key search for AES according to [JBS+22, Table 8] (depth-minimal
design).

The parameters presented here optimize the overall circuit depth. Jang et al. [JBS+22] offer several other
parameter choices. While different optimization options are available and further improvements by small
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constant factors are plausible, the exponential scaling of Grover’s algorithm remains a formidable hurdle for the
number of gates and the circuit depth. Although the quantum security analysis of AES in [BNPS19] still builds on
the gate counts in [GLRS16], the positive view of the authors of [BNPS19] on the post-quantum security of AES-

256 still appears valid.

Referencing [CNPS17], Bonnetain et al. indicate in [BNPS19] that the 128-bit size of the internal AES state may
offer an avenue for quantum cryptanalytic progress. The internal state size of AES does not enlarge when
increasing the key size. So, building on classical results, e.g., on the CTR mode, it is conceivable that for certain
modes of operation, a quantum speed-up might reduce the security level significantly below 128 bit. However,
no feasible quantum attack against AES has been identified so far. Another line of work for which not many
publications are available so far is to try to integrate Grover’s algorithm with classical attacks to lower their cost.
Wang et al. [WCJ22] explore such an option for a classical distinguisher, but again no feasible attack against AES
appears to be known at this point.

4.2.2 Preimage search for a hash function—the case of SHA

A preimage search for a cryptographic hash function is another natural application for Grover’s algorithm. Let H
be a cryptographic hash function with an n-bit output, and restrict H’s input to bitstrings of length n. Intuitively,
restricting a cryptographic hash function H in this way, we should obtain something “close” to a one-way
permutation on {0,1}". Using the search criteria whether applying H to a given n-bit string yields the desired
image, one can expect that Grover’s algorithm yields a preimage for a given image in time O(2"/2). The precise
cost for such an attack depends on the cost for implementing H (for restricted input) as a quantum circuit. Amy
et al. discuss in [AMG+16a] the costs of a Grover-based preimage attack on two specific variants of the SHA
family of hash functions. The Secure Hash Algorithm (SHA) is a family of hash functions standardized by the
National Institute of Standards and Technology (NIST). The SHA-2 and SHA-3 families are in use today and of
significant cryptographic interest.

Amy et al. discuss preimage attack costs for SHA-256 [NIS15a] and SHA3-256 [NIS15b]. The paper computes
these costs and uses a quantum circuit optimization tool “T-par” [AMMR13] to reduce the number of T gates
and T-depth. This T-par optimization tool can introduce a gate that is equivalent to a T? gate, and we count it for
gate counts and depth like a T gate.

A quantum implementation of SHA-256 would require 648,640 Clifford gates, 401,584 T gates, a T-depth of
144,786, and an overall depth of 528,768 [AMG+16a]. When optimized using T-par these numbers change to
6,129,072 Clifford gates and 301,968 T gates with a T-depth of 70,400 and overall depth of 830,720. Both
computations require 2,402 qubits. In comparison, an optimized quantum implementation of SHA3-256 would
need 34,429,525 Clifford gates and 499,200 T gates with a T-depth of 432 and overall depth of 11,040 using
3,200 qubits. For computing (t4) - (228) total Grover iterations, the total numbers for SHA-256 and SHA3-256
are as follows—not surprisingly, the running time/circuit depth remains a limiting factor of the attack.

#qubits #(Clifford + T) gates overall depth
SHA-256 2,402 3.457 - 2149.495 4.44 - Q14616
SHA3-256 3,200 1.8671 - 215281 5 90 . 213952

Table 4.3: Quantum resources for a Grover-based preimage search according to [AMG+16a].

Note: Banegas and Bernstein [BB17] consider a multi-preimage search with a quantum algorithm. They combine
Grover’s technique with a reversible parallel rho-algorithm and make a case that quantum preimage search
benefits asymptotically from having multiple targets. At this point, their analysis focuses on asymptotics, and
gate-level resource counts are not available. More recently, Preston [Pre22] suggests that SHA-3 can be
implemented using fewer qubits than in [AMG+16a] and offers software implementations of a number of hash
functions, including the SHA-2 and SHA-3 families, making use of Microsoft’s Quantum Development Kit. Still,
the running time/circuit depth for a Grover-based preimage search remains a formidable challenge.
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4.2.3 Collision search with a quantum algorithm

The standard use of Grover’s algorithm is to determine a secret key that matches a plaintext-ciphertext pair (or
several of them). However, one can redefine the algorithm to find a hash collision. In the standard application of
Grover’s algorithm, we encrypt a known plaintext using candidate keys in superposition. The implemented
oracle returns a ‘1’ if the computed ciphertext is equal to the known ciphertext and a ‘0’ otherwise, and (for a
unique solution) after O(NY?) iterations we have a good chance to measure the correct key.

Now, imagine instead, the plaintext is in quantum superposition and the algorithm only returns a ‘1’ when the
hash values are equal but the plaintexts are not, thus finding a collision. After the same O(NY?) iterations, the
algorithm would return a plaintext distinct from the given plaintext that produces the same hash value. If we
take that idea and combine it with the birthday attack, we can speed-up the computational time of the
algorithm using the traditional time/space trade-off of finding a random collision (as opposed to a specific
solution).

Before proceeding, recall that Grover’s Algorithm has two similar but different forms, depending on whether the
number of solutions is known or not which is directly related to the number of expected collisions here. If the
specific number of collisions is known, the simpler form of Grover can be applied while an unknown number of
solutions requires the use of the more generic form of the algorithm found in [BBHT98].

Hash functions like SHA-256 [NIS15a] and FORK-256 [HCS+06] take an input of (for practical purposes) arbitrary
size and map it to an output size of 256 bits, but it might be beneficial to explain the quantum collision algorithm
assuming the number of collisions is known and finite.

Assuming the hash function is r-to-one. As explained in [BHT98], assume there exists some random hash
function H such that H: X - Yis an r-to-one function, meaning exactly r inputs produce each output where r > 2.
Thus, if |X| = N =2"then |Y | = N . If space is available, the best solution requires the computation of a random
subset K of X of cardinality k = (Nr)¥3 and each tuple stored in a table. This table can be computed on a classical
computer and would take k evaluations of H. This list would then need to be sorted and if any collisions are
found such that H(x;) = H(x;) then {x,x;} can be output and the search is over, however this probability is quite
low.

While this list can be computed on a classical computer, the table would need to be stored in qubits so Grover
can reference this list of values in the table each iteration. Thus, if O((N/F)¥3) storage qubits are unavailable or
too costly, the list would need to be reduced which would increase the running time of the algorithm.

The algorithm would compare the computed hash value with all the values in the second column of the table
and return a ‘1’ if the output value is found in the second column of the table and the input value is not found in
the first column. The algorithm would return a ‘0’ otherwise. After a specific number of iterations, a collision
would be found with probability 1/2 and the result would be a plaintext x € X\K such that H(x) is a value in the
stored table.

To complete the process, H(x) would need to be computed and found in the table. If H(x) = H(xo) for some
(x0,H(x0)) tuple in the table, then {x,xo} is a collision which can be output.

Since k distinct input values are stored for comparison and each output value has r distinct input values that
hash to it, the probability of a collision is r -k/N. Thus, the expected number of Grover iterations would be about
(NArk))Y? = (NArNY3))Y2 = (N1) V3. Since the number of classical computations of H is k+1 = (N1)Y3 + 1 we get the
expected run time of the algorithm to be O((Nr)¥3) times the time it takes to compute the hash function.

Generic hash functions. When less is known about the hash function or even when we just know it is not
specifically r-to-one for any r > 2 the argument above must be slightly modified. Changes must be made to how K
C Xis chosen, but the more general version of Grover can be used. Obviously, the smaller the chosen K € X the
longer it will take to find a collision and while a larger K will reduce the number of Grover iterations, the storage
and classical computations of the hash will increase.

However, if the input size is known to be a specific finite number or at most some finite number, then |K| can be
determined based on the probability of each output being repeated [FHZ14], but it is still O(NY3) where N is the
size of the hash space. When searching for a collision in SHA-256 or FORK-256 or other hash functions, this is all
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that is necessary since the searched input size can simply be fixed to be anything bigger than 256 bit to
guarantee a collision.

Searching for a claw. Another result in [BHT98] is that of finding a claw. A claw is similar to a collision in a hash
function but is a collision among two hash functions [OK91]. Specifically, if F and G are two distinct hash
functions suchthat F: X > Zand G: Y= Zwith |X| = |Y | = |Z| = N, then one can find a pair x € Xand y € Y such
that F(x) = G(y) in an expected number of O(N¥3) by applying the same algorithm as above expect picking the K
subset from before from X and applying the Grover searchto Y.

Even though these functions more closely resemble permutations, this algorithm can again be extended to more
general r-to-one hash functions in the same way as before. And while it is not expressly stated in [BHT98], it
would seem to still hold for hash functions that are not specifically r-to-one either. For Grover to run most
efficiently when looking for a claw, any collisions completely in K should be removed and replaced before
continuing. This is because the Grover search is most efficient when the exact number of solutions is known and
a collision inside K reduces the probability of finding a collision outside of K. However, since we already assume
this probability to be extremely low and are already sorting K, this is a minor additional step.

Therefore, for any generic hash function where N = 2™ is the size of the hash space, picking a random K € X such
that | K| = O(NY3) yields an expected collision with probability greater than 1/2 after a run time of O(NY3). The
exact run time depends on the size of K, the number of Grover iterations, the cost of computing the hash
function and searching for a collision in K. Also, the assumption is that there are O(N¥3) quantum bits of storage
to run Grover’s Algorithm which is non-trivial. Less than this would increase the overall search time which would
max out at O(NY?) (the standard Grover run time).

Note: Similar as for AES, Kim et al. [KHJ18] explore trade-offs for attacks against hash functions with Grover’s
algorithm, including the case of SHA-256 and SHA-384. However, again the exponential scaling of Grover
remains a serious obstacle, and no feasible attacks against SHA-256 or SHA-384 are identified.

Questions on quantum collision search. Work by Bernstein [Ber09] questions the cost-effectiveness of the
quantum collision search by Brassard, Hgyer, and Tapp. Specific obstacles pointed out are the required cost for
accessing the (large) quantum memory needed, and the cost needed to implement the Grover oracle, which
goes well beyond a single application of the hash function. Following the reasoning in [Ber09], mounting a purely
classical collision search is more cost-effective than implementing a quantum algorithm as described above. The
significance of quantum collision attacks remains controversial. In [CNPS17], Chailloux et al. present a quantum
collision search algorithm where, with S (up to N/4) processors, the amount of quantum memory scales linear in
S-log N and — ignoring logarithmic factors — the runtime is reported to scale with N/5-5~3/5, The choice S=N> is
suggested to outperform the best classical algorithm in the timex(classical+quantum space) metric, but
Bernstein [Ber17] questions the accuracy of Chailloux et al.’s analysis and suggests that a classical (parallel rho)
collision search outperforms the proposed quantum algorithm. At this point, it remains questionable if quantum
algorithms can offer a practical benefit for finding collisions in established hash functions like SHA-256 or SHA-
384.

Augmenting classical attacks. In [KLLNP16], the study of differential and linear cryptanalysis in connection
with quantum attacks is initiated. On the one hand, a scenario with quantum queries to the attacked block
cipher is considered, which for today’s implementations on classical platforms may be considered an
unrealistic model. On the other hand, the paper also makes the point that even when restricting to classical
queries, a quantum algorithm in combination with differential and linear cryptanalysis can sometimes yield
a more efficient attack than a key search with Grover. Such hybrid classical-quantum attacks against
symmetric primitives turned out to be a fruitful research area. Hosoyamada and Sasaki argue in [HS20] that
a differential trail that may not be exploitable classically, may still be exploitable for quantum cryptanalysis.
For 7-round AES-MMO and 6-round Whirlpool, they show that a quantum computer can enhance the reach
of the best-known classical attack. Dong et al. [DSS+20], expand on this line of work, reducing the quantum
resource requirements of [HS20], and obtain improved attacks on AES-MMO and AES-MP. Further research
in this area by Dong et al. [DZS+21], led to an improved attack on the compression function of Whirlpool, and it
seems plausible that further improvements of dedicated quantum attacks on specific hash functions can be
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identified. Hosoyamada and Sasaki [HS21] showed that specifically for SHA-256 and SHA-512 the reach of
classical attacks can be increased by seven and twelve steps, respectively.

4.2.4 Leveraging other quantum algorithms

Grover’s algorithm is by no means the only quantum cryptanalytic tool available to attack symmetric
primitives—see, for instance, [RS15, KLNP16, KLLNP16, SS17, BNP18]. Notwithstanding this, it is fair to say that
for attacking today’s implementations, which are entirely classical, Grover’s approach is currently the most
relevant tool. Conceptually, Simon’s algorithm enables an interesting and different type of attack, but from a
practical point of view, it is important to pay close attention to how an application/oracle interface is accessed.
What is Simon’s algorithm? It is a quantum algorithm which can solve the following problem in expected
polynomial time, provided that the involved function f: {0,1}*>{0,1}* can be evaluated in polynomial time on a
superposition of inputs. For the function fit is assumed that k'2k and one of the following conditions holds:

1. fisinjective, or
2. there is a bitstring s, not entirely zero, such that for every xzx’ we have f(x) = f(x') if and only if x=x'P s.

The task is to decide for a given f which of the two cases holds, and in the second case to determine the “hidden
shift” s. In the evaluation scheme of Section 3.2, Simon’s algorithm qualifies as (A) provably correct, and from a
cryptanalytic point of view, involving Simon’s efficient solution to this problem is attractive, when the adversary
can actually implement and evaluate f at a superposition. Bonnetain [Bon21] gives a thorough cost analysis of
Simon’s algorithm from a cryptanalytic angle. A common problematic assumption in attacks based on Simon’s
algorithm is that the function f depends on the attacked secret key, so that quantum access to an
implementation of the attacked cipher which stores the attacked secret key becomes necessary. It is fair to say
that for today’s classical implementations this assumption is not met. So, while Simon’s algorithm is in principle
(B) compatible with quantum hardware as developed today, the cryptanalytic context — attacking a purely
classical implementation of a symmetric cryptographic primitive like AES-128 — may impose an unrealistic
hardware assumption, as a required superposition access is unavailable, leaving a more detailed (C) quantum
resource analysis to be of very limited use.

Related-key attack. To illustrate this point, let us take a brief look at a quantum version of a related-key attack in
[RS15], which relies on Simon’s algorithm and in principle enables the recovery of the secret key of a large class
of block ciphers in polynomial time (measured in the key length). So, if quantum access to the keyed primitive
is/were indeed possible, the attack is highly potent against symmetric encryption schemes. The setting
considered in [RS15] is a related-key attack, where the function f depends on the attacked block cipher (which
can reasonably be assumed to be known), but also on the attacked secret key. Access to the latter is in a related-
key attack in principle available—commonly modelled through a suitable encryption oracle. However, to bring
Simon’s algorithm to use, the oracle must accept a superposition of inputs, which for classical implementations
is not the case. This is very different from (and less threatening than) Grover’s algorithm, where the attacker
needs only the specification of the block cipher (plus plaintext-ciphertext pairs) to mount an attack against the
secret key. However, if quantum access were available, the resulting attack would be polynomial time—unlike a
key search with Grover. Cid et al. [CHLS20] consider quantum attacks against Feistel structures and expand on
[RS15]. The related-key attacks considered in [CHLS20] limit the adversary in that its control of the quantum
superpositions that can be queried is restricted.

Modes of operation. Similar as in the case of the related-key attack just mentioned, in [KLNP16] Kaplan et al.
show how Simon’s algorithm can be leveraged to invalidate the security of popular modes of operation for
achieving authenticated encryption or for constructing a MAC from a block cipher. The same paper uses Simon’s
algorithm—with the same limitation—to expedite a slide attack. More recently, Sun et al. [SCQWG23], expanded
this line of work, proposing quantum attacks on a number of MAC designs where the classical security aims at
guarantees beyond the birthday bound. Conceptually, these attacks are interesting, but from a pragmatic point
of view they are not an imminent threat for today’s implementations, as the assumptions of the attack model
are not met.

Relating to Simon’s algorithm, Bonnetain et al.’s work in [BHNP+19] deserves mentioning, as it shows that in
specific cases, Simon’s algorithm can be leveraged for a key recovery with fewer or no superposition queries to
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the attacked cipher than was reported before. In [BSS22], Bonnetain et al. demonstrate that in fact for a specific
symmetric design, Simon’s algorithm can enable a speed-up that goes beyond Grover’s without requiring
superposition access. While the attack scenario may still be restrictive, conceptually this improvement beyond a
square root savings is interesting.

Recent work by Bonnetain et al. [BLNPS21] shows that potentially a broader class of quantum algorithms that
rely on Fourier sampling have potential for symmetric cryptanalysis. While the use of superposition queries is
limiting the applicability of their attacks, this work appears interesting: it suggests that the quantum
cryptanalytic toolbox for symmetric schemes qualitatively expands well beyond Grover-based approaches.

4.3 Algorithmic innovations with relevance for asymmetric
cryptography

For cryptographic algorithms that rely on the computational hardness of factoring “large” integers or of
computing discrete logarithms in a suitably chosen cyclic group, the impact of quantum algorithms appears at
this point more fundamental than for symmetric cryptography. Leaving aside a possible performance penalty,
doubling the key length and ensuring a sufficiently large state size seems a viable approach to address the most
impactful quantum attacks — recent work by Bhaumik et al. [BCFNP22] discusses a generic construction for such
a “doubling up.” Similarly, the available quantum speed-up in finding a collision for a hash function is only
polynomial. For factoring and computing discrete logarithms, Shor’s seminal work in [Sho94, Sho97] reveals a
very different picture: He presented polynomial time solutions for factoring and for computing discrete
logarithms, which is very different from the best known classical algorithms, which exhibit, at best, a
subexponential run time. In the evaluation scheme from Section 3.2, Shor’s algorithm qualifies as (A) provably
correct, (B) compatible with currently developed hardware, and (C) the literature offers solid quantitative
insights into the quantum resources needed. Before quantifying quantum resources for factoring and computing
discrete logarithms for common cryptographic problem instances, it may be helpful to start out with an
asymptotic perspective as presented, e.g., in [BBM17] and [RNSL17c].

Factoring integers. The predominant classical approach to factoring in cryptanalytic contexts is the Number Field
Sieve (NFS). For factoring a composite n-bit number, the running time of this algorithm is estimated to be
subexponential of the form (exp(n'/3 - log¥3 n))*°{Y) with a constant ¢ of about 1.902. Bernstein et al. in [BBM17]
present a quantum algorithm with a better — but still subexponential — running time: They reduce the exponent ¢
to about 1.387, and at the same time they ensure that the number of qubits needed by their method grows with
n?3+ only, i.e., the growth is sublinear. This is conceptually different from Shor’s algorithm, where the number
of qubits needed is linear in n. However, the expected running time of Shor’s algorithm is only cubicin n, i.e.,
polynomial in the bit length. While there has been progress in constant optimization in the complexity of Shor’s
algorithm, achieving simultaneously a polynomial running time and using only a sublinear number of qubits
remains a challenge.

Discrete logarithms. From a cryptographic perspective, the multiplicative group of a prime field is arguably the
most interesting case of a discrete logarithm problem in a finite field, and again an NFS-based technique is
available in this scenario. Also in this case, [BBM17] offers a way to speed-up at least one of two phases of the
classical algorithm—in the running time of (exp(n/3- log?3 n))e*°() (now n represents the bit size of the field), the
constant ¢ can again be reduced from about 1.902 to about 1.387, involving only a sublinear number of qubits.
From what we know so far, for elliptic curves over prime fields, the techniques in [BBM17] do not apply, and for
adequately chosen curves, the expected running time of the best available classical algorithm (a parallel version
of Pollard’s rho method) is exponential in the bit length n of the group size: ((p/2)"/2 + o(1)) - N¥2, where N is the
group size. Shor’s algorithm offers here an exponential speed-up: Shor’s algorithm has an expected running time
that is cubic in the bit length of the group size, i.e., it is a polynomial time solution. For implementing this
method, an—in the bit length of the group size—linear number of qubits is used, however. Similar as for
factoring, being able to restrict the number of qubits to a sublinear range while preserving polynomial running
time remains a challenge.
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4.3.1 Factoring integers

Shor’s solution can be expected to find a factor of a composite n-bit number in time O(n3) —following Proos and
Zalka [PZ03], we can estimate the constant to be about 4. Essentially, there are two phases to the algorithm, the
second of which is entirely classical. This portion is not hard to implement, but it is worthwhile to put some
thought into the implementation of this portion, so that unnecessary repetitions of the first phase, which relies
on a quantum computer, can be avoided [Law15, Joh17, Eke21, Eke22]. In fact, Ekera [Eke21, Eke22] shows that
usually a single execution of the quantum part of Shor’s algorithm suffices to recover the complete factorization
of the target number through efficient classical post-processing. The first (quantum) phase of Shor’s algorithm is
also referred to as order finding: we must find the order of a randomly chosen a € Z/NZ*, where N is the
number to be factored. No efficient classical algorithm is known for this problem, but from Shor’s work we know
that the Quantum Fourier Transformation (QFT) can be invoked to solve this problem efficiently on a quantum
computer. Unlike a classical Fast Fourier Transform (FFT), a QFT can be implemented in polylogarithmic time
(namely O(log 2N)). Cleve and Watrous [CWO00] offer a theorem which neatly separates a classical and a quantum
portion of factoring an integer—they argue that a polynomial size classical pre-processing and a polynomial-size
classical post-processing can be combined with an O(log n)-depth quantum circuit of polynomial size.

The most expensive operation, and the bottleneck in running Shor’s algorithm, is the computation of a modular
exponentiation on a quantum computer: we must be able to compute a* mod N, where k is in superposition.
There is ample classical work available on implementing this type of arithmetic, but we do need this arithmetic
as a quantum circuit. There is a strong connection with Shor’s algorithm for the discrete logarithm problem in a
prime field, as in the latter case we also face an exponentiation task with a known modulus. So the question of
implementing modular arithmetic efficiently as a quantum circuit is of key importance to actually use Shor’s
algorithm.

The number of qubits needed to factor with Shor’s algorithm is quite modest—Beauregard [Bea03] showed that
for an n-bit number a circuit with 2n + 3 qubits and O(n3 log(n)) elementary quantum gates (and cubic depth) is
available. Zalka [Zal08] argues that 1.5n logical qubits suffice. Work by Ekera and Hastad [EH17] indicates that
factoring might be feasible with more shallow circuits, offering roughly a reduction by a factor of 4. Having the
number of qubits proportional to the bitlength n of the number to be factored appears essential with the
current state-of-the-art, unless one is willing to sacrifice the polynomial running time (see the discussion of
Bernstein et al.’s approach from [BBM17] below.) One of the most recent detailed cost analyses of factoring an
RSA modulus is due to Gidney and Ekera [GE21], and also here the number of logical qubits is essentially chosen
to be linear (actually, slightly worse): 3n + 0.002n-log, n — using a slightly worse than cubic (0.3n*+0.0005n%-log;
n) number of Toffoli gates.

Resource counts and going beyond Shor’s algorithm. It has been fairly common, that research papers did not
elaborate on how to pass from a (correct) high-level algorithm to an actual quantum circuit. An interesting and
elaborate design to factor an RSA modulus with Shor’s algorithm is due to Pham and Svore [PS13]. They employ
a 2D nearest-neighbor quantum architecture with the following resource counts: depth O(log 3n), size O(n* log
n), and O(n*) qubits. Pham and Svore offer explicit bounds, and the constants hidden are non-trivial. E. g., for the
number of qubits in a modular exponentiation the multiplicative constant in front of the n* is about 95,000 and
the number of gates hides a term in the magnitude of 3.5 - 10° - n*. Still, this result offers an exponential
improvement in circuit depth over prior nearest-neighbor solutions at the cost of a polynomial increase of gate
count and number of qubits.

If we give up the nearest-neighbor restriction and would like to keep the number of qubits small, a design
proposed by Haner et al. in 2016 can at the moment be seen as leading contender for a cryptographically
relevant implementation of Shor’s algorithm [HRS17]. This proposal has been analyzed at a quite detailed level,
and the available algorithm analysis is backed by serious software simulation (with cryptographically relevant
input sizes). In addition, the authors make a case that their Toffoli-network based arithmetic facilitates
debugging when being implemented on a quantum hardware, which from an experimental point of view is
indeed a valuable feature. With 2n + 2 qubits, the width of Haner et al.’s solution is quite moderate, the depth is
0(n3), and the number of gates calculates to 64n3 loga(n) + O(n3) = O(n® log n). If one is willing to invest a larger
number of logical qubits, Gidney and Ekera’s GE21 design offers an attractive alternative. The paper uses a
number of techniques to reduce the cost for arithmetic. In addition to reducing the circuit depth by factoring
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through reduction to a short discrete logarithm computation (see below), the arithmetic is optimized in several
ways. For instance, instead of a traditional representation of a modular integer as a computational basis state, a
so-called coset representation (cf. [Zal08]) is invoked and the exponentiation makes use of windowing. From the
perspective of the evaluation scheme in Section 3.2, the (A) provable correctness and (B) compatibility with
currently developed quantum hardware of the approach by Gidney and Ekera is on par with Shor’s algorithm,
but the (C) detailed quantum resource analysis changes. While the number of logical qubits is larger than in
Héaner et al.’s approach, Gidney and Ekerad’s approach offers savings in the number of non-Clifford gates (see
[GE21, Table 1]).

If we give up the nearest-neighbor restriction and accept some uncertainty about the asymptotic cross-over, a
proposal by Bernstein et al. [BBM17] becomes interesting. This algorithm comes with a heuristic complexity
analysis, emphasizes the saving of qubits and restricts to using (log N)%3*°™ |ogical qubits to factor an RSA
modulus N. The running time is about exp((log N)¥3(log log N)%3)1-387+(1) Key contribution of this algorithm is
that the number of qubits grows sublinear in the size of the number to be factored—this is different from Shor’s
algorithm. Bernstein et al.’s approach starts out with a fast classical factoring algorithm (the Number Field Sieve)
and then leverages Grover’s algorithm to speed-up the sieving step. Remarkably, the predicate used in Grover’s
algorithm relies on an implementation of Shor’s algorithm—basically, Shor’s algorithm is deployed as
smoothness test. The exact cost of this elaborate algorithm for a fixed key size (like a 2048-bit modulus) is still
unclear, even though asymptotically this new approach plausibly saves qubits over Shor’s algorithm. In terms of
the evaluation scheme in Section 3.2, (A) the correctness of [BBM17] is — within the limitation of a plausible
heuristic analysis as is common for classical factoring algorithms — proven. Fundamentally, the approach is (B)
compatible with currently developed hardware, but with the currently available asymptotic analysis, a (C)
detailed quantum resource analysis remains an open issue.

In a similar line of work, Mosca et al. [MBV20], try to expedite the classical Number Field Sieve, using a quantum
subroutine. Their approach uses a (quantum) SAT solver for smoothness testing based on a circuit that is derived
from the classical Elliptic Curve Method. Under the assumption that a quantum computer can achieve a
sufficient speed-up over classical SAT solvers, an asymptotic speed-up for the Number Field Sieve is obtained —in
the case of a quadratic quantum speed-up, the asymptotic running-time of [BBM17] could be obtained. A key
idea here is that implementing an efficient quantum SAT solver could potentially be feasible using annealing,
potentially circumventing the need for a fault-tolerant implementation. However, it is unclear if such an efficient
guantum SAT solver can be built. For cryptographic parameters of interest, classical special-purpose hardware
that implements the Elliptic Curve Method (see, for instance, [GJKPS06]), may potentially be an interesting
alternate route to (non-asymptotically) speed-up the Number Field Sieve. Thinking in terms of the evaluation
scheme in Section 3.2, (A) the correctness of the approach in [MBV20] is non-controversial, but it is unclear that
a speed-up over a classical solution can be achieved, as we (B) currently lack a plausible candidate hardware for
the needed SAT solver implementation.

The idea of side-stepping the Number Field Sieve altogether and to capture integer factorization directly as a SAT
problem can been considered, too, but this approach does not seem promising. Specifically, the authors of
[MV22] note that they “are not aware of any evidence that any SAT-based quantum factoring results to date [...]
are relevant milestones toward large-scale integer factorization or the demonstration of a speed-up over the
best known classical algorithms for integer factorization.”

In December 2022, Yan et al. proposed another hybrid approach [YTWJ+22], combining a factoring algorithm
suggested by Schnorr with a quantum approximate optimization algorithm (QAOA). The paper suggests that this
approach may be able to threaten a 1024-bit RSA modulus with only 205 physical qubits and a 2048-bit RSA
modulus with only 372 physical qubits. More general, for factoring an n-bit number the number of physical
qubits is estimated to be sublinear as O(n/log n). The paper discusses experimental results, including the
factorization of a 48-bit number. However, significant doubts about the feasibility of this approach remain
[GGRV+23]. From the perspective of the evaluation scheme in Section 3.2, (A) the scalability of the underlying
classical factoring algorithm to cryptographically relevant numbers is not broadly accepted in the research
community, and the potential for a speed-up with the proposed quantum subroutine is unclear. Yan et al.
acknowledge uncertainty about their approach, stating that the quantum speedup of the algorithm is unclear
due to the ambiguous convergence of QAOA. The currently emerging view on Yan et al.’s approach is that it does
not offer a feasible attack against today’s RSA parameters.
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Reducing the circuit depth. Several authors proposed modifications of Shor’s algorithm with the goal of
reducing the requirements on the underlying quantum hardware. At the cost of a (more expensive) classical
post-processing phase, the use of simpler quantum hardware becomes possible. The simpler quantum device
may then have to be used multiple times to collect sufficient data for a successful factorization.

Specifically, Ekera and Hastad [EH17], building on earlier work by Ekera [Eke16], reduce the task of factoring an
RSA modulus N = pq to computing a short logarithm inside the multiplicative group modulo N. This reduction is
entirely classical — a discrete logarithm problem is derived, where the discrete logarithm is known to be p+g
(with high probability) — which for practical choices of p and g is small compared to the order of the
multiplicative group modulo N. The fact that the exponent is small can then be leveraged in the quantum portion
of the algorithm to work with smaller exponents. The resulting setting is pretty much the same as for Shor’s
original approach, but one can reduce the number of T gates by approximately a factor 4 (cf. [RNSL17c, Remark
3]). When using a semi-classical implementation of the QFT, which is standard, there is not really a saving in the
number of qubits, however.

Seifert’s earlier work [Sei00] is similar in nature to Ekera and Hastad’s approach in that a more elaborate
classical prost-processing is used, with the goal of having a simpler quantum hardware that is used multiple
times to collect sufficient information to ensure a successful factorization. However, the key obstacle in
implementing Shor’s algorithm — implementing the modular arithmetic — remains. At this point, it seems fair to
say that the techniques introduced by Seifert, Ekerd, and Hastad reduce the number of gates (and circuit depth)
by roughly a factor 4, but do not have a relevant impact on the number of qubits needed. Still, Gidney and
Ekera’s work [GE21] illustrates that for other resource counts, like the measurement depth (which is relevant
when leveraging measurement-based uncomputation), these observations can be valuable.

4.3.2 Computing discrete logarithms

Shor’s solution to the discrete logarithm problem is remarkably generic and affects any finite cyclic group of
cryptographic interest. Again, the algorithm includes a classical phase, which is easy to implement, and a phase
which requires a quantum computer. The pertinent quantum circuit begins with a simple application of
Hadamard gates, finishes with a QFT, and in between relies on the availability of efficient group arithmetic: to
find the discrete logarithm of h €(g) we need to be able to compute (in multiplicative notation) g« - h* where the
exponents k and k' are in superposition. The exact cost of this operation will depend on the complexity of the
underlying group arithmetic. Just as in the case of factoring, this (double) exponentiation is the bottleneck of
Shor’s algorithm—for the QFT portion we can rely on the results of Cleve and Watrous again. As noted by Mosca
and Zalka [MZ04], for the discrete logarithm setting, we could in principle even use an exact Quantum Fourier
Transform instead of an approximate version (whose dimension is a power of two), but there appears no
obvious practical gain in this approach.

If the target subgroup is embedded in a finite prime field, we face the task of implementing simple modular
arithmetic, resulting in a situation very similar to the one for factoring. The fact that our modulus is now a prime
number is, as far as the implementation complexity goes, without significance. We can (re-)use the modular
exponentiation circuits from Shor’s algorithm for factoring to implement the needed group arithmetic. Perhaps
unsurprisingly, detailing circuits for this scenario has not been a topic of significant interest in the research
literature so far. More recently, [GE21] gives some explicit cost estimates, taking into account, e.g., if a discrete
logarithm is known to be small. Overall, the cost estimates provided by [GE21, Table 4] confirm the similarity in
complexity for factoring and discrete logarithms in a prime field.

For elliptic curves, which are now arguably the most popular platform for discrete logarithm-based
cryptographic solutions, the situation is different. There is a large body of work on implementing elliptic curve
arithmetic efficiently on classical hardware architectures. For efficiency reasons, it is therefore tempting to
invoke a carefully drafted curve representation to minimize the circuit cost for the (double) exponentiation in
Shor’s algorithm. This opens seemingly an interesting degree of design freedom, but an important technicality
needs to be considered: For Shor’s algorithm to work, a unique representation of group elements must be
ensured before the QFT step—this implies that a naive use of projective coordinates is not adequate. The
problem is somewhat similar to the uniqueness requirement for distinguished points in parallel classical
implementations of the Pollard-rho algorithm.
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A popular algorithm layout to implement the double exponentiation is to juxtapose two sequential variants of a
double-and-add procedure [PZ03, KZ04, MMCPQ9]. Each addition circuit adds a precomputed point, i. e., one
operand can always be “hard-coded,” to the current intermediate result if and only if the appropriate bit in the
exponent k respectively k' is set. To reduce circuit complexity, this addition is commonly only synthesized for the
“generic case” (doubling, addition of the inverse, and identity argument are ignored). High-level modifications
can be applied to reduce the depth of such a circuit: Roetteler and Steinwandt [RS14] suggest parallelizing the
double exponentiation g* - h¥ with a tree structure that substantially reduces the circuit depth at the expense of
additional qubits. The extreme parallelization considered in [RS14] to achieve low depth exploits a uniform
addition law on the underlying elliptic curve. In principle this is not needed, but unlike the sequential solution, a
full implementation of the addition law—including all “exceptional cases”—is assumed. So far, no gate-level
analysis of this parallel approach has been published for the prime field case. For binary fields, a depth O(log 2n)
implementation of Shor’s algorithm is possible, but this comes at the cost of investing many additional qubits, so
that a tree structure can be realized. For the prime field case one would have to cope with the same issue—to
implement the parallel tree structure, a large number of qubits would be needed, and implementing the general
case of the addition law appears quite costly. It is fair to say that at this point the “obvious” sequential approach
to implement a double-and-add is the most promising approach for realizing the scalar
multiplications/exponentiations in Shor’s algorithm for elliptic curves.

As far as the curve representation and ground field arithmetic are concerned, various papers looked at the case
of binary fields, and state-of-the-art work by Banegas et al. [BBvHL20] offers a realization of Shor’s algorithm on
an elliptic curve over GF(2") with 7n + [logz(n)] + 9 logical qubits. For the prime field case, the available research
literature on efficient quantum circuit realizations is still fairly modest.

Direct use of a (short) WeierstraR form with affine coordinates. This is the approach taken by Proos and Zalka
[PZ03] and avoids any problems with a non-unique representation of group elements. For performing the
necessary ground field inversion, a quantum implementation of the Euclidean algorithm is employed. The
resulting implementation of Shor’s algorithm over an n-bit elliptic curve group over a prime field requires about
6n logical qubits and a running time of about 360kn3, where k(= 1) is a constant to reflect the cost k - n of an
addition between a classical and a quantum argument. Work by Roetteler et al. [RNSL17c] on the discrete
logarithm problem on elliptic curves over prime fields opts for a (short) Weierstra® form with affine coordinates,
too, and from the discussion given there, it is indeed not clear that alternative point representations enable a
relevant reduction in quantum resources. Haner et al.’s more recent work [HINRS20] uses again affine
WeierststaR arithmetic, but introduces various improvements, including the use of measurement-based
uncomputation. The number of logical qubits is about 8n+10.2 |log n|-1, using a depth of about 509n3 - 1.84 x
2%, A different trade-off reduces the depth to about 2523n% + 1.10 x22°, but it needs 11n + 3.9|log n| + 16.5
qubits. Haner et al. offer optimization for the number of T gates, too, and Webber et al.’s recent quantum
resource estimate [WEWH22] for attacking a 256-bit elliptic curve discrete logarithm builds on the approach in
[HINRS20].

Temporary use of projective coordinates. It is a natural idea to work with projective coordinates and convert
them back to affine coordinates before the QFT step, so that the number of divisions can be reduced to one.
Cheung et al. [MMCP09] used this approach to find a depth O(n?) circuit for the discrete logarithm problem on
ordinary curves over GF(2"). Subsequent work by Amento et al. [ARS13] and Budhathoki et al. [BS15] goes a
similar line and tries to employ a carefully chosen curve representation to reduce the number of T gates with
mixed projective-affine additions. However, no such approach has been explored at the gate level for prime
fields. At this point the seemingly obvious approach with a short affine Weierstral® equation can indeed be
considered the state-of-the-art.

Going beyond Shor’s algorithm. In [Eke21b], Ekera extends earlier work on trading more extensive classical
post-processing for the (repeated) use of a simpler quantum device, and presents an algorithm that does not
require the order of the underlying group to be known. In cryptanalytic applications with a group of hidden
order, Ekera’s algorithm enables a reduction of the number of group operations that need to be executed on a
guantum computer compared to an approach based on Shor. Arguably, the more prominent cryptanalytic
setting is a discrete logarithm problem in a cyclic group of known order. For this case, [Eke21c] improves slightly
over [GE21] — reducing the number of group operations in each run of the quantum computer from about
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n+2n/s to about n+n/s for a trade-off parameter s. Compared to Shor’s original algorithm, optimistically, we may
hope that Ekerd’s approach approximately halves the number of gates and the circuit depth.

In [Kal17], Kaliski suggests a hybrid approach to the discrete logarithm problem, leveraging a classical result by
Blum and Micali. The idea is that for solving the discrete logarithm problem efficiently with a classical algorithm,
it is sufficient to be able to approximate the half-bit of the discrete logarithm — which indicates whether the
secret exponent is less than half of the group order — non-negligibly better than guessing. Kaliski suggests a
candidate quantum algorithm for finding such a half-bit approximation, but a detailed analysis of how to derive a
guantum circuit for cryptographically interesting problem sizes is currently unavailable. In the evaluation scheme
of Section 3.2, Kaliski’s hybrid approach offers (A) a correct algorithm, and it is (B) compatible with currently
developed quantum hardware, but (C) the exact quantum resource needs for relevant problem sizes are unclear.

4.4 The quantum linear system algorithm (HHL)

In [HHLO9], Harrow et al. proposed a quantum algorithm to efficiently solve a type of linear algebra problem.
This quantum linear system algorithm is now commonly referred to as HHL — after the initials of its inventors
Harrow, Hassidim, and Lloyd. The algorithm can provide an exponential speed-up over the best available
classical algorithm (based on the conjugate gradient method). One aspect that makes the HHL algorithm
potentially interesting from a cryptanalytic point of view is the possibility to use it to solve polynomial systems of
equations over GF(2). We give a brief overview of key aspects of HHL, mostly following [SVMA+17,DHMS+18],
and then look into a potential cryptanalytic use, mostly following [Plal19]. The details of the algorithm are fairly
involved, and we refer to [SVMA+17,DHMS+18] for a more elaborate discussion.

Given a Hermitian NxN matrix A with unit determinant (through a suitable embedding, this condition on A can
be relaxed) and a vector b, the HHL algorithm in essence finds a solution to the quantum linear systems problem
A|x> = | b>, making use of a spectral decomposition. More specifically, the quantum linear systems problem asks
that given (oracle access to) the matrix A and given the state | b>, to find a state |x"> such that the distance
between |x>and |x”> is below or equal some error e with probability greater than 0.5. The running time of HHL
to solve this problem is given by O(log(N)s?k?/e), where s is a parameter characterizing the sparsity of A, and k is
the so-called condition number of A, i.e., the ratio between A’s largest and A’s smallest eigenvalue.

The original HHL algorithm has been improved by a number of authors. In [Amb10], the running time is reduced
to O(log(N)s*kpolylog(x)/e), and Childs et al. [CKS17] achieve a running time of O(sk polylog(sk/e)); further
improvements have been reported by Wossnig et al. [WZP18]. Regrettably, the literature does not offer much
work on gate-level discussions of HHL and its successors. Work by Scherer et al. [SVMA+17] is somewhat of an
exception — their paper offers a case study with a quantum resource analysis of HHL in the Clifford+T model.
Using a problem size of N=332,020,680 — which was hoped to be near the cross-over point with the best classical
algorithm for an accuracy of e=1/100, the resulting circuit depth has been found to be in the order of 10%° or
more — not yet taking into account overhead for fault tolerance. Scherer et al. make use of an HHL generalization
from [CJS13], which has two key components: (1) quantum phase estimation, involving the QFT and Hamiltonian
simulation and (2) quantum amplitude estimation which involves Grover’s algorithm. The first part extracts
information about the eigenvalues of A, and according to Scherer et al.’s analysis, the Hamiltonian simulation in
this part, which implements an operator of the form exp(iAr) with r=0(x/e), turns out to be very costly in terms
of gate complexity. In fact, taking this cost into account changes the circuit depth by more than three orders of
magnitude, and the estimate for the number of qubits by more than five orders of magnitude. With these high
resource counts, the cryptanalytic value of HHL over classical linear algebra tools remains fairly unclear.

Building on HHL, Chen and Gao, [CG18, CG21] established an interesting result that a polynomial system of
equations in n variables with a total of t non-zero terms over GF(2) can be solved with gate complexity O((n3* +
t3°)x? log(1/e)) and success probability at least 1-e, where 0<e<1. The main idea is to translate a (sparse)
Boolean system of polynomial equations into a (sparse) system of polynomial equations over the complex
numbers, and then use a Macaulay matrix approach to solve this system with HHL. The k-value in the cost
estimate is the condition number of the involved Macaulay matrix, so the obvious question is to
determine/estimate such condition numbers. Determining actual values for k in systems of interest appears
non-trivial. However, Ding et al. [DGGHL21] established a lower bound on the running time of Chen and Gao’s
algorithm, suggesting that for cryptanalytic settings this approach is not attractive. More specifically, in a
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cryptanalytic scenario, the solution of the Boolean system of polynomial equations is commonly a (unique)
random vector, and Ding et al. argue that the running time can be expected to be lower-bounded by a function
that is exponential in the Hamming weight of the solution. And as a consequence, relying on Grover’s algorithm
seems actually preferable over HHL to find a solution of the Boolean system of equations. Ding et al. consider
alternative approaches to Chen and Gao’s, but it seems fair to say that at this point there is no indication of HHL
having practical cryptanalytic impact. In the evaluation scheme of Section 3.2, HHL qualifies as (A) algorithm with
provable correctness, and it is (B) compatible with currently developed hardware. However, with a relevant
cryptanalytic impact being unlikely, (C) there is currently little cryptographic motivation to develop a detailed
guantum resource analysis of HHL.

4.5 The cost of factoring and computing discrete logarithms in the
Clifford+T model

Based on Roetteler et al.’s [RNSL17c] and Haner et al.’s [HNRSJ20] work, elliptic curves over prime fields are an
attractive cryptanalytic target. So, we start out by taking a closer look at the quantum resources of a Shor-based
attack for this setting. At comparable classical security levels (cf. [[Gir20]], which includes the BSI
recommendations) elliptic curves appear to require less resources than factoring an RSA modulus with Shor’s
approach.

4.5.1 Elliptic curves over prime fields

Applying Shor’s algorithm against an elliptic curve requires in particular the implementation of arithmetic on this
curve. According to Proos and Zalka [PZ03], it is not necessary to implement the complete addition law on the
elliptic curve, and it suffices to restrict to implement a generic case of a point addition—doubling and adding the
inverse can be ignored. Roetteler et al. [RNSL17c] adopt this saving technique. An alternative would be to
consider complete addition laws, but for odd characteristic no quantum circuits for such an approach appear to
be available in the literature at this point. To implement the pertinent prime field arithmetic, Roetteler et al.
invoke Montgomery multiplication and the extended binary Euclidean algorithm as a quantum circuit—not
surprisingly, the inversion operation requires particular care, as the running time of a straightforward Euclidean
algorithm depends on the inputs. The elliptic curve arithmetic itself relies on the familiar affine representation
with a short WeierstraR equation y? = x> + ax + b.

A completely exact resource count would have to take the bit structure of the underlying prime field (and the
constants defining the curve) into account, but based on the discussion in [RNSL17c] it seems reasonable to
assume that the variation caused by this is not really significant. Overall, [RNSL17c] obtain the circuit
characteristics shown in Table 4.1 for an elliptic curve over a prime field GF(p) with n = [loga(p)], which are
backed by simulation results in software. The table given here already considers a correction from [Roel7] for
the case n = 160. The approach in [HNRSJ20] leverages AND gates and measurement-based uncomputation, and
various trade-offs are offered. The number of qubits in their low-width designs is comparable to the values in
Table 4.1. Specifically, for a 256-bit modulus a design with 2124 qubits, for a 384-bit modulus a design with 3151
qubits, and for a 521-bit modulus a design with 4258 qubits is reported. However, as shown in [HNRSJ20, Table
1] other trade-offs are possible, which at the expense of additional qubits reduce the circuit depth. For a fair
comparison, it should be pointed out that, unlike [RNSL17c], in [HNRSJ20] measurements are part of the
algorithm — e.g., for a 256-bit curve with the above-mentioned 2124 qubit implementation, about 1.76x226
measurements are involved.

In general, [RNSL17c] offers an upper bound of about 9n + 2[loga(n)] + 10 qubits and 448n3 - (loga(n) + 4090)
Toffoli gates to be sufficient to implement Shor’s algorithm. Additionally, 8n? T gates are required for small
rotations, and at least 290n3 log>(n) CNOT and 71n3 loga(n) NOT gates [RNSL17c]. The results in [Eke21b, Eke21c]
do not change the qualitative picture — the number of qubits is not affected, but the number of gates and depth
can approximately be cut in half.

Using a circuit from [AMMR13, fig. 7a], each Toffoli gate translates into a circuit on three qubits comprised of
seven T- (resp. T') gates plus two Hadamard and six CNOT gates with a T-depth of 4. An alternative circuit
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[AMMR13, fig. 13] reduces the T-depth to 3, using one more CNOT and a slightly larger overall depth. When
implementing in the surface code in a time-optimized manner, the latter is the preferable circuit since the
computation time only depends on the T-depth, and an additional CNOT does not produce much overhead
compared to the T gates (see Chapter 8f). Based on [HINRS20, Table 1], an alternative approach with
measurement-based uncomputation (rather than a direct decomposition of Toffolis) can reduce the gate count
by two magnitudes, but this comes at the cost of introducing numerous measurements. For instance, Webb et
al.’s quantum resource analysis for a 256-bit curve [WEWH22] uses Haner et al.’s approach as a starting point,
starting out with 2871 logical qubits, 5.76-10° T gates and a measurement depth of 1.88-107. Incorporating
overhead for error handling, Webber et al. [WEWH?22] establish a fairly thorough quantum resource analysis for
an attack against ECDSA. They argue that 3.17-108 physical qubits could enable a successful attack against a 256-
bit curve within an hour, and 1.3-107 physical qubits would suffice for completing the calculation within a day.

Remarks

e Roetteler et al. exploit a qubit-saving technique which avoids a dedicated Quantum Fourier Transform step in
the last part of Shor’s algorithm. This is different from the “textbook description” of Shor’s algorithm. Instead
of the QFT step at the end of the algorithm, 2n (single qubit) measurements are conducted during the
execution of Shor’s algorithm, and phase shift gates that are to be implemented depend on the outcome of
these measurements.

Earlier work by Proos and Zalka [PZ03] suggests that resource savings are possible compared to the above
approach. No actual simulation results for the latter approach have been reported so far, neither have exact
Clifford+T counts been documented. However, if implemented as predicted, the number of qubits could
potentially be reduced to about 5n + 8n'? + 4 log,(n). Proos and Zalka’s more optimistic estimate suggests that
for a 256-bit curve, 1500 logical qubits and a Toffoli depth of about 1.8 - 10 suffice. For a 512-bit curve, Proos
and Zalka’s more optimistic estimate suggests 2800 logical qubits and a Toffoli depth of about 1.5 - 10 to be
sufficient.

N Number of qubits | Number of Toffoli gates | Toffoli depth
160 1466 1.49 - 1010 1.37 - 1010
224 2042 4.22 - 1010 3.87 - 1010
256 2330 6.30 - 1010 5.80 - 1010
384 3484 2.26 - 1011 2.08 - 1011
521 4719 5.70 - 1011 5.25 . 1011

Table 4.4: Toffoli gate counts for a dlog computation over an elliptic curve over a prime field GF(p) with n = [logz(p)],
according to [RNSL17c, Table 2], [Roel7], taking into account a possible resource savings by [Eke21b, Eke21c].

4.5.2 Factoring an RSA modulus

Similar as for the case of a discrete logarithm, it is possible to avoid the QFT step at the end of Shor’s algorithm
and replace it with (single qubit) measurements along the way (cf. [Bea03]), and the critical operation that needs
to be implemented as a quantum circuit is a modular multiplication with a constant — the modulus being the
number to be factored (say an RSA modulus). Again, various choices are possible how to implement the
pertinent arithmetic. Arguably, currently the most practical proposed circuits are due to Haner et al. [HRS17] and
the approach by Gidney and Ekera [GE21], using approximate arithmetic. Similarly as in the above-discussed
elliptic curve discrete logarithm, Haner et al.’s arithmetic builds on a (classical) reversible Toffoli network. Each
of these Toffoli gates can be decomposed into Clifford and T gates without introducing additional synthesis
overhead. From [HRS17,RNSL17c], taking into account [EH17], we obtain the resource estimates shown in Table
4.2, where n denotes the bit length of the number to be factored.

N Number of qubits | Number of Toffoli gates
1024 2050 1.45 - 1011

2048 4098 1.30 - 1012
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N Number of qubits | Number of Toffoli gates
3072 6146 4.65 - 1012
7680 15362 8.25.1013
1530 30722 718 - 1014

Table 4.5: Toffoli gate counts for factoring an n-bit number according to [HRS17], [RNSL17c, Table 2], taking into
account work by Ekerd and Hdstad [EH17] that reduces the Toffoli gate count by a small factor (4).

Similar to the previous case, there is only little parallelization in the circuit, so that the Toffoli depth is in the
same order of magnitude as the total number of Toffoli gates.

In general, [HRS17, RNSL17c] suggests that for factoring an n-bit RSA modulus, 2n + 2 qubits and n3:(64-(loga(n)-
2)+29.46) Toffoli gates suffice. Following [GE21], the number of logical qubits is higher (scaling with 3n + 0.002n
xlog n instead of 2n +2 in the bit-length n), but the Toffoli count is lower — the dominating term is 0.0005n3log n
(see [GE21, Table 1). In terms of the number of qubits, Proos and Zalka [PZ03] also estimate around 2n qubits,
but they offer a slightly more optimistic estimate for the number of Toffoli (and therewith T) gates. For factoring
a 3072-bit number, they expect only 3.6 - 10! Toffoli gates. The results in [EH17] do not change this picture
drastically — the number of qubits is not affected, and the number of gates may be reduced by approximately a
factor 4.

Including the overhead for fault tolerance, i.e., passing from logical to physical qubits, for a suitable
superconducting qubit platform with nearest-neighbor connectivity in a planar grid, [GE21] establish a fairly
thorough quantum resource analysis for the case of trying to factor a 2048-bit RSA modulus. They conclude that
20 million noisy qubits could enable such a factorization within 0.31 days. With a (more traditional) Toffoli-based
arithmetic, we obtain an estimate of about one million qubits as being needed to factor 2048-bit RSA in 100
days, taking fault-tolerance into account.

Building on the same algorithmic idea as [GE21], Gouzien and Sangouard [GS21] suggest an implementation
using only 13436 physical qubits, but invoking a quantum memory capable of storing 28 million spatial modes
and 45 temporal modes. The experimental realization of such a configuration at the required scale is an open
problem, but if the proposed type of quantum memory can be implemented, Gouzien and Sangouard’s work
suggests that a 2048-bit RSA modulus could be factored in less than half a year.

4.5.3 Discrete logarithms in GF(p)*

The essential change compared to the elliptic curve situation is the pertinent group arithmetic that needs to be
implemented. As group elements are larger, we would accordingly invest more qubits to represent group
elements, and again modular arithmetic would need to be implemented. As the basic structure of the algorithm
itself would not change, taking the estimates for factoring a modulus of comparable bit size as p appears a
reasonable lower bound on the required complexity (cf. Table 4.2). Indeed, the estimates provided in [GE21,
Table 5] — which include overhead for fault-tolerance — are comparable to the cost of factoring, e.g., for finding a
discrete logarithm with a 2048-bit modulus (a safe prime) with Shor’s algorithm, the use of 26 million qubits is
estimated for one (seven hour) run of the algorithm.

4.6 Translating algorithmic gate counts into fault-tolerant building
blocks

The first step in calculating the physical qubit overhead of a surface code implementation can be done hardware
independently. For the algorithms given in the present chapter, we use the instructions of Section 8.5 to
calculate the number of fundamental space-time building blocks Ny, of the Clifford-part (i.e., everything except of
magic state injection and distillation) and the target logical error rate per block P, that is required to perform the
whole algorithm with maintainable success. Furthermore, we extract the number of total and sequential T gates
Nrand Nt s respectively and calculate the target error rate per distilled magic (T gate) state Pr. Combining the
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errors of both distillation and Clifford circuits, we reach an overall success probability of at least 13.5%. Table 5.3
and Table 4.4 show all logical block and gate counts and their corresponding target logical error rates.

N Np Pp Ny Py N

160 | 15.1013 |33.1014 |11.1011 |48.1012 |41.1010
224 1 47.1013 | 1.2-1014 |30.12011 |17.2012 |12.1011
256 | 65.1013 |77.1015 |44.1011 |11.1012 | 1.8.1011
384 | 23.101% |22-.1015 |16-1012 [3.1.1013 |6.0-1011
521 |55.10% |91.1016 |39.1012 |13.1013 | 161012

Table 4.6: Logical gate counts for elliptic curve Shor/Ekerd attack using dlog.

N Ny [ Ny Py NTs
1024 1.6-10% | 16-1015 |1.0-1012 |2.4.1013 |4.0-1011
2048 1.4-1015 | 1.8-1016 |90-1012 |28.1014 |35.1012
3072 50-101 |s5.1017 [3.3.1013 |77.-1015 |1.3.1013
7680 8.8-1016 |29.1018 |s58.101% |43.1016 |21.10%4
15360 | 78.1017 |3.2-101% |50-1015 |5.1017 1.9-1015

Table 4.7: Logical gate counts for factoring an n-bit number. The Toffoli depth has been approximated for low
parallelization similar to the dlog algorithm.
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Figure 4.1: Physical volume required for performing dlog (blue) or factoring (orange) algorithms of different problem
sizes (numbers on the right) as a function of the physical error rate. We use a threshold of pth = 10-2 and assume a
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symmetric error model (all kinds of errors equally likely) with equal rates p for initialization, gates, waiting and
readout, which makes this plot hardware-agnostic and approximate. A surface code cycle consists of multiple gates,
measurement, initialization, and classical processing.

Dlog factoring
n 160 224 1024 2048 3072 7680 15360

#SCcycles | g7.109 |23-1010 | 16-1011 |1.4.1012 |5.1012 |g84.1013 |7.7.1014

Table 4.8: Minimal number of surface-code cycles for performing dlog or factoring algorithms with problem sizes n
with one surface code cycle typically corresponding to a time of ~10tM. Thus, during one surface code cycle one can
run 10 subsequent T gates.

For a general outlook on the required overhead for different physical error rates, we use the steps described in
Chapter 8 for the surface code to calculate the total volume of an algorithm, i.e., number of physical qubits
times the number of surface code cycles (or alternatively the time required for running them). Figure 4.1 shows
this volume as a function of the initial physical error rate for several problems. With this, one can get the
number of qubits by fixing the computation time to some chosen value or get the runtime by fixing the number
of qubits. The actual time per surface code cycle is given by the time for initialization, readout, two Hadamard
and four CNOT gates. The only restriction in balancing time and qubit overhead is the minimal time required to
preserve the temporal order of non-Clifford T gates given by the T depth of a circuit. Since the most time-
demanding process in the classical feed-forward required by the T gates is one measurement, multiple
subsequent T gates can be performed during one surface code cycle, a typical assumption is ty = 0.1tsc. The
minimal number of surface code cycles for this assumption is shown in Table 4.8. Usually, this is also the optimal
time to choose, since time scales are still large with current architectures.

62 Federal Office for Information Security



5 Cryptanalysis on NISQ computers including adiabatic quantum computers

5 Cryptanalysis on NISQ computers including adiabatic
quantum computers

Below we assess a number of works that describe advances of quantum cryptanalysis for the NISQ era. To do
this, we evaluate the algorithms along the evaluation scheme for quantum algorithms introduced in Section 3.2,
ranging from Level A through C. In principle, it is conceivable that NISQ computers, whose gate set is not
restricted to Clifford+T and which can execute roughly p* two-qubit gates with small error probability, can
attack realistic cryptographic codes. As noted in Section 3.1.2, the reasonable assumption of two-qubit gate
errors of no less than p = 10, which is below the error correction threshold, results in the possible execution of
up to p! = 10° quantum gates per run. As we show in this chapter, for cryptanalytic applications the literature
does at this point does not offer quantum circuits that have been shown to meet these criteria. This is reflected
by the fact that no algorithm evaluated below has reached level C.

With regards to the discrete logarithm, low-depth solutions have been considered for solving the discrete
logarithm problem on particular elliptic curves [R$14], but this comes at the cost of a large number of gates and
qubits. On the side of symmetric key encryption, the potential improvement over a Grover-based exhaustive
search suggested in the discussion of the Tiny Encryption Algorithm in [SS10] deserves mentioning. However,
there is no clear statement about the expected running time available, and for established block ciphers
(including AES) no non-trivial resource analysis of the adiabatic approach is available in the literature. Despite
the polynomial equivalence with the circuit model, one could hope for an improvement in the exponent, but the
current literature does not offer a sufficient foundation to make reliable quantitative estimates.

As a consequence, below we first describe and evaluate several proposed NISQ algorithms for prime
factorization, and afterwards discuss subroutines of algorithms that a priori cannot be run on NISQ devices. We
also include adiabatic quantum computation in this chapter. For completeness, it should be said that there are
also approaches for quantum error correction in the adiabatic scheme (see, for example, [JFS+06]), which is
meaningful if there is a proof of speedup with the energy gap of the adiabatic quantum computer being
bounded as needed. However, this has not been established to adiabatic algorithms for quantum cryptanalysis.

5.1 Adiabatic quantum computation model

The quantum cryptanalytic literature focuses on the quantum circuit model and on minimizing the number of
qubits, quantum gates, and the circuit depth as critical parameters. Such circuits are designed to be implemented
on a fault-tolerant quantum computer; depth and gate counts for T-gates are often considered separately, to
facilitate accounting for the implementation cost of this non-Clifford gate. Adiabatic quantum computation
[AL18b] offers an alternative approach, but at this point, the cryptanalytic significance of the adiabatic approach
for realistic cryptographic parameters remains unclear. Some interesting experimental work on toy parameters is
available, but a reliable way to extrapolate from these results to genuine cryptographic parameters is lacking.
Below we document some of the results achieved in the literature but note that — differing from the literature on
guantum circuits — there is at the moment no obvious roadmap or implementation strategy on how to apply
adiabatic quantum computation for computing a discrete logarithm or for factoring an RSA modulus as used in
cryptographic applications.

5.2 Prime factorization

In 2002, Christopher Burges formulated the task of integer factorization as an optimization problem [Bur02].
Since optimization is an application of quantum computation, it is perhaps not surprising that in the meantime a
number of different NISQ approaches for such factorization via optimization have been put forward, including
[JBM+18,A0GC19,HPAA+21,KSK+21].

Suppose we are given an input biprime number N, which is the product of two prime factors p and g, i.e., N = pq.
A key step in the setup of adiabatic quantum computation is to encode the prime factors of N into the ground
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state of a Hamiltonian acting on a collection of qubits. To arrive at such a Hamiltonian, one introduces a cost
function defined for integers x,y>2

f (xy)=(N-xy)?,

which clearly is zero only when x and y are the prime factors of N. The resulting Hamiltonian can then be
obtained by replacing x and y with their bitwise operator representation. Alternatively, in a classical
preprocessing step one can compute the bitwise multiplication table of the product of the variables xy, which
lowers the number of required qubits for the following optimization. Details for these methods are given in
Appendix 14.

For example, Dattani and Bryans’ work on factoring 56,153 with only 4 qubits [DB14] in the adiabatic regime
shows interesting potential for the operand size that can be considered when translating the integer
factorization problem to an optimization problem, but it is not clear how their finding can be leveraged to factor
a realistic RSA modulus. In terms of the evaluation scheme in Section 3.2, the underlying approach is plausible,
but with the currently available data, the scalability and asymptotics are unclear (level B). Similarly, Schaller and
Schiitzhold’s work [SS10] evidences that one can solve the factoring problem for an RSA modulus more
efficiently than a generic NP problem with the adiabatic approach, but a quantifiable impact for realistic RSA
parameters is unclear. In the absence of more experimental data, the scalability and asymptotics remain open
questions (level B). Small-scale recent examples of explicit prime decompositions include the factorization of
200,099 = 401x499 [DA17] (using Grobner bases techniques for pre-processing), 249,919 = 491x509 [JBM+18],
and 1,028,171 = 1009x1019 [WHYW?20], but extrapolating the effectiveness of these methods when scaling to
cryptographically relevant inputs, e.g., a 2048-bit RSA modulus, remains an open issue (level B).

Several different quantum computing methods for finding the ground state of H1 have been applied. Below we
describe and assess approaches of using digitized adiabatic quantum computation, quantum annealing and
variational quantum eigensolvers.

5.2.1 Digitized adiabatic quantum computation

In [HPAA+21], Hegade et al. introduce the application of digitized adiabatic quantum computation to the prime
factorization problem. This means that the adiabatic evolution is realized by a sequence of quantum gates rather
than a continuous change of the instantaneous Hamiltonian’s parameters. Details of this scheme are discussed
in Appendix 14.

The time evolution is approximated by carrying out so-called Trotter steps (which are related to the Trotter
formula). Such a Trotter step is used for carrying out quantum gates based on a particular type of Hamiltonians,
which are sums of non-commuting and natively realizable quantum operators. The Trotter formula is a direct
consequence of the Lie Product formula [Hal13], and its use in quantum computation is detailed in Nielsen and
Chuang [NCOO0]. The number of Trotter steps constitutes a hardware-agnostic cost function associated with the
quantum algorithm of Ref. [HPAA+21]. This number is agnostic to hardware, because it is a property of the
algorithm and thus independent of the quantum device. In contrast, the duration of the realization of each
Trotter step depends on the used hardware.

Reference [HPAA+21] implements two different approaches, one with and one without a classical preprocessing
step. For each approach, two different driving techniques are discussed, one of which is the straightforward
application of digitized adiabatic quantum computation, and the other using an additional ingredient called
“shortcuts to adiabaticity”. These in total four different variations of the algorithm are compared using both
numerical simulation and experimental realization. The largest number thus factorized is 2497 using numerical
simulation [HPAA+21].

For the evaluation within the algorithmic scheme in Section 3.2, first consider level A. The concept of adiabatic
guantum computation is a paradigm that has been proven to be equivalent to gate-based quantum computing,
and all the procedures that are part of the algorithm are well established.

Now consider level B. The algorithm has been tested both numerically and experimentally. However, [HPAA+21]
does not provide sufficient data to predict asymptotic scaling behaviour of the proposed implementations of the
algorithm. While the authors do report numerical data of factoring six integers, an evaluation of the cost
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function is done only for three of these. Since, furthermore, those three data points belong to two different
variations of the algorithm, we have only at most two data points for the proposed analysis.

Another complication is the realization of the Trotter steps mentioned above. Each Trotter step is realized by
several quantum gates, labeled K in [HPAA+21]. Hegade et al. do not disclose this number K, so we know neither
the total number of steps for any of the calculations, nor can we discern the growth of K when increasing the
input size.

The algorithm of [HPAA+21] is to be sorted in level B of our evaluation scheme since it fulfills the bare minimum
requirement of level B (“tested on hardware”) and parameters for evaluation of the cost function have been
provided. However, the amount of data is insufficient to draw any conclusions towards the algorithm’s
asymptotic complexity. As noted in our description of the evaluation scheme at the end of Section 3.2, the cost
function scaling of this algorithm would have to be a polynomial with low degree to be critical for cryptanalytic
purposes.

5.2.2 Quantum annealing

In Reference [JBM+18], Jiang et al. show a method to perform prime factorization on a quantum annealer. Like
the case of variational quantum eigensolvers described in Section 5.2.3, the cost function for the quantum
annealing problem is cast into an Ising Hamiltonian. Many quantum annealing devices, such as those
manufactured and operated by the company D-Wave Systems, are limited to pairwise couplings, i.e., in this case
the Hamiltonian needs to have at most 2-local terms. The reduction to such Hamiltonians can be realized by
introducing additional Hamiltonian terms [JBM+18].

The main challenge in investigating claims based on adiabatic quantum computing / quantum annealing is the
careful benchmarking of speedup. The paper [JBM+18] explicitly refrains from any statement to this end, see
second paragraph of its conclusion. We describe this challenge along this paper in two ways:

First, orthodox adiabatic quantum computing requires the quantum computer to always remain in the ground
state thus mandating a duration of the annealing schedule proportional to the inverse minimal spectral gap of
the problem. This is a sufficient condition at zero temperature. An annealing schedule thus has polynomial time
scaling if that minimal gap drops polynomially in system size. For general constrained optimization problems,
this gap is at least conjectured to drop exponentially. Again, an analysis of scaling of the gap is not given in the
paper. Also note that while previous work of Aharonov et al. [AvDK*07] states that any gate-based algorithm can
be mapped onto an adiabatic algorithm without changing time complexity, this construction is not used in Jiang
etal.

While this is a zero-temperature argument, one needs to observe that for a large problem, the spectral gap even
if only polynomial in problem size will dive below the experimental temperature. This requires either error
correction or genuine quantum annealing, i.e., quantum-assisted relaxation from the low-lying excited states to
the ground states. The latter describes the approach in D-Wave machines.

Quantifying complexity and speedup in quantum annealing in a reliable mathematical way has not been
achieved in the literature. No state-of-the-art analysis has been presented in [JBM+18]. In summary, while this
paper shows an approach to factoring on an annealer, it does not give any indication of quantum speedup.
While not impossible, speedup is unlikely. A full investigation of speedup would require a full research project
with major access to hardware.

While the D-Wave quantum annealers have grown comparatively rapidly over the last decade to hosting up to
5000 qubits per machine, an indisputable proof of a computational advantage for an algorithm running on a D-
Wave machine has not been put forward. Nevertheless, the basic theory of quantum annealing, which is a
limited form of adiabatic quantum computation, is founded on a widely accepted theory rooted in statistical
physics [KN98].

This algorithm has been tested on hardware, and in [JBM+18] four different biprimes ranging between 15 and
376289 have been factored. This work provides detailed experimental data (such as the run time and figures
related to the success probability) for two of these calculations (see Fig. 1 in [JBM+18]). We thus do not have
access to sufficient data that would allow for estimating the asymptotic complexity of the algorithm (level B).

Bundesamt fiir Sicherheit in der Informationstechnik 65



5 Cryptanalysis on NISQ computers including adiabatic quantum computers

5.2.3 Variational quantum factoring

A work by Anschuetz et al. on variational quantum factoring (VQF) [AOGC19] offers an alternative to Shor’s
algorithm for finding an integer’s prime factorization using a hybrid quantum-classical algorithm. These hybrid
algorithms like the Quantum Approximate Optimization Algorithm (QAOA) [FGG14] allow in some cases to
benefit from quantum advantage with short segments of algorithms hence compatible with a rather large logical
error rate. Pertaining to the class of variational quantum algorithms [CAB*21], they employ the variational
principle to find approximate solutions to a given problem by encoding the problem in a Hamiltonian whose
ground state corresponds to the approximate answer one is seeking. They depend on a heuristically chosen
ansatz to probe the Hilbert space around an initial guess for the ground state.

Similar to works described above, in [AOGC19] Anschuetz et al. map the problem of finding the prime factors to
an Ising Hamiltonian, whose ground state is given by the prime factors. The ground state is searched for using
QAOA [FGG14]. By using efficient classical preprocessing, the authors can greatly reduce the number of qubits
needed. They provide empirical data claiming that using their preprocessing methods require only about 50
qubits to factorize a number of size 10°, a threefold improvement compared to the qubit requirements without
their pre-processing method. They simulate their algorithm under the assumption of noise by a Pauli error
channel. They check their algorithm for integers 35, 77, 1207, 33667, 56153, and 291311, and find that VQF can
in principle find the prime factors, even though in some cases it performs rather poorly if certain symmetries are
violated.

An experimental application of this variational quantum factoring algorithm is reported in [KSK+21]. In that
work, three numbers (3127, 6557, and 1099551473989) are factored on a superconducting quantum processor.
To understand their work better, the results are compared to a simulation that incorporates a nontrivial noise
model that takes certain dominant two-qubit noise terms into account. For the two smallest of the three
factored numbers, 3127 and 6557, the success rate reaches roughly 25%, which the authors attribute to the
dominant two-qubit noise. For the third number, 1099551473989, a success rate of 80% is achieved.

As noted above, the variational quantum factoring algorithm introduced in [AOGC19] is based on QAOA
[FGG14], which is a broadly accepted and commonly used algorithm for quantum optimization. The only data
that is currently available in [AOGC19] stems from numerical simulations, which are based on a noise model that
features only a simple Pauli error channel. Whether experimental data will yield results that are like the
simulation data remains to be seen. This is not certain since the accessible numerical data from Ref. [KSK+21]
gives rather unfavorable results. Also note that [KSK+21] only presents data for the factorization of three
numbers, which is insufficient for a complexity estimate.

In conclusion, the algorithm described in [AOGC19] and experimentally applied more recently in [KSK+21] is to
be sorted into level B since it is built on a sound framework and has been tested on quantum hardware. These
hardware test results seem to be not very promising. We note, however, that follow-up work on this algorithm
should be watched closely for two reasons. (i) the depth of QAOA is low, which is a major advantage for NISQ
applicability. Furthermore, (ii) in the discussion of [AOGC19], the authors express their intention to collaborate
with their partners to implement their algorithm on current NISQ devices to obtain detailed experimental data
with the goal of drawing conclusions regarding the algorithm’s scalability.

5.3 Discrete logarithm computation

Wronski demonstrated that the feasibility of a discrete logarithm computation in the prime fields GF(11), GF(23),
and GF(59) on a D-Wave architecture [Wro22]. However, the approach is not expected to scale well, and the
author points out that “the presented methods should not outperform Shor’s polynomial-time algorithm for large
prime fields.” In the same line of work, Mahasinghe and Jayasinghe [MJ22], show how a discrete logarithm
problem in a finite field can be mapped on a D-Wave architecture. Reported implementation examples include
computations in GF(3) and GF(5), and the scalability to cryptographically relevant instances is unclear (level B).
Mahasinghe and Jayasinghe specifically point out the challenge of scaling the classical precomputation used in
their approach.
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For the elliptic curve discrete logarithm problem over prime fields, Wroniski showed that a D-Wave architecture
can handle a cyclic group of order 271, using the elliptic curve y>=x3+x+4 defined over GF(251) [Wro21] with the
curve point (128, 44) as generator. However, the scalability of the proposed approach remains an open question
(level B).

On the side of symmetric cryptography, the potential improvement over a Grover-based exhaustive search
suggested in the discussion of the Tiny Encryption Algorithm in [SS10] deserves mentioning. However, also in this
case there is no clear statement about the expected running time available, and for established block ciphers
(including AES) no non-trivial resource analysis of the adiabatic approach is available in the literature. Despite the
polynomial equivalence with the circuit model, one could hope for an improvement in the exponent, but the
current literature does not offer a sufficient foundation to make reliable quantitative estimates. Similarly, Burek
et al. [BWMM22] present a setup for an algebraic attack that in principle can be mounted using quantum
annealing, but the running time of this attack is an open question (level B). Consequently, in our discussion we
focus on the quantum circuit model.

5.4 Quantum computing for the shortest vector problem

A promising modern cryptosystem, lattice-based cryptography, is currently viewed as secure against quantum
attacks. In that scheme, the security relies on hardness of the shortest vector problem (SVP) in both exact and
approximate form.

SVP is conjectured to be hard even when employing quantum computers, but there is no proof that quantum
computers cannot solve it in polynomial time. Despite the fact that the time complexity of AQC algorithms is in
general hard to estimate, AQC is a valid candidate for the attack on lattice-based cryptography for two reasons:
(1) SVP can be formulated as an optimization problem, and (2) while AQC in general has a prohibitive time cost
of achieving adiabacity, for approximate SVP up to a threshold, approximate solutions are also admissible.

SVP is defined as finding a shortest nonzero vector in a lattice given a particular basis, in the approximate version
of the same problem the task is to find a vector whose length is upper bounded by a multiple of the length of the
shortest vectors.

5.4.1 Approach via quantum annealing

The paper [JGLM19] proposes an embedding into an adiabatic quantum computer achieving that result. This
method could be used to attack lattice-based cryptography. The embedding proceeds in multiple steps. It utilizes
the Bose Hubbard model. This is a model of quantum particles embedded in a lattice that can move in the lattice
and that can repel each other both on the same lattice site as well as across the lattice. Tayloring these
interactions defines the lattice for the lattice-based algorithms and minimizing the interaction energy
corresponds to solving the SVP problem. Quantum annealing is proposed to solve this model. The quantum
tunneling term that is used to initialize the state is in this case the kinetic energy of particles hopping in the
lattice. It is adiabatically switched off to settle the particles in a state that minimizes the interaction to solve the
problem.

This being based on the Bose (not the Fermi) Hubbard model means that more than two states are allowed per
lattice site, i.e., more than one qubit. This overhead does not change the observation that the embedding is
efficient in the number of qubits. As an important technicality, rather than the ground state (which is the zero
vector), one is looking for the first excited state. This complication is elegantly circumvented by using a separate
state to represent the zero vector.

The analogy to the Bose Hubbard model is noteworthy. This model can be directly simulated in the sense of
analogue, single-purpose quantum simulation, specifically cold atoms in optical lattices, see Section 13.2. Design
of appropriate programmable interactions as it is, e.g., done in the EU Flagship project PASQuanS [PAS18] would
allow to scale rather quickly. In fact, verification of quantum supremacy in these systems is an active field of
research [EHWR+19, HKEG19]. The Bose-Hubbard model can also be studied in superconducting circuits [FZ01,
LH10], combining the ease of programming and design of these systems (boosted by the tools developed around
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the quantum supremacy experiment) with a compact native application of this model. An aggressive scaling
project of those simulators is not known.

As described above, a clear proof of quantum speed-up would require extracting the energy gap across the
sweep, which is not achieved in [JGLM19]. Rather, they rely on numerical simulations on classical computers
covering small examples (dimensions 2,3, and 4). These experiments confirm the value of adiabaticity, i.e., that if
sweeps get slower, the distribution of output values clearly clusters at low energies. This is not made
guantitative into a scaling analysis with, proven or extrapolated, speedup. It is pointed on new discussions of
continuous but not fully adiabatic algorithms with no clear conclusion given.

In conclusion, the algorithm described and tested in [JGLM19] belongs to level B of our evaluation scheme.

The proposed faster sweeps are an interesting metaheuristic whose potential is not fully understood. Given the
hardness of gap extraction, to evaluate these heuristics in interesting size, benchmarking on actual hardware
would be the most important way forward and should be closely monitored. There is some indication that
(repeated) fast sweeps reduce the time to solution [CFLLS14 ] but those have been done for generic cases and
not for this specific model.

5.4.2 Quantum variational approaches

An approach to solving SVP on NISQ computers is described in [ASPW23]. The underlying approach is the use of
a variational quantum algorithm, which is similar to the factoring algorithm discussed above in Section 5.2.3.

The authors of [ASPW23] state that at most a polynomial speedup (similar to Grover’s algorithm) is expected
from this approach. The objective aim of the study is to find the required qubit overhead as a function of the size
of the problem, i.e., the dimensionality of the lattice. Because of this, the authors assume perfect qubits, and
perform experiments on quantum simulators alone rather than on noisy hardware.

The solution to SVP is encoded into the ground state of a Hamiltonian. The calculation then proceeds by
repeatedly using classical and quantum computers in turn. Besides this usual approach of the variational
guantum algorithm, [ASPW23] first estimates bounds for lattice enumeration, through which new bounds on the
number of required qubits are obtained. Furthermore, a difficulty with this approach is the exclusion of the zero
vector from the quantum calculation, which is solved by that study in two different ways — one by altering the
classical computation, and the other by modifying the used Hamiltonian.

The main result of the paper is that at most O(n log(n)) qubits are needed for solving SVP for a lattice of
dimension n. The experimental results include lattices with dimensions up to n = 28, which is the largest number
realized so far in a quantum emulation. While further the number of calculation steps grows linearly with the
size of the lattice, n, the authors state that an extrapolation to cryptographically relevant lattices (with
dimensions larger than 400) cannot be extrapolated “with confidence” [ASPW23].

In conclusion, this algorithm seems to work rather well, though only rather small problem instances have been
considered. Besides, the effects of noise have not been taken into account (level B).

5.5 Other linear algebra problems

In the field of linear algebra, consider the problem of solving a system of linear equations, or find x in the
equation Ax = b, where A is square matrix with N many rows, and where x and b are column vectors with N many
entries. The computational complexity of this problem when run on a classical computer is polynomial in the
number of calculation steps. On a quantum computer, this problem may be solved using an algorithm due to
Harrow, Hassidim and Lloyd [HHLO9], which — together with its cryptanalytic relevance — is discussed in Section
4.4. In this way an exponential speed-up over known classical algorithms is conceivable.

[XSE+21] attempts to solve the same linear algebra problem using a NISQ computer. In that study a variational
algorithm has been employed, which means that it is the same type of algorithm as that discussed above in
Section 5.2.3. Most quantitative results presented in the paper stem from numerical simulation, while data for a
minimal problem instance (in which the dimension of the problem is N = 2) have been obtained on a physical
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guantum device. The simulation data covers problem instances between N =2 and N = 64. However, a decrease
in complexity is not evident.

While most data have been obtained by simulations on classical hardware, the range of input values is
significant. Nonetheless, the results of [XSE+21] suggest no significant speed-up in computation time for
problem instances of up to N = 64 (level B).

5.6 Focus on algorithmic elements

An alternative to running quantum algorithms whose termination is unknown on NISQ devices is to consider a
single subroutine of a quantum algorithm whose asymptotic complexity is known, and which is currently
expected not to run on NISQ computers for relevant input. For example, Cleve and Watrous [CW00] showed that
the Quantum Fourier Transform (QFT)—which is at the heart of Shor’s algorithms—can be realized in logarithmic
depth, but for the number of gates needed, only a polynomial bound is available.

In view of the overhead incurred by error correction (cf. Section 8.5), researchers have explored the possibility
that errors at the gate level may be tolerated without significantly impeding the logical correctness of a
cryptanalytic algorithm. Indeed, Nam and Bliimel (see [Nam17, NB15b, NB15a]) make the case that a QFT
implementation can perform very well even in the presence of noise and gate defects—thus suggesting that if
the QFT is performed at the end of Shor’s algorithm, one could try to be lenient with error correction. One may
also hope to simplify the QFT by passing to an approximate QFT (see [Cop94,NSM20]), but for state-of-the-art
implementations of Shor’s algorithms the logical gate cost is dominated by the arithmetic portion (see Section
4.5). State-of-the-art implementations of Shor’s algorithm such as [RNSL17c] save qubits by using a semi-classical
QFT variant, with repeated (single qubit) measurements, where the required rotations are chosen adaptively (in
dependence on preceding measurement outcomes), and savings/avoidance of error correction in the arithmetic
would be particularly valuable.

A common approach for the arithmetic tasks is to start with a reversible circuit which is then further
decomposed into Clifford and T gates—resulting in various options, e.g., to decompose a Toffoli gate (see
[AMMR13,Jon13]). However, there is very limited literature on error tolerance of arithmetic in Shor’s algorithm.
Notably, in [Nam17], Nam considers an implementation of Shor’s algorithm for factoring in the presence of
errors in the angles occurring in elementary gates. Due to resource constraints the reported simulations are
restricted to very small examples (Chapter 9 in [Nam17] discusses factoring of 21), which does not allow to
meaningfully extrapolate gate counts for the arithmetic for cryptographically relevant factorization problems. In
recent work [NB17] on working with imperfect gates, the question to what extent errors can be tolerated in a
large-scale (cryptanalytic) computation remains open. In [NB15a], one particular adder design is considered and
identified as quite robust against gate errors, but it remains open to what extent this can simplify a full-scale
implementation of Shor’s algorithm. Taking into account debugging considerations, implementing a Toffoli-
based arithmetic (cf. [HRS17, RNSL17c]) may in fact be considered as preferable over a (QFT-based) adder design
as considered in [NB15a].

Work predating Nam and Bliimel’s on the robustness of Shor’s algorithm in the presence of errors is due to
Devitt et al. [SIDO6]. They consider specifically the quantum period finding (QPF) subroutine of Shor’s algorithm
and explore if a more lax error bound than imposing a precision of about 1/{depth x#qubits) can be achieved. To
test this, they apply three different discrete errors (bit flip, phase flip, both) randomly to the QPF portion of
Shor’s algorithm. Each number of errors was simulated 50 times for specific factorable numbers with a binary
length L ranging from 5 to 10 (invoking 2L + 4 qubits) to determine how many errors were allowable until the
result was no longer useful. Their results suggest that for larger L, more errors were acceptable. For example,
when L =5, at most 15 errors were acceptable before the result was unrecognizable from random, but with L =
8, up to 40 errors could be allowed. However, even a single error for L = 5 reduces the probability of success to
0.34. These results suggest that the precision of 1/{depth x#qubits) can be reduced to p(L){depth x#qubits)
where p(L) is monotonically increasing and at least linear in L. Devitt et al. note that the greatest benefit of these
results is for small simulations of QPF where observing the quantum process is the goal and extensive quantum
error correction may not be feasible. However, for large factoring problems (such as attacking cryptographically
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relevant RSA parameters) extensive error correction will still be required since the overall size of the quantum
algorithm grows much faster (O(L*)) than this error rate.

All work described in the several paragraphs above is about the cancellation of systematic errors due to a
specific arrangement or symmetry of quantum gates. It is, of course, to be expected that any such “accidental
error tolerance” of arithmetic operations will depend on specific algorithmic choices (e.g., how exactly is a
modular multiplication implemented, or how exactly is a point addition on an elliptic curve realized?).

Another promising direction to watch is the direct implementation of Toffoli gates in hardware. These have been
demonstrated in ion traps [FML+17]. The observed error rates are not disruptive and not affecting our
conclusion but deserve further attention.
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PART lll: Quantitative description of hardware evaluation
scheme

This is the core connection between algorithms and the resulting gate counts and the evaluation of hardware.
Given that the algorithms of proven cryptanalytic relevance require quantum error correction, it is primarily
driven by the needs of this rather well-formulated framework. More background and its connection to the
evaluation system at large is given in Section 3.2.

The five levels of this scheme define a coarse evaluation also in the type of research and development that takes
place in these levels — level A describes physics experiment, levels D onwards large integrated efforts. They also
need to be mounted consecutively with only little overlap: For example, does level B require that all basic
functionalities of level A are met. They typically contain multiple sub steps whose order is not critical. In this
vein, Chapter 7 describes level A, where basic component functionalities are verified that allow to run small
protocols. Chapter 8 describes level B, where small protocols that can quantitatively evaluate device errors are
described and the main quantitative indicators are introduced. Chapter 9 describes the mainstream of error
correction that allows to understand levels C through E. It focuses on level C, while the subtleties of level D are
moved to an appendix. Chapter 10 describes more specialized topics in error correction that are making a mark
in the literature right now.

While focused on fault tolerant quantum computing, the ingredients to the scheme also apply to NISQ, but here
one would focus on levels A and B and then test algorithmic performance right away.
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6 Low-level analysis of qubit systems

6.1 Initial remarks

6.1.1 Scope and motivation

This is the lowest (in the sense of being closest to hardware) level of a cascaded evaluation system for quantum
computing candidates. It talks about physical qubits and operations only. It contains parameters that are easily
characterized experimentally and serve as a stepping-stone for mid-level evaluation schemes (see Chapter 8)
that are in turn the basis for analyzing fault tolerance requirements (see Chapter 8).

Such a low-level scheme has been published a long time ago in the form of the DiVincenzo criteria [DiV0O0].
These criteria were giving a succinct summary of what it takes for a qubit candidate to be serious, mostly to help
new and then-emerging (condensed matter) platforms to evaluate themselves and ask the right questions.
Notably, these criteria are not quantitative (which they do not have to be, only the next level should) but they do
not even give suitable numbers to use. As the field has matured since then, this part of our survey explores these
numbers as they are typically given in experimental papers. It also compares different quantifiers used in
different experimental traditions and develops relations between them. We review the DiVincenzo criteria and
then modern ways to clarify and quantify them.

For a large-scale analysis of quantum computing candidates, this serves as an entry ticket. If these criteria and
parameters cannot be verified and measured satisfactorily, development of architectures and measurement of
performance parameters that are relevant for fault tolerance are usually futile—they require a functional qubit
to at least have some understanding what design operates under what condition. This is thus the lowest-level
performance check for quantum computing platforms.

Notable special cases are adiabatic quantum computing/quantum annealing and cluster state quantum
computing, which, although not fundamentally different, put different priorities on hardware and are thus not
easily connected to these criteria and therefore need to be treated differently. We will describe how to evaluate
them in a separate Section 9.1. We would also like to note that, albeit driven by the DiVincenzo criteria as well,
photonic quantum computing is often described by more domain-specific indicators, which we will describe
within the photonic platform Section 13.4.

6.1.2 Limitations

The next level beyond these low criteria will be the core of medium-level analysis in a further deliverable, and it
will be referenced here as randomized benchmarking (RB)

[KLR+08, RLLO9, MGE12, ECMG14, MLS+15, XLM+15, ATB16] as covered below in Chapter 7. It plays a connecting
role as it is relatively easy to use experimentally given basic qubit functionality. It consists of preparing a
convenient initial state, running a sequence of random Clifford gates, invert it by a single further Clifford gate
(relying on the fact that these gates form a group that can be efficiently simulated classically) and measure the
survival probability of this initial state. It can be shown that this maps out the average fidelity of the sequence
and can hence be a reliable estimator for the error per gate. Usually, the survival probability does not
extrapolate to unity thus capturing state preparation and measurement (SPAM) errors. Low-level performance
indicators covered in this section are discussed up to the point where performing RB would be the more
adequate choice. A detailed description of RB as well as its limitations is given in a subsequent deliverable.

6.2 Review of DiVincenzo criteria

The 542 criteria [DiV0O0] for quantum computation are:
1. ascalable physical system with well characterized qubits

2. the ability to initialize the state of the qubits to a simple fiducial state
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. long relevant decoherence times, much longer than the gate operation time

3

4. auniversal set of quantum gates

5. a qubit-specific measurement capability
6

. the ability to interconvert stationary and flying qubits
7. the ability faithfully to transmit flying qubits between specified locations.
A few initial remarks are in order.

Well-characterized qubit array The requirements that the qubits are well characterized means that the physical
parameters should be accurately known, including the internal Hamiltonian, couplings to other qubit states,
interactions with other qubits and coupling with external fields. Higher qubits states should be avoided (leakage)
so the physical qubits represent mathematical qubits—abstract two-level systems. The proper identification of
the qubit needs to be done carefully. Remedies to imprecise characterization can be found in robust control,
which are however generally less efficient than controls for precisely characterized systems.

Initialization The need for initialization arises from the straightforward computing requirement of known
initialized registers. Now the evolution of a closed quantum system is unitary, hence invertible, whereas
initialization is not invertible. Thus, initialization requires opening the quantum system operation to achieve,
e.g., cooling or measurement. Initialization is also important for quantum error correction, where a continuous
supply of fresh qubits for re-encoding is a real headache for many implementations. The speed of initialization is
an important issue in experiments. The main approaches for initialization are cooling to the ground state of the
Hamiltonian or projective measurements. Cooling works if the energy gap between the ground and first excited
states of the quantum computer is much smaller than the temperature in appropriate units. In practice, it is hard
to define that temperature in some cases—e.g., the effective temperature of a Josephson circuit is usually
higher than the temperature of the surrounding Helium bath—which can be mitigated by making temperature
margins wide enough. Unfortunately, natural cooling is on the same timescale as energy relaxation, which is just
the bit flip error rate described below, posing a conundrum when using this method within error correction. This
is mitigated if the relaxation rate can be switched or otherwise manipulated. In some optical approaches (ions
and neutral atoms), where qubits are encoded in hyperfine states, relaxation is so slow that it needs to be
manipulated by optical pumping: selective excitation of one of the qubit states to a metastable excited state. An
alternative approach to fast initialization is projective measurement and feed-forward correction, i.e., we
measure the state and apply an additional gate depending on the measurement outcome [RvLK+12].

Coherence Error correction can be applied in quantum computation putting more reasonable requirements for
decoherence times, for decoherence times of the order of 10* to 10° times the clock time of the quantum
computer [DiV0O] (see Section 8.3). Note that also errors other than those due to decoherence enter that
threshold, e.g., systematic errors such as gate axis misalignment or over- and under-rotation. The latter two
errors are unitary errors where in the first case the rotation axis n’ is tilted compared to the ideal axis n, and in
the second case the rotation angle 8’ = 8 + € is too large or too small. The former occurs, for example, in gates
driven by resonant radiation if the resonance condition is not met perfectly, the latter occurs based on errors of
amplitude of the drive field or timing. A more detailed description of those is given in the Appendix Chapter 18.

Universal set of gates The universal set of gates is the heart of quantum computing. In principle, the desired
Hamiltonians to perform quantum gates are turned on and off via external controls, with somewhat smooth
pulse shapes. These have to address all the interactions that cannot be turned off, e.g. in NMR, i.e., in the
presence of spurious coupling there is some control required to simply keep qubits or registers idle, typically in
the form of refocusing operations. Refocusing consists of designing control sequences such that the impact of
undesired term averages out in the end. Its simplest example is Hahn spin echo [Lev01,VCO5]. It has been
invented in original NMR and can be interpreted in quantum computing to protect quantum memory from
inhomogeneity. Turning off all couplings between the spins is known as decoupling, and turning on specific
couplings is called refocusing, and the latter can be done efficiently [LCYY0O0,VCO5]. The drawback of these
techniques is that they make gate sequences longer thus making operations more susceptible to unitary error.
Refocusing is compatible with error correction, see Appendix 24 in an older version of this study [WSL+20]. In
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the context of our evaluation scheme, experimentalists will decide whether to use refocusing for their
operations and benchmark them accordingly on level B.

Also, auxiliary systems are used for gate implementations, e.g., in ion traps, where direct interactions between
qubits cannot be turned on. Also, fully parallel operations are needed for quantum error correction, which can
be a problem when a single bus is used to mediate the interaction between arbitrary qubits, while nearest
neighbor interactions allow for sufficient parallelism. Systematic errors due to imperfect gates should be below
the error correction threshold [Pre97b, DiVO0O]—see measures for error rates described for level B in Section 8.4,
and thresholds described for level C in Section 9.2.1.3. Note that we are talking about physical gates here that
are meant to execute the operations underlying fault tolerance —logical error-corrected gates are treated later,
in Chapter 8. The use of coding the qubit can reduce the gates required. A standard choice for physical qubits
con single qubit rotations and a perfect two-qubit entangler [Mak02,ZVSWO03] (often a CNOT). For logical qubits
one typically relies on the minimal set of Clifford gates and the T gate, a /8 phase shift with opposite signs for
its basis states.

Measurement The qubit specific measurement capability is minimally needed to read out the result of the
computation. If the measurement is an ideal quantum measurement (restrictions to this are described below), it
can be used for fast state preparation, e.g., for recycling qubits in quantum error correction—but this is not
necessary as quantum error correction can be done only with final measurements but other overhead. In
threshold calculations, a single quantum-efficiency parameter is an often used to summarize the fidelity of a
guantum measurement, whereas the reality is more complex. Improving the efficiency can be done by a “copy”
of the single qubit to three, which is done by initializing two qubits to |0), applying CNOTs and measuring all of
them [DiV0O]. Also, perfect initialization of maximally entangled states in the form of cluster states leads to a
protocol that only requires single qubit gates for computation, making measurement a resource for actual
computation.

Communication-related criteria The last two criteria play a role for communication, i.e., transmission of qubits.
Requirement (vii) is important for cryptography. Proposal for flying qubits usually assume photons as flying
qubits, but also electrons traveling through solids. Potential candidates are described in Chapter 9 discussing
nonstandard architectures. They are important if quantum processors are used as or in quantum repeaters
(which are not part of this study) or in distributed quantum computing (see Section 9.2.3).

6.3 Coherence time scales

Decoherence describes the process of the loss of quantum information through interaction with an
environment. Its nomenclature is not unique throughout literature. In this review, we are going to describe both
decoherence and energy relaxation in a unified language and do not discriminate that the former governs the
guantum-to-classical transition whereas the latter can also occur in a purely classical system—after all, both are
contributing to errors of the quantum algorithm so they both are of relevance for reaching the threshold. As a
first characterization of qubits that implement the circuit model in time, any of these time scales should be much
longer than a typical gate time.

We assume a qubit with some capability for single qubit gates. If that does not exist yet, coherence time scales
are also related to spectroscopic line widths. The latter is proportional to the decay rate of the state through
spontaneous emission.

6.3.1 Single-qubit level

The nomenclature of coherence times in quantum computing has largely been adapted from nuclear magnetic
resonance (NMR), where they were introduced with the Bloch equation [Lev01,VCO05]. This nomenclature
assumes a preferred basis set by some static energy splitting that is larger than any time-dependent controls. In
most quantum computing architecture, this is also the basis in which the qubit states are encoded. A further
assumption behind the Bloch equation is that errors are Markovian, i.e., the noise process does not have any
temporal memory. The Markov assumption implies that terms decay exponentially, hence an error occurring
over a time T, and within a gate time T, leads to an error 1-exp(-Tg/Te) = Tg/Te+ O((T¢ /Te )?). Exceptions to this

74 Federal Office for Information Security



Low-level analysis of qubit systems 6

assumption are discussed later. Most of these rates can be estimated from the noise of the qubit environment, if
known, using Fermi’s golden rule [MKT+00,SW03,SHKWO05].

In this framework, we identify the following time scales as being relevant:

Energy relaxation time T;: The time T1 describes the time of energy relaxation, i.e., bit flip errors. It is dominated
by noise at the transition frequency of the qubit. Note that long T; can always be reached by inhibiting
transitions of the qubit between its logical states (including coherent gates), hence on its own it alone is not a
clear performance indicator. The standard experiments to get T; are inversion or saturation recovery [VCO5],
e.g., one prepares a non-stationary mixture of energy eigenstates and measures their decay time.

Phase coherence time T, and pure dephasing time Ty The time T, describes the time of phase randomization,
i.e., the time it takes to transfer a superposition of the qubit states into a statistical mixture. This is not
independent of T; errors and in fact it can be shown that T, < 2T; based on the constraint that the qubit density
matrix remains positive. The difference as a rate (inverse time) can be identified as the pure dephasing time Ty
as Tt = (2T1) 1 + T4 L. The rate Tyt is proportional to the low-frequency energy fluctuations of the qubit.
Formally, the relevant frequency is zero, however, practically this is set by one over the duration of the
experiment. Applying this argument to 1/f -noise produces a short Ty that formally diverges in a long
experiment. While this formal divergence shows the limitations of this simple argument [MS04], see also our
discussion in Subsection 6.3.3.2, this motivates that the impact of 1/ noise needs to be avoided. This can be
achieved if the fluctuations do not impact qubit energy — which can be arranged, e.g., in Josephson qubits, by
choosing an optimum working point [VAC+02,CW08]. T> can be measured by Ramsey interferometry that is
corrected for homogeneous effects (see below) by some type of echo. Ramsey interferometry consists of
preparing the qubit in an energy eigenstate, then performing a /2 rotation into an equal superposition of
eigenstates, waiting for a time t, and repeat the 1/2 rotation. The decay of the resulting signal shows the decay
of a superposition hence directly gives T,.

Note that while it is intuitive that T; limits T, (energy relaxation through an environment breaks the phase), the
factor 2 arising above has been subject to much argument. Its existence is well established, and many
experiments reach T, = 2T; one should keep in mind that in the Bloch equations, T, appears twice and T3
appears once—and that T, describes the decay of a probability amplitude whereas T1 describes the decay of a
probability.

Ensemble phase coherence time T," Measurements of T, for example by Ramsey interferometry require
collecting data from an ensemble as they are based on expectation values. This type of ensemble averages is
collected on single quantum systems by repeating the experiment in time. Now in principle, the parameters of
the experiment can slowly fluctuate between these ensemble members, i.e., between different runs of the
experiment, which after performing the ensemble average looks like a short T. In some realizations (in spin
ensembles in NMR) the ensemble is built in one temporal run but inhomogeneity between ensemble members
arises because of variations of the magnetic field across the test tube. This phenomenon is also called
inhomogeneous broadening (from the broadening of the Fourier transform, i.e., the spectral line below
saturation).

Inhomogeneous effects can be suppressed by the spin echo technique (the NMR Hartmann-Hahn echo can be
viewed as stabilization of quantum memory). Logical operations need to incorporate echo in the form of
composite pulses or robust controls, which are typically longer than uncompensated pulses. Experimental
designs thus decide whether the savings of going from T,* to T, are overcompensated or not by the echo
technique. Basic notions are described in Ref. [VC05] and its application to quantum computing is outlined in
Appendix 24 in an older version of this study [WSL+20].

Rotating frame decay time T1, In many case it is useful to visualize qubits in three-dimensional affine space by
plotting the expectation values of the three Pauli matrices a,/,/; on the respective coordinate axis—the Bloch
sphere. Pure qubit states are represented by points on the Bloch sphere, mixed states by points in its interior,
the Bloch ball. In this representation, a basis change to a time dependent with continuously evolving phase
factors can be visualized as a changing into a co-rotating frame, which is often very useful to understand and
describe qubit dynamics. Specifically, most quantum computing platforms realize off-diagonal single-qubit gates
by resonant external fields that are easily described by quasi-static terms in a frame rotating with that resonant
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field, and that drive Rabi oscillations. Moreover, based on a phenomenon called spin-locking, the relevant
decoherence time for these gates is not T, but T1, which probes the environment at the Rabi frequency scale
rather that at very low frequencies as Ty would do. In particular, in systems with strong 1/f or other low-
frequency noise this time can be much longer than T, hence leading to more optimistic performance estimates
for these gates [VCO5].

6.3.2 Properties unique to multi-qubit noise

Qubit noise metrology becomes much more complex on the multi-qubit level. The commonly used mathematical
structure to describe this is the Lindblad equation (of which the Bloch equation is a special case)—a master
equation that describes general strictly memoryless (Markovian) and completely positive quantum dynamics.
We will describe limitations to this method below. A novel component that needs to be considered is the
question whether noises are correlated across quantum bits or whether they are separate and uncorrelated
between qubits or whether they are correlated. On an operational level, correlated noise is less harmful and, in
some cases, allows for decoherence-free subspaces [LWO03] see also Appendix 24 in an older version of this study
[WSL+20]. These are in fact a guiding principle behind the design of single-triplet and triple-dot qubits in
semiconductors. On the other hand, it is known that the increase of sensitivity to uncorrelated noise is a
measure of entanglement, so the effective dephasing rate of a maximally entangled N-qubit state is N-times
faster than the individual dephasing rates, making uncorrelated noise a worst-case scenario. This is taken into
account in fault tolerance.

Discussion of noise correlations is mostly driven by noise modeling—when the primary source of noise is known
one can assess their spatial correlations. This includes knowledge that the long-range of nuclear magnetic fields
makes noise in GaAs mostly correlated, the same is true for anomalous heating in ion traps—it also includes
knowledge that materials-induced noise in superconducting qubits is mostly uncorrelated.

Measurements of noise correlations are rare (example given for ultra cold atoms in [F6114]) as they would
require partial process tomography, see process tomography in Section 7.4.2. Rather, given that multi-qubit
operations rest on the shoulders of coherent single qubits, they are obtained by an intermediate-level
characterization method, specifically can be inferred from error budgets gleaned from RB. Randomized
benchmarking methods have been realized in ion traps [GMT+12, HAB+14, MKC+15], at IBM [MGJ+12], in

NMR [RLLO9] and in semiconductors [MLS+15]. However, it is often assumed that the correlation in noise
between qubits either is small or can be ignored in fault-tolerant estimates [MGE12]. The information contained
in RB will be discussed in Section 7.4.3 and the precise nature of multi-qubit errors is described in Section 7.3.2.

6.3.3 Non-Markovian effects and other caveats

6.3.3.1 General observations

As discussed above, characterization of coherence decay in terms of exponential decay and single time scales
relies on a number of assumptions. The most crucial of those is the Markov assumption—the assumption that
temporal correlations of the environment are short-lived. This is a central assumption behind the description of
decoherence in terms of the Lindblad equation [Lin76,BP02]. At first, this appears very unreasonable, given the
low temperature most qubits operate at. Low-temperature operation is not an experimental accident, it is often
needed to avoid thermal noise, it is also needed to allow initialization into the ground state by thermalization.
However, if done properly [WSHGO6] it turns out that the environmental correlation time needs to be shorter
only than the typical coherence decay time. This implies that for serious qubit candidates, where the latter is
long, naturally can be described with Markovian decay pictures.

A few exceptions to this general equation observations need to be noted.

6.3.3.2 1/f noise and nuclear spin noise

Pink noise with a frequency spectrum that diverges roughly as 1/f at low frequency f are ubiquitous in
condensed phases [VC76, DH81, Wei88, SMS02] leading to very slow correlation decay in the time domain. It
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turns out [ICJ+05,SMSS06] that coherence decay here is Gaussian o exp(-T%/T»2) and still a time scale T, can be
defined. Now note that this bounds a short-term error rate by 1 — exp(-T%/T>?) = T?T,? + O(T*/T,*) seeming lower.
While this is established in single experimental runs, it is theoretically understood that this assumes starting
from non-entangled qubit and environment and thus only applies to the first operation applied to a freshly
initialized qubit.

Similarly, but with a much richer set of details, decoherence due to a nuclear spin bath in electron spin qubits
(typically in GaAs) can be described. Nuclear spin baths are also intrinsically slow owing to the large nuclear mass
compared to the electron mass. They cannot be described by their correlation function alone due to their
localized nature and restricted spectrum. Still, their impact can be put into a time scale that can be gauged
similar to T, [FTCLO9].

6.3.3.3  Slippage and other non-Markovian affects

Another assumption of Markovian decoherence is that the initial conditions between qubit and heat bath are
uncorrelated, which is rather artificial. It is known [SSO92,Wil08] that this mostly leads to short-time effects or
even loss of initial visibility. These phenomena contribute to state preparation and measurement (SPAM) errors
on the next higher level (see Chapter 7).

In general, the notion of non-Markovianity is lacking a standard model comparable to the Lindblad equations.
Criteria to quantify it have been introduced [BLPV16] and are currently actively researched. Generally, these
effects are subtle and occur only if they are not masked by Markovian effects, hence, systems that are affected
by this type of non-Markovian decoherence can be analyzed with RB, the key tool on the next level.

6.3.4 Catastrophic events and noise of the noise

So far, we have assumed that the noise parameters themselves are constant over time as the operation of a
guantum computer persists. In the most mature settings, this is not necessarily the case. Specifically, in
superconducting qubits, the noise timescales themselves are not stable [BBS+19] and there are rare catastrophic
events that affect the processor as a whole. For the former, one is advised to quote a conservative estimate of
coherence time while the latter is only uncovered in higher levels of our classification scheme.

6.4 Qubit definition indicators

6.4.1 Qubit longevity

For some platforms, the qubits themselves maybe short-lived, primarily in neutral atoms where trapping forces
are weak, even though this problem has recently been reduced [SSN+21].

6.4.2 Leakage

Mathematical qubits—systems that can be completely described as two-state quantum systems, do not exist in
nature, not even as elementary particles [WL02]. Typically, the computational states are either one degree of
freedom of an elementary particle (e.g. the spin-1/2 of a proton in NMR, which also possesses motional degrees
of freedom) or they are taken as low-energy states of a more complex energy spectrum (e.g. in ions or
Josephson circuits). In order to still operate these devices as qubits, one needs to guarantee that the state
returns to the computational subspace (CSS) after operations (whereas non-computational states can in fact be
useful in gate operations or for readout). Deviations from this are referred to as leakage. Leakage errors are
particularly difficult to correct. In some platforms, leakage is not a problem—specifically when non-
computational states are far separated in energy from computational states. Nuclear motion in molecules, for
example, has frequencies in the infrared range whereas spin dynamics is between radio frequency and the low
end of the microwave spectrum. In some platforms, most notably Josephson qubits, leakage is an ever-present
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challenge as the energy splitting between qubit states differs from that to the leakage levels by typically only 10—
20% in the transmon.

A first indicator for leakage resistance is the difference between such energy splittings. If they are critical, one
can rely on a sophisticated array of detection techniques: Leakage measurement by IBM [WG17] introduces two
new criteria, the leakage rate L; describing leakage from the computational states to other states, and the
seepage rate L,, population transfer from other states to computational subspace. The latter rate introduces
memory effects to the system.

6.5 Qubit initialization indicators

If qubit initialization is done by cooling in the ground state, one can upper-bound its population by 1 — exp(-
AE/ksT) where AE is the energy gap to the first excited state and kg is the Boltzmann constant. In initialization by
measurement, the maximum initialization fidelity is limited by the projection fidelity of the measurement and
the fidelity of the gate that needs to be applied to correct the measurement if necessary [RvLK+12, RBLD12]. In
initialization via optical pumping [Saf16] a high contrast of rates is required for good initialization.

A posteriori, initialization can be measured by measuring right after initialization. As measurement is typically
more restricted than initialization, this is not often done.

6.6 Readout indicators

Readout is a crucial part of quantum computers (and of quantum physics). It does not only serve the final
analysis of the outcomes of the algorithms but is pivotal in syndrome extraction for quantum error correction
and thus an important ingredient of threshold calculations. Also, readout can influence architecture decisions.

Quantum measurement is probably the most intriguing part of quantum physics leading to a lot of foundational
arguments. Also, quantum measurement science is related to precision, quantum-limited measurement—a lot
of modern quantum measurement science and engineering has for example been originally driven by the
application of gravitational wave detection[CDG+10, BSV01, DK12, BBV+16]. We will only touch upon these two
related tangents in a minimal way, to the extent that they are relevant to qubit measurement—for example
because some critical element in the overall measurement chain.

6.6.1 Binary-outcome detectors

In a POVM (positive operator-valued measurement) [NCOO, BP02], the probability to measure the value /is P; =
Tr(MDoM)'), and the state after the measurement reads p;= MYWpM'/P;, with the linear operators M), An ideal
binary-outcome detector, i €{0,1}, is described by ten real parameters, and a general binary-outcome detector
by 28 real parameters [Kor08]. Therefore, the quantum efficiency of a general binary-outcome detector is
described by 18 parameters. This is impractical—most threshold calculations described the detector efficiency as
a single parameter that can be measured with RB. Here, we outline basic notions of quantum measurement that
are necessary for basic detector validation.

A Quantum Non-Demolition detector (QND) does not induce any random transition between the eigenstates of
the measured operator, hence the post-measurement state is uniquely determined by the measurement
outcome. This is a necessary requirement for the re-use of the measured state in error correction and the use
for measurement in state initialization. QND-ness can be verified by repeating measurements. Practically,
measurements are QND when the measured operator commutes with the qubit Hamiltonian, i.e., if one
measures in the energy eigenbasis.

Restriction to QND detectors leads to a quantum efficiency characterization through six parameters only.

For an ideal QND detector the pure initial state a|0) + | 1) is transformed to (aco”|0) + Bc1?|1))/VP;, with
fidelities Fi = | ¢/?|?, probabilities P; = |aco'?|2 + | Bc1? |2 and phases, ¢i = arg(col!)— arg(ci). In general, a non-
ideal QND detector transforms a|0) + | 1) to
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with decoherences D;. Given the fidelities F;, phases ¢; and decoherences D;, the quantum efficiency is
completely described.

The quantum efficiency is defined as 1) = Dmin/Davg, With the lower bound Dmin of the ensemble decoherence Day,.
The ensemble decoherence is defined as e ayge avg = 3icollc1? e and from D;> 0 one gets Davg > Dmin = -

In(Si| coc1?|). If Dmin= 0 then the measurement doesn’t give any information about the qubit state. Outcome
dependent efficiencies are defined as 1i= Dmin/(Di+ Dmin). A perfect measurement has D <. The coefficients
cor describe a potential state-dependent unitary rotation executed by the classical back-action of the detector.

We now describe the application of these quantifiers to two paradigmatic measurement protocols.

Indirect projective measurements The qubit interacts with an ancillary qubit (in |0.)), and a projective
measurement is performed on the latter. The decoherences are D; = 0 and the detector is ideal for the individual
efficiencies n; = 1, but n = Dmin/[-In(| 3icolle1?*|)] < 1 if the phases mismatch ¢ # 1.

Linear detector in binary-outcome mode This is a common example for solid-state qubits. A linear detector is
characterized through the average output signals /p and /1 for the two measurement outcomes, with Al = l1— Iy,
and the spectral density S of the white noise. T, = 25/A/? is the time needed for the signal-to-noise (SNR) ratio to
reach 1. The quantum efficiency reads 1 = Dmin/(yt + s?[1 + (TmKAI/2)?]), with the measurement strength s =
V(t/2Tm), the decoherence rate y and the correlation between output and back-action noise K. Even for an ideal
linear detector (y = 0, K = 0) the efficiency no <1 is not ideal, and 1 < 2/m.

6.7 Final remarks

This low-key application of DiVincenzo’s criteria is the first qualifier for quantum computing platforms. Passing
them with structures containing at least a few qubits will enable a more quantitative performance discussion as
that done in the next section, which essentially proposes small quantum algorithms that allow to extract
guantitative performance indicators.
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7  Benchmarking qubits

7.1 Introduction

When we have basically functioning qubits, we would like to know if they have the potential to be scalable, i.e.,
if they meet the threshold for quantum error correction. The question is if a device is given to us how to know if
the threshold has been surpassed. This is nontrivial because one needs to know which measure returns the
threshold. While the low-level criteria can give bounds on achievable errors, they crucially depend on very
finicky models to be accurate and complete— models that address human-made systems and hence would need
to be re-evaluated over and over. Thus, to validate qubits and refine these models, it is important to have a way
to measure the error of quantum operations on a real qubit. Next to evaluating the distance to the error
correction threshold, this type of characterization also helps to improve quantum processor elements and assists
in calibration of operations.

7.2 Benchmarking and error mitigation techniques

Benchmarking can be used to evaluate low-level gate design and error mitigation techniques. Specifically,
dynamical decoupling and spin echo as described in Chapter 9 and Chapter 6 can be used to remove systematic
errors and inhomogeneities on the expense of longer gate times. On the other hand, decoherence-free

subspaces (DFS, see Appendix 24 in an older version of this study [WSL+20]) use symmetries of the noise
mechanism to protect qubit states and their effectiveness influences gate fidelities that can be benchmarked.

7.3 Qualitative criteria beyond DiVincenzo

A lot of this has been discussed in the surface code chapter already, see surface code chapter.

7.3.1 Connectivity
Error correction codes need the right connectivity of physical qubits to carry out operations, e.g., a nearest-
neighbor lattice for the 2D surface code. A 1D-architecture with nearest neighbor-connectivity needs to face

extremely low thresholds—full connectivity such as, e.g., in Monroe’s ion trap [LMR+17] Figure 1 allows to
implement surface codes of high dimension with high thresholds.

7.3.2 Parallel operations
Error correction is envisaged to be done in parallel or with at most constant overhead on all qubits. Sequential

error correction cycles would render error correction ineffective. An example of a non-parallelizable architecture
is coupling all qubits to a single bus, which can typically only mediate a single two-qubit operation.

7.3.3 Supply of fresh qubits

Fresh initialized ancillae in error correction are needed in all cycles, requiring either a large supply or fast reset.
Time for this needs to be factored into the determination of time constants for error correction.

7.4 Benchmarking operations

7.4.1 Gate fidelities

There exist a wealth of fidelity functions allowing to estimate the proximity of two quantum operations. In its
simplest form, the fidelity can be written as a state overlap (¢| 1) between a desired state |1r) and the final
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state | ). The final state is obtained by applying some operation on the prepared input state | o), and the
desired state is the one we would get if the operation on the input state would be ideal. This state overlap
basically defines the fidelity of the quantum process, but it depends on the given input state, leading to a large
range of obtainable fidelities.

There are two natural routes to lift this input state-dependence: One is to average over all input states. Such an
average can be reduced to the Hilbert-Schmidt scalar product of the two corresponding operators, like the trace
fidelity |tr(Us Ur) | ¥IN? for a unitary process with the desired evolution Ur and the implemented evolution Ur.
This can be extended for general maps, to a trace fidelity |tr(®g?! o ®71)|/N?, where ®(po) = p maps density
matrices onto density matrices, and the indices stand for desired (F) and actual (T) gates. The average gate
fidelity is yet another way to measure the fidelity of a process and is defined through

Fo=] @|Uf Dr(19)  @b]) Ue |9 dip.

The integration is done over all possible input states in the computational subspace. We will see in the end of
this section that the average gate fidelity can be estimated efficiently through RB. However, for high dimensional
gates, like an n-qubit controlled-phase gate C...CZ, i.e., a lot of control qubits to perform a Z gate, leads to a high
fidelity even for the identity operation. Without loss of generality this gate is a diagonal matrix where all but the
last entries are 1, and the last entry is -1. Now the average gate fidelity for a final gate being unity (quantum
memory) is 1— 4(2"—- 1)2"(2" + 1) (1—- 4(2"—- 1)2?" for the trace norm), increasing with the number of qubits.

The other way is to look at the worst input state—the one producing the largest error. That combined with the
possibility to augment the operation with a unit operation (hence finding the worst input state over a large set)
defines the diamond norm. This measure depends on an input state that is defined through the norm itself. The
diamond distance of two quantum channels ®; and ®; is defined as the trace distance of the channels for the
worst-case input state p

|P1 = P2l = Sl:)pll(q% ® D(p) = (P2 @ D()llx-

Then the diamond norm is 1 minus the diamond distance. The diamond norm measures the fidelity of the worst
case possible, which maximizes the diamond distance. The diamond norm returns a significant error for this
wrong implementation of the n-qubit controlled-phase gate C...CZ.

It is the diamond norm that enters the threshold theorem of fault tolerance. We will see that it is cumbersome
and inefficient to measure, so one needs to rely on bounding it by feasible measurements. This statement will be
made more formal later.

7.4.2 Process tomography—idea and pitfalls

The historic first benchmarking procedure proposed has been quantum process tomography (QPT), which is
based on quantum state tomography (QST) [NC0O0]. QPT aims at reconstructing the full quantum process, from
which operation errors and fidelities can be computed (for a caveat see next subsection). The goal of QST is to
reconstruct the full density matrix of a state through measurement. For a system of qubits, it consists of
measuring the expectation values of all combinations of Pauli matrices, including the identity, in a given state.
Quantum state tomography is a procedure to measure the complete density matrix. For a system of qubits, it
consists of measuring the expectation values of all combinations of Pauli matrices (including the identity) in a
given state. It thus requires a number of measurement operators that is exponential in the number of qubits.
Practically, in most cases with the possible exception of photon polarization, physical detectors are set up to
measure only one specific observable. Measuring any other Pauli operator requires additional operations
between the operation of interest and measurement, introducing an additional error source. Practically,
measurement imperfections can easily lead to non-physical density matrices (e.g., with negative eigenvalues),
which can be mitigated by advanced data analysis, need to be determined through many repeated experiments
for each generalized Pauli operator, then the Pauli decomposition of the state p can approximately be
reconstructed. Although it is conceptually easy, it needs accurate state preparation and measurement (SPAM),
during which it is prone to errors.
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Quantum process tomography (QPT) consists of preparing a complete set of pure initial states spanning the
space of input density matrices, which is of size 2. Applying the process €(p) for each initial states and
performing full QST on the output [NC00] determines the full quantum process. This increases the needed
resources by a factor of d?, and is still prone to SPAM errors. Given that in quantum processors there is usually a
single fiducial initial state, preparing the input state adds another operation leading to an artifact analogous to
that in QST. These errors are called State Preparation And Measurement (SPAM) errors.

One should note that for small systems, it can still be practical to implement QPT in efficient versions [MGS+13].

7.4.3 Randomized benchmarking and interleaved randomized benchmarking

QST and QPT need a lot of resources to characterize even small quantum systems. Additionally, they require
accurate state preparation and measurement (SPAM), and are vulnerable to errors in these. An efficient way to
estimate quantum gates is RB [KLR+08]. It does not need that many measurements and is stable under SPAM
errors. Therefore, it is good candidate for characterization of large systems and the de facto standard tool for
such a task.

The basic RB protocol works as follows: First, one chooses a fixed sequence length m, where a sequence contains
m+1 Clifford gates. The Clifford gates form the Clifford group and are the normalizers of the Pauli group: They
map Pauli operators onto Pauli operators. The generators of the Clifford group are the phase gate, the
Hadamard gate and the CNOT gate. The last gate in a sequence is set as the inverse of the concatenated
preceding m gates, which is feasible given the group structure. For the chosen m, one builds K, random
sequences, each with an error A, and calculates the average of the K, fidelities, which are the measured survival
probabilities of the initial state. This is repeated for each m and fitted to an exponential decay curve. Its offset is
interpreted as the total SPAM error and from its base p we can infer 1-p as the error per gate. The average error
rate is then given by r = (d- 1)(1 -p)d with the dimension d. RB approximates the average fidelity function.
Various initial assumptions have been relaxed [MGE11, MGE12]. Note that this technique allows to measure
even small errors by making the sequence very long in order to bring the sequence error into a range that can be
conveniently detected. Its convergence is rather fast, which has later been quantified [CW15].

As described, RB measures the average error of the whole Clifford group. Interleaved randomized benchmarking
(IRB) [MGJ+12] allows characterization of a specific Clifford gate RB has been implemented in many systems, and
typically requires a modest number of measurements mostly controlled by the sheer size of the two-qubit
Clifford group. It is also possible to characterize leakage errors with RB separately and several protocols have
been proposed [ECMG14, CW15, WG17] to do it. However, T gates cannot be benchmarked efficiently, which is
a consequence of the Gottesman-Knill theorem [Got98], that states that non-Clifford gates are computationally
hard to simulate classically. There are some attempts to include non-Clifford gates, or at least trying to reduce
complexity by forgoing the last inverting Clifford gate and performing optimized state tomography

instead [CMB+16, CRKW17]. Another proposed idea is Randomized Benchmarking Tomography (RBT) [JdSR+15].
The protocol is compared to IRB, where non-Clifford gates for RB are written as linear decomposition of
Cliffords [KdSR+14], and the latter are benchmarked with IRB. For characterization at the logical level the idea of
logical RB [CGFF17] has been proposed recently.

It needs to”be noted that the difficulty of characterizin” non-Clifford gates with RB is not considered to be a
major problem. The physical T gate is not more difficult than the Z gate, which is a Clifford gate and one should
not expect these errors to be vastly different. This is in sharp contrast to their difference in complexity as logical
gates.

For larger systems, a variation called cycle benchmarking gets some more reliable information as it can clarify
error sources on the level of Pauli errors, including crosstalk [EWP+19].

7.4.4 Gate set tomography

A complementary tomography tools to characterize qubits is gate set tomography (GST) [BKGN+13, MGS+13]. It
is designed as a black-box characterization tool, such that the quantum device is accessible only through classical
controls and measurement outcomes. In contrast to QST and QPT, it does not rely on accurate state preparation
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and measurement. Compared to RB, it needs much more resources: about 103 sequences for a single-qubit and
10° sequences for two-qubits. But it returns full tomography of gates, state preparation and measurement
simultaneously, and an estimate of the diamond norm. GST has been successfully tested, for example in ion
traps [BKGN+13, BKGN+17] and semiconductors [DMBK+16]. A Python implementation of GST (pyGSTi) can be
found on GitHub [NER16].

In the black-box description the device contains some buttons to apply quantum gates, including an initialization
button to prepare the (probably unknown) state p, a measurement button that returns a binary outcome, and K
gates G;. GST then works as follows: The state p is initialized, followed by a sequence of gates s = {Gsj,...,Gs.} with
length L, and a final positive-operator valued measurement (POVM) E. Each such experiment is repeated N times
to gather sufficient statistics of the recorded outcome, and this is done for M different sequences. The number

M scales with Kd4, where d is the Hilbert space dimension and K the number of gates one can apply directly (i.e.,
the number of gate buttons). Then linear inversion (LGST) provides rough estimates of the gates, state
preparation and measurement (simultaneous state and process tomography)[Grel5], and is used as a starting
point for maximum likelihood estimation (MLE). Each sequence consists of three parts: an initial fiducial
sequence, a short germ sequence which is repeated several times, and a final fiducial sequence [BKGN+17]. The
fiducial sequences effectively change the initial state and the measurement basis. Repeating the germs allows to
enhance specific errors, such as over-rotation, tilt or dephasing. GST is therefore more sensitive to coherent
errors compared to RB, which randomizes over gates. GST assumes that the gates are Markovian and non-
Markovianity is obtained from deviations in the fitting model, where short sequences are less prone to non-
Markovianity. Up to the choice of basis (gauge) the gate set {p,E,Gj} is self-consistently determined. A
consequence of the gauge invariance is that the gates do not have to be completely positive and trace
preserving (CPTP) maps in an arbitrary basis. Therefore, GST does not enforce the CPTP condition, and the gauge
is usually chosen such that the estimated gates are as close as possible to the target gates.

7.4.5 Cross-entropy benc