
Work Package 5: Trusted Platform
Module and Unified Extensible
Firmware Interface “Secure Boot”

Version: 1.1

Federal Office for Information Security
Post Box 20 03 63
D-53133 Bonn
Phone: +49 22899 9582-0
E-Mail: bsi@bsi.bund.de
Internet: https://www.bsi.bund.de
© Federal Office for Information Security 2018

Table of Contents

Table of Contents
1 Introduction.. 7

1.1 Zusammenfassung.. 7

1.2 Executive Summary... 11

1.3 General Concepts and Terminology... 13

2 Technical Analysis of Functionalities... 16

2.1 TPM Communication Interfaces... 16
2.1.1 TPM Communication: User-land... 17
2.1.2 TPM Communication: Kernel-land... 22
2.1.3 TPM Usage Profiles.. 22

2.2 Windows Boot.. 23
2.2.1 Boot Manager... 24
2.2.2 Windows Loader... 27
2.2.3 Windows Kernel.. 29

2.3 The Windows Defender ELAM Driver... 36

2.4 Integrity Measurement... 40

2.5 TPM Provisioning... 46
2.5.1 Manual Provisioning... 47
2.5.2 Auto-provisioning.. 51

2.6 Security Aspects... 53

3 Configuration and Logging Capabilities... 55

3.1 Configuration Capabilities.. 55
3.1.1 Programmatic Configuration Capabilities...56
3.1.2 Non-programmatic Configuration Capabilities..57
3.1.3 Recommended Configuration Settings.. 62

3.2 Logging Capabilities... 63

Appendix.. 68

Tools.. 68

TPM Usage Profiler... 69

TPM Usage.. 70

ELAM Database Parser.. 70

WBCL Parser.. 73

Measured Executables... 73

Reference Documentation... 76

Keywords and Abbreviations.. 77

Federal Office for Information Security 3

Table of Contents

Figures
Figure 1: A TPM key hierarchy... 14
Figure 2: Interfaces for communicating with the TPM... 16
Figure 3: Submitting a TPM command using Tbsip_Submit_Command...18
Figure 4: Execution of Tbsip_Submit_Command... 19
Figure 5: Submission of TPM commands.. 20
Figure 6: The ACPI TPM2 table.. 20
Figure 7: Loading and initializing the Platform Cryptographic Provider...21
Figure 8: Dynamic loading of TPM-related library files.. 21
Figure 9: The booting process of a Windows-based platform..23
Figure 10: Public keys stored in the boot manager and the UEFI firmware..25
Figure 11: Function stack: Image loading and integrity verification by the boot manager..26
Figure 12: A public key of a root certificate stored in the boot manager...27
Figure 13: Function stack: Image loading and integrity verification by the Windows loader...................................28
Figure 14: Function stack: Image loading and integrity verification by the Windows kernel...................................29
Figure 15: Snippet of a Windows compatibility database file...31
Figure 16: Pseudo-code of CipValidateFileHash and functions it invokes...32
Figure 17: An Authenticode signature and a PE hash value..33
Figure 18: A hash code and a list of signers... 34
Figure 19: crashdmp.sys: The ContentInfo section and the PE hash value..35
Figure 20: A public key of a root certificate stored in ci.dll..36
Figure 21: Information on the Windows Defender ELAM driver...36
Figure 22: Pseudo-code of MpEbBootDriverCallback of the Windows Defender Implementation and
functions that it invokes.. 37
Figure 23: The ELAM signature database in the registry... 38
Figure 24: The ELAM signature database... 39
Figure 25: Pseudo-code of EbAuthenticateSignatureData... 39
Figure 26: The public key used for verification of the Windows Defender ELAM signature database..................40
Figure 27: The architecture of the integrity measurement mechanism of Windows 10...41
Figure 28: An excerpt of a WBCL file.. 43
Figure 29: Integrity measurement in the Windows loader.. 46
Figure 30: The TPM provisioning process.. 48
Figure 31: A random value generated by TpmApiGetRandom (Base64-encoded)..49
Figure 32: The third parameter of CtpmSettingsReaderWriter::WriteStringSetting...49
Figure 33: The first and fifth parameter of CtpmSettingsReaderWriter::WriteStringSetting....................................49
Figure 34: BCryptOpenAlgorithmProvider in TpmApiGetRandom...50
Figure 35: A TPM command sequence for generating an SRK...50
Figure 36: taskhostw.exe changing the OwnerAuthFull registry key..52
Figure 37: The TPM-Maintenance task.. 52
Figure 38: Generation of an AIK... 53
Figure 39: The main window of the TPM management utility..60
Figure 40: TPM command management using the TPM management utility...60
Figure 41: The registry hive HKEY_LOCAL_MACHINE\Software\Microsoft\Tpm...62
Figure 42: A GUID of an ETW provider declared in tbs.sys.. 64
Figure 43: Registration and deregistration of the provider with GUID 61d3c72e-6b1b-454c-a34d-
b39eb95b8d99... 67
Figure 44: A snippet of a log file containing TPM command information...67

4 Bundesamt für Sicherheit in der Informationstechnik

Table of Contents

Tables
Table 1: Roots of trust and TPM usage... 24
Table 2: A mapping between PCR indexes and types of measurement events...45
Table 3: Attack scenarios and mitigations.. 54
Table 4: Activities supported by TPM configuration capabilities..55
Table 5: Relevant methods of the Win32_Tpm class... 57
Table 6: Get-Tpm cmdlet: Properties.. 58
Table 7: Get-TpmEndorsementKeyInfo: Properties.. 59
Table 8: Group policies for configuring the TPM.. 61
Table 9: Recommended settings... 63
Table 10: ETW providers for logging TPM events.. 64
Table 11: Event IDs generated by the ETW provider TPM.. 65
Table 12: Event IDs generated by the ETW provider Microsoft-Windows-TPM-WMI...66

Federal Office for Information Security 5

Introduction 1

1 Introduction

1.1 Zusammenfassung

Dieses Kapitel stellt das Ergebnis von Arbeitspaket 5 des Projekts „SiSyPHuS Win10: Studie zu Systemaufbau,
Protokollierung, Härtung und Sicherheitsfunktionen in Windows 10“ dar. Das Projekt wird durch die Firma
ERNW GmbH im Auftrag des Bundesamt für Sicherheit in der Informationstechnik (BSI) durchgeführt.

Ziel dieses Arbeitspakets ist die Analyse (i) der Interaktionen zwischen dem Microsoft Windows 10
Betriebssystem und einem Trusted Platform Module (TPM); (ii) der Rolle des TPM im Windows Bootprozess
(im weiteren Verlauf als Windows Boot bezeichnet); und (iii) die Konfigurations- und
Protokollierungsmöglichkeiten (auch als logging bezeichnet) in Bezug auf das TPM. Wie durch das BSI
vorgegeben wird der TPM-Standard 2.0 und Windows 10 Build 1607, 64-bit, long-term servicing branch
(LTSB), Deutsch betrachtet.

Die wesentlichen Inhalte dieser Arbeit sind:

• Die Analyse der Schnittstelle zwischen Windows 10 und dem TPM: Wir diskutieren das Zusammenspiel
der unterschiedlichen Komponenten von Windows 10 in Userland (System Support Prozesse,
Anwendungen, Dienste, das Windows subsystem und ntdll.dll) und Kernelland (der
Betriebssystemkern und Treiber) mit dem TPM. Neben der Beschreibung der relevanten Schnittstellen
wurde ein Skript entwickelt, das die TPM-Nutzung einzelner Komponenten aufzeichnet. Das Skript und
exemplarische Aufzeichnungen (die TPM-Nutzungsprofile genannt werden) sind in diesem Dokument
enthalten.

• Eine Analyse des Bootprozesses von Windows 10: Wir untersuchen den Windows 10 Bootprozess und
beschreiben, wann und wie das TPM während des Bootprozesses genutzt wird. Das TPM stellt eine in
Hardware implementierte Root of Trust dar, die für sensitive Operationen genutzt wird, wie etwa die
sichere Speicherung von Schlüsselmaterial zur Verschlüsselung. Aufgrund dessen wird die Umsetzung
der Integritätsverifikation als Teil des Bootprozesses analysiert, um die Rolle des TPMs darin bewerten zu
können.
Die logische Root of Trust wurde in der Unified Extensible Firmware Interface (UEFI) Firmware
identifiziert. Während Firmware vor UEFI (wie bspw. das Basic Input Output System (BIOS) keine
Verifikation im Boot-Prozess vornahm, enthält die UEFI Firmware Mechanismen zur Verifikation der
folgenden Boot-Komponente. Die sichere Validierung der Boot-Komponenten des Betriebssystems stellt
damit eine notwendige Voraussetzung für einen validierten Betriebssystem-Bootprozess dar; eine genaue
Untersuchung der UEFI Firmware mit Hinblick auf sichere Validierung ist nicht im Fokus dieses
Arbeitspakets. Die UEFI Firmware wurde dennoch als initiale Root of Trust des Boot-Prozesses
identifiziert; die Verifikation der weiteren Boot-Komponenten basiert auf Roots of Trust die direkt in die
beteiligten Komponenten integriert sind. Das TPM spielt demnach keine Rolle im Aufbau eines
authentifizierten Boot-Prozesses (abgesehen von Funktionalität für die Treiber-Verifikation, die im
nächsten Abschnitt beschrieben ist).

• Die Untersuchung der Anti-Schadsoftware-Mechanismen von Windows 10: Wir betrachten die early
launch anti-malware (ELAM)-Technologie, welche Teil des Bootprozesses ist und Treiber auf
Schadsoftware untersucht. ELAM ist hierbei selbst als Treiber (der sogenannte ELAM-Treiber)
implementiert und ist für die Sicherheit des Systems von großer Bedeutung. Wir haben die
Entscheidungskriterien für die Kategorisierung eines Treibers (als gutartig oder schadhaft) sowie die
Struktur der hierzu genutzten Schadsoftware-Datenbank und die Überprüfung der Integrität dieser
Datenbank analysiert und dokumentiert.

• Eine Untersuchung des in Windows 10 implementierten Provisionierungsprozesses des TPMs: Wir
identifizieren und analysieren die relevanten Schritte des Provisionierungsprozesses, der für die
Initialisierung des TPMs zuständig ist, so dass dieses genutzt werden kann. Wir betrachten sowohl den

Federal Office for Information Security 7

1 Introduction

Fall, in dem die Provisionierung automatisch durch Windows 10 angestoßen wird, also auch den Fall, in
dem der Benutzer dies selbst veranlasst.

Die Arbeit lässt sich wie folgt zusammenfassen:

• Abschnitt 1.3 führt relevante Konzepte und Begriffe ein, welche zum besseren Verständnis dieses Kapitels
beitragen. Das sind zum Beispiel root of trust for measurement (RTM), root of trust for storage (RTS) und
root of trust for reporting (RTR).

• Abschnitt 2 liefert technische Informationen über die in diesem Arbeitspaket analysierten
Funktionalitäten von Windows 10:

• Abschnitt 2.1 liefert eine Übersicht über die Schnittstelle zwischen dem Betriebssystem und dem
TPM, wobei Abschnitt 2.1.1 und Abschnitt 2.1.2 jeweils die Kommunikationsschnittstellen zwischen
dem TPM und den Userland-/Kernelland-Komponenten von Windows 10 beschreiben. Weiterhin
werden die entwickelten Methoden für die Enumeration von Komponenten, die das TPM nutzen,
vorgestellt. Diese Methoden können automatisiert auf neue Windows-Versionen angewendet werden;
die identifizierten Komponenten sind im Anhang dargestellt. Zusammengefasst können die Userland-
Komponenten auf zwei Arten mit dem TPM kommunizieren:

• Direkter Zugriff: Die direkte Kommunikation mit dem TPM beinhaltet die Ausführung von
Funktionen, die als Teil des TPM Basis Dienstes (TPM Base Services, TBS) in der Datei tbs.dll
deklariert werden. Die meisten dieser Funktionen führen Operationen dadurch aus, dass sie TPM
Kommandos in Form einer Bytesequenz in einem Puffer konstruieren und an das TPM übergeben.
Die Übergabe von Kommandos von der TBS Bibliothek an das TPM beinhaltet die Ausführung
eines System-Aufrufs (system call) an den TPM-Treiber, welcher in der Datei tpm.sys
implementiert ist.

• Abstrahierter Zugriff: Windows 10 stellt die Next Generation Cryptography API (application
programming interface, CNG API) bereit, um Funktionalität der TBS-Bibliothek zu abstrahieren
und deren Benutzung zu vereinfachen. Die CNG abstrahiert das TPM-Gerät in Form eines in
Hardware implementieren Kryptografie-Providers, der als Platform Cryptographic
Provider bezeichnet wird.

Windows 10 Kernelland Komponenten (der Betriebssystemkern selbst und Treiber) können mit dem
TPM kommunizieren, indem sie Funktionen des TPM Treibers tbs.sys aufrufen.

Abschnitt 2.1.3 enthält Quellcode für die Erstellung von TPM-Nutzungsprofilen (die unter anderem
TPM-Zugriffszeiten sowie die zugreifenden ausführbaren Dateien auflisten).

• Abschnitt 2.2 beschreibt die Analyse des Bootprozesses von Windows 10: Abschnitt 2.2.1, Abschnitt
2.2.2 und Abschnitt 2.2.3 erörtern die Teilaktivitäten dieses Prozesses, wie beispielsweise die
Integritätsprüfung, im Kontext der drei in den Bootprozess involvierten Komponenten: Bootmanager,
Windows Loader und Betriebssystemkern.

Diese drei Komponenten überprüfen die Integrität von auszuführendem Binärcode indem sie dessen
digitale Signatur überprüfen. Diese Überprüfung findet anhand eines öffentlichen kryptografischen
Schlüssels statt, der Teil eines von Microsoft ausgestellten Root Zertifikats ist. Diese Zertifikate sind
fest im Bootmanager, dem Windows loader und dem Betriebssystemkern in der sogenannten root
table hinterlegt.

Das TPM wird hierbei für Integritätsmessungen und BitLocker-Operationen, wie beispielsweise das
Auslesen von im TPM gespeicherten kryptografischen Schlüsseln, genutzt. Die zur Integritätsprüfung
durch die drei zuvor genannten Komponenten benötigten Hashwertberechnungen sind hingegen in
Software implementiert.

• Abschnitt 2.3 fokussiert sich auf die in Windows 10 eingesetzte ELAM-Technologie, d.h. den ELAM
Treiber, den durch diesen implementierte Klassifizierungsprozess in gutartige und schadhafte Treiber
sowie seine Schadsoftwaredatenbank.

8 Federal Office for Information Security

Introduction 1

Der ELAM-Treiber ist Teil des sogenannten Windows Defenders in der Datei WdBoot.sys. Dieser
Treiber überprüft jeden Boot-Treiber und kategorisiert ihn als bekanntermaßen gutartig (known
good), bekanntermaßen schadhaft (known bad), bekanntermaßen schadhaft und für den Bootprozess
notwendig (known bad image of a boot-critical driver, d.h. der Treiber wird als schadhaft eingestuft,
wird aber dennoch für den Bootprozess benötigt), oder unbekannt (unknown). Basierend auf dieser
Kategorisierung entscheidet der Betriebssystemkern, ob der einzelne Boot-Treiber initialisiert wird
oder nicht. Der Mechanismus wirkt wie vorgesehen; eine Evaluation auf quantitative Malware-
Erkennung wurde nicht durchgeführt. Die Validierung der Treiber-Signatur wird dadurch um einen
Mechanismus ergänzt, der die kurzfristige Reaktion auf bösartige Treiber mit gültiger Signatur
ermöglicht.

Die Schadsoftware-Signaturdatenbank des ELAM-Treibers ist digital signiert, um sie vor
unautorisierter Veränderung zu schützen. Der öffentliche Schlüssel, der für diese Verifikation
herangezogen wird, ist in der Treiber-Datei WdBoot.sys fest hinterlegt. Insofern ist der genannte
Treiber selbst die Vertrauensbasis für die Überprüfung der Schadsoftware-Signaturdatenbank.

• Abschnitt 2.4 liefert eine Übersicht über die Mechanismen zur Integritätsmessung in Windows 10.
Konkret werden Informationen über die im TPM gespeicherten Messdaten, die Implementierung der
Integritätsmessung an sich und die Nutzung der Messdaten zur Verifikation der Integrität des
gesamten Systems gegeben.

Die Integritätsmessung berechnet bei jedem Systemstart kryptografische Hashwerte relevanter
Objekte (beispielsweise ausführbarer Dateien oder Bytesequenzen) als Messdaten. Auch die
Speicherung dieser und weiterer relevanter Daten im TPM und Protokolldateien für spätere Analysen
wird durch die Komponente zur Integritätsmessung durchgeführt. Die Analyse der Messdaten wird
normalerweise durch eine vertrauenswürdige dritte Entität (trusted remote platform) durchgeführt.

Die Daten werden in einem Kontext gespeichert, der als Windows Boot Configuration Log (WBCL)
bezeichnet wird. Ein neues WBCL wird bei jedem Systemstart generiert wenn neue Messdaten
berechnet werden. Die Plattform archiviert jedes WBCL in einer Protokolldatei (die WBCL-Datei),
welche im Verzeichnis %SystemRoot%\Logs\MeasuredBoot gespeichert wird.

• Abschnitt 2.5 beschreibt die wichtigsten Schritte bei der Provisionierung des TPMs in Windows 10:
Abschnitt 2.5.1 beschreibt den durch Windows ausgelösten automatisierten Provisionierungsprozess
und Abschnitt 2.5.2 beschreibt analog die Schritte bei der manuellen, durch den Benutzer initiierten
Provisionierung.

Unter Provisionierung wird hier die Ablage von Daten im TPM verstanden, welche zur Nutzung des
TPMs benötigt werden. Dies beinhaltet beispielsweise die Erzeugung und Speicherung von
authorization values, endorsement key (EK) und storage root key (SRK). Weiterhin wird unter Windows
ein authorization value‚ owner authorization value2angelegt, der das zentrale
Authentifizierungsmerkmal für die Verwaltung des TPMs darstellt (d.h. dieser Wert wird wird als
Schlüssel vor der Ausführung von TPM Verwaltungsoperationen abgefragt). Der EK ist ein Schlüssel,
der für jedes TPM einmalig ist und das daher TPM und das ganze System eindeutig identifiziert. Der
SRK wird genutzt, um Objekte dadurch zu schützen, dass sensitive Bereiche (wie beispielsweise Teile
eines privaten Schlüssels) mit einer symmetrischen Verschlüsselungsmethode unter Verwendung
eines Schlüssels verschlüsselt werden, der aus dem privaten Teil des SRK abgeleitet wird.

Es wurde festgestellt, dass bei der Provisionierung der neue owner authorization value im Userland
generiert wird und dann an den TPM-Treiber in Firm eines input/output (I/O) request packets (IRPs)
weitergereicht wird. Dieser Treiber veranlasst dann die Speicherung des Wertes im TPM. Die
Generierung des owner authorization value im Userland ist dabei nicht als Sicherheitsproblem zu
werten, da der entsprechende Wert auch als Nutzer-Passwort für das TPM dient und damit
notwendigerweise im Userland verarbeitet werden muss.

Federal Office for Information Security 9

1 Introduction

• Abschnitt 2.6 gibt einen Überblick über relevante Sicherheitsaspekte; Dies beinhaltet einen Überblick
über Angriffsszenarien, die während der Analyse berücksichtigt wurden, sowie implementierte
Maßnahmen.

• Abschnitt 3 enthält eine Übersicht über die Möglichkeiten zur Konfiguration und Protokollierung in
Bezug auf die Verwaltung des TPMs durch Windows 10 und die Protokollierung von TPM-Ereignissen.
Abschnitt 3.1 diskutiert die Schnittstellen, die Windows 10 zur Konfiguration des TPMs bietet. Die sind
zum einen programmatische Konfigurationsmöglichkeiten und zum anderen nicht-programmatische. In
diesem Abschnitt werden als programmatische Optionen die TPM Windows Management
Instrumentation (WMI) Schnittstellen und die TBS API erläutert. Als nicht-programmatische
Konfigurationsmöglichkeiten werden die PowerShell, das sogenannte TPM Management Utility
(tpm.msc), Gruppenrichtlinien und die Registry betrachtet. Abschnitt 3.2 erläutert die Benutzung der
Basis-Protokollierungsfunktionen von Windows 10 (nämlich die in [ERNW WP2] betrachteten EventLog
und Event Tracing for Windows, ETW) zur Protokollierung von TPM-Ereignissen. Es wurden die in den
Software-Bibliotheken und Anwendungen, welche in Bezug auf das TPM relevant sind, enthaltenen
Logging-Funktionalitäten untersucht. Hierbei wurden 5 ETW Provider identifiziert, welchen in diesem
Abschnitt mit ihrer global unique identifier (GUID) und den jeweiligen Dateinamen tabellarisch
aufgelistet werden.

• Der Appendix gliedert sich wie folgt: Der Abschnitt Tools im Appendix gibt eine Übersicht über relevante
Software-Werkzeuge und wo diese bezogen werden können. Der Abschnitt TPM Usage Profiler
dokumentiert ein während der Bearbeitung dieses Arbeitspakets erstelltes Script, welches zur Erstellung
von TPM-Nutzungsprofilen eingesetzt werden kann. Der Abschnitt TPM Usage enthält ein zugehöriges
Ergebnis des TPM Usage Profilers von einem exemplarischen Windows System. Dieser Abschnitt enthält
eine Liste ausführbarer Dateien (Systemkomponenten), die mit dem TPM kommunizieren. Im Verlauf
dieser Arbeit haben wir BitLocker als einzige Windows-Komponente identifiziert, die das TPM während
des Systemstarts für kryptografische Operationen aktiv verwendet. BitLocker kann auch ohne TPM
funktionieren. Windows selbst verwendet das TPM während des Systemstarts zum Speichern von
Integritätsmessungen. Im Rahmen dieser Arbeit haben wir keine anderen Windows-Komponenten und -
Verfahren beobachtet (z. B. den ELAM-Treiber), die das TPM für kryptografische Operationen oder
sicheren Speicher verwenden. Der Abschnitt ELAM Database Parser liefert ein Script, das zum Parsen der
Schadsoftware-Datenbank von ELAM genutzt werden kann. Der Abschnitt Measured Executables gibt
eine Übersicht über die Namen der ausführbaren Dateien, deren Integrität von Windows 10 gemessen
wird.

10 Federal Office for Information Security

Introduction 1

1.2 Executive Summary

This chapter implements the work plan outlined in Work Package 5 of the project “SiSyPHuS Win10: Studie
zu Systemaufbau, Protokollierung, Härtung und Sicherheitsfunktionen in Windows 10“ (orig., ger.),
contracted by the German Federal Office for Information Security (orig., ger., Bundesamt für Sicherheit in
der Informationstechnik (BSI)). The work planned as part of Work Package 5 has been conducted by ERNW
GmbH in the time period between July and September 2017, in accordance with the time plan agreed upon
by ERNW GmbH and the German Federal Office for Information Security.

The objective of this work package is the analysis of the: (i) interactions between the Windows 10 operating
system that is subject of analysis and the Trusted Platform Module (TPM); (ii) the role that the TPM plays in
activities of the operating system, with a focus on the booting process (which we refer to as Windows boot);
and (iii) the configuration and logging capabilities of the TPM. As required by the German Federal Office for
Information Security, the TPM standard in focus is that of version 2.0. The exact release of the Windows 10
system in focus is build 1607, 64-bit, long-term servicing branch (LTSB), German language. The core
contributions of this work are:

• An analysis of the interfaces between Windows 10 and the TPM: We discuss how the different parts of
Windows 10 deployed in user-land and in kernel-land use the TPM. We focus on the communication
interfaces between these parts of Windows 10 and the TPM. We also provide the means for identifying
Windows 10 components that use the TPM as well as a list of such components we identified;

• An analysis of the booting process of Windows 10: We analyze the booting process of the Windows
operating system and we provide an overview of the use of the TPM during this process. Given that the
TPM is a component representing a hardware-implemented root of trust for sensitive operations, we
analyze the implemented integrity verification procedures conducted as part of the booting process of
Windows 10. When analyzing these procedures, we identify the UEFI firmware as the root of trust of the
overall booting process. Firmware is low-level software enabling the functioning of hardware devices.
Legacy, non-UEFI firmware is not designed to play any role in securing the booting process of systems.
However, the UEFI firmware extends the trust chain securing the booting process of Windows serving as
the first root of trust in this chain. Detailed analysis on the role of UEFI in the booting process of
Windows is out of the scope of this work package. The roots of trust for the further booting process were
identified to be included in the relevant binaries. The TPM does not play a role in establishing an
authenticated boot chain except for driver verification as described in the next paragraph;

• An analysis of the anti-malware mechanism of Windows 10: We discuss the early launch anti-malware
(ELAM) technology implemented in Windows 10. This technology, implemented in a driver referred to as
the ELAM driver, is used for checking drivers for malware and is part of the booting process of Windows
10. Therefore, it is critical for the security of the boot process of the system. We provide an overview of
the decision-making process of the ELAM driver for categorizing an executable as benign or malicious.
We also provide an overview of the structure of the malware database that this driver uses, and of the
verification of the integrity of this database;

• An analysis of the workflow and implementation of the integrity measurement mechanism of Windows
10: We provide an overview of the integrity measurement mechanism of Windows 10. This includes
discussions on the contents and structure of integrity measurement data stored in the TPM, how
integrity measurement is implemented in Windows 10, and how measurement data is used for verifying
the integrity of a given platform. We also discuss on how actual measurements stored in the TPM can be
viewed. In addition, we provide information on the different types of measurement data and what
concrete executables are measured by Windows 10 for integrity verification purposes;

• An analysis of the TPM provisioning process implemented in Windows 10: We identify and analyze
relevant activities that are part of the TPM provisioning process. This is a process for initializing the TPM
and making it ready for use. We consider both scenarios when the TPM provisioning process is triggered
automatically by Windows 10 or manually by users. We provide a technical overview of the workflow of

Federal Office for Information Security 11

1 Introduction

the TPM provisioning process and we identify the system components and resources taking part in it,
such as registry values and library DLL files;

• All analysis steps have been performed with particular regard to potential attack vectors on the overall
TPM and integrity verification/measurement mechanisms.

This work is structured as follows:

• Section 1.3 introduces concepts and terms relevant for better understanding the contents we present;

• Section 2 provides technical information on functionalities whose analysis is in the scope of this work
package:

• Section 2.1 provides an overview of the interfaces between Windows 10 and the TPM: Section 2.1.1
and Section 2.1.2 discuss the communication interfaces between the TPM and parts of the Windows
10 system deployed in user- and kernel-land; Section 2.1.3 introduces code useful for constructing
TPM usage profiles. Under TPM usage profiles, we understand information on system entities
communicating with the TPM, such as specific user processes or system services. TPM usage profiles
also include relevant related information, such as communication patterns and frequencies;

• Section 2.2 provides an analysis of the booting process of Windows 10: Section 2.2.1, Section 2.2.2, and
Section 2.2.3, discuss the activities performed as part of this process in the context of the three entities
booting the Windows system to its full extent: the boot manager, the Windows loader, and the
Windows kernel;

• Section 2.3 focuses on the ELAM technology implemented in Windows 10: the ELAM driver, its
decision-making process, and its malware database;

• Section 2.4 provides an overview of the integrity measurement mechanism of Windows 10; that is, it
provides information on the measurement data stored in the TPM, the implementation of integrity
measurement in Windows 10, and the use of measurement data for platform integrity verification;

• Section 2.5 discusses relevant activities that are part of the TPM provisioning process implemented in
Windows 10: Section 2.5.1 and Section 2.5.2 discuss these activities, conducted when the TPM
provisioning process is triggered automatically by Windows 10 and manually by users, respectively;

• Section 2.6 provides an overview of relevant security aspects; this includes an overview of attack
scenarios considered during analysis as well as implemented mitigations.

Throughout the technical discussions, we depict function call stacks and pseudo-code. We emphasize
that these call stacks, for the sake of brevity, present only functions that we consider relevant to the
discussions. We do not necessarily depict all functions that are part of the call stacks as implemented in
Windows 10. In addition, the depicted pseudo-code is a high abstraction of real code and does not
consistently follow the syntax of a particular programming language. We depict pseudo-code in a form
considered optimal for better understanding the discussed matter. The pseudo-code depicted in this
work loosely follows a C and C++-like programming language syntax.

• Section 3 provides an overview of the configuration and logging capabilities of Windows 10 for managing
the TPM and logging TPM events: Section 3.1 discusses the interfaces that Windows 10 provides for users
to configure the TPM; Section 3.2 discusses the use of the core logging facilities of Windows 10 for
logging TPM events;

• In the Appendix: the ‘Tools’ section lists used tools and where they can be found; the ‘TPM Usage Profiler’
section provides a script for constructing TPM usage profiles, relevant to the discussions in Section 2.1.3;
the ‘TPM Usage’ section provides a table listing executables that communicate with the TPM, relevant to
the discussions in Section 2.1.3; the ‘ELAM Database Parser’ section provides a script for parsing the
malware database that the ELAM driver uses for anti-malware verification, relevant to the discussions in
2.3; the ‘Measured Executables’ section provides a list of names of executables whose integrity is
measured by Windows 10, relevant to the discussions in Section 2.4.

12 Federal Office for Information Security

Introduction 1

1.3 General Concepts and Terminology

The TPM is a standard for a secure cryptoprocessor developed by the Trusted Computing Group (TCG). The
TPM implements in hardware three roots of trust ([TCGLP1 2016], Section 9.4): root of trust for
measurement (RTM), root of trust for storage (RTS), and root of trust for reporting (RTR).

The RTM is typically the CPU executing an implicitly trusted, immutable code that initiates the integrity
measurement process in firmware context. Integrity measurement typically consists of calculating hash
values of relevant data. These values are stored for later comparison with previously measured hash values
of the same data, such that a mismatch indicates data corruption.

Due to its immutability, the trusted code executed by the CPU is also referred to as the static root of trust for
measurement (SRTM), or the core root of trust for measurement (CRTM). The SRTM is a set of instructions
measuring itself and other firmware content, and storing these measurements in the TPM ([Butterworth
2013], Section 1). Although the SRTM itself can be stored in the TPM, it is typically stored in the platform’s
Boot Block. The Boot Block is part of the platform’s firmware ([TCGF 2016], Section 2.3.3.1).

The RTS is the TPM’s memory, which is shielded from external access. The TPM has volatile and non-volatile
memory, structured into registers ([ERNW WP2], Section3.5). Examples are the platform configuration
registers (PCRs), which are used for storing integrity measurement data (see Section 2.4). A typical TPM has
24 PCRs, such that each PCR is uniquely identified by an integer number with a value between 0 and 23,
known as the PCR’s index.

The RTS provides secure storage of data and protection of objects stored outside the TPM, where the root of
this protection is the RTS ([TCGLP1 2016], Section 23). Example objects are keys and arbitrary files. The
protection of external objects is structured as a hierarchy of protected objects. The root of this hierarchy is a
TPM key named the storage root key (SRK). TPM keys are encryption keys stored in a format understandable
by the TPM. The SRK is created by the TPM, stored in the TPM’s non-volatile memory, and its private part
never leaves the TPM.

The SRK protects a given object by encrypting the object’s sensitive area (e.g., a key’s private part) with a
symmetric encryption key derived from the private part of the SRK ([TCGLP1 2016], Section 22.3). This is
known as wrapping. Among other objects, the SRK may wrap TPM keys of any type, for example, signing
keys (keys used for digitally signing data), or storage keys. Storage keys are TPM keys that themselves can
wrap other keys or any object, thus constructing a hierarchy of protected objects with multiple parent-child
relationships ([TCGLP1 2016], Section 23.1).

The RTR is the TPM and is implemented as the TPM’s functionality of reporting contents stored in the RTS
(e.g., values of PCRs or the TPM’s audit logs, [TCGLP1 2016], Section 9.4.3) to external entities, such as remote
attestation servers (see Section 2.4). The identity of the RTR is determined by the TPM’s EK. The EK is a TPM
key generated in TPM context such that its private part never leaves the TPM. The EK is typically, however,
not necessarily, installed on the TPM at platform manufacturing time. The EK is stored in the TPM’s non-
volatile memory. The EK is unique for each TPM. This makes the EK a key uniquely identifying the TPM it is
stored on, and therefore, the platform the TPM is installed on.

Due to privacy concerns, EKs are not directly used for platform identification. TPM keys known as
attestation identity keys (AIKs) are used for this purpose. AIKs are generated by the TPM and bound to EKs
during a certification process; that is, they act as aliases of EKs. There can be multiple AIKs bound to a single
EK. We refer to the AIK Certificate Enrollment Specification[TCGAIK 2011] for more information on the
certification process for associating AIKs with EKs.

AIKs are TPM signing keys, exclusively used for signing data originating from the TPM (e.g., values of PCRs).
For example, a certificate authority (CA) can verify that a key originates from the TPM and then certify it,
only after it has verified the signature of the signing AIK. This AIK itself has to be certified. This is known as
key attestation.1

1 https://msdn.microsoft.com/en-us/library/dn410314.aspx [Retrieved: 22/9/2017]

Federal Office for Information Security 13

https://msdn.microsoft.com/en-us/library/dn410314.aspx

1 Introduction

Figure 1 depicts a sample TPM key hierarchy including the previously mentioned EK, SRK, and AIKs. In
Figure 1, StorK is a TPM storage key, data is arbitrary data, and external storage is any storage medium that is
not the TPM’s memory, for example, the hard disk of a given platform.

For each EK, an endorsement and a platform certificate is created. The endorsement certificate contains the
public part of the EK and is used for attesting that the platform has a unique TPM installed on it. The
platform certificate contains a reference to the EK and provides a proof of the binding between the EK and
the platform where the TPM is installed on, acknowledged by a trusted CA. The platform and endorsement
certificates are typically, however, not necessarily, created at manufacture time by the platform’s
manufacturer. For more information on the creation of the endorsement and platform certificates, we refer
to the Certificate Management Messages Over CMS (CMC) Profile for EK/Platform Certificate Enrollment for
TPMv1.2 Specification, version 1.0, revision 5. This is the latest such specification at the time of writing
[TCGCMC 2013].2

The TPM is a passive device executing commands submitted to it, and returning relevant data, such as status
codes. We refer to these commands as TPM commands. In their raw form, a TPM command is a sequence of
bytes stored in a TPM command buffer. This buffer has a command-specific layout defined in the Trusted
Platform Module Library, Part 3: Commands [TCGLP3 2016].

In the context of the TPM, each TPM command is uniquely identified by an integer value, known as the TPM
command code (see [TCGLP2 2016], Section 6.5.2). In the context of the Windows operating system, each
TPM command is uniquely identified by a command ID. Based on these IDs, Windows implements access
control over TPM commands to restrict the execution of the commands to users (see Section 3.1.2).3

2 At the time of writing, there is no EK/platform certificate enrollment specification for TPM 2.0.
3 https://technet.microsoft.com/en-us/library/dn466537(v=ws.11).aspx [Retrieved: 22/9/2017]

14 Federal Office for Information Security

Figure 1: A TPM key hierarchy

https://technet.microsoft.com/en-us/library/dn466537(v=ws.11).aspx

Introduction 1

Some TPM commands and functionalities are protected such that they can be executed only if a proof of
ownership of the TPM is provided. This proof is in the form of an authorization value. There are three types
of TPM authorization values: platform authorization, endorsement authorization, and owner authorization
value. Among other things, the first value is used for operations performed by the platform’s firmware (e.g.,
allocation of non-volatile memory), the second for performing EK-related operations (e.g., creation of an EK),
and the third for managing the TPM and its storage hierarchy ([TCGLP1 2016], Section 13.3).

The TPM allows for a holder of an authorization value to delegate its privileges to others. The TPM of
version 1.2 stores delegation information in a data structure known as a delegation binary large object (blob)
([TCGPro 2014], Section 1.3.4). The TPM of version 2.0 may also implement delegation through policies.4

In order to protect itself from dictionary attacks, where an attacker tries different authorization values until
one succeeds, the TPM implements a lockout mechanism. The TPM counts the number of TPM
authorization failures over a time period, and when a given threshold is reached, it locks. TPM lockout can
be reset by providing an authorization value, known as lockout authorization ([TCGLP1 2016], Section 13.7).

The owner, endorsement, and lockout authorization values are set during a process of taking the ownership
of the TPM ([TCGLP1 2016], Section 13.8.1). This process is the core activity of the TPM provisioning process,
which initializes and prepares the TPM for use. TPM provisioning may be triggered manually by a user, or
automatically by the operating system installed on the platform where the TPM being provisioned is
deployed. In Section 2.5, we discuss the scope and implementation of the TPM provisioning process in
Windows 10 in particular.

For a detailed information on the terms and concepts mentioned in this section, we refer to the TPM 2.0
Library Specification. This specification is available-online at: https://trustedcomputinggroup.org/tpm-
library-specification/ [Retrieved: 22/9/2017]. The documents that are part of this specification are the latest
official source of information on the TPM 2.0 standard, which is in the focus of this work (see Section
’Executive Summary‘).

4 For an overview of the difference between the implementation of the delegation mechanism in the TPM
1.2 and 2.0 standards, we refer to ([Proudler 2014], Table 6.21).

Federal Office for Information Security 15

https://trustedcomputinggroup.org/tpm-library-specification/
https://trustedcomputinggroup.org/tpm-library-specification/

2 Technical Analysis of Functionalities

2 Technical Analysis of Functionalities

2.1 TPM Communication Interfaces

In this section, we discuss how the different parts of the Windows 10 operating system (see [ERNW WP2])
deployed in user-land (Section 2.1.1) and in kernel-land (Section 2.1.2), use the TPM. We focus on the
communication interfaces between Windows 10 and the TPM, which we depict in Figure 2. In addition, we
discuss the construction of TPM usage profiles, that is, information on system entities communicating with
the TPM as well as on communication patterns and frequencies (Section 2.1.3).

16 Federal Office for Information Security

Figure 2: Interfaces for communicating with the TPM

Technical Analysis of Functionalities 2

2.1.1 TPM Communication: User-land

The parts of the Windows 10 system deployed in user-land (referred to as Executable in Figure 2) can
communicate with the TPM in two ways: direct (direct TPM communication in Figure 2) or abstracted
(abstracted TPM communication in Figure 2).

Direct TPM communication: The direct TPM communication involves executing functions declared as part
of the TBS library file named tbs.dll (TBS library in Figure 2). This library file implements a number of
functions, structures, and data types for communicating with the TPM.5 Example functions are
Tbsi_GetDeviceInfo for obtaining relevant information about the TPM device and
Tbsi_Get_OwnerAuth for obtaining the owner authorization value. Most of the functions implemented
as part of the TBS library perform TPM operations by constructing TPM command buffers (see Section 1.3)
and submitting them to the TPM device by invoking the Tbsip_Submit_Command function.6 From the
perspective of user-land system entities, this function represents the communication interface to the TPM at
the lowest-level; that is, it submits commands to the TPM device in their raw form, as byte sequences.

The submission of commands from the TBS library to the TPM involves issuing a system call to the TPM
driver, passing the TPM command byte sequence in the form of IRPs.7 The system call may be issued, for
example, using the NtDeviceIoControlFile Windows API function ([ERNW WP2], Section 2.1).8

The TPM driver is implemented in the %SystemRoot%\System32\drivers\tpm.sys driver
executable file. This driver submits commands passed to it from the TBS library to the TPM device as
discussed next.

Windows drivers may be structured into driver stacks, where drivers at higher levels process submitted IRPs
and submit them to drivers at lower levels. The driver at the lowest level communicates with the actual
device to which the submitted IRP is destined.9 In a given driver stack, there may be: a single function driver,
which is a driver developed by the vendor of the device handling the majority of submitted IRPs; filter
drivers performing auxiliary roles in IRP processing; and bus drivers communicating with the actual device.

With each driver that is part of a driver stack, a driver object and a device object of the physical device is
associated.10 The device object is a representation of the device at the level at which the driver resides. For
example, there are functional device objects (FDOs), which are associated with functional drivers, and
physical device objects (PDOs), which are associated with bus drivers. The driver and device objects have
names associated with them so that user-land system entities can reference them in program code.11

The TPM driver is the upper layer of the TPM driver stack. On Advanced Configuration and Power Interface
(ACPI)-enabled platforms, this stack consists of the functional driver tpm.sys and the bus ACPI driver
acpi.sys. A functional device object is associated with the functional driver tpm.sys (driver object
named \Driver\TPM) and a physical device object is associated with the ACPI driver acpi.sys (driver
object named \Driver\ACPI).

Following the hierarchy of the TPM driver stack, when a command in the form of an IRP is submitted to the
TPM driver tpm.sys, it passes the procession of the IRP to the ACPI driver acpi.sys. According to the
TCG ACPI Specification, version 1.2, revision 8 (this is the latest TCG ACPI specification at the time of
writing, [TCGACPI 2017]), acpi.sys submits relevant command information to the TPM device by writing

5 https://msdn.microsoft.com/de-de/library/windows/desktop/aa446794(v=vs.85).aspx [Retrieved: 22/9/2017]
6 https://msdn.microsoft.com/de-de/library/windows/desktop/aa446799(v=vs.85).aspx [Retrieved: 22/9/2017]
7 https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/i-o-request-packets
 [Retrieved: 22/9/2017]
8 https://msdn.microsoft.com/en-us/library/ms648411(v=vs.85).aspx [Retrieved: 22/9/2017]
9 https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/driver-stacks
 [Retrieved: 22/9/2017]
10 https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/introduction-to-device-objects

[Retrieved: 22/9/2017]
11 https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/object-names [Retrieved: 22/9/2017]

Federal Office for Information Security 17

https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/object-names
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/introduction-to-device-objects
https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/driver-stacks
https://msdn.microsoft.com/en-us/library/ms648411(v=vs.85).aspx
https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/i-o-request-packets
https://msdn.microsoft.com/de-de/library/windows/desktop/aa446799(v=vs.85).aspx
https://msdn.microsoft.com/de-de/library/windows/desktop/aa446794(v=vs.85).aspx

2 Technical Analysis of Functionalities

this information at a location within a memory region starting at a specific address. This address is stored in
the field Control area ([TCGACPI 2017], Table 7) of the ACPI hardware interface description table of the
TPM device, named TPM2 (TPM hardware interface and TPM2 in Figure 2).

The layout of the memory starting at the Control area address consists of several fields, among which are
Command size, Command, Response size, and Response.12 Relevant TPM command information is
written in a memory region starting at the address stored in the field Command, with a size stored in the field
Command size. Once the TPM device has finished processing the command, it returns information by
storing it in a memory region starting at the address stored in the field Response, with a size stored in the
field Response size. This information is then read by the drivers that are part of the TPM driver stack and
passed to the issuer of the TPM command.

We now demonstrate a direct communication with the TPM through an example scenario. Through this
scenario we obtained an accurate insight into how the TPM device is communicated with in a direct
manner. We developed a simple application that uses the Tbsip_Submit_Command function of the TBS
library to execute a TPM command represented by the byte sequence 0 0xc0 0 0 0 0x0a 0 0 0 0x50.
Figure 3 depicts a snippet of the application’s program code for submitting the TPM command.

Using the windbg debugger operating in user-land, we set a breakpoint at Tbsip_Submit_Command to
analyze the execution of this function. Figure 4 depicts relevant aspects of the function’s execution. We
observed that Tbsip_Submit_Command issues an IRP containing TPM command information using the
NtDeviceIoControlFile Windows API function ([1] in Figure 4). NtDeviceIoControlFile submits
IRPs to a device driver such that its first parameter is a handle of the device object associated with the
driver.13 As per Microsoft’s function calling convention, the first parameter of a function receiving a single or
multiple integers as parameters is stored in the rcx register.14 By printing out the contents of this register,
we obtained the handle value 0xac ([2] in Figure 4). We then obtained the address at which information
about the object associated with this handle is stored. This address is 0xffffac883a4a7ba0 ([3] in Figure
4). This enabled us to obtain information about the driver stack consisting of the drivers processing the IRP,
tpm.sys and acpi.sys, represented by the driver objects \Driver\TPM (i.e. the TPM driver tpm.sys)
and \Driver\ACPI (i.e., the bus ACPI driver acpi.sys, [4] in Figure 4).

The TPM driver manages the scheduling of TPM resources and submits commands to the TPM device in a
procedural manner. Figure 5 depicts some of the functions implemented in tpm.sys, which are involved in
command processing. Figure 5 depicts a function callstack when a breakpoint we set at the
SubmitCommand function was triggered. This function is implemented as part of the
TpmTransportMembase data structure (TpmTransportMemBase::SubmitCommand in Figure 5).15,16

12 https://msdn.microsoft.com/de-de/library/windows/hardware/dn974551(v=vs.85).aspx [Retrieved: 22/9/2017]
13 https://msdn.microsoft.com/de-de/library/windows/desktop/ms724457(v=vs.85).aspx [Retrieved: 22/9/2017]
14 https://technet.microsoft.com/en-us/library/security/zthk2dkh(v=vs.90).aspx [Retrieved: 22/9/2017]
15 In this work, we use the scope operator :: when referring to functions declared as part of data structures.
16 There are several different implementations of the SubmitCommand function, which are implemented as

part of data structures different than TpmTransportMembase. We set breakpoints to these functions using
the windbg debugger, observing that they are not invoked during regular system operation.

18 Federal Office for Information Security

Figure 3: Submitting a TPM command using Tbsip_Submit_Command

https://technet.microsoft.com/en-us/library/security/zthk2dkh(v=vs.90).aspx
https://msdn.microsoft.com/de-de/library/windows/desktop/ms724457(v=vs.85).aspx
https://msdn.microsoft.com/de-de/library/windows/hardware/dn974551(v=vs.85).aspx

Technical Analysis of Functionalities 2

We observed that TpmTransportMemBase::SubmitCommand submits commands to the TPM and it is
invoked as follows. When an IRP containing a TPM command is received by the TPM driver, it schedules the
creation of a thread handling the IRP in the Tpm20Scheduler::SchedulerThreadWrapper function.
When the TPM is available for command processing, the driver triggers the submission of the TPM
command in the Tpm20Scheduler::SubmitRequest function. The actual submission of the command
to the TPM is done by TpmTransport::DispatchCommand; that is, it invokes
TpmTransportMemBase::SubmitCommand.

As previously mentioned, the ACPI driver acpi.sys passes command information to the TPM by storing
the information in the memory region starting at the address specified by the Control area field of the
TPM2 table. Figure 6 depicts the contents of this table as presented by the RW utility. We observed that the
value stored in Control area is not zero. According to the TCG ACPI Specification, version 1.2, revision 8
([TCGACPI 2017], Table 7), this indicates that the memory region starting at the address stored in this field is
used as previously described.

Federal Office for Information Security 19

Figure 4: Execution of Tbsip_Submit_Command

2 Technical Analysis of Functionalities

After command information is passed to the TPM, it starts processing the command. The procedure of
command procession is described in ([TCGLP3 2016], Section 5). As part of this procedure, the processed
command is authorized by evaluating the provided authorization value (see [TCGLP1 2016]; Section 19 on
authorization of TPM commands). In addition, the procedure defines the behavior of the TPM in different
authorization scenarios. This involves, for example, increasing the count of failed TPM authorization
attempts if the authorization fails.

Abstracted TPM communication: Windows 10 provides the CNG library, first introduced in Windows Vista,
for abstracting the functionalities of the TBS library. The functions implemented as part of the CNG library
act as wrappers of functions of the TBS library, adding functionalities and making their use easier.17

17 https://msdn.microsoft.com/de-de/library/windows/desktop/aa376210%28v=vs.85%29.aspx
 [Retrieved: 22/9/2017]

20 Federal Office for Information Security

Figure 5: Submission of TPM commands

Figure 6: The ACPI TPM2 table

https://msdn.microsoft.com/de-de/library/windows/desktop/aa376210(v=vs.85).aspx

Technical Analysis of Functionalities 2

CNG uses the concept of cryptographic providers, where providers are entities performing cryptographic
operations (e.g., hashing, digital signature verification).18 These entities may be implemented in software,
hardware, or both. There are two main types of CNG providers: algorithm and key storage providers. The
former are primarily used for performing basic cryptographic operations, such as hashing and signing,19
whereas the latter are primarily used for performing key operations, such as creating and storing keys.20

CNG abstracts the TPM device in the form of a hardware-implemented cryptographic key storage and
algorithm provider, referred to as the Platform Cryptographic Provider.21 Microsoft’s basic
software-implemented cryptographic provider is referred to as the Microsoft Primitive Provider.22

The majory of the functions implemented as part of CNG are implemented in the %SystemRoot\
System32\bcrypt.dll and %SystemRoot\System32\ncrypt.dll library files.23 The library files
%SystemRoot\System32\PCPks.dll and %SystemRoot\System32\PCPTPM12.dll implement
CNG functionalities related to the TPM (CNG TPM Implementations in Figure 2). These may invoke
functions implemented as part of the TBS library.

The access and use of cryptographic provider functionalities, including those of the Platform
Cryptographic Provider, is managed by CNG routers. For example, access to the key storage
functionalities of the Platform Cryptographic Provider is managed by the CNG key storage router
implemented in ncrypt.dll.24

18 https://msdn.microsoft.com/en-us/library/windows/desktop/bb931380(v=vs.85).aspx [Retrieved: 22/9/2017]
19 https://msdn.microsoft.com/en-us/library/windows/desktop/bb931354(v=vs.85).aspx [Retrieved: 22/9/2017]
20 https://msdn.microsoft.com/en-us/library/windows/desktop/bb931355(v=vs.85).aspx [Retrieved: 22/9/2017]
21 https://msdn.microsoft.com/en-us/library/windows/hardware/hh998513(v=vs.85).aspx [Retrieved: 22/9/2017]
22 https://msdn.microsoft.com/en-us/library/windows/desktop/aa375479(v=vs.85).aspx [Retrieved: 22/9/2017]
23 https://msdn.microsoft.com/de-de/library/windows/desktop/aa376214(v=vs.85).aspx [Retrieved: 22/9/2017]
24 https://msdn.microsoft.com/en-us/library/windows/desktop/bb204778(v=vs.85).aspx [Retrieved: 22/9/2017]

Federal Office for Information Security 21

Figure 7: Loading and initializing the Platform Cryptographic Provider

Figure 8: Dynamic loading of TPM-related library files

https://msdn.microsoft.com/en-us/library/windows/desktop/bb204778(v=vs.85).aspx
https://msdn.microsoft.com/de-de/library/windows/desktop/aa376214(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa375479(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/hh998513(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb931355(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb931354(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb931380(v=vs.85).aspx

2 Technical Analysis of Functionalities

In order to verify the use of the TPM when the CNG library is utilized, we developed a simple application
creating an array of random data using the Platform Cryptographic Provider. Figure 7 depicts a
snippet of the application’s program code, where the BcryptOpenAlgorithmProvider function is used
for loading and initializing this provider.25

We set a breakpoint at BcryptOpenAlgorithmProvider. We observed that it dynamically loads the
CNG TPM implementations (i.e., the library files PCPks.dll and PCPTPM12.dll) and the TBS library (i.e.,
the library file tbs.dll); see Figure 8. We also observed that TPM command execution is performed by
invoking the Tbsip_Submit_Command function of the TBS library (see paragraph ’Direct TPM
communication‘).

2.1.2 TPM Communication: Kernel-land

The parts of the Windows 10 system deployed in kernel-land can communicate with the TPM by invoking
functions implemented in the TPM export driver (see Figure 2). Basically, export drivers are kernel-mode
library files exporting routines to the kernel or other drivers.26

The TPM export driver is implemented in %SystemRoot\System32\drivers\tbs.sys. It represents
the kernel-mode implementation of the TBS library; that is, it implements the same functions as this library,
modified for operation in kernel-mode. For example, instead of issuing a system call using the
NtDeviceIoControlFile function (see Figure 4), which can be invoked only from user-mode, the
Tbsip_Submit_Command function implemented in the TPM export driver issues IRPs by invoking the
ZwDeviceIoControlFile function. ZwDeviceIoControlFile is the kernel-mode counterpart of
NtDeviceIoControlFile.27

2.1.3 TPM Usage Profiles

In Section 2.1.1 and Section 2.1.2, we observed that TPM commands are sent in the form of IRPs to the TPM
driver tpm.sys using the NtDeviceIoControlFile or the ZwDeviceIoControlFile function.
Taking into account the scope of this work package, we aim at automating the collection of information
identifying user processes or the kernel communicating with the TPM. We also aim at collecting relevant
related information, such as communication patterns and frequencies. We refer to this information as TPM
usage profile and developed a script to gather it (see Appendix, section ’TPM Usage Profiler‘).

Once a breakpoint at NtDeviceIoControlFile or ZwDeviceIoControlFile is triggered, the script
identifies the target driver of the IRP. This is based on the handle value passed as the first parameter of
NtDeviceIoControlFile or ZwDeviceIoControlFile. In addition, the script displays relevant
information, such as:

• timestamp information on the invocation of NtDeviceIoControlFile or
ZwDeviceIoControlFile;

• the driver stack of the driver to which an IRP is being sent;

• the process ID (PID), name, and command parameters on the user process (if any) sending an IRP to the
driver;

• the name of the driver object associated with the driver to which an IRP is being sent.

25 https://msdn.microsoft.com/de-de/library/windows/desktop/aa375479(v=vs.85).aspx [Retrieved: 22/9/2017];
the function’s third parameter with a value of MS_PLATFORM_CRYPTO_PROVIDER specifies the Platform
Cryptographic Provider.

26 https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/creating-export-drivers
 [Retrieved: 22/9/2017]
27 https://msdn.microsoft.com/en-us/library/windows/hardware/ff566441(v=vs.85).aspx [Retrieved: 22/9/2017]

22 Federal Office for Information Security

https://msdn.microsoft.com/en-us/library/windows/hardware/ff566441(v=vs.85).aspx
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/creating-export-drivers
https://msdn.microsoft.com/de-de/library/windows/desktop/aa375479(v=vs.85).aspx

Technical Analysis of Functionalities 2

Since the script provides relevant information at the ingress points to the TPM driver tpm.sys (i.e., the
functions NtDeviceIoControlFile and ZwDeviceIoControlFile), it enables the construction of
comprehensive TPM usage profiles. The output of the script can be stored into a file using the .logopen and
.logclose windbg commands for subsequent parsing and constructing TPM usage profiles. For example,
in the Appendix, section ’TPM Usage‘, we provide a table listing user-land executables (column ’Executable‘)
that submit commands to the TPM until a user is presented with the login screen at system booting. This
table also presents relevant parameters (column ’Parameters‘) and the name of the entity implemented in
the executable (column ’Entity‘). We emphasize that the executable list presented in the Appendix is specific
for the platform, where the Windows 10 system was installed on. This list may differ for other platforms,
depending on their configurations, for example, configurations enabling or disabling BitLocker or Microsoft
Account ([ERNW WP2], Table 2).28

For observing the usage of the TPM by processes that use the CNG TPM interface (see Section 2.1.1,
paragraph ’Abstracted TPM communication‘), the output of the script can be analyzed in a combination with
detailed log data produced by Windows. Windows has the capability to log detailed information on issued
TPM commands, such as command codes and byte sequences. Such an analysis provides a comprehensive,
in-depth insight into the activities of the Platform Cryptographic Provider.

2.2 Windows Boot

This section describes the booting process of Windows 10. We focus on activities performed as part of this
process by Windows itself, which we refer to as the Windows boot process. Activities performed by the UEFI
firmware, an environment predecessing the operating system in the booting process are out of scope.

Figure 9 depicts the booting process of a Windows-based platform, where each entity taking part in it loads
the next entity in the booting chain ([Russinovich 2012], Chapter 13).29 The core activities of the Windows
boot process are performed by three entities booting the Windows system to its full extent, making it ready
for use: the boot manager, the Windows loader, and the Windows kernel (see Figure 9). In summary:

• the boot manager reads the Boot Configuration Database (BCD, a database of configuration parameters
for starting Windows), potentially presents a boot menu, and loads the Windows loader;

• the Windows loader loads boot drivers and the Windows kernel; boot drivers are drivers that are required
for starting the Windows kernel and the Windows operating system in general, such as file-system
drivers;30

28 https://docs.microsoft.com/en-us/windows/device-security/bitlocker/bitlocker-overview
 [Retrieved: 22/9/2017]
29 Although [Russinovich 2012] provides technical facts about versions of Windows older than Windows 10,

the ones we reference apply to Windows 10 too. We verified and observed this over the course of this
work.

Federal Office for Information Security 23

Figure 9: The booting process of a Windows-based platform

https://docs.microsoft.com/en-us/windows/device-security/bitlocker/bitlocker-overview

2 Technical Analysis of Functionalities

• the Windows kernel loads system drivers, initializes the Windows subsystem, and runs the session
manager smss.exe ([ERNW WP2], Section 2.1); system drivers are drivers required for regular system
operation.

A structured and more detailed overview of the booting process of a Windows-based platform is presented
in ([Russinovich 2012], Table 13-1).

In Section 2.2.1, Section 2.2.2, and Section 2.2.3, we discuss the boot manager, the Windows loader, and the
Windows kernel, respectively. Given that the TPM is in the focus of this work package, a component
representing a hardware-implemented root of trust for sensitive operations, we focus our discussions in
these sections on:

• the loading of executables (also referred to as images) and the verification of their integrity: we identify
the root of trust for integrity verification in the context of the boot manager, the Windows loader, and
the Windows kernel (paragraph ’Image loading and integrity verification‘ in Section 2.2.1, Section 2.2.2,
and Section 2.2.3);

• the verification of the integrity of the boot manager, the Windows loader, and the Windows kernel: we
identify the root of trust for integrity verification of the core participants in the Windows boot process
(paragraph ’Root of trust‘ in Section 2.2.1, Section 2.2.2, and Section 2.2.3);

• the use of the TPM in the context of the boot manager, the Windows loader, and the Windows kernel
(paragraph ’TPM usage‘ in Section 2.2.1, Section 2.2.2, and Section 2.2.3).

In Table 1 below, we summarize information on the roots of trust for integrity verification (column ‘Root of
trust’) and the use of the TPM (column ‘TPM usage’) in the context of the boot manager, the Windows loader,
and the kernel. We discuss the contents of Table 1 in more detail in the following sections.

Root of trust TPM usage

Boot manager UEFI • integrity measurement

• BitLocker operations

Windows loader Boot manager • integrity measurement

• BitLocker operations

Windows kernel Windows loader

Table 1: Roots of trust and TPM usage

2.2.1 Boot Manager

The boot manager is implemented in the bootmgr.exe executable. This executable is stored in a hidden
partition of the system disk, known as the boot partition. On UEFI-based platforms, boot is the first
partition, followed by other partitions, such as the Windows and the Recovery partitions.31 The boot
manager executable is compressed with the Microsoft-proprietary Xpress Huffmann compression algorithm
[MicXCA 2017].

We mounted the boot partition using the diskpart utility (executable: diskpart.exe) and
decompressed the boot manager executable using the bmzip tool. The observations presented in this
section are based on a static analysis of the decompressed executable of the boot manager, primarily using

30 https://docs.microsoft.com/en-us/windows-hardware/drivers/install/installing-a-boot-start-driver
[Retrieved: 22/9/2017]

31 For detailed information on the partition layout on UEFI-based platforms, we refer to
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/configure-uefigpt-based-hard-
drive-partitions [Retrieved: 22/9/2017]

24 Federal Office for Information Security

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/configure-uefigpt-based-hard-drive-partitions
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/configure-uefigpt-based-hard-drive-partitions
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/installing-a-boot-start-driver

Technical Analysis of Functionalities 2

the IDA disassembler. In addition, we performed dynamic analysis using the windbg debugger by
establishing a serial debugging session.

Root of trust The boot manager is digitally signed from Microsoft using the Authenticode digital signing
technology.32We present more details on Authenticode when discussing integrity verification in the context
of the Windows kernel in Section 2.2.3. The boot manager is loaded by the platform’s firmware. Therefore, if
Secure Boot is enabled, the UEFI firmware is responsible for verifying the integrity of the boot manager by
verifying its signature as specified in the UEFI Specification, version 2.7, errata A ([UEFIFE], Section 31.2.4),
the latest such specification at the time of writing. The analysis of the UEFI firmware (and thus the analysis
of the image verification by UEFI) is out of scope of this work package. However, the Windows Secure Boot
mechanism depends on the initial proper image verification by the UEFI. The rest of the image verification
chain is described in the following paragraphs.

In general, signature verification is a process consisting of: (i) calculation of a hash of the entity whose
integrity is to be verified; (ii) decryption of an encrypted digest of a pre-calculated hash of the entity (i.e., the
signature) using the public key of the signer; and (iii) comparing the hash values. A mismatch indicates
corruption of the executable. In the context of Secure Boot, the UEFI secure database stores certificates
issued by signers of system loading components, such as the boot manager. Signers are typically operating
system vendors, for example, Microsoft. These certificates encapsulate public keys needed for signature
verification.

In order to identify the root of trust for verifying the integrity of the boot manager, we first extracted the
certificate issued by the signer of the boot manager from the boot manager executable. We did this by right
clicking on the executable and clicking on Properties → Digital Signatures → Details → View
Certificate → Details → Copy to File...33 We then printed out the contents of the certificate
using the openssl utility. We executed openssl x509 -inform DER -text -in certificate.cer,

32 https://docs.microsoft.com/en-us/windows-hardware/drivers/install/authenticode [Retrieved: 22/9/2017]

Federal Office for Information Security 25

Figure 10: Public keys stored in the boot manager and the UEFI firmware

https://docs.microsoft.com/en-us/windows-hardware/drivers/install/authenticode

2 Technical Analysis of Functionalities

where certificate.cer is a certificate file in the X.509 Distinguished Encoding Rules (DER) format.34
Figure 10 depicts a portion of the public key (i.e., the modulus) stored as part of the extracted certificate ([1]
in Figure 10). The issuer of this certificate is ’Microsoft Windows Production PCA 2011‘.

We continued by extracting the certificates stored in the UEFI secure database using the chipsec toolset.
We then printed out the contents of these certificates using the openssl utility. Figure 10 depicts the
modulus of the public key stored as part of a certificate extracted from the allowed UEFI database ([2] in
Figure 10), with an issuer of ’Microsoft Windows Production PCA 2011‘. This modulus is same as the
modulus stored as part of the certificate extracted from the boot manager executable. Taking into account
([UEFIFE], Section 31.2.4), this shows that the certificate stored in the UEFI secure database is used for
verifying the integrity of the boot manager executable; that is, the root of trust for verifying the integrity of
the boot manager is the UEFI firmware (if present).

Image loading and integrity verification Figure 11 is a graphical representation of the stack of functions
involved in the image loading and integrity verification performed by the boot manager. The latter are
marked in grey in Figure 11. The BmMain function is the entry point of the boot manager executable. In
addition to required images (e.g., library DLL files), we observed that the boot manager loads only two
executables: bootmgr.exe.mui (a language resource file for the boot manager)35 and winload.exe (the
Windows loader). The executable bootmgr.exe.mui is loaded by executing the function stack
BlInitializeLibrary -> BlpResourceInitialize -> ImgpLoadPEImage, and winload.exe by
executing the function stack BmpLaunchBootentry -> BmpTransferExecution ->
BlImgLoadBootApplication -> ImgpLoadPEImage. ImgpLoadPEImage performs image loading
and integrity verification.

The image integrity verification implemented in ImgpLoadPEImage is conceptually identical to the one
implemented in the Windows kernel. We describe the image integrity verification process in detail in Section
2.2.3, where we discuss the implementation of this process in the Windows kernel.

33 The certificate issued by the signer of the boot manager is embedded in bootmgr.exe and therefore can be
extracted from it [Mic 2008]. We emphasize that this is not always the case. We discuss more on this topic in
Section 2.2.3.

34 https://technet.microsoft.com/en-us/library/cc770735(v=ws.11).aspx [Retrieved: 22/9/2017]
35 https://msdn.microsoft.com/de-de/library/windows/desktop/dd319073(v=vs.85).aspx [Retrieved: 22/9/2017]

26 Federal Office for Information Security

Figure 11: Function stack: Image loading and integrity verification by the boot
manager

https://msdn.microsoft.com/de-de/library/windows/desktop/dd319073(v=vs.85).aspx
https://technet.microsoft.com/en-us/library/cc770735(v=ws.11).aspx

Technical Analysis of Functionalities 2

When analyzing the operation of ImgpLoadPEImage, we observed that certificates of image signers are
verified using a public key stored as part of a root certificate issued by Microsoft. This certificate is hardcoded
in the boot manager executable, in a data structure informally referred to as the root table. Figure 12
depicts the public key stored in the root table of the boot manager ([1] in Figure 12). We extracted this
public key using the radare2 framework. The public key is encoded in Abstract Syntax Notation One
(ASN.1) format. Figure 12 depicts the same public key, however, stored in a variable used for verification in
ImgpLoadPEImage ([2] in Figure 12). The fact that hardcoded contents of the root table structure are
used for verification of signers’ certificates shows that the root of trust for verifying the integrity of images
loaded by the boot manager is the boot manager itself.

When the boot manager is finished with image loading, it transfers execution control to the Windows
loader. To this end, it executes the Archx86TransferTo64BitApplicationAsm function. Depending
on the architecture of the platform (e.g., 32- or 64-bit), an alternative function may be executed, for example,
Archx86TransferTo32BitApplicationAsm. This function passes boot parameters to the Windows
loader, primarily in the form of byte sequences.

TPM usage In the context of the boot manager, the TPM is used for integrity measurement and BitLocker
operations (e.g., reading keys stored in the TPM). We observed this by setting breakpoints at the functions
that are part of the API implemented in the boot manager, which we refer to as the boot manager’s TpmApi.
This API consists of functions performing TPM-related operations, with names beginning with TpmApi.
These functions construct TPM command buffers and communicate with the TPM.

We present more details on the use of the TPM for integrity measurement in Section 2.4, paragraph
’Implementation of integrity measurement’.

2.2.2 Windows Loader

The Windows loader is implemented in the %SystemRoot\System32\winload.exe executable. The
observations presented in this section are based on a static analysis of the implementation of the Windows

Federal Office for Information Security 27

Figure 12: A public key of a root certificate stored in the boot manager

2 Technical Analysis of Functionalities

loader, primarily using the IDA disassembler. In addition, we performed dynamic analysis using the windbg
debugger by establishing a serial debugging session.

Root of trust The Windows loader is loaded by the boot manager ([Russinovich 2012], Table 13-1). In Section
2.2.1, paragraph ’Image loading and integrity verification‘, we showed that the root of trust for images loaded
by the boot manager is the boot manager itself. This includes the executable implementing the Windows
loader.

Image loading and integrity verification Figure 13 is a graphical representation of the stack of functions
involved in image loading and integrity verification performed by the Windows loader. The latter are
marked in grey in Figure 13. The OslMain function is the entry point of winload.exe once the boot
manager has transferred execution control to it (see Section 2.2.1). It invokes OslpLoadAllModules,
which invokes OslLoadDrivers for loading of driver executables, and OslLoadImage for loading any
other type of image. This includes the executable implementing the Windows kernel, ntoskrnl.exe. The
Windows loader loads images of required executables (e.g., library DLL files) in the LoadImports function.

All of the functions above ultimately invoke ImgpLoadPEImage, which performs image loading and
integrity verification. The image integrity verification implemented in ImgpLoadPEImage is conceptually
identical to the one implemented in the boot manager and the Windows kernel (see Section 2.2.1). We
describe the image integrity verification process in detail in Section 2.2.3, where we discuss the
implementation of this process in the Windows kernel.

When analyzing the operation of ImgpLoadPEImage, we observed that certificates of image signers are
verified using a public key stored as part of a root certificate issued by Microsoft. This certificate is hardcoded
in winload.exe, in a data structure informally referred to as the root table. This implementation is
identical to that in the boot manager (see Figure 12 and Section 2.2.1). The fact that hardcoded contents of
the root table structure are used for verification of signers’ certificates shows that the root of trust shows
that the root of trust for verifying the integrity of images loaded by the Windows loader is the Windows
loader itself.

When the Windows loader is finished with image loading, it transfers execution control to the Windows
kernel. To this end, it executes the OslArchTransferToKernel function. This function passes an
instance of the LOADER_PARAMETER_BLOCK structure, which contains relevant information, such as
system and boot partition paths ([Russinovich 2012], Chapter 13).

28 Federal Office for Information Security

Figure 13: Function stack: Image loading and integrity verification
by the Windows loader

Technical Analysis of Functionalities 2

TPM usage In the context of the Windows loader, the TPM is used for integrity measurement and BitLocker
operations (e.g., reading keys stored in the TPM). We observed this by setting breakpoints at the functions
that are part of the TpmApi API implemented in the Windows loader. This API is identical to the TpmApi
implemented in the boot manager (see Section 2.2.1).

We present more details on the use of the TPM for integrity measurement in Section 2.4, paragraph
’Implementation of integrity measurement‘.

2.2.3 Windows Kernel

The Windows kernel is implemented in the %SystemRoot\System32\ntoskrnl.exe executable
([ERNW WP2], Section 2.1). The observations presented in this section are based on a static analysis of the
implementation of the Windows kernel, primarily using the IDA disassembler. In addition, we performed
dynamic analysis using the windbg debugger by establishing a network debugging session.

Root of trust The Windows kernel is loaded by the Windows loader ([Russinovich 2012], Table 13-1). In
Section 2.2.2, paragraph ’Image loading and integrity verification‘, we showed that the root of trust for
images loaded by the Windows loader is the Windows loader itself. This includes the executable
implementing the Windows kernel.

Image loading and integrity verification Figure 14 is a graphical representation of the stack of functions
involved in image loading and integrity verification performed by the Windows kernel. The latter are
marked in gray in Figure 14. For the sake of brevity, we focus on loading and verification of driver images.
The verification of the integrity of other types of images is done same as that of driver images.

Once the Windows loader has transferred execution control to the kernel (see Section 2.2.2), the kernel is
initialized in two phases: Phase 0 and Phase 1 ([Russinovich 2012], Chapter 13). The activities performed in
Phase 0 prepare the kernel for image loading and system startup, performed as part of Phase 1. This involves,
for example, constructing page tables and allocating internal data structure for memory operations.

Once Phase 0 is finished, the kernel starts Phase 1 (Phase1Initialization in Figure 14). In this phase, among
other things, the kernel initializes the core I/O infrastructure of the Windows system (IoInitSystem in Figure
14). This involves initializing ETW and boot drivers (IopInitSystemPreDrivers →

Federal Office for Information Security 29

Figure 14: Function stack: Image loading and integrity verification by the Windows kernel

2 Technical Analysis of Functionalities

PipInitializeCoreDriversAndElam → PnpInitializeBootStartDriver in Figure 14) ([Russinovich 2012], Chapter
13). Boot drivers are loaded and integrity-verified by the Windows loader. In addition, the kernel loads
system drivers (IopInitializeSystemDrivers → IopLoadDriver → MmLoadSystemImage in Figure 14).

We observed that the kernel verifies images of boot drivers and system drivers in two distinct manners. In
paragraph ’Verification of boot drivers‘, we describe the verification of boot drivers, and in paragraph
’Verification of system drivers‘, we describe the verification of system drivers.

Verification of boot drivers

To remind, images of boot drivers are loaded by the Windows loader. The Windows loader verifies the
signatures of these drivers such that the root of trust for this verification is the Windows loader itself (see
Section 2.2.2). The kernel performs two additional verifications: anti-malware and compatibility verification.

Anti-malware verification of boot drivers is done by a driver specifically developed for that purpose, known
as ELAM driver. This driver is initialized before the majority of the other drivers and is used for checking for
malware the drivers loaded after it. An ELAM driver implements anti-malware technology, for example,
detection of known malicious driver images based on searching a database of properties of such images (e.g.,
image hashes). This is the ELAM database of malware signatures.

Any vendor may develop an ELAM driver following the development guidelines provided by Microsoft.36
The Windows 10 system is distributed with an ELAM driver that is part of the Microsoft’s Windows
Defender anti-malware technology.37 We discuss the signature database and the image verification process
performed by this ELAM driver in detail in Section 2.3. In summary, the ELAM driver verifies the image of
each boot driver being initialized by the kernel and categorizes it as: a known good image, a known bad
image, a known bad image of a boot-critical driver, or an unknown image. The kernel notifies the ELAM
driver that it initializes a boot driver image that needs to be verified. The notification is implemented in the
PnpNotifyEarlyLaunchImageLoad function (see Figure 14).

Based on the image categorization done by the ELAM driver, the kernel decides whether the image of a given
boot driver will be initialized in the PnpDoPolicyCheck function (see Figure 14). The kernel brings a
decision based on the configuration of the ELAM group policy located at the policy path: Computer
Configuration → Administrative Templates → System → Early Launch Antimalware. For
example, users may configure this policy such that only known good images are initialized.38If the ELAM
group policy allows for it, the boot driver is initialized (IopInitializeBuiltinDriver in Figure 14). This is when
verification of the compatibility of the driver takes place.

IopInitializeBuiltinDriver invokes PiIsDriverBlocked, which searches the Windows
compatibility database. This is a database of information identifying known incompatible drivers, stored in
multiple database files.39 PiIsDriverBlocked invokes SdbGetDatabaseMatch to search the database
file located at %SystemRoot%\AppPatch\drvmain.sdb. A match indicates that the driver being
initialized is not compatible with Windows. In that case, PiIsDriverBlocked returns a positive number
and the boot driver will not be initialized by the kernel.

Figure 15 depicts the path to the database file searched in SdbGetDatabaseMatch ([1] in Figure 15). It also
depicts a snippet of the database’s content, which we decompiled into Extensible Markup Language (XML)
format using the sdb tool ([2] in Figure 15). The database files comprising the Windows compatibility
database are binary files compiled from files in XML format.

36 https://docs.microsoft.com/en-us/windows-hardware/drivers/install/elam-driver-requirements
 [Retrieved: 22/9/2017]
37 https://docs.microsoft.com/en-us/windows/threat-protection/windows-defender-antivirus/windows-

defender-antivirus-in-windows-10; https://blogs.technet.microsoft.com/dubaisec/2016/05/09/elam-driver/
[Retrieved: 22/9/2017]

38 https://blogs.technet.microsoft.com/dubaisec/2016/05/09/elam-driver/ [Retrieved: 22/9/2017]
39 https://msdn.microsoft.com/en-us/library/bb432182(v=vs.85).aspx [Retrieved: 22/9/2017]

30 Federal Office for Information Security

https://msdn.microsoft.com/en-us/library/bb432182(v=vs.85).aspx
https://blogs.technet.microsoft.com/dubaisec/2016/05/09/elam-driver/
https://blogs.technet.microsoft.com/dubaisec/2016/05/09/elam-driver/
https://docs.microsoft.com/en-us/windows/threat-protection/windows-defender-antivirus/windows-defender-antivirus-in-windows-10
https://docs.microsoft.com/en-us/windows/threat-protection/windows-defender-antivirus/windows-defender-antivirus-in-windows-10
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/elam-driver-requirements

Technical Analysis of Functionalities 2

Verification of system drivers

Same as the boot manager and the Windows loader (see Section 2.2.1 and Section 2.2.2), the kernel verifies
the integrity of images it loads by verifying their digital signatures. Images of system drivers are signed using
the Authenticode technology. In this section, we describe the verification of Authenticode signatures as
performed in the context of the kernel. As we previously mentioned, this is conceptually identical to the
same process performed in the context of the boot manager and the Windows loader. The image integrity
verification process implemented in the boot manager and the Windows loader are simpler than the one
described in this section in several aspects. We emphasize this in our discussions.

The kernel verifies the integrity of images using functions implemented in the kernel’s code integrity
module %SystemRoot%\System32\ci.dll ([ERNW WP2], Section 3.4). In this section, we focus only on
some aspects of the image integrity verification process implemented in ci.dll. We discuss this process in
greater detail as part of Work Package 7 [ERNW WP7].

The kernel starts the image integrity verification process by invoking CipValidateFileHash (see Figure
14). To identify and analyze the operation of CipValidateFileHash, we configured the Windows kernel
to perform integrity verification when the windbg debugger has established a debugging session with it and
not to load images whose integrity cannot be verified. By default, the kernel allows any driver image to load
if a kernel debugging session is established. We configured the kernel to stop its execution if the integrity of a
driver image cannot be verified by setting the registry key HKLM\SYSTEM\CurrentControlSet\
Control\CI\DebugFlags to 0x1.40 We then installed an unsigned driver, the driver of the
PeerGuardian firewall41, and rebooted the system. Since the integrity of this driver could not be verified,
the kernel stopped its execution revealing CipvalidateFileHash in the function call stack. We
emphasize that CipvalidateFileHash is invoked deep in the call stack of MmLoadSystemImage (see
Figure 14). This makes its discovery through static or dynamic analysis of MmLoadSystemImage
challenging.

Figure 16 depicts pseudo-code of the implementation of CipValidateFileHash and of relevant
functions it invokes. We describe the implementation of these functions through a running example, where
the integrity of the image %\System32\drivers\crashdmp.sys is verified.

40 https://docs.microsoft.com/en-us/windows-hardware/drivers/install/appendix-1--enforcing-kernel-mode-
signature-verification-in-kernel-debugging-mode [Retrieved: 22/9/2017]

41 http://www.phoenixlabs.org/pg2/ [Retrieved: 22/9/2017]

Federal Office for Information Security 31

Figure 15: Snippet of a Windows compatibility database file

http://www.phoenixlabs.org/pg2/
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/appendix-1--enforcing-kernel-mode-signature-verification-in-kernel-debugging-mode
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/appendix-1--enforcing-kernel-mode-signature-verification-in-kernel-debugging-mode

2 Technical Analysis of Functionalities

CipValidateFileHash first invokes CipImageGetCertInfo. This function extracts Authenticode
signature information embedded in crashdmp.sys. We emphasize that an Authenticode signature is not
merely an encrypted hash value, but a structure containing data. This includes certificates issued by the
signers of the image, a calculated hash value of the image, the encrypted digest of the hash value (i.e., the
actual signature), the hashing algorithm used for calculation of the hash value, and so on. For more details
on the contents of this structure, we refer to the Microsoft Windows Authenticode Portable Executable
Signature Format Specification, revision 1.0.

32 Federal Office for Information Security

Figure 16: Pseudo-code of CipValidateFileHash and functions it invokes

Technical Analysis of Functionalities 2

This specification is available on-line at: http://download.microsoft.com/download/9/c/5/9c5b2167-8017-
4bae-9fde-d599bac8184a/Authenticode_PE.docx [Retrieved: 22/9/2017]. This is the latest Authenticode
specification at the time of writing.

The Authenticode signature may be embedded in the header of an image, in the Security Directory
section, of the Data Directories section, of the Optional Headers section [Mic 2008]. As an example,
Figure 17 depicts the first 300 bytes of the Authenticode signature embedded in the %SystemRoot%\
System32\drivers\afd.sys driver image ([1] in Figure 17). We extracted the contents of the
Security Directory section of the image’s header, located at address 0x8c800, using the radare2
framework. According to ([Mic 2008], Section ’Overview‘), the contents displayed in Figure 17 contain a
calculated hash value of the image (075b […] aab2 in Figure 17), relevant data structures, and a segment of the
list of certificates issued by the signers of the image.

The hash value is calculated only on specific sections of the signed image, as defined in ([Mic 2008], Section
’Calculating the PE Image Hash‘). This value is referred to as the portable executable (PE) hash value. The PE
hash value depicted in Figure 17 can also be extracted using the Sigcheck utility, part of the
Sysinternals suite ([2] in Figure 17). The section of the Authenticode signature that contains the PE hash
value is referred to as ContentInfo (see [Mic 2008], Figure 1).

An Authenticode signature may not be embedded in an image file, but stored in a separate digitally signed
file, known as catalog file.42 We focus in this section on integrity verification in scenarios where the
Authenticode signature is embedded in an image file. We discuss other image verification scenarios as part of
Work Package 7 [ERNW WP7].

42 https://docs.microsoft.com/en-us/windows-hardware/drivers/install/authenticode [Retrieved: 22/9/2017]

Federal Office for Information Security 33

Figure 17: An Authenticode signature and a PE hash value

https://docs.microsoft.com/en-us/windows-hardware/drivers/install/authenticode
http://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/Authenticode_PE.docx
http://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/Authenticode_PE.docx
http://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/Authenticode_PE.docx
http://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/Authenticode_PE.docx
http://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/Authenticode_PE.docx

2 Technical Analysis of Functionalities

CipImageGetCertInfo extracts a code for the hashing algorithm used for calculation of the PE hash
value (i.e., a hash code, hashcode in Figure 16), the ContentInfo section (ContentInfo in Figure 16), and the
list of certificates issued by the signers of the image. Figure 18 depicts the extracted code ([1] in Figure 18),
where a code of 800C denotes the Secure Hash Algorithm (SHA)-256 algorithm. Figure 18 also depicts a
portion of the list of signers of the image ([2] in Figure 18).

Once the hash code has been extracted from the embedded Authenticode signature, the
CipCalculateImageHash function calculates the PE hash value (hash in Figure 16) using the hash
algorithm referenced by the extracted code (i.e., SHA-256 in our scenario). Then, the function
FindFileHash is invoked. If an Authenticode signature is embedded in the image being verified
(embedded_signature in Figure 16), it invokes MinCryptK_CheckSignedFile. Alternatively,
FindFileHash queries catalog files by issuing remote procedure calls (RPCs). Authenticode signatures are
embedded in all of the images of boot drivers and other images loaded by the boot manager and the
Windows loader for performance reasons.43 Therefore, the image verification procedures implemented in
the boot manager and the Windows loader typically do not query catalog files.

MinCryptK_CheckSignedFile verifies the integrity of the Authenticode signature, that is, it verifies the
integrity of the ContentInfo section. A signature of this section is stored in the Authenticode signature, in
a section referred to as the SignerInfo ([Mic 2008], Figure 1). If the ContentInfo section of the
Authenticode signature has not been tampered with, the calculated PE hash value in
CipCalculateImageHash (hash in Figure 16) is compared with the PE hash value stored in the
Authenticode signature (authenticodeHash and memcmp in Figure 16). The latter is extracted from the
Authenticode signature in the MinCryptVerifySignedFileKMode function (see Figure 16). If the
compared hash values are identical, the image is considered authentic.

The verification of the integrity of the Authenticode signature is done in
MinCryptVerifySignedFileKMode. It first calculates a hash of the ContentInfo section
(MinCryptHashMemory in Figure 16). Figure 19 depicts the ContentInfo section of the Authenticode
signature embedded in crashdmp.sys when passed to MinCryptHashMemory for hashing ([1] in Figure
19). That the hashed content is that of ContentInfo, can be verified by identifying the PE hash value in it.
We extracted the PE hash value from crashdmp.sys using the sigcheck utility ([2] in Figure 19),
observing the same value as that stored in the hashed content.

43 https://docs.microsoft.com/en-us/windows-hardware/drivers/install/embedded-signatures-in-a-driver-file
[Retrieved: 22/9/2017]

34 Federal Office for Information Security

Figure 18: A hash code and a list of signers

https://docs.microsoft.com/en-us/windows-hardware/drivers/install/embedded-signatures-in-a-driver-file

Technical Analysis of Functionalities 2

After hashing ContentInfo, MinCryptVerifySignedFileKMode verifies its signature
(MinCryptVerifySignedHash in Figure 16). The decryption of this signature is done using a public key that is
stored as part of the signer’s certificate, placed in the Authenticode signature and processed in the
MinAsn1ExtractValues function (publicKey in Figure 16). The signer’s certificate is verified in the
MinCryptVerifyCertificateWithPolicy2 function, ultimately against its root certificate. This
verification involves verifying the certificate’s signature using the root certificate public key by invoking
MinCryptVerifySignedHash – this public key is stored as part of a root certificate issued by Microsoft.
The root certificate is hardcoded in the ci.dll library file, in a data structure informally referred to as the
root table. Figure 20 depicts the public key stored in the root table of ci.dll ([1] in Figure 20). We
extracted the public key from ci.dll using the radare2 framework. In addition, Figure 20 depicts the
same public key, however, stored in a variable referenced in MinAsn1ExtractValues ([2] in Figure 20).
The fact that hardcoded contents of the root table structure are used for verification of signers’
certificates shows that the root of trust for verifying the integrity of images loaded by the kernel is ci.dll.

We emphasize that the description of the kernel’s integrity verification process we provided in this section
presents only some relevant aspects of it. For example, certificates issued by the signers of an image and
stored as part of an Authenticode signature, are also verified as described in ([Mic 2008], Section ’Certificate
Processing‘). We did not discuss this verification in detail this section.

We did not observe the TPM playing any role in the image integrity verification process. We observed that
the root of trust for verifying Authenticode signatures is the ci.dll file (see Figure 20) and hash
calculations are implemented in software.

When the kernel is finished with loading of images of system drivers, it initializes the Windows subsystem,
and starts the session manager smss.exe ([Russinovich 2012], Table 13-1).

TPM usage We set breakpoints at functions for TPM command processing implemented in the TPM driver
tpm.sys and the TPM export driver tbs.sys. We observed that none of the functions of the TPM export
driver were invoked. Those of tpm.sys were invoked for device initialization. Once loaded, we observed
TPM commands being sent from the Windows subsystem and various system services, such as the session

Federal Office for Information Security 35

Figure 19: crashdmp.sys: The ContentInfo section and the PE hash value

2 Technical Analysis of Functionalities

manager smss.exe and the local security authority lsa.exe. The entities communicating with the TPM
can be identified with the script we presented in Section 2.1.3. The purpose of the TPM commands we
observed after the kernel was loaded is not within the scope of this work package.

2.3 The Windows Defender ELAM Driver

The Windows Defender ELAM driver is implemented in the %SystemRoot\System32\drivers\
WdBoot.sys executable. It is loaded by the Windows loader and initialized in the kernel
(PipInitializeCoreDriversAndElam in Figure 14). It is unloaded by the kernel when it has checked for malware
all boot drivers. Figure 21 depicts the information on the Windows Defender ELAM Driver that the kernel
maintains after loading it.

36 Federal Office for Information Security

Figure 21: Information on the Windows Defender ELAM driver

Figure 20: A public key of a root certificate stored in ci.dll

Technical Analysis of Functionalities 2

The ELAM driver performs anti-malware verification in its function MpEbBootDriverCallback. This is a
callback function invoked when the kernel notifies the ELAM driver that a boot driver image is to be
initialized (see Section 2.2.3).

Figure 22 depicts a pseudo-code of the implementation of MpEbBootDriverCallback and relevant
functions that it invokes ([1] in Figure 22). MpEbBootDriverCallback invokes EbLookupProperty,
which sets an integer code indicating the category of the verified image. The analysis as well as the pseudo-
code is based on the Windows Defender ELAM driver. This driver works in a blacklist-fashion (besides the
mandatory verification of the driver signature); Non-Microsoft implementations may work in different
ways.

Adopting the Microsoft terminology on this topic, an image may be categorized as:

• a known good image (code value BdCbClassificationKnownGoodImage in Figure 22);

• a known bad image (code value BdCbClassificationKnownBadImage in Figure 22);

• a known bad image of a boot-critical driver (code value BdCbClassificationKnownBadImageBootCritical in
Figure 22); or

• an unknown image (code value BdCbClassificationUnknownImage in Figure 22).

Federal Office for Information Security 37

Figure 22: Pseudo-code of MpEbBootDriverCallback of the Windows Defender
Implementation and functions that it invokes

2 Technical Analysis of Functionalities

We refer to these categories as ELAM image categories. MpEbBootDriverCallback passes the integer set
by EbLookupProperty back to the kernel. Based on its value, the kernel decides whether a given boot
driver will be initialized (see Section 2.2.3).

EbLookupProperty performs a binary search for specific properties of the verified driver image, for
example, file hash values, in the ELAM database of malware signatures (MpBinarySearch, driverProperties in
Figure 22). Each entry of this database is stored in an array (g_lookupList in Figure 22). This array is filled
when the signature database is loaded into the driver’s memory space.

The loading of the ELAM signature database is done when the driver is initialized and is performed in two
steps ([2] in Figure 22): First, the function MpEbLoadSignatures (not depicted in 22) using the
ZwOpenKey routine44 loads the signature database. This database is stored in the form of a registry hive in
the system’s registry. Then, the function EbLoadSignatureData verifies the integrity of the signature
database by invoking EbAuthenticateSignatureData. It also stores each entry of the database (item in
Figure 22) in the previously mentioned array of database entries (g_lookupList, addLookupEntryToList in
Figure 22). The stored entries are later used in EbLookupProperty.

Figure 23 depicts this database loading operation. The ELAM signature database is loaded in the registry as
the registry hive HKEY_LOCAL_MACHINE\ELAM (\REGISTRY\MACHINE\ELAM in Figure 23). We observed
that this registry hive is unloaded when the ELAM driver is unloaded. The registry hive of the ELAM
signature database is stored on the file-system at %SystemRoot%\System32\Config\elam (see Figure
23). This enabled us to analyze the contents of the registry hive after the ELAM driver and its signature
database have been unloaded.

The ELAM signature database is stored as binary data. This data has a specific format structuring it into
multiple entries. Each entry, among other things, consists of a malware signature, an entry type, and a trust
level. A malware signature is often, but not necessarily, a hash value. An entry type is a code value indicating
the type of data representing a malware signature. A trust level is a code value corresponding to the ELAM
image categories known good image, known bad image, known bad image of a boot-critical driver, and
unknown image. The trust level specifies the ELAM category of image associated with the malware
signature.

We observed the above by parsing the signature database of the Windows Defender ELAM driver using a
parser we developed. The code of this parser, implemented in the Python programming language, is placed
in the Appendix, section ’ELAM Database Parser‘. Figure 24 depicts the output of the parser, where
EntryType, TrustLevel, and data mark an entry type, a trust level, and a malware signature,
respectively. An example entry in the ELAM signature database is the hash value F4 27 86 [...] 9F 8E,
which is a hash value of a known bad image.

As we previously mentioned, the integrity of the ELAM signature database is verified in
EbAuthenticateSignatureData. The signature database of the Windows Defender ELAM driver is
digitally signed for preventing unauthorized modifications. Figure 25 depicts pseudo-code of the

44 https://msdn.microsoft.com/en-us/library/windows/hardware/ff567014(v=vs.85).aspx [Retrieved: 22/9/2017]

38 Federal Office for Information Security
Figure 23: The ELAM signature database in the registry

Technical Analysis of Functionalities 2

implementation of EbAuthenticateSignatureData. This function verifies the signature of the ELAM
signature database using the kernel implementation of the CNG library (see Section 2.1.1). The ELAM
signature database may be updated by system services, such as Windows Update. These services mount and
modify the registry hive HKEY_LOCAL_MACHINE\ELAM. However, the updated signature database has to
be properly signed since its integrity is verified by the ELAM driver as discussed in this section.45

45 https://docs.microsoft.com/en-us/windows-hardware/drivers/install/elam-driver-requirements
[Retrieved: 22/9/2017]

Federal Office for Information Security 39

Figure 25: Pseudo-code of EbAuthenticateSignatureData

Figure 24: The ELAM signature database

https://docs.microsoft.com/en-us/windows-hardware/drivers/install/elam-driver-requirements

2 Technical Analysis of Functionalities

EbAuthenticateSignatureData first hashes the signature database (BcryptHashData46 in Figure 25)
using the SHA-1 algorithm and the software-implemented Microsoft Primitive Provider
(BcryptOpenAlgorithmProvider in Figure 25). It then imports a public key (BCryptImportKeyPair,
RSAPUBLICBLOB47 in Figure 25). Finally, EbAuthenticateSignatureData uses the Microsoft
Primitive Provider and the imported public key to decrypt the signature of the ELAM signature
database and compare it with the previously calculated hash value of this database (BCryptVerifySignature48
in Figure 25).

We observed that EbAuthenticateSignatureData imports a public key hardcoded in the
WdBoot.sys driver executable, stored in the variable g_MpPublicKeyRaw. This indicates that the root of
trust for verifying the malware signature database used by the Windows ELAM driver is the driver itself.
Figure 26 depicts the passing of g_MpPublicKeyRaw to BcryptImportKeyPair for importing ([1] in
Figure 26). It also depicts the declaration of g_MpPublicKeyRaw in the WdBoot.sys driver executable,
which we observed with the IDA disassembler ([2] in Figure 26).

According to the Microsoft’s ELAM driver development guidelines, vendors of ELAM drivers may store the
ELAM signature database and related relevant data in the registry keys Measured, Policy, and/or
Config, under the registry hive HKEY_LOCAL_MACHINE\ELAM. We observed that the Windows Defender
ELAM driver stores its database in Measured.

The registry keys Measured, Policy, and Config are measured by the integrity measurement
mechanism of Windows 10. This measurement allows for an additional verification of the integrity of the
ELAM signature database by a remote entity. We discuss the integrity measurement mechanism
implemented in Windows 10 in Section 2.4.

2.4 Integrity Measurement

In this section, we discuss the integrity measurement mechanism of Windows 10 and the role that the TPM
plays as part of it. This mechanism, among other things, implements the production of measurement data.
This involves calculation of hashes of critical executable files or of code sequences at every system startup. It

46 https://msdn.microsoft.com/en-us/library/windows/desktop/aa375468(v=vs.85).aspx [Retrieved: 22/9/2017]
47 https://msdn.microsoft.com/en-us/library/windows/desktop/aa375472(v=vs.85).aspx [Retrieved: 22/9/2017]
48 https://msdn.microsoft.com/de-de/library/windows/desktop/aa375515(v=vs.85).aspx [Retrieved: 22/9/2017]

40 Federal Office for Information Security

Figure 26: The public key used for verification of the Windows Defender ELAM signature database

https://msdn.microsoft.com/de-de/library/windows/desktop/aa375515(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa375472(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa375468(v=vs.85).aspx

Technical Analysis of Functionalities 2

also involves the storage of these hashes and relevant related data in the TPM device and in log files for later
analysis.

The analysis of measurement data is normally performed by a trusted remote platform, a platform different
than the one where hashes have been calculated. The remote platform can be reached over a secure network
connection. A typical analysis of measurement data consists of, for example, comparing the most recently
calculated hashes with hashes calculated at a previous time, or with hashes known as good hashes. A
mismatch in the hash values indicates platform corruption. The verification of platform integrity by a
remote platform is known as remote attestation.

Figure 27 depicts the architecture of the integrity measurement mechanism implemented in Windows 10.
During the booting process of a given platform (Platform in Figure 27, see Section 2.2), the UEFI firmware,
the boot manager, and the Windows loader measure relevant entities. They then store the produced
measurement data in the PCRs of the TPM installed on the platform (measured into in Figure 27). In Figure
27, we refer to the UEFI firmware, the boot manager, and the Windows loader as the pre-operating system
(OS) environment (Pre-OS in Figure 27). We discuss in greater detail the measurement performed in the pre-
OS environment in paragraph ’Implementation of integrity measurement‘ of this section.

Federal Office for Information Security 41

Figure 27: The architecture of the integrity measurement mechanism of Windows 10

2 Technical Analysis of Functionalities

The platform stores the hashes calculated in the pre-OS environment and relevant related data into a
context known as the WBCL ([Thom 2016], Section ’Windows Boot Configuration Log‘). A new WBCL is
generated at every system startup since this is when new integrity measurements are made ([Thom 2016],
Section ’Windows Boot Configuration Log‘). Each WBCL is archived into a log file, referred to as the WBCL
file. WBCL files are stored in the %SystemRoot\Logs\MeasuredBoot directory. We discuss the content
and format of WBCL files in paragraph ’Windows Boot Configuration Log‘ of this section.

The Windows loader loads the kernel, which may implement ELAM technology in the form of an ELAM
driver (ELAM and kernel in Figure 27, see Section 2.3). In case it detects the loading of a malicious driver, the
ELAM driver may revoke the current WBCL using the Tbsi_Revoke_Attestation function of the TBS
library ([Thom 2016], Section ’Invalidating the System Trust State‘).49,50 Among other things, a revocation of a
WBCL consists of storing an unspecified value in the PCR with index 12. This indicates system corruption to
the remote entity verifying platform integrity.

We analyzed the Windows Defender ELAM driver revoking the WBCL in a scenario where a given boot
driver is considered malicious. We first configured the policy at Computer Configuration →
Administrative Templates → System → Early Launch Antimalware such that the kernel
initializes only known good images (see Section 2.3). We then set breakpoints at the functions for submitting
and processing TPM commands implemented as part of the export TPM driver tbs.sys and the TPM
driver tpm.sys (see Figure 2). Finally, we modified the return value of the EbLookupProperty function
to 1 when the Windows Defender ELAM driver was checking a boot driver for malware. This return value
indicates a known bad image. To remind, the return value of EbLookupProperty represents the decision
of the ELAM driver on the maliciousness of a given boot driver.

We did not observe the Windows Defender ELAM driver or the kernel invoking
Tbsi_Revoke_Attestation in order to revoke the current WBCL. They also did not invoke any other
function of the TBS library or sent any TPM command to the TPM device after a decision on the
maliciousness of the driver was made. It remains to be investigated whether the WBCL is revoked using
means other than the ones we were focusing on, those specified in the Microsoft’s development guidelines
for ELAM drivers.51 Although we did not observe the revocation of the WBCL, we observed that the kernel
did not load the boot driver designated as a known bad image; that is, we observed that the Windows
Defender ELAM driver effectively blocks the loading of malicious drivers.

The Windows kernel loads drivers and eventually the Windows subsystem, enabling the execution of system
services and user applications (Services and applications in Figure 27, see Section 2.2). At this point, the
content of WBCL files may be read by an application that transfers relevant content of these files to a remote
entity verifying platform integrity (Remote location in Figure 27).52 In Figure 27, we refer to the former as
attestation client and to the latter as attestation server. The attestation client may obtain the most recent
WBCL by issuing the Tbsi_Get_TCG_Log function of the TBS library.53

Windows Boot Configuration Log WBCL files contain data in binary form. This data can be translated into
XML format using the PCPTool utility. Figure 28 depicts an excerpt of a WBCL file in XML format. This
WBCL file was generated by the Windows 10 operating system after a regular system reboot.

49 https://msdn.microsoft.com/en-us/library/windows/desktop/jj553829(v=vs.85).aspx [Retrieved: 22/9/2017]
50 https://docs.microsoft.com/en-us/windows-hardware/drivers/install/elam-driver-requirements
 [Retrieved: 22/9/2017]
51 https://docs.microsoft.com/en-us/windows-hardware/drivers/install/elam-driver-requirements
 [Retrieved: 22/9/2017]
52 https://docs.microsoft.com/en-us/windows/device-security/protect-high-value-assets-by-controlling-the-

health-of-windows-10-based-devices [Retrieved: 22/9/2017]
53 https://msdn.microsoft.com/de-de/library/windows/desktop/bb530712(v=vs.85).aspx [Retrieved: 22/9/2017]

42 Federal Office for Information Security

https://msdn.microsoft.com/de-de/library/windows/desktop/bb530712(v=vs.85).aspx
https://docs.microsoft.com/en-us/windows/device-security/protect-high-value-assets-by-controlling-the-health-of-windows-10-based-devices
https://docs.microsoft.com/en-us/windows/device-security/protect-high-value-assets-by-controlling-the-health-of-windows-10-based-devices
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/elam-driver-requirements
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/elam-driver-requirements
https://msdn.microsoft.com/en-us/library/windows/desktop/jj553829(v=vs.85).aspx

Technical Analysis of Functionalities 2

A WBCL file consists of multiple entries, where each entry contains relevant information on a given
measured entity in the form of a TCG_PCR_EVENT structure. This structure is defined in the TCG
(Extensible Firmware Interface) EFI Protocol Specification, family “2.0”, level 00, revision 00.13 ([TCGEP
2016], Section 5), which is the latest TCG EFI specification at the time of writing. It represents each
measurement of an entity as a single ’measurement event‘ in TCG terminology (see the XML tags starting
with EV_ in Figure 28). Some relevant fields of TCG_PCR_EVENT are PCRIndex and Digest. PCRIndex is
the number of the PCR into which the entity has been measured, (PCR Index in Figure 28). Digest is the
calculated hash of the measured entity (Digest in Figure 28).

Hashes of measured entities may be SHA-1 hashes or hashes of other types, referred to as ’crypto agile‘
hashes in the TCG EFI Protocol Specification ([TCGEP 2016], Section 5.2). They are extended into specific
PCRs of the TPM (see the values of the PCR XML tags in Figure 28). Extension of a hash into a given PCR is
done by updating the value already stored in the PCR as follows: PCRnew = H (PCRold || Digest), where
PCRold is the old value stored in the PCR, PCRnew is the new value to be stored in the PCR, and H is a hash
algorithm. In summary, the extension of a hash of a measured entity into a PCR consists of:

• concatenating the old value stored in the PCR with the hash of the entity;

• hashing the resulting value of the above operation; and

Federal Office for Information Security 43

Figure 28: An excerpt of a WBCL file

2 Technical Analysis of Functionalities

• storing the resulting hash into the PCR.

The extension of hashes into PCRs is described in detail in the Trusted Platform Module Library Part 3:
Commands, family “2.0”, level 00, revision 01.16 ([TCGLP3 2016], Section 22.2.1). Given that the values stored
in the TPM’s PCRs are hashes of measurement data, they serve primarily for verification of the integrity of
WBCLs.

Into what PCRs hashes are extended depends on what is measured. Table 1 of the TCG PC Client Platform
Firmware Profile Specification, family “2.0”, level 00, revision 00.21[TCGF 2016] presents a mapping between
measured entities and PCR indexes. In summary, the PCRs with indexes between 0 and 7 are used when
extending hashes of firmware-related entities.Example such entities are UEFI variables and sections of the
secure database ([ERNW WP2], Section 3.5). PCRs with indexes between 8 and 15 are used for measuring
entities related to the installed operating system. What is stored in these PCRs is left to the discretion of the
operating system’s vendor. The PCRs with indexes between 0 and 15 are non-resettable PCRs, that is, the
values stored in them cannot be cleared by the operating system, but only by hardware at each system
reboot (non-resettable PCRs in Figure 27, [TCGPCI 2013], Section 5.3).54

Each measurement event is of a specific type, which indicates what has been measured. For example, the
measurement event of type EV_EFI_VARIABLE_BOOT contains measurement of a UEFI variable ([TCGF
2016], Table 5). Table 2 presents a mapping between PCR indexes and types of measurement events. The
events were extended into the PCRs on the Windows 10 system after a regular system reboot. Table 2 lists
only events specified in the TCG PC Client Platform Firmware Profile Specification. We obtained the results
presented in Table 2 using a parser of WBCL files translated into XML format, which we developed. The code
of the parser is placed in the Appendix, section ‘WBCL parser’.

The section ’Event Types‘ of Table 2 presents only brief descriptions of the event types listed in the table.
Some event types have multiple sub-types storing comprehensive information on measured entities. We
refer to ([TCGF 2016], Section 9.3.1) for detailed descriptions of event types.

PCR Event Type

0 EV_CRTM_Contents; EV_CRTM_Version; EV_Post_Code; EV_EFI_Handoff_Tables;
EV_Separator

1 EV_Event_Tag; EV_Event_Tag; EV_EFI_Handoff_Tables; EV_Separator;
EV_EFI_Variable_Boot

2 EV_Separator

3 EV_Separator

4 EV_Separator; EV_EFI_Boot_Services_Application

5 EV_EFI_Action; EV_Separator

6 EV_Action; EV_Separator

7 EV_EFI_Variable_Driver_Config; EV_Separator

11 EV_Compact_Hash

12 EV_Event_Tag; EV_Separator

13 EV_Event_Tag; EV_Separator

Event Types

EV_CRTM_Contents: Measurement of SRTM code (see Section 1.3)

54 ([Thom 2016], Section ’Root of Trust Overview‘) presents a mapping between measured Windows 8 entities
and PCR indexes. To the best of our knowledge, such a mapping for Windows 10 entities is not available at the
time of writing. Based on our analysis of the content of WBCL files, we assume that the mapping between
Windows 10 entities and PCR indexes is to a great extent the same as that specified in [Thom 2016].

44 Federal Office for Information Security

Technical Analysis of Functionalities 2

EV_CRTM_Version: Measurement of a string specifying the version of the SRTM

EV_Post_Code: Measurement of firmware code or data (e.g., power-on self-test (POST) firmware code, or
ACPI-related data)

EV_EFI_Handoff_Tables: Measurement of system configuration tables (UEFI variables)

EV_Separator: A generic event typically used for indicating the end of contents (i.e., capping) of a given
PCR

EV_Event_Tag: Typically measurement of read-only memory (ROM) code or arbitrary application code
(this is a deprecated event type according to the latest TCG PC Client Platform Firmware Profile
Specification [TCGF 2016])

EV_EFI_Variable_Boot: Measurement of UEFI variables relevant to the platform’s booting process
(e.g., a variable storing the device boot order)

EV_EFI_Boot_Services_Application: Measurement of code loading from the boot device
(typically code sequences of the boot manager, see Section 2.2.1)

EV_EFI_Action: Measurement of strings specifying executed UEFI actions (e.g., “Calling UEFI
Application from Boot Option“, see ([TCGF 2016], Table 7).

EV_EFI_Variable_Driver_Config: Measurements of properties of UEFI variables (e.g., GUID, see
[ERNW WP4])

EV_Compact_Hash: Measurement of arbitrary code or data, typically used by the boot manager (e.g.,
measurement of the code sequences of the Windows loader)

Table 2: A mapping between PCR indexes and types of measurement events

In addition to the data presented in Table 2, we extracted from the WBCL file a list of measured executables.
This includes system drivers, system services, and driver executables. Measurements of executables are
stored in WBCL files as events of type EV_Event_Tag. This event type contains information on the
Authenticode hashes of the executables (see Section 2.2.3). Measurements of executables are extended into
the PCRs with indexes 12 and 13 ([Thom 2016], Section ’Windows Integrity Measurements‘). The list of
executables we extracted is placed in the Appendix, section ’Measured Executables‘. It contains paths to, and
filenames of, measured executables. The hard disc volume is omitted in the paths presented in the Appendix.

Implementation of integrity measurement Measurements of Windows entities are performed by the boot
manager (see Section 2.2.1) and the Windows loader (see Section 2.2.2, Pre-OS in Figure 27). In this
paragraph, we focus on the implementation of the integrity measurement mechanism in the Windows
loader. We observed that the implementation of this mechanism in the boot manager is conceptually
identical to the one presented in this paragraph.

Figure 29 depicts the stack and code snippets of functions executed as part of the integrity measurement
mechanism implemented in the Windows loader. The content depicted in Figure 29 is as displayed by the
windbg debugger and by the IDA disassembler in the form of pseudo-code. The
OslReportKernelLaunch function is one of the functions implemented in the Windows loader that
triggers integrity measurement. This is done by queueing measurement events for processing by submitting
them to the SipapMeasureEventAndAppendToCommitedTCGLog function. This indicates that
integrity measurements are conducted in an asynchronous manner.

Federal Office for Information Security 45

2 Technical Analysis of Functionalities

SipapMeasureEventAndAppendToCommitedTCGLog first calculates hashes and therefore conducts
the actual measurements. It then extends the measurements into PCRs by invoking TpmApiExtendPCR.
This function is part of the TpmApi of the Windows loader (see Section 2.2.2, paragraph ’TPM
usage’).TpmApiExtendPCR constructs a TPM command buffer and invokes TpmApiCallbackTpmCall.
This function communicates with the TPM by invoking BlTpmpDriverCallback.

Operations for hash calculation are implemented as functions of the Windows loader, that is, they are
software-implemented (see SipapFormatTCGLogEntry, SymCryptSha1/256 in Figure 29). For example, if the
Intel SHA extensions are present [Gulley 2013], hash calculation is performed by executing CPU instructions
specifically developed for that purpose (sha256rnds2 in Figure 29).

2.5 TPM Provisioning

In this section, we describe the implementation of the TPM provisioning process in Windows 10. We first
define the term TPM provisioning as there is no clear definition of it in the TPM 2.0 Library Specification.
Under TPM provisioning, we understand activities storing data in the TPM device, where the stored data is a
requirement for the TPM device to be used. This includes: authorization values, the EK, and the SRK (see
Section 1.3), which are also in the main focus of this section.

46 Federal Office for Information Security

Figure 29: Integrity measurement in the Windows loader

Technical Analysis of Functionalities 2

The TPM 2.0 Library Specification Part 1: Architecture, level 00, revision 01.38 ([TCGLP1 2016], Section 13.8.1)
refers to the process of storing the owner, endorsement, and lockout authorization values in the TPM as
’taking ownership‘ of the TPM. When analyzing the implementation of this process in Windows 10, we
observed that there is a discrepancy in the nomenclature used in the TPM 2.0 Library Specification and in
the context of Windows. Windows uses an authorization value, named OwnerAuth, for managing the TPM
(e.g., access control over TPM commands) and unlocking the TPM if it is in a locked state. This is the use of
both the owner and lockout authorization values as specified in the TPM 2.0 Library Specification. In the
context of Windows, OwnerAuth represents the core authorization value for managing the TPM, required
for most TPM management activities.

In addition to OwnerAuth, Windows uses the authorization values EndorsementAuth and
StorageOwnerAuth. We observed that EndorsementAuth is used in Windows context same as specified
in the TPM 2.0 Library Specification. For example, EndorsementAuth is used when a new EK is generated.
To the contrary, StorageOwnerAuth is not defined as an authorization value in this specification. In
Windows context, StorageOwnerAuth is used for storing keys in the TPM's storage hierarchy (see Figure
1).

We observed that the values of EndorsementAuth and StorageOwnerAuth are zeroed-out by default.55
Therefore, the generation and storage of EndorsementAuth and StorageOwnerAuth is not in the focus
of this section.

Figure 30 depicts the workflow of the TPM provisioning process in scenarios where the TPM is manually and
auto-provisioned (see Section 1.3). In Figure 30, numbers encapsulated in boxes with dashed lines mark
activities that are part of the manual TPM provisioning process in the order they occur. Numbers
encapsulated in boxes with full lines mark activities that are part of the TPM auto-provisioning process in
the order they occur. In Section 2.5.1 and Section 2.5.2, we discuss the workflow of the TPM manual and
auto-provisioning process, respectively. In this work, we refer to OwnerAuth as the ’owner authorization
value‘.

2.5.1 Manual Provisioning

The TPM is provisioned manually by a user triggering the provisioning process after the TPM has been
cleared. Clearing the TPM is a process involving the deletion of authorization values and the SRK stored in
the TPM’s memory [TCGLP3 2016], Section 24.6). In Windows, the TPM may be cleared, for example, using
the Clear-Tpm PowerShell cmdlet (see Section 3.1.2, paragraph ’PowerShell‘).

The TPM provisioning process can be triggered manually by using the TPM management utility (executable:
tpm.msc), the TPM initialization wizard (executable: tpminit.exe), or by executing the Initialize-
Tpm PowerShell cmdlet. Alternatively, a user may invoke the Provision function of the Win32_Tpm class.
This class is part of the TPM’s WMI interface. We discuss the TPM management utility, the PowerShell
cmdlets for managing the TPM, and the Win32_Tpm class in Section 3.1. In Figure 30, we refer to the TPM
management utility, the TPM initialization wizard, PowerShell, and any user application instantiating the
Win32_Tpm class as TPM management applications.

We triggered the TPM provisioning process manually using all TPM management applications mentioned
above. We observed that all of them invoke the CtpmCoreClass::Provision function implemented in
the %SystemRoot%\System32\TpmCoreProvisioning.dll library file (1 in Figure 30). This function
first invokes TpmApiGetRandom (2 in Figure 30). TpmApiGetRandom generates a new random owner
authorization value, which we verified as discussed next.

55 The values of EndorsementAuth and StorageOwnerAuth are stored in the system’s registry at the keys
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\TPM\WMI\Endorsement\
EndorsementAuth and HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\
TPM\WMI\Endorsement\StorageOwnerAuth, respectively.

Federal Office for Information Security 47

2 Technical Analysis of Functionalities

We first enabled storing of the owner authorization value at the registry key HKEY_LOCAL_MACHINE\
SYSTEM\CurrentControlSet\Services\TPM\WMI\Admin\OwnerAuthFull (see Section 3.1.2,
paragraph ’Group Policy‘).56 The owner authorization value is generated as part of the TPM provisioning
process. We then triggered the TPM provisioning process and analyzed the execution of
CtpmCoreClass::Provision.

56 https://blogs.technet.microsoft.com/dubaisec/2017/02/28/tpm-owner-password/ [Retrieved: 22/9/2017]

48 Federal Office for Information Security

Figure 30: The TPM provisioning process

Technical Analysis of Functionalities 2

The random value generated by TpmApiGetRandom is encoded using the Base64 algorithm57 and passed as
the second parameter of CtpmCoreClass::TPM2_TakeOwnership (see Figure 30). Figure 31 depicts the
value of this parameter. The Base64-encoded random value is then passed as the third parameter of
CtpmSettingsReaderWriter::WriteStringSetting (not depicted in Figure 30). Figure 32 depicts
the value of this parameter.

CtpmSettingsReaderWriter::WriteStringSetting stores the value of its third parameter in the
registry, at the registry key specified in its first and fifth parameter. We observed that
CtpmSettingsReaderWriter::WriteStringSetting writes the Base64-encoded random value
generated by TpmApiGetRandom in the registry at the key HKEY_LOCAL_MACHINE\SYSTEM\
CurrentControlSet\Services\TPM\WMI\Admin\OwnerAuthFull (see Figure 33). This shows that
the value generated by TpmApiGetRandom is the new owner authorization value.

TpmApiGetRandom generates random values using a software-implemented provider of the CNG library
(see Section 2.1.1). TpmApiGetRandom uses the BcryptOpenAlgorithmProvider to load the default
provider for the CNG algorithm RNG.58 This is indicated by the NULL value of the second, and the RNG value
of the third, parameter of BcryptOpenAlgorithmProvider.59 In Figure 34, we depict these values as
pseudo-code generated by the IDA disassembler. We developed a simple application invoking
BcryptOpenAlgorithmProvider with the same parameters as those depicted in Figure 34. We observed
that a software-implemented CNG provider was loaded.

57 https://tools.ietf.org/html/rfc4648 [Retrieved: 22/9/2017]
58 https://msdn.microsoft.com/de-de/library/windows/desktop/aa375534(v=vs.85).aspx [Retrieved: 22/9/2017]
59 See the documentation of BcryptOpenAlgorithmProvider for descriptions of its second and third

parameter: https://msdn.microsoft.com/de-de/library/windows/desktop/aa375479(v=vs.85).aspx
 [Retrieved: 22/9/2017]

Federal Office for Information Security 49

Figure 31: A random value generated by TpmApiGetRandom (Base64-encoded)

Figure 32: The third parameter of CtpmSettingsReaderWriter::WriteStringSetting

Figure 33: The first and fifth parameter of CtpmSettingsReaderWriter::WriteStringSetting

https://blogs.technet.microsoft.com/dubaisec/2017/02/28/tpm-owner-password/

2 Technical Analysis of Functionalities

After TpmApiGetRandom generates the new owner authorization value,
CtpmCoreClass::TPM2_TakeOwnership is executed. This function first triggers the generation of a
new SRK by invoking Tbsi_Create_Windows_Key, implemented in tbs.dll (3 in Figure 30). This
function issues an IRP containing a TPM command to the TPM driver tpm.sys (4 in Figure 30). The driver
handles incoming IRPs in its function TpmEvtIoDeviceControl. It handles an IRP containing request
for generation of a new SRK by invoking Tpm20CreatePrimarySrk. This function constructs a TPM
command byte sequence and submits it to the TPM (5 in Figure 30). Figure 35 depicts a part of this sequence.

The sub-sequence 80 02 is a constant value defined as TPM_ST_SESSIONS in the Trusted Platform Module
Library Part 2: Structures, family 2.0, level 00, revision 01.38 ([TCGLP2 2016], Table 19). The sub-sequence 00
00 01 57 is the size of the TPM command, defined as an integer of a fixed length of 4 bytes ([TCGLP3 2016],
Section 24.1.1). The sub-sequence 00 00 01 31 is the TPM command code TPM_CC_CreatePrimary,
which is defined in the Trusted Platform Module Library Part 2: Structures, family 2.0, level 00, revision 01.38
([TCGLP2 2016], Section 6.5.2). As specified in the Trusted Platform Module Library Part 3: Commands, family
2.0, level 00, revision 01.38 ([TCGLP3 2016], Section 24.1.1), this command code is a unique identifier of the
TPM command TPM2_CreatePrimary. This command is used for creating an SRK or an EK. An SRK is
generated in TPM-context and its private part never leaves the TPM ([TCGLP3 2016], Section 24.1.10). After it
is generated, the public part of the SRK is stored in the system’s registry at the key
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\TPM\WMI\Admin\SRKPub.

Through static analysis, we observed that an EK is generated in a conceptually identical manner as an SRK.
This involves invoking the function Tpm20CreatePrimaryEk implemented in the TPM driver and
executing the TPM_CC_CreatePrimary command (not depicted in Figure 30). We were unable to
dynamically observe an actual generation of an EK. This is because the TPM installed on the platform we
worked on was already provisioned with an EK at manufacture time. Once stored in the TPM’s memory, an
EK cannot be removed by clearing the TPM and a new EK cannot be stored in it ([TCGLP3 2016], Section
24.6).

After an SRK is created, the Base64-encoded random value generated by TpmApiGetRandom is passed to
CtpmCoreClass::TPM2_TakeOwnership and written to the TPM by the function issuing multiple IRPs
to the tpm.sys driver. This value is the new owner authorization value (OwnerAuth in Figure 30). The IRPs
issued by CtpmCoreClass::TPM2_TakeOwnership contain TPM commands and the new owner
authorization value.

CtpmCoreClass::TPM2_TakeOwnership issues the IRPs by invoking
Tbsip_Submit_Command_NonBlocking, implemented in tbs.dll (6 in Figure 30).

50 Federal Office for Information Security

Figure 35: A TPM command sequence for generating an SRK

Figure 34: BCryptOpenAlgorithmProvider in TpmApiGetRandom

https://msdn.microsoft.com/de-de/library/windows/desktop/aa375479(v=vs.85).aspx
https://msdn.microsoft.com/de-de/library/windows/desktop/aa375534(v=vs.85).aspx
https://tools.ietf.org/html/rfc4648

Technical Analysis of Functionalities 2

Tbsip_Submit_Command_NonBlocking is a variant of Tbsip_Submit_Command. It submits IRPs to
the TPM driver as described in Section 2.1.1, paragraph ’Direct TPM communication‘ (7 in Figure 30). The
driver handles the IRPs issued by CtpmCoreClass::TPM2_TakeOwnership in
TpmEvtIoDeviceControl and submits the TPM commands to the TPM device (8 in Figure 30) for storing
the new owner authorization value.

2.5.2 Auto-provisioning

The TPM auto-provisioning process is similar to the manual, with the major difference of how the tasks of
generating a new SRK and an owner authorization value are triggered. We cleared the TPM by executing the
Clear-Tpm PowerShell cmdlet (see Section 3.1.2, paragraph ’PowerShell‘) and enabled TPM auto-
provisioning by executing the Enable-TpmAutoProvisioning cmdlet. We also enabled storing of the
owner authorization value at the registry key HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\
Services\TPM\WMI\Admin\OwnerAuthFull (see Section 2.5.1). We then restarted the operating
system.

We note that a requirement for the TPM auto-provisioning process is the NoPPIProvision flag to be set
to true ([TCGPP 2015], Section 8.1.8). This flag is stored in the firmware and its value is evaluated by Windows
if the TPM is deactivated, or disabled.

We observed that the function Tpm20CreatePrimarySrk is executed in kernel context during system
booting. This function triggers the generation of a new SRK (see Section 2.5.1). Tpm20CreatePrimarySrk
is invoked within a thread created by the TpmEvtDevicePrepareHardware function of the TPM driver
tpm.sys.

TpmEvtDevicePrepareHardware is invoked as part of the initialization procedures performed by the
Windows kernel; that is, it is invoked by FxPnpDevicePrepareHardware::InvokeClient. This
function is implemented in the Driver Framework Runtime driver Wdf01000.sys (1 in Figure 30). This
driver is part of the Windows Driver Frameworks platform and acts as a filter driver for the TPM driver
tpm.sys.60 Filter drivers are drivers that extent the functionalities of other drivers and are part of their
driver stacks when specific requests need to be handled.61 For example, filter drivers perform initialization
tasks.

As described in Section 2.5.1, Tpm20CreatePrimarySrk triggers the generation of a new SRK by issuing
the TPM2_CreatePrimary TPM command. This command is uniquely identified by the command code
TPM_CC_CreatePrimary (2 in Figure 30).

As mentioned in 2.5.1, we were unable to observe a generation of an EK. This is because the TPM installed on
the platform we worked on was already provisioned with an EK at manufacture time. However, through
static code analysis, we observed that an EK is generated in a conceptually identical manner as an SRK.

When analyzing the manual TPM provisioning process, we observed that the new owner authorization
value is generated in user-land and passed to the TPM driver tpm.sys in the form of an IRP. Based on this
observation, we identifed the context in which a new owner authorization value is generated as part of the
TPM auto-provisioning process. We achieved this by monitoring the value of the HKEY_LOCAL_MACHINE\
SYSTEM\CurrentControlSet\Services\TPM\WMI\Admin\OwnerAuthFull registry key each
time an IRP is handled by the TPM driver. To this end, we executed the windbg command bp tpm!
TpmEvtIoDeviceControl "!reg querykey \\REGISTRY\\MACHINE\\SYSTEM\\
CurrentControlSet\\Services\\TPM\\WMI\\Admin\\; !process -1 0; g“. This command
sets a breakpoint at the function of the TPM driver handling incoming IRPs – TpmEvtIoDeviceControl
(see Section 2.5.1). It also displays the value of the OwnerAuthFull registry key, as well as information on

60 https://msdn.microsoft.com/en-us/library/windows/hardware/ff557565(v=vs.85).aspx [Retrieved: 22/9/2017]
61 https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/filter-drivers [Retrieved: 22/9/2017]

Federal Office for Information Security 51

2 Technical Analysis of Functionalities

the user process issuing an IRP (if any). Any change in the value of this key indicates the IRP passing a new
owner authorization value to the TPM.

We emphasize that the owner authorization value being generated in user-land is not a security flaw. To
remind, this value serves as a user password protecting TPM functionalities. Therefore, its presence in user-
land is a functional requirement. For example, users are able to specify a new, or modify an existing, owner
authorization value (see Section 3.1).

We identified the user process named ’Host Process for Windows Tasks‘ (executable: taskhostw.exe) as
the processing issuing the IRP that passes a new owner authorization value to the TPM. Figure 36 depicts the
change in the value of the OwnerAuthFull registry key identifying taskhostw.exe. In Figure 36, the
value starting with ElE is the old owner authorization value, the value starting with YAq is the new owner
authorization value, and the Image field contains the name of the executable issuing the IRP that passes the
new owner authorization value to the TPM.

The taskhostw.exe executable executes scheduled tasks. Using the Task Scheduler utility (executable:
taskschd.msc), we discovered the task named Tpm-Maintenance. This task is configured to execute at
every system startup. We exported information about Tpm-Maintenance into an XML format using the
Task Scheduler. We observed that the task executes functions of a component object model (COM) object
that is an instance of the class with an ID 5014B7C8-934E-4262-9816-887FA745A6C4. Figure 37
depicts the snippet of the XML file containing information about Tpm-Maintenance (i.e., about the ID of
the instantiated COM class, ClassId in Figure 37).

By exploring the contents of the registry key HKEY_CLASESS_ROOT/CLSID/{5014B7C8-934E-4262-
9816-887FA745A6C4}/InprocServer32/, we observed that the COM class with an ID 5014B7C8-
934E-4262-9816-887FA745A6C4 is implemented in the %SystemRoot%\System32\
TpmTasks.dll library file. We analyzed the implementation of this file using the IDA disassembler
observing that at every system startup, it creates a thread executing the function
CtpmTasksHandler::Worker. This function invokes CtpmCoreClass::Provision, implemented in
the TpmCoreProvisioning.dll library file (3 in Figure 30).

As described in Section 2.5.1, the generation of a new owner authorization value takes places in
CtpmCoreClass::Provision. The TPM auto-provisioning process continues as follows: a new owner
authorization value is generated by TpmApiGetRandom (4 in Figure 30); this value is submitted to the TPM

52 Federal Office for Information Security

Figure 36: taskhostw.exe changing the OwnerAuthFull registry key

Figure 37: The TPM-Maintenance task

https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/filter-drivers
https://msdn.microsoft.com/en-us/library/windows/hardware/ff557565(v=vs.85).aspx

Technical Analysis of Functionalities 2

driver tpm.sys (5 and 6 in Figure 30); and the TPM driver stores the new owner authorization value in the
TPM device (7 in Figure 30).

In addition to those mentioned above, the Tpm-Maintenance task performs other activities. For example,
if an AIK named Windows AIK is not present, it triggers the generation of a new AIK by invoking
CwindowsAIK::CreateWindowsAIK (not depicted in Figure 30). An AIK is generated in scenarios
where the TPM is manually or automatically provisioned.

CwindowsAIK::CreateWindowsAIK is implemented in TbsCoreProvisioning.dll. The public key
of the new AIK is written to the system’s registry at HKEY_LOCAL_MACHINE\SYSTEM\
CurrentControlSet\Services\TPM\WMI\WindowsAIKPub. Figure 38 depicts the generation of an
AIK in the form of a pseudo-code generated by the IDA disassembler.
CwindowsAIK::CreateWindowsAIK uses the CNG library to load the Platform Cryptographic
Provider (NcryptOpenStorageProvider and Microsoft Platform Crypto Provider in Figure 38)62 and to
generate the AIK named Windows AIK using the TPM (NCryptCreatePersistedKey and Windows AIK in
Figure 38)63. This indicates that the AIK is generated in TPM context. The presence of an AIK is not a
requirement for the TPM device to be used. Therefore, the detailed analysis of the AIK generation process is
out of the scope of this work package.

2.6 Security Aspects

The analysis presented in Section 2.1 – Section 2.5 was performed by taking security aspects, such as
potential attack scenarios, threats, and implemented mitigations, into account. We considered the following
attack scenarios:

• Unauthorized modification of the roots of trust for integrity verification: This attack may allow an
attacker to compromise the system’s integrity verification procedure and enable the loading of malicious
executables;

• Unauthorized configuration or provisioning of the TPM: This attack may allow, for example, an attacker
to modify the existing TPM owner authorization value and execute restricted TPM commands;

• Unauthorized disabling of image integrity verification: This attack may allow an attacker to modify
relevant system executables or load malicious executables;

• Unauthorized modification of integrity measurements: This attack involves modifying the WBCL or
measurements in the database of the ELAM driver. It may allow an attacker to modify measured
executables without being detected by a remote attestation mechanism or the ELAM driver;

62 https://msdn.microsoft.com/de-de/library/windows/desktop/aa376286(v=vs.85).aspx [Retrieved: 22/9/2017]
63 https://msdn.microsoft.com/de-de/library/windows/desktop/aa376247(v=vs.85).aspx [Retrieved: 22/9/2017]

Federal Office for Information Security 53

Figure 38: Generation of an AIK

2 Technical Analysis of Functionalities

• Exploitation of an implementation or design flaw: This attack may result in the execution of any
unauthorized activity, which includes those mentioned in this section. For example, an attacker may
exploit a flaw in the image integrity verification procedure of Windows 10 in order to load a malicious
image.

Table 3 provides an ovierview of the considered attack scenarios (column ’Attack scenario‘), implemented
mitigations for these scenarios (column ’Mitigation‘), and references to sections of this work where the
mitigations are discussed (column ’Reference‘).

Attack scenario Mitigation Reference

Unauthorized
modification of the roots
of trust for integrity
verification

The roots of trust for integrity verification are hardcoded in
the executables implementing the boot manager, the
Windows loader, and the kernel. The integrity of these
executables, and therefore of the hardcoded roots of trust
themselves, is verified by the executables loading them:
UEFI loads and verifies the boot manager, the boot
manager loads and verifies the Windows loader, and the
Windows loader loads and verifies the kernel.

Section 2.2

Unauthorized
configuration or
provisioning of the TPM

The TPM implements in hardware a concrete procedure
for authorizing any processed TPM command. This
includes commands for provisioning or modifying the
configuration of the TPM.

Section 2.1.1

Unauthorized disabling
of image integrity
verification

The procedures for image integrity verification are
implemented as part of the boot manager, the Windows
loader, and the kernel. Therefore, apart from exploiting an
implementation flaw, image integrity verification cannot be
disabled in an unauthorized manner.
We note that image integrity verification can be disabled by
authorized users with administrative privileges. To this end,
a user may modify the system’s boot configuration by
issuing the command bcdedit /set
nointegritychecks on.

Section 2.2

Unauthorized
modification of integrity
measurements

The database of the ELAM driver is digitally signed and its
signature is verified before the database is used.
PCR values are used for verification of the integrity of the
WBCL by attestation platforms. Values already stored in
PCRs cannot be modified, only new values can be extended.
All PCR operations can be conducted only by authenticated
and authorized TPM users.

Section 2.3
Section 2.4

Exploitation of an
implementation or
design flaw

The implemented image integrity verification procedures
are well-designed; secure hash algorithms are used, and
sensitive data and files (e.g., the database of the ELAM
driver) are protected by signing. Sensitive TPM activities
(e.g., TPM provisioning and attestation reporting) are
implemented as TPM-internal processes and their
exposure to potentially malicious Windows users is strictly
limited.
We did not observe any implementation flaws during our
analysis. All user data flows to the TPM is sanitized and
marshalled in the form of IRPs.

Section 2.1.1
Section 2.2
Section 2.3
Section 2.4
Section 2.5

Table 3: Attack scenarios and mitigations

54 Federal Office for Information Security

https://msdn.microsoft.com/de-de/library/windows/desktop/aa376247(v=vs.85).aspx
https://msdn.microsoft.com/de-de/library/windows/desktop/aa376286(v=vs.85).aspx

Configuration and Logging Capabilities 3

3 Configuration and Logging Capabilities
In this section, we provide an overview of the capabilities of Windows 10 for configuring the TPM (Section
3.1) and logging TPM events (Section 3.2). We provide recommendations for configuring the TPM and
logging TPM events for the purpose of hardening platform security as part of Work Package 11.

3.1 Configuration Capabilities

Table 4 presents relevant configuration activities supported by the TPM configuration capabilities discussed
below: the TPM WMI interface (WMI), the TBS API (TBS API), PowerShell (PowerShell), the TPM management
utility (tpm.msc), group policy (Policies), and the system’s registry (Registry). In Table 4, the configuration
activities supported by a given capability are marked with X. We structure the activities as follows:

• Command management: Blocking or allowing the execution of TPM commands, for example, by
enabling lists of blocked commands (see Section 3.1.2, paragraph ’TPM management utility’);

• OwnerAuth management: Storing or modification of an existing, or generation of a new, owner
authorization value (see Section 1.3);

• TPM provisioning: Partial or complete execution of the TPM provisioning process (see Section 2.5). This
may include the generation of an SRK or an EK;

• TPM clearing: Clearing the TPM (see Section 2.5.1);

• TPM querying: Obtaining information about the TPM, for example, whether the TPM is enabled or
provisioned;

• TPM lockout management: Managing the TPM lockout mechanism, for example, modifying the
authorization threshold value (see Section 1.3).

Configuration
activities

TPM configuration capabilities

 WMI TBS API Power-
Shell

tpm.msc Policies Registry

Command
management

X X X X X

OwnerAuth
management

X X X X X

TPM provisioning X X X X

TPM clearing X X X X

TPM querying X X X

TPM lockout
management

X X X X X

Table 4: Activities supported by TPM configuration capabilities

The activities above serve as general labels and may include multiple sub-activities. For example,
OwnerAuth management may include the modification of an existing, and the generation of a new, owner
authorization value. We emphasize that not all configuration capabilities supporting a given activity support
the same sub-activities. Some capabilities may support more sub-activities than others. The exact sub-

Federal Office for Information Security 55

3 Configuration and Logging Capabilities

activities supported by a given configuration capability are documented or referenced in Section 3.1.1 and
Section 3.1.2.

We distinguish between programmatic and non-programmatic configuration capabilities. The former
enable the configuration of the TPM through program code, whereas the latter through user interaction
with the system.

3.1.1 Programmatic Configuration Capabilities

We discuss in this section the programmatic TPM configuration capabilities of Windows 10: the TPM WMI
interface, and the TBS API.

The TPM WMI interface WMI is an infrastructure enabling the programmatic management of components
(referred to as managed components, or managed objects), where a component may be a system, an
application, or a device. These components are managed by WMI providers, which are COM objects. WMI
providers implement WMI classes that declare methods performing management activities. The structure of
a WMI class is described in a Managed Object Format (MOF) file.64

WMI classes are grouped into WMI namespaces. WMI namespaces are structured in a hierarchical manner,
where the root of the hierarchy is the namespace named root. WMI namespaces restrict the access of users
to the namespaces and classes that reside in it by implementing access control based on user privileges.65 For
more details on the architecture of the WMI infrastructure, we refer to
https://msdn.microsoft.com/en-us/library/aa394553(v=vs.85).aspx [Retrieved: 22/9/2017].

The TPM device is a managed component, whose WMI interface is implemented by a WMI provider named
Trusted Platform Module Provider.66 This provider implements the Win32_Tpm WMI class for
managing the TPM device.

By searching through the WMI namespace hierarchy, we identified the namespace in which the Win32_Tpm
class resides – root\cimv2\security\MicrosoftTPM. WMI namespaces that reside under the root
namespace can be enumerated with the PowerShell command Get-WmiObject -Namespace "root" -
Class "__Namespace" | Select Name, where Namespace can be set to any namespace under root.
We verifed that the Win32_Tpm WMI class resides in the namespace root\cimv2\security\
MicrosoftTPM by executing the PowerShell command Get-WmiObject -Namespace "root\cimv2\
security\MicrosoftTPM" -List| Select Name.

The methods declared by Win32_Tpm can be used for managing the TPM device in a programmatic
manner. An example is Clear, which is used for clearing the TPM (see Section 2.5.1). The methods of the
Win32_Tpm class can be executed by creating a new, or using an existing, instance of the class. This instance
is referenced by the namespace in which it resides (i.e., root\cimv2\security\MicrosoftTPM).

The Win32_Tpm class is implemented in the library DLL file %SystemRoot%\System32\wbem\
Win32_Tpm.dll. We identified this file by executing the PowerShell command Get-WmiObject -
Namespace root/cimv2/security/MicrosoftTPM -Query "select clsid from
__Win32Provider where name='Win32_TpmProvider'" | % { Get-ItemProperty -Path
"Registry::HKEY_CLASSES_ROOT\CLSID\$($_.clsid)\InProcServer32" -Name
'(default)' }. This command extracts the name of the library DLL file implementing the TPM WMI
provider from the system’s registry. The MOF file describing the structure of the Win32_Tpm class is located
at %\System32\wbem\Win32_Tpm.mof.

A comprehensive documentation on the methods of the Win32_Tpm class is available at
https://msdn.microsoft.com/en-us/library/windows/desktop/aa376484(v=vs.85).aspx [Retrieved: 22/9/2017].
For the sake of brevity and avoiding redundancy, we do not present here descriptions of these methods. We

64 https://msdn.microsoft.com/en-us/library/windows/desktop/aa823192(v=vs.85).aspx [Retrieved: 22/9/2017]
65 https://msdn.microsoft.com/en-us/library/aa822575(v=vs.85).aspx [Retrieved: 22/9/2017]
66 https://msdn.microsoft.com/en-us/library/aa376480(v=vs.85).aspx [Retrieved: 22/9/2017]

56 Federal Office for Information Security

Configuration and Logging Capabilities 3

analyzed the implementation of the Win32_Tpm class in the Win32_Tpm.dll library file and identified 10
methods that are not documented on-line: GetCapLockoutInfo,
GetDictionaryAttackParameters, GetOwnerAuthForEscrow, GetOwnerAuthStatus,
GetTcgLog, ImportOwnerAuth, IsFIPS, IsKeyAttestationCapable, OwnerAuthEscrowed, and
Provision. We then analyzed the implementation of these methods. We present here information on the
methods that are relevant to the topics in the focus of this work package – integrity measurement and TPM
provisioning (see Section ’Executive Summary‘). We also focus on the methods that are related to the
security of the TPM (see Section 1.3). In Table 5, we present the names of these methods and brief
descriptions of their functionalities.

Method Description

GetDictionaryAttackParameters This method returns the configuration of the TPM’s dictionary
attack prevention mechanism. This includes the number of
maximum authentication failures until the TPM is locked, and
the amount of time that has to elapse until an authentication
attempt is allowed once the TPM has been locked (see Section
1.3).

GetTcgLog This method returns the WBCL (see Section 2.4).

ImportOwnerAuth This method imports an owner authorization value to the
system’s registry. We discuss the owner authorization value and
its location in the registry in Section 2.5.

Provision This methods provisions the TPM as described in Section 2.5.

Table 5: Relevant methods of the Win32_Tpm class

When analyzing the implementation of the Win32_Tpm class, we observed that most of its methods related
to TPM provisioning act as wrappers of functions implemented in the TpmCoreProvisioning.dll
library file. In Section 2.5, we discussed relevant functionalities implemented in this file.

The TBS API The Windows operating system provides programmatic access to the TPM via the TBS API. We
discussed this API and the way in which communicates with the TPM in Section 2.1.1. The TBS API allows
for fine-granular configuration of the TPM by submitting TPM commands using the
Tbsip_Submit_Command function. A detailed reference of the TBS API is available on-line at:
https://msdn.microsoft.com/en-us/library/windows/desktop/aa446794(v=vs.85).aspx [Retrieved: 22/9/2017].

The use of the TBS API for TPM configuration requires knowledge on invoking the TPM commands for
configuring the TPM. This includes knowledge on types of parameters and allowed parameter values and
valid byte sequences (see Section 1.3). A comprehensive documentation of the commands supported by the
TPM 2.0 standard is available in [TCGLP3 2016].

3.1.2 Non-programmatic Configuration Capabilities

We discuss in this section the non-programmatic capabilities of Windows 10 for configuring the TPM:
PowerShell, the TPM management utility (executable: tpm.msc), group policies, and the system’s registry.

PowerShell The TPM can be configured by executing the PowerShell cmdlets for TPM management. These
cmdlets are implemented as part of the PowerShell module TrustedPlatformModule. A comprehensive
description of the cmdlets for configuring the TPM is available on-line at: https://technet.microsoft.com/de-
de/library/jj603116(v=wps.630).aspx [Retrieved: 22/9/2017]. In this section, we provide a summarizing
description of these cmdlets.67

67 A list of cmdlets implemented as part of TrustedPlatformModule can be obtained by issuing the
PowerShell command Get-Command -Module TrustedPlatformModule.

Federal Office for Information Security 57

https://msdn.microsoft.com/en-us/library/windows/desktop/aa376484(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa376480(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394553(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa822575(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa823192(v=vs.85).aspx

3 Configuration and Logging Capabilities

Clear-Tpm: This cmdlet clears the TPM and resets it to its factory state; that is, it deletes authorization
values, the SRK, and other data stored at the TPM,. The EK is not deleted ([TCGLP3 2016], Section 24.6). For
the TPM to be cleared, users have to provide the owner authorization value (see Section 2.5), or this value has
to be stored in the system’s registry. ConvertTo-TpmOwnerAuth: This cmdlet converts a user-specified
passphrase to an owner authorization value. We analyzed the implementation of this cmdlet observing that
the conversion consists of:

• encoding the passphrase using the Unicode Transformation Format (UTF)-16LE encoding algorithm;68

• hashing the encoded passphrase using the SHA-1 hash algorithm;69 and

• encoding the resulting hash using the Base64 encoding algorithm.

Disable-TpmAutoProvisioning: This cmdlet disables TPM auto-provisioning (see Section 2.5.2). If the
cmdlet parameter OnlyForNextRestart is specified, the auto-provisioning feature will be disabled only
for the next time the system restarts. For any subsequent restart, the auto-provisioning feature will be
enabled.

Enable-TpmAutoProvisioning: This cmdlet enables TPM auto-provisioning.

Property Description

TpmReady This property indicates whether the TPM complies with Windows Server 2012
standards.

TpmPresent This property indicates whether there is a TPM installed on the platform.

ManagedAuthLevel This property is the level at which the operating system manages the owner
authorization value. Possible values are Full, Delegated, and None.

A ManagedAuthLevel of Full indicates that the system stores the TPM
owner authorization value and TPM delegation blobs (see Section 1.3) in the
system’s registry. The owner authorization value is stored at the registry key
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\
TPM\WMI\Admin\OwnerAuthFull.

A ManagedAuthLevel of Delegated indicates that the system stores only
TPM delegation blobs in the system’s registry.

A ManagedAuthLevel of None indicates that the system does not store the
TPM owner authorization value or delegation blobs in the system’s registry.

OwnerClearDisabled This property indicates whether the TPM can be cleared by the holder of the
owner authorization value. If its value is True, this activity is disabled.

AutoProvisioning This property indicates whether TPM auto-provisioning is enabled.

LockedOut This property indicates whether the TPM is locked out (see Section 1.3).

LockoutCount This property provides the current count of authorization failures (see Section
1.3).

LockoutMax This property provides the set maximum count of authorization failures until
the TPM is locked out.

SelfTest This property provides internal TPM information about the TPM self-test
procedure ([TCGLP1 2016], Section 12.2.3).

Table 6: Get-Tpm cmdlet: Properties

68 https://tools.ietf.org/html/rfc2781 [Retrieved: 22/9/2017]
69 https://tools.ietf.org/html/rfc3174 [Retrieved: 22/9/2017]

58 Federal Office for Information Security

https://technet.microsoft.com/de-de/library/jj603116(v=wps.630).aspx
https://technet.microsoft.com/de-de/library/jj603116(v=wps.630).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa446794(v=vs.85).aspx

Configuration and Logging Capabilities 3

Get-Tpm: This cmdlet provides information about the TPM. The information consists of the property
values presented in Table 6.
Get-TpmEndorsementKeyInfo: This cmdlet provides information about the EK stored in the TPM. This
information consists of the property values presented in Table 7.

Property Description

IsPresent This property indicates whether there is an EK stored in the TPM.

PublicKey This property provides the public part of the EK, encoded in the ASN.1
format.

PublicKeyHash This property provides a hashed value of the public part of the EK.

ManufacturerCertificates This property provides the EK and platform certificates installed by the
manufacturer (see Section 1.3).

AdditionalCertificates This property provides EK certificates created by other entities.

Table 7: Get-TpmEndorsementKeyInfo: Properties

Get-TpmSupportedFeature: This cmdlet provides a list of features supported by the TPM. An example
is the ’key attestation‘ feature indicating that the TPM supports key attestation (see Section 1.3).

Import-TpmOwnerAuth: This cmdlet imports an owner authorization value to the registry. This value is
stored at the registry key HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\TPM\
WMI\Admin\OwnerAuthFull (see Table 6).

Initialize-Tpm: This cmdlet provisions the TPM. We discuss the TPM provisioning process in Section
2.5.

Set-TpmOwnerAuth: This cmdlet sets the current TPM owner authorization value to a new value. Its
issuer has to provide the old owner authorization value as the OwnerAuthorization or File cmdlet
parameter. If an owner authorization value is not provided, the cmdlet attemps to obtain it from the
system’s registry. Set-TpmOwnerAuth returns information about the TPM as presented in Table 6.

Unblock-Tpm: This cmdlet unlocks the TPM. The TPM might be locked due to a reached limit of
authorization failures (see Section 1.3). Its issuer has to provide the owner authorization value as the
OwnerAuthorization or File cmdlet parameter. If an owner authorization value is not provided, the
cmdlet attemps to obtain it from the system’s registry. Unblock-TPM returns information about the TPM
as presented in Table 6.

TPM management utility The TPM management utility (executable: tpm.msc) of Windows 10 provides a
graphical user interface for configuring the TPM. Its main window, depicted in Figure 39, provides
information about the status of the TPM (Status in Figure 39). In addition, it provides information about the
manufacturer and version of the TPM (TPM Manufacturer Information in Figure 39). It also allows for
initializing/provisioning the TPM (Prepare the TPM… in Figure 39), turning the TPM off (Turn TPM Off… in
Figure 39), changing the current owner authorization value (Change Owner Password… in Figure 39), clearing
the TPM (Clear TPM… in Figure 39), and unlocking the TPM if it is in a locked state (Reset TPM Lockout… in
Figure 39).

By clicking on ’Command management‘, users can configure access control over TPM commands by
blocking a list of such commands. This list is referred to as the ’local list of blocked TPM commands‘. The list
may differ from the ’default list of blocked TPM commands‘. The latter is a list of blocked TPM commands
that is preconfigured by Windows 10.

Federal Office for Information Security 59

https://tools.ietf.org/html/rfc3174
https://tools.ietf.org/html/rfc2781

3 Configuration and Logging Capabilities

Figure 40 depicts a snippet of the graphical interface for configuring access control over TPM commands.
The ’Command Management‘ panel, among other things, displays the status of each TPM command (i.e.,
’Blocked‘ or ’Allowed‘). Users can block a TPM command by clicking on ’Block New Command…‘, placed in
the ’Actions‘ panel.

Group policy Windows 10 comes with seven group policies for configuring the TPM. These policies are
located at the policy path Computer Configuration → Administrative Templates → System →
Trusted Platform Module Services. Table 8 presents the names of the policies and brief descriptions.

Policy Description

Configure the list of blocked TPM
commands

If enabled, this policy configures the TPM such that it
blocks the TPM commands specified as part of a list. This
list is created by the user configuring the policy.

Ignore the default list of blocked
TPM commands

If enabled, this policy configures the TPM such that it
ignores the default list of blocked TPM commands (see
Section 3.1.2, paragraph ’TPM management utility‘).

Ignore the local list of blocked TPM
commands

If enabled, this policy configures the TPM such that it
ignores the local list of blocked TPM commands (see
Section 3.1.2, paragraph ’TPM management utility‘).

60 Federal Office for Information Security

Figure 40: TPM command management using the TPM management utility

Figure 39: The main window of the TPM management utility

Configuration and Logging Capabilities 3

Policy Description

Configure the level of TPM owner
authorization information
available to the operating system

If enabled, this policy configures the system such that it
manages the owner authorization value at the level
Full, Delegated, or None (see Table 6, property
ManagedAuthLevel).

Standard User Lockout Duration If enabled, this policy configures the TPM such that it
counts failed TPM authorization attempts from users
over a given time interval (in minutes). This interval is
configured through this policy. If the number of failed
TPM authorization attempts over the time interval
exceeds a threshold value, the user is prevented from
sending commands to the TPM. This policy applies only
to regular system users (i.e., not administrators).

Standard User Individual Lockout
Threshold

If enabled, this policy configures the previously
mentioned TPM authorization threshold value (see policy
Standard User Lockout Duration). The policy
configures the maximum number of TPM authorization
failures over a given time interval, after which the user is
prevented from sending commands to the TPM. This
policy applies to each standard system user individually.

Standard User Total Lockout
Threshold

If enabled, this policy configures the previously
mentioned TPM authorization threshold value (see policy
Standard User Lockout Duration) for all users. The
policy configures the maximum number of TPM
authorization failures from all users over a given time
interval until they are prevented from sending
commands to the TPM. This policy applies to all standard
system users.

Table 8: Group policies for configuring the TPM

Registry The registry of Windows 10 contains numerous keys storing values for configuring the TPM and
values used during TPM operation. These keys are located in the registry hives HKEY_LOCAL_MACHINE\
SYSTEM\CurrentControlSet\Services\TPM and HKEY_LOCAL_MACHINE\Software\
Microsoft\Tpm.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\TPM contains registry keys with
values primarily referenced by the TPM driver during command execution. They are also referenced in the
TpmCoreProvisioning.dll library file during the TPM provisioning process (see Section 2.5). An
example is the key HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\TPM\WMI\
Admin\SRKPub, which is the public part of the SRK. This key is populated during TPM provisioning, when
a new SRK is created (see Section 2.5). In addition to the dynamic analysis of the TPM functionalities that are
in the scope of this work package, we verified the use of the keys at HKEY_LOCAL_MACHINE\SYSTEM\
CurrentControlSet\Services\TPM by searching for string references to this hive in library and
executable files that implement these TPM functionalities. These executable files include tpm.sys,
tbs.dll, and TpmCoreProvisioning.dll. We searched for string references to registy keys using the
Strings utility, part of the Sysinternals suite.

The registry hive HKEY_LOCAL_MACHINE\Software\Microsoft\Tpm stores lists of allowed and
blocked TPM commands (see Section 3.1.2). Figure 41 depicts the structure of this hive. The keys beginning
with ’Allowed’ store in the sub-keys ’List’ lists of allowed TPM commands, where the name of each list entry
is the ID of an allowed command (see Section 1.3) and the value of the entry is 1. The keys beginning with

Federal Office for Information Security 61

3 Configuration and Logging Capabilities

’Blocked’ store in the sub-keys ’List’ lists of blocked TPM commands, where the name and value of each list
entry is the ID of a blocked TPM command.

3.1.3 Recommended Configuration Settings

The TPM configuration capabilities that can be configured through policies (see Table 8) can be grouped into
three categories: command blocking, lockout, and credential storage. Table 9 describes these categories and
provides recommended settings or, where necessary, relevant information for making an informed
configuration decision.

Category Description Recommended settings

Command
Blocking

Windows allows to block
specific TPM commands and
per default blocks certain
commands.

The blocking of additional commands is not required: In
addition to the TPM command blocked by default, the
TPM itself is designed to block users from executing the
most critical-security activities (e.g. exporting private
portions of keys).

The default blocking of TPM commands by Windows 10
must not be disabled (see Table 8, policy Ignore the
default list of blocked TPM commands).

Lockout The TPM has the capability to
restrict/limit authorization
attempts in order to prevent
dictionary attacks.

The following settings (see Table 8) should be configured to
protect the TPM from dictionary attacks:

Standard User Lockout Duration: 30
Standard User Total Lockout Threshold: 5

These settings allow five failed authorization attempts
over 30 minutes. The settings above have proven to be
operationally feasible while providing adequate security
benefit.

Credential
Storage

Depending on the
configuration, Windows 10
may store the owner
authorization value in the
registry to transparently
access the TPM (see Table 8,

Obtaining the owner authorization value by an attacker
requires either administrative access to a running system
with hard drive encryption or physical access to a system’s
hard disk without hard drive encryption.

If the owner authorization value is stored in the registry
and an attacker has administrative access to a running

62 Federal Office for Information Security

Figure 41: The registry hive HKEY_LOCAL_MACHINE\
Software\Microsoft\Tpm

Configuration and Logging Capabilities 3

Category Description Recommended settings

policy Configure the
level of TPM owner
authorization
information available
to the operating
system). Any user and user
application with access to the
registry can thus also access
the TPM. If the owner
authorization value is not
stored in the registry, it must
be entered into a credential
prompt when required.

system, the attacker can extract the owner authorization
key from the registry and perform privileged operations.
This includes resetting the TPM lockout mechanism
and/or clearing the TPM. This may result in an unusable
system, for example, when the Bitlocker encryption key is
cleared from the TPM and the recovery key is not available
upon reboot. If the registry key is not stored in the registry,
an attacker with administrative privileges is in the position
to intercept TPM credential prompts when they appear in
order to extract the owner authorization value.

If the owner authorization value is stored in the registry
and an attacker has access to a system’s hard disk without
hard drive encryption, the attacker can extract the owner
authorization key from the registry and perform privileged
operations once the system is running (see the discussion
above).

Given that obtaining the owner authorization value by an
attacker requires either access to a system’s hard disk or
administrative access - scenarios that lead to a full system
compromise - no mandatory setting for the policy
Configure the level of TPM owner
authorization information available to the
operating system
is given.

Table 9: Recommended settings

3.2 Logging Capabilities

Windows 10 uses the ETW framework for logging TPM events ([ERNW WP2], Section 4). We analyzed the
logging functionalities implemented in library and executable files that implement TPM functionalities
relevant to this work package. These include tpm.sys, tbs.dll, and TpmCoreProvisioning.dll. We
identified 5 ETW providers. Table 10 lists their GUIDs (column ’GUID‘, see Section), and the library or
executable files in which they are implemented (column ’Location‘).

We do not claim complete coverage of all ETW providers for logging TPM events that are implemented as
part of Windows 10. This is because we focussed our analysis on discovering ETW providers that log events
related to the TPM functionalities investigated in this work package (see Section ’Executive Summary‘). We
have also identified the ETW providers that provide data to logs, which Windows makes available to system
administrators via its Event Viewer utility for security monitoring and system maintenance purposes.

The GUIDs listed in Table 10 are pre-stored (i.e., hardcoded) in variables and can be viewed by displaying the
contents of the memory locations where they are stored. For example, Figure 42 depicts output from the
IDA dissassembler showing the GUID 61d3c72e-6b1b-454c-a34d-b39eb95b8d99 stored in a
variable declared as part of tbs.sys.

GUID Location

3a8d6942-b034-48e2-b314-f69c2b4655a3 tpm.sys

1b6b0772-251b-4d42-917d-faca166bc059 tpm.sys

Federal Office for Information Security 63

3 Configuration and Logging Capabilities

GUID Location

61d3c72e-6b1b-454c-a34d-b39eb95b8d99 tbs.dll
tbs.sys

66ba1a86-43c6-41ac-955b-28b520db532a TpmCoreProvisioning.dll

7d5387b0-cbe0-11da-a94d-800200c9a66 TpmCoreProvisioning.dll

Table 10: ETW providers for logging TPM events

The provider with a GUID 3a8d6942-b034-48e2-b314-f69c2b4655a3 provides data for logging to
an ETW trace listener (i.e., a session) of type autologger. This session type indicates that the session may
provide trace data during system booting ([ERNW WP2], Section 3.2). This session can be configured by
modifying registry key values at HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\
WMI\Autologger\Tpm. It stores logged data in %SystemRoot%\System32\LogFiles\WMI\
Tpm.etl.

The providers with GUIDs 1b6b0772-251b-4d42-917d-faca166bc059 and 7d5387b0-cbe0-
11da-a94d-800200c9a66 provide data to the EventLog-System ETW session of type autologger. This
session can be configured by modifying registry key values at HKEY_LOCAL_MACHINE\SYSTEM\
CurrentControlSet\Control\WMI\Autologger\Eventlog-System. In addition, it can be
configured using the Event Viewer utility as described in ([ERNW WP2], Section 4.3).

The providers with GUIDs 1b6b0772-251b-4d42-917d-faca166bc059 and 7d5387b0-cbe0-
11da-a94d-800200c9a66 are registered under the names TPM and Microsoft-Windows-TPM-WMI,
respectively. This can be verified by issuing the command logman query providers. This command
displays names and GUIDs of ETW providers.

Since the providers with GUIDs 1b6b0772-251b-4d42-917d-faca166bc059 and 7d5387b0-cbe0-
11da-a94d-800200c9a66 are registered under names, we can extract the Event IDs under which the
providers may log events. Table 11 and Table 12 lists these Event IDs and their descriptions (column 'Event
ID' and 'Event message', respectively). In Table 11 and 12, %1 and %2 mark dynamic content generated at
run-time. The event descriptions in Table 11 and 12 are as provided by Microsoft. We displayed the Event IDs
and the descriptions using the wevtutil utility, as described in ([ERNW WP2], Section 4.3).

Event ID Event Message

2 The TPM self test command failed.

12 The device driver for the Trusted Platform Module (TPM) encountered an error in
the TPM hardware, which might prevent some applications using TPM services
from operating correctly. Please restart your computer to reset the TPM hardware.
For further assistance on this hardware issue, please contact the computer
manufacturer for more information.

64 Federal Office for Information Security

Figure 42: A GUID of an ETW provider declared in tbs.sys

Configuration and Logging Capabilities 3

Event ID Event Message

14 The device driver for the Trusted Platform Module (TPM) encountered a non-
recoverable error in the TPM hardware, which prevents TPM services (such as data
encryption) from being used. For further help, please contact the computer
manufacturer.

15 The device driver for the Trusted Platform Module (TPM) encountered a non-
recoverable error in the TPM hardware, which prevents TPM services (such as data
encryption) from being used. For further help, please contact the computer
manufacturer.

16 A compatible TPM is not found.

17 The Trusted Platform Module (TPM) hardware failed to execute a TPM command.

18 This event triggers the Trusted Platform Module (TPM) provisioning/status check
to run.

19 The system firmware failed to enable overwriting of system memory on restart. The
ACPI request could not be interpreted by the firmware. The firmware should be
upgraded.

20 A command was sent to the Trusted Platform Module (TPM) successfully resetting
the TPM lockout logic. This event is generated when a successful command sent to
the TPM resets the TPM lockout logic. With this event, all prior standard user TPM
authorization failures are ignored; allowing standard users to use the TPM
normally again immediately.

21 A standard user issued Trusted Platform Module (TPM) command returned an
authorization failure. This event is generated when a command sent to the TPM by
a standard user returns a response indicating an authorization failure. If too many
authorization failures occur, standard users may be temporarily prevented from
sending TPM commands requiring authorization. This helps prevent the TPM from
entering a hardware lockout because of too many authorization failures.
User Security ID:%1.
Process Path %2.

22 TPM Base Services (TBS) has been configured in a test mode until the next full
restart. The TBS will not perform TPM resource virtualization or TPM command
blocking until the next full restart.

23 A standard user Trusted Platform Module (TPM) command was blocked because the
standard user has exceeded the maximum authorization failures permitted. This
event is generated when too many recent TPM commands sent to the TPM by a
standard user returned a response indicating an authorization failure. The standard
user is currently temporarily prevented from sending TPM commands requiring
authorization. This helps prevent the TPM from entering a hardware lockout
because of too many authorization failures.
User Security ID:%1.

24 The Trusted Platform Module (TPM) status: %1 and %2.

25 Creation of the Windows AIK directory failed.

Table 11: Event IDs generated by the ETW provider TPM

Event ID Event Message

513 TPM Owner Authorization information was backed up successfully to Active
Directory Domain Services.

514 Failed to backup TPM Owner Authorization information to Active Directory
Domain Services.

Federal Office for Information Security 65

3 Configuration and Logging Capabilities

Event ID Event Message

Errorcode: %1
Check that your computer is connected to the domain. If your computer is
connected to the domain, have your Domain Administrator check that the Active
Directory schema is appropriate for backup of Windows 8 TPM Owner
Authorization information and that the current Computer object has write
permission to the TPM object. Installations of Windows Server 2008 R2 or before
need a schema extension in order to be ready for backup of Windows 8 TPM
Owner Authorization information. Consult online documentation for more
information about setting up Active Directory Domain Services for TPM.

769 TPM Owner Authorization configuration changed from '%1' to '%2'.

1025 The TPM was successfully provisioned and is now ready for use.

1026 The Trusted Platform Module (TPM) hardware on this computer cannot be
provisioned for use automatically. To set up the TPM interactively use the TPM
management console (Start->tpm.msc) and use the action to make the TPM ready.
Error: %1
Additional Information: %2

1027 The Ownership of the Trusted Platform Module (TPM) hardware on this computer
was successfully taken (TPM TakeOwnership command) by the system.

1028 The NGC key generation task was successfully triggered.

1029 The triggering of the NGC key generation task failed.

1030 The NGC certificate enrollment task was successfully triggered.

1031 The triggering of the NGC certificate enrollment task failed.

1281 This event triggers the TBS device identifier generation.

1282 The TBS device identifier has been generated.

1537 The Device Health Certificate was successfully provisioned from %1.

1538 The Device Health Certificate provisioning could not connect to %1. %2

1539 The Device Health Certificate could not be provisioned from %1. HTTP status code
%2: %3

1793 The Trusted Platform Module (TPM) hardware on this computer is scheduled to be
cleared by the system.

Table 12: Event IDs generated by the ETW provider Microsoft-Windows-TPM-WMI

The providers with GUIDs 61d3c72e-6b1b-454c-a34d-b39eb95b8d99 and 66ba1a86-43c6-
41ac-955b-28b520db532a are not registered under names and there are no sessions that are configured
to obtain data from them. We verified this by searching the system’s registry for the GUIDs. This is where
ETW sessions store the GUIDs of the ETW providers they receive data from. We searched the system’s
registry using the Registry Editor utility.

Our analysis revealed that the providers with GUIDs 61d3c72e-6b1b-454c-a34d-b39eb95b8d99
and 66ba1a86-43c6-41ac-955b-28b520db532a are special-purpose providers that are registered and
activated only temporarily when specific activities are taking place. For example, the provider with GUID
61d3c72e-6b1b-454c-a34d-b39eb95b8d99 is primarly used for tracing events related to TPM
authorization failures. Figure 43 depicts pseudo-code generated by the IDA disassembler implementing the

66 Federal Office for Information Security

Configuration and Logging Capabilities 3

registration and the deregistration of this provider. The provider is registered and deregistered by invoking
the functions TraceLoggingRegisterEx70 and EventUnregister,71 respectively.

In Figure 43, the provider with GUID 61d3c72e-6b1b-454c-a34d-b39eb95b8d99 is used for logging
a TPMLockedOut event. This event ocurrs when the TPM has been locked due to too many authorization
failures (see Section 1.3). The pseudo-code depicted in Figure 43 is of the
Tbsip_Submit_Command_Internal function, implemented in the tbs.dll library file (see Figure 4).

We note the existence of the mechanism for logging TPM commands issued by the Platform
Cryptographic Provider (see Section 2.1.1). A user can enable this mechanism by creating a registry key
of type REG_SZ and with name ProviderTraces under the registry hive HKEY_LOCAL_MACHINE\
Software\Microsoft\Tpm. This key should contain a path to a folder, which is where log files will be
stored.

We enabled the above mechanism on Windows 10. We observed that the produced log files contain detailed
information on submitted TPM commands. This information is structured in a way such that it presents
values of variables and data structures as defined in the TPM specifications provided by the TCG. This
includes command codes and command byte sequences [TCGLP2 2016]. The logged information makes the
log files a useful and valuable resource for monitoring TPM activities at command level. Figure 44 depicts a
snippet of a log file, where ’RQU.commandCode‘ specifies the command code TPM_CC_ReadPublic. This
code uniquely identifies the TPM2_NV_ReadPublic command ([TCGLP3 2016], Section 31.6).

70 https://msdn.microsoft.com/en-us/library/windows/desktop/dn933290(v=vs.85).aspx [Retrieved: 22/9/2017]
71 https://msdn.microsoft.com/de-de/library/windows/desktop/aa363749(v=vs.85).aspx [Retrieved: 22/9/2017]

Federal Office for Information Security 67

Figure 43: Registration and deregistration of the provider with GUID 61d3c72e-6b1b-
454c-a34d-b39eb95b8d99

Figure 44: A snippet of a log file containing TPM command information

 Appendix

Appendix

Tools

Tool Availability and Description

Chipsec Availability: https://github.com/chipsec [Retrieved: 7/5/2017]

Description: A framework for analyzing hardware, system firmware
(BIOS/UEFI), and platform components.

IDA Availability: https://www.hex-rays.com/products/ida/index.shtml
[Retrieved: 7/5/2017]

Description: A disassembly and debugging framework.

Sysinternals Suite Availability:
https://technet.microsoft.com/de-de/sysinternals/bb545021.aspx
[Retrieved: 7/5/2017]

Description: A suite of tools for analyzing the Windows system (e.g.,
analyzing operation of processes, services, and enumeration of
loaded libraries by processess).

wevtutil Availability: Distributed with Windows 10

Description: A tool for querying running logging mechanisms.

Windows Debugger (windbg) Availability:
https://developer.microsoft.com/en-us/windows/hardware/downlo
ad-windbg [Retrieved: 7/5/2017]

Description: A debugger for the Windows system.

RW Availability: https://rweverything.com/ [Retrieved: 22/9/2017]

Description: A tool for reading data stored in computer hardware.

diskpart Availability: Distributed with Windows 10

Description: A tool for formatting hard disks.

bmzip Availability: https://github.com/coderforlife/bmzip [Retrieved:
22/9/2017]

Description: A tool for decompressing the boot manager of Windows
10.

radare2 Availability: http://rada.re/r/ [Retrieved: 22/9/2017]

Description: A disassembly and reversing framework.

sdb Availability:
http://www.geoffchappell.com/studies/windows/win32/apphelp/sdb/s
himdbdc.htm [Retrieved: 22/9/2017]

68 Federal Office for Information Security

https://msdn.microsoft.com/de-de/library/windows/desktop/aa363749(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dn933290(v=vs.85).aspx

Appendix

Description: A decompiler of files of the Windows compatibility
database.

PCPtool Availability:
https://github.com/Microsoft/TSS.MSR/tree/master/PCPTool.v11
[Retrieved: 22/9/2017]

Description: A tool for interacting with the TPM.

openssl Availability: https://www.openssl.org/ [Retrieved: 22/9/2017]

Description: A general purpose cryptography tool for working with
secure sockets layer (SSL) and transport layer security (TLS)
protocols.

TPM Usage Profiler

$$ ** Script usage: [function breakpoint] "$$>a<[path_to_script_file]
$$ [System address]"
$$ [function breakpoint]: a breakpoint to a single or multiple
$$ *DeviceIoControlFile functions (e.g., 'bu ntdll!NtDeviceIoControlFile',
$$ bm /a nt!*DeviceIoControlFile)
$$ [path_to_script_file]: path to this script file
$$ [System address]: the address of the EPROCESS structure of the kernel
$$ System thread. It can be obtained by issuing '!process 4 0'

.echotimestamps 1

r? $t18 = @rcx & 0xfffffffffffffffc

.if ((@$t18 & 0x80000000) == 0x80000000)
{

r? $t0 = ((_EPROCESS*)${$arg1})->ObjectTable
}
.else
{

r? $t0 = @$proc->ObjectTable
}

r? $t1 = @$t0->TableCode

r? $t19 = @$t1 & 0x3

r? $t1 = @$t1 & (~0x3)

.if (@$t19 == 0)
{

r? $t3 = @$t1 + (4*(@$t18&0x3fc))
}

.if (@$t19 == 1)
{

r? $t3 = ((unsigned int64*)(@$t1 + @$ptrsize*(((@$t18&0x3fc00))>>10)))[0] +
4*((@$t18&0x3fc))

}

.if (@$t19 == 2)
{

r? $t17 = ((unsigned int64*)(@$t1 + @$ptrsize*(((@$t18&0x3fc0000))>>18)))[0]

Federal Office for Information Security 69

http://www.geoffchappell.com/studies/windows/win32/apphelp/sdb/shimdbdc.htm
http://www.geoffchappell.com/studies/windows/win32/apphelp/sdb/shimdbdc.htm
http://rada.re/r/
https://github.com/coderforlife/bmzip
https://rweverything.com/
https://developer.microsoft.com/en-us/windows/hardware/download-windbg
https://developer.microsoft.com/en-us/windows/hardware/download-windbg
https://technet.microsoft.com/de-de/sysinternals/bb545021.aspx
https://www.hex-rays.com/products/ida/index.shtml
https://github.com/chipsec

 Appendix

r? $t3 = ((unsigned int64*)(@$t17 - 0x1 + @$ptrsize*(((@$t18&0x3fc00))>>10)))[0] +
4*((@$t18&0x3fc))

}

r? $t4 = (((_HANDLE_TABLE_ENTRY*)@$t3) -> ObjectPointerBits << 4) | 0xffff000000000000

r? $t4 = @$t4 + 0x30

r? $t5 = ((_FILE_OBJECT*)@$t4) -> DeviceObject

r? $t6 = ((_DEVICE_OBJECT*)@$t5) -> DriverObject

r? $t7 = (unsigned int64)@$t6 + 0x38

r $t8 = poi(@$t7 + 0x008)

.if ((@$t18 & 0x80000000) == 0x80000000)
{

.printf "****************\n";

.printf "Image/Command: Kernel\n"

.printf "Driver associated to IRP-ed device: %mu\n", @$t8
!devstack @$t5
.printf "****************\n";

}

.else
{

.printf "****************\n";
r? $t15 =((unsigned int64*) ((unsigned int64)(&((@$proc→Peb)→)
->ProcessParameters)
->CommandLine) + 0x008))[0]
.printf "Image/Command: %mu\n", @$t15
r? $t15 = (unsigned int64)(@$proc->UniqueProcessId)
.printf "PID: %d\n", @$t15
.printf "Driver associated to IRP-ed device: %mu\n", @$t8
!devstack @$t5
.printf "****************\n";

}
g

TPM Usage

Executable Parameters Entity

smss.exe Session manager ([ERNW WP2], Section 2.1)

lsass.exe Local security authority ([ERNW WP2], Section 2.1)

svchost.exe -k netsvcs BitLocker Drive Encryption Service

taskhostw.exe Host process for Windows tasks (see Section 2.5.2)

svchost.exe -k netsvcs Microsoft Account Sign-in Assistant

ELAM Database Parser

#!/usr/bin/env python3
import argparse
import struct

70 Federal Office for Information Security

https://www.openssl.org/
https://github.com/Microsoft/TSS.MSR/tree/master/PCPTool.v11

Appendix

from collections import namedtuple
import enum

from Crypto.PublicKey import RSA
from Crypto.Cipher import PKCS1_v1_5
from Crypto.Util.number import bytes_to_long, long_to_bytes

from helperlib import print_hexII, print_hexdump, hexdump

class Item(namedtuple('Item', ['code', 'type', 'trust_code', 'data', 'comment'])):
 def __str__(self):
 l = [
 'Item:',
 f'\tcode: {self.code:X}',
 f'\ttype: {self.type!r}',
 f'\ttrust: {self.trust_code!r}',
 f'\tdata:\n\t' + '\n\t'.join(hexdump(self.data, header=True)),
 f'\tcomment: {self.comment}',
]
 return '\n'.join(l)

class EntryType(enum.IntEnum):
 THUMBPRINT_HASH = 1
 CERTIFICATE_PUBLISHER = 1
 ISSUER_NAME = 1
 IMAGE_HASH = 4
 VERSION_INFO = 7

class TrustLevel(enum.IntEnum):
 KnownGoodImage = 0
 KnownBadImage = 1
 UnknownImage_2 = 2
 UnknownImage = 3
 KnownBadImageBootCritical = 4

PUBLIC_EXPONENT = 0x010001
MODULUS = int.from_bytes(struct.pack("256B", *[
 0xb3, 0x95, 0xde, 0x5b, 0xc2, 0xe1, 0x89, 0xf7, 0x56, 0xc2, 0x20,
 0xbf, 0x27, 0xd2, 0x88, 0x1a, 0x0a, 0xac, 0xdb, 0xc7, 0x19, 0x36,
 0x7b, 0xce, 0x37, 0x83, 0xd1, 0xec, 0x42, 0xd3, 0xab, 0x30, 0x54,
 0xa5, 0x51, 0x11, 0xd8, 0xcc, 0xec, 0x80, 0xab, 0x89, 0x5a, 0xae,
 0x18, 0x71, 0x11, 0x7c, 0x85, 0x1a, 0x1a, 0x53, 0x54, 0x46, 0x3e,
 0x55, 0x5c, 0x43, 0x5d, 0x4b, 0x9f, 0xc7, 0x54, 0x57, 0x75, 0xc5,
 0x02, 0xe2, 0x63, 0xa9, 0x94, 0x56, 0xa7, 0x3b, 0xe0, 0xc3, 0xed,
 0x5f, 0x66, 0x9d, 0x60, 0x78, 0x1e, 0xac, 0x92, 0x3d, 0x48, 0xe9,
 0x51, 0x5d, 0x79, 0x2a, 0x22, 0x9a, 0x9e, 0xd3, 0xbc, 0x15, 0xbe,
 0x7a, 0x4e, 0x97, 0xe8, 0x1f, 0x9c, 0x80, 0xf5, 0xfb, 0x94, 0x0b,
 0x5f, 0xb7, 0x6f, 0x0d, 0x57, 0xa0, 0x09, 0x55, 0x68, 0x78, 0xf3,
 0x5d, 0x7b, 0x9a, 0x9b, 0x08, 0xa3, 0xa6, 0x41, 0x18, 0xf0, 0x17,
 0x11, 0x89, 0x9b, 0x71, 0x73, 0x27, 0xa2, 0x55, 0x51, 0xc0, 0xee,
 0xa5, 0x70, 0x6f, 0xb8, 0x40, 0x2a, 0x85, 0xe9, 0x91, 0x20, 0x4b,
 0x0c, 0xd2, 0x29, 0xa2, 0x01, 0x36, 0x96, 0x1c, 0xbb, 0xd5, 0xef,
 0x95, 0x68, 0x43, 0xfb, 0x77, 0x42, 0x88, 0x1a, 0xae, 0x60, 0x14,
 0xfe, 0x0b, 0x0d, 0xd3, 0x28, 0x04, 0x98, 0x15, 0x71, 0x3e, 0xba,
 0xb3, 0x80, 0x65, 0x6d, 0x2b, 0x7f, 0x30, 0xca, 0xf2, 0x6c, 0xa6,
 0x47, 0xd3, 0x3c, 0x57, 0x50, 0x0d, 0xb3, 0xbb, 0xed, 0x6d, 0x75,
 0xf2, 0x0f, 0x26, 0x29, 0xf7, 0xc6, 0xe4, 0x20, 0x5e, 0xaf, 0x87,
 0xf1, 0x8b, 0x8e, 0x57, 0x99, 0x00, 0xf3, 0x84, 0xe5, 0x25, 0x10,
 0x05, 0x2c, 0xeb, 0x77, 0xa3, 0xdb, 0xbd, 0x7e, 0xd4, 0xb5, 0x60,
 0xb6, 0x6a, 0xa0, 0x99, 0x25, 0x59, 0x2f, 0x10, 0x69, 0xf4, 0x62,
 0xe1, 0x8c, 0x2b]), 'big')

MODULUS = int.from_bytes(
bytes.fromhex('b395de5bc2e189f756c220bf27d2881a0aacdbc719367bce3783d1ec42d3ab3054a55111d8
ccec80ab895aae1871117c851a1a5354463e555c435d4b9fc7545775c502e263a99456a73be0c3ed5f669d607

Federal Office for Information Security 71

 Appendix

81eac923d48e9515d792a229a9ed3bc15be7a4e97e81f9c80f5fb940b5fb76f0d57a009556878f35d7b9a9b08
a3a64118f01711899b717327a25551c0eea5706fb8402a85e991204b0cd229a20136961cbbd5ef956843fb774
2881aae6014fe0b0dd328049815713ebab380656d2b7f30caf26ca647d33c57500db3bbed6d75f20f2629f7c6
e4205eaf87f18b8e579900f384e52510052ceb77a3dbbd7ed4b560b66aa09925592f1069f462e18c2b'),
'big')

PUBLIC_KEY = RSA.construct((MODULUS, PUBLIC_EXPONENT))

def parse(fp):
 tag = fp.read(1)[0]
 size = struct.unpack('<I', fp.read(3) + b'\0')[0]
 return tag, fp.read(size)

def main(argv=None):
 parser = argparse.ArgumentParser()
 parser.add_argument('FILE', type=argparse.FileType('rb'))
 parser.add_argument('-l', '--level', choices=('debug', 'info', 'warning', 'error'),
default='info')

 args = parser.parse_args(args=argv)
 default_config(level=args.level.upper())
 fp = args.FILE

 code = 0x80000000
 while True:
 try:
 tag, data = parse(fp)
 if tag == 0x5C:
 assert len(data) >= 4
 code = struct.unpack_from('<I', data)[0]
 elif tag == 0x5D:
 code = 0x80000000
 elif tag == 0xA9:
 assert len(data) >= 4
 offset = struct.unpack_from('<I', data)[0] + 4
 assert offset < len(data)
 some_type = struct.unpack_from('<B', data[offset:])[0]
 if some_type == 9:
 data_type, trust_code = struct.unpack_from('<BB', data[4:])
 some_data = data[6:offset]
 item = Item(code, EntryType(data_type), TrustLevel(trust_code),
 some_data, data[offset + 2:])
 print(str(item))
 elif tag == 0xAC:
 print("Encrypted Signature:")
 print_hexdump(data, colored=True, header=True)
 signature = PUBLIC_KEY.encrypt(bytes(reversed(data)), None)[0]
 print("Decrypted Signature (DER):")
 print_hexdump(signature, colored=True, header=True, folded=True)
 signature = signature.split(b'\x00', 1)[1]
 try:
 assert signature[0] == 0x30
 l = signature[1]
 signature = signature[2:2+l]
 assert signature[0] == 0x30

 l = signature[1]
 algo = signature[2:2+l]
 hashsum = signature[2+l:]

 assert algo[0] == 0x6
 l = algo[1]
 algo = algo[2:l+2]

 a = algo[0]
 b = a % 40

72 Federal Office for Information Security

Appendix

 a = a // 40
 oid = [a, b] + list(algo[1:])
 print("HashingAlgorithm:", '.'.join(map(str, oid)))

 assert hashsum[0] == 0x4
 l = hashsum[1]
 hashsum = hashsum[2:l+2]
 print("Hash:", hashsum.hex())
 except:
 pass
 else:
 raise ValueError("Unknown tag {:02x}".format(tag))
 except IndexError:
 break

if __name__ == '__main__':
main()

WBCL Parser

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Xml;
using System.Collections.Generic;

namespace WCBL_parse
{
 class Program
 {
 static void Main(string[] args)
 {
 XmlDocument doc = new XmlDocument();
 doc.Load(@"C:\wbcl_xml.log");

 System.Console.WriteLine("** PCRs to event types **");

 foreach(XmlNode EvNode in doc.DocumentElement.ChildNodes[1].ChildNodes)
 {
 Console.WriteLine("Event: " + EvNode.Name + "; PCR: " +

 EvNode.Attributes["PCR"].Value);
 }

 System.Console.WriteLine("** Measured executables **");

 XmlNodeList files = doc.GetElementsByTagName("FilePath");
 foreach (XmlNode file in files)
 Console.WriteLine(file.InnerXml);
 }

 }
}

Measured Executables

In the list below, the string ’%drivers%‘ is an alias of
the path %SystemRoot\System32\drivers.

\EFI\Microsoft\Boot\en-US\bootmgfw.efi.MUI

Federal Office for Information Security 73

 Appendix

\Windows\system32\winload.efi

%drivers\cng.sys

%drivers\NETIO.SYS

%drivers\vmbus.sys

%drivers\WdBoot.sys

%drivers\isapnp.sys

%drivers\vmbkmcl.sys

%drivers\CLASSPNP.SYS

%drivers\Wdf01000.sys

%drivers\amdsata.sys

%drivers\usbehci.sys

\Windows\system32\kd.dll

%drivers\mvumis.sys

%drivers\vdrvroot.sys

%drivers\partmgr.sys

%drivers\nvstor.sys

%drivers\volsnap.sys

%drivers\megasr.sys

%drivers\acpiex.sys

%drivers\bxvbda.sys

%drivers\volmgr.sys

%drivers\lsi_sss.sys

%drivers\msisadrv.sys

\Windows\system32\hal.dll

%drivers\CLFS.SYS

%drivers\PCIIDEX.SYS

%drivers\werkernel.sys

%drivers\volmgrx.sys

%drivers\WdFilter.sys

%drivers\atapi.sys

%drivers\fvevol.sys

%drivers\pcw.sys

%drivers\USBPORT.SYS

%drivers\sbp2port.sys

%drivers\sdbus.sys

%drivers\NTFS.sys

\Windows\boot\resources\bootres.dll

%drivers\ataport.SYS

%drivers\lsi_sas3i.sys

%drivers\amdsbs.sys

\Windows\system32\ntoskrnl.exe

%drivers\Wof.sys

%drivers\usbhub.sys

%drivers\storport.sys

%drivers\pdc.sys

%drivers\sdstor.sys

%drivers\tcpip.sys

%drivers\UsbHub3.sys

%drivers\NDIS.SYS

\Windows\system32\CI.dll

%drivers\stexstor.sys

%drivers\EhStorClass.sys

%drivers\rdyboost.sys

%drivers\tm.sys

%drivers\mountmgr.sys

%drivers\cmimcext.sys

%drivers\sisraid4.sys

%drivers\HpSAMD.sys

%drivers\USBD.SYS

%drivers\SiSRaid2.sys

%drivers\ucx01000.sys

%drivers\usbccgp.sys

\Windows\system32\mcupdate_GenuineIntel.dll

%drivers\evbda.sys

%drivers\arcsas.sys

%drivers\msrpc.sys

%drivers\hvsocket.sys

%drivers\FLTMGR.SYS

%drivers\clipsp.sys

%drivers\storufs.sys

%drivers\ntosext.sys

%drivers\ADP80XX.SYS

%drivers\vsmraid.sys

%drivers\ksecdd.sys

%drivers\USBXHCI.SYS

%drivers\uaspstor.sys

\Windows\system32\PSHED.dll

%drivers\storvsc.sys

%drivers\iorate.sys

\Windows\system32\BOOTVID.dll

%drivers\tpm.sys

%drivers\CEA.sys

%drivers\intelpep.sys

%drivers\vstxraid.sys

%drivers\hwpolicy.sys

%drivers\iaStorV.sys

%drivers\mup.sys

%drivers\USBSTOR.SYS

%drivers\stornvme.sys

%drivers\pci.sys

74 Federal Office for Information Security

Appendix

%drivers\fileinfo.sys

%drivers\3ware.sys

%drivers\cht4sx64.sys

%drivers\vmstorfl.sys

%drivers\disk.sys

%drivers\amdxata.sys

%drivers\WDFLDR.SYS

%drivers\winhv.sys

%drivers\WindowsTrustedRTProxy.sys

%drivers\Fs_Rec.sys

%drivers\megasas.sys

%drivers\cnghwassist.sys

%drivers\scmbus.sys

%drivers\WppRecorder.sys

%drivers\pciide.sys

\Windows\system32\en-US\winload.efi.MUI

%drivers\wfplwfs.sys

%drivers\lsi_sas2i.sys

%drivers\ksecpkg.sys

%drivers\intelide.sys

%drivers\fwpkclnt.sys

%drivers\storahci.sys

%drivers\ACPI.sys

%drivers\pcmcia.sys

%drivers\iaStorAV.sys

\Windows\system32\ApiSetSchema.dll

%drivers\spaceport.sys

%drivers\EhStorTcgDrv.sys

%drivers\percsas2i.sys

%drivers\nvraid.sys

%drivers\WMILIB.SYS

%drivers\WindowsTrustedRT.sys

%drivers\percsas3i.sys

%drivers\lsi_sas.sys

%drivers\volume.sys

Federal Office for Information Security 75

 Reference Documentation

Reference Documentation
ERNW WP2 ERNW GmbH: SiSyPHuS Win10 (Studie zu Systemaufbau, Protokollierung, Härtung und

Sicherheitsfunktionen in Windows 10): Work Package 2
TCGLP1 2016 Trusted Computing Group (TCG): Trusted Platform Module Library Part 1: Architecture
Butterworth 2013 Butterworth, John; Kallenberg, Corey; Kovah, Xeno; Herzog, Amy : Problems with the

Static Root of Trust for Measurement
TCGF 2016 Trusted Computing Group (TCG): TCG PC Client Platform Firmware Profile Specification
TCGAIK 2011 Trusted Computing Group (TCG): A CMC Profile for AIK Certificate Enrollment
TCGCMC 2013 Trusted Computing Group (TCG): CMC Profile for EK/PlatformCertificate Enrollment for

TPMv1.2
TCGLP3 2016 Trusted Computing Group (TCG): Trusted Platform Module Library Part 3: Commands
TCGLP2 2016 Trusted Computing Group (TCG): Trusted Platform Module Library Part 2: Structures
Proudler 2014 Proudler, Graeme; Chen, Liqun; Dalton, Christopher: Trusted Computing Platforms: TPM

2.0 in Context
TCGPro 2014 Trusted Computing Group (TCG): Protection Profile, PC Client Specific Trusted Platform

Module, TPM Family 1.2
TCGACPI 2017 Trusted Computing Group (TCG): TCG ACPI Specification
Russinovich 2012 Russinovich, Mark E.; Solomon, David A.; Ionescu, Alex: Windows Internals, Part 2
MicXCA 2017 Microsoft Corporation: Xpress Compression Algorithm
UEFIFE UEFI Forum: Unified Extensible Firmware Interface (UEFI) Specification
Mic 2008 Microsoft Corporation: Windows Authenticode Portable Executable Signature Format
ERNW WP7 ERNW GmbH: SiSyPHuS Win10 (Studie zu Systemaufbau, Protokollierung, Härtung und

Sicherheitsfunktionen in Windows 10): Work Package 7
Thom 2016 Thom, Stefan; Loeser, Jork; Aigner, Ron; England, Paul; Spiger, Rob; Morgan, Jim: Using

the Windows 8 Platform Crypto Provider and Associated TPM Functionality
TCGEP 2016 Trusted Computing Group (TCG): TCG EFI Protocol Specification
TCGPCI 2013 Trusted Computing Group (TCG): TCG PC Client Specific TPM Interface Specification

(TIS)
ERNW WP4 ERNW GmbH: SiSyPHuS Win10 (Studie zu Systemaufbau, Protokollierung, Härtung und

Sicherheitsfunktionen in Windows 10): Work Package 4
Gulley 2013 Gulley, Sean; Gopal, Vinodh; Yap, Kirk; Feghali, Wajdi; Guilford, Jim; Wolrich, Gil : Intel®

SHA Extensions
TCGPP 2015 Trusted Computing Group (TCG): TCG PC Client Platform: Physical Presence Interface

Specification

76 Federal Office for Information Security

Keywords and Abbreviations

Keywords and Abbreviations
Abbreviations.. 77
Abstract Syntax Notation One... 27, 59
Advanced Configuration and Power Interface... 17ff., 45, 65, 75
application programming interface.. 8, 10, 17f., 27, 29, 55ff.
attestation identity key... 13, 53, 65
attestation identity keys.. 13f.
binary large object... 15
binary large objects... 58
Boot Configuration Database... 23
Bundesamt für Sicherheit in der Informationstechnik.. 7, 11
certificate authority... 13f.
Certificate Management Messages Over CMS.. 14
component object model.. 52, 56
core root of trust for measurement... 13, 44f.
Cryptography API: Next Generation.. 8, 20ff., 39, 49, 53
Distinguished Encoding Rules... 25f., 72
Dynamic Link Library.. 12, 21f., 26, 28, 56, 69, 74f.
early launch anti-malware.. 7ff., 30, 36ff., 42, 53f., 70
endorsement key... 9, 13ff., 46f., 50f., 58f.
endorsement keys... 13
Event Tracing for Windows.. 10, 29, 63ff.
Extensible Firmware Interface... 43ff., 73
Extensible Markup Language.. 30, 42ff., 52
functional device objects... 17
global unique identifier... 10, 63f., 66f.
global unique identifiers.. 45, 63f., 66
input/output... 9, 29
input/output request packet... 17ff., 22, 50ff., 70
input/output request packets... 9, 17ff., 22, 50ff., 54, 70
long-term servicing branch... 7, 11
Managed Object Format... 56
operating system.. 41f., 45
physical device objects.. 17
platform configuration register.. 13, 42ff., 54
platform configuration registers... 13, 41, 43ff., 54
portable executable.. 33f.
power-on self-test... 45
process ID... 22, 70
read-only memory.. 45
remote procedure call... 34
remote procedure calls... 34
root of trust for measurement.. 8, 13
root of trust for reporting... 8, 13
root of trust for storage.. 8, 13
Secure Hash Algorithm... 34, 40, 43, 46, 58
secure sockets layer.. 69
static root of trust for measurement... 13, 44f.
storage root key.. 9, 13f., 46f., 50f., 58, 61
TPM Base Services... 8, 10, 17f., 20ff., 42, 55ff., 65f.
transport layer security... 69
Trusted Computing Group... 13, 17, 19, 42ff., 67

Federal Office for Information Security 77

 Keywords and Abbreviations

Trusted Platform Module... 7ff., 27, 29, 35f., 40ff., 46ff., 69f.
Unicode Transformation Format... 58
Unified Extensible Firmware Interface..7, 11, 23ff., 41, 44f., 54, 68
Windows Boot Configuration Log... 9, 42ff., 53f., 57
Windows Boot Configuration Logs... 44
Windows Management Instrumentation...10, 47ff., 53, 55f., 58f., 61, 64, 66

78 Federal Office for Information Security

	Table of Contents
	1 Introduction
	1.1 Zusammenfassung
	1.2 Executive Summary
	1.3 General Concepts and Terminology

	2 Technical Analysis of Functionalities
	2.1 TPM Communication Interfaces
	2.1.1 TPM Communication: User-land
	2.1.2 TPM Communication: Kernel-land
	2.1.3 TPM Usage Profiles

	2.2 Windows Boot
	2.2.1 Boot Manager
	2.2.2 Windows Loader
	2.2.3 Windows Kernel

	2.3 The Windows Defender ELAM Driver
	2.4 Integrity Measurement
	2.5 TPM Provisioning
	2.5.1 Manual Provisioning
	2.5.2 Auto-provisioning

	2.6 Security Aspects

	3 Configuration and Logging Capabilities
	3.1 Configuration Capabilities
	3.1.1 Programmatic Configuration Capabilities
	3.1.2 Non-programmatic Configuration Capabilities
	3.1.3 Recommended Configuration Settings

	3.2 Logging Capabilities

	Appendix
	Tools
	TPM Usage Profiler
	TPM Usage
	ELAM Database Parser
	WBCL Parser
	Measured Executables

	Reference Documentation
	Keywords and Abbreviations

