

TMFW

Version: 1.0

 Federal Office for Information Security 2

Federal Office for Information Security
Post Box 20 03 63
D-53133 Bonn
Phone: +49 22899 9582-0
E-Mail: bsi@bsi.bund.de
Internet: https://www.bsi.bund.de
© Federal Office for Information Security 2019

 Federal Office for Information Security 3

Table of Contents
1 Introduction .. 5

1.1 Zusammenfassung ... 5

1.2 Executive Summary .. 5

2 Concept and Terms .. 6

2.1 Recording Activities .. 6

2.2 Event Tracing for Windows ... 6

2.3 Record Data .. 7

3 System Activity Monitor .. 9

3.1 Installation and Usage ... 12

3.2 SAM How To Topics ... 15

3.3 Authoring Recording Profiles .. 16

3.4 Avoiding Lost Events ... 18

4 Windows Telemetry Component Profile ... 20

4.1 Exemplary Data Analysis ... 21

Appendix ... 24

Example #Recording Profile ... 24

SAMRecordingProfile.xsd ... 25

Supported ETW Kernel Flags Names ... 28

Exemplary DiagTrack Recording Profile.. 28

SAM Commands .. 29

-start .. 29

-add .. 30

-remove ... 30

-list ... 30

-register_service .. 30

-unregister_service ... 31

-update_config .. 31

-help | -h | -? ... 31

References ... 32

Keywords and Abbreviations ... 33

 Federal Office for Information Security 4

Figures
Figure 1: Record displayed by the Windows Event Viewer .. 8
Figure 2: Example record written by SAM .. 9
Figure 3: Exemplary Elastic Stack analysis environment ... 20

Tables
Table 1: Field description of a record written by SAM into the Windows Event Log ... 12
Table 2: Overview of configured systems .. 20
Table 3: Overview of considered component profile scenarios ... 21
Table 4: Track uploaded telemetry data ... 22
Table 5: Track downloaded settings data. ... 23

 Code Blocks
Code Block 1: Query SAM generated records via PowerShell ... 15
Code Block 2: General SAM recording profile XML node overview .. 16
Code Block 3: XML collector node example ... 17
Code Block 4: XML collector filter node example ... 17
Code Block 5: XML provider node example... 18

 Federal Office for Information Security 5

1 Introduction

1.1 Zusammenfassung

Dieses Dokument stellt das Ergebnis von Arbeitspaket TMFW des Projekts „SiSyPHuS Win10: Studie zu
Systemaufbau, Protokollierung, Härtung und Sicherheitsfunktionen in Windows 10“ dar. Das Projekt wird
durch die Firma ERNW Enno Rey Netzwerke GmbH im Auftrag des Bundesamts für Sicherheit in der
Informationstechnik (BSI) durchgeführt.

Ziel dieses Arbeitspakets ist die Bereitstellung einer technischen Lösung zur Überwachung der im
Arbeitspaket 4 analysierten Telemetrie-Komponente während der Ausführung (ERNW_WP4). Hierzu
wurde eine Anwendung entwickelt, die eine detaillierte Erfassung des System- und Anwendungsverhaltens
sowie der Ressourcennutzung für Forschungszwecke ermöglicht – genannt System Activity Monitor. Die
Anwendung verwendet die vom Betriebssystem bereitgestellte aufwandsarme Hochgeschwindigkeits-
„Event Tracing for Windows“-Infrastruktur, um Verhaltens- und Ressourcennutzungsdaten zu sammeln. Sie
erweitert „Event Tracing for Windows“ und ermöglicht detaillierte Aufzeichnungen des System- und
Anwendungsverhaltens sowie der Ressourcennutzung basierend auf sogenannten Aufzeichnungsprofilen
(Recording Profiles). Damit ermöglicht die Anwendung eine umfassende Informationssammlung für
Forschung und Systemanalyse, indem es während der Ausführung generierte Systemaktivitätsdaten
erfasst.

1.2 Executive Summary

This document implements the work plan outlined in Work Package TMFW of the project “SiSyPHuS
Win10: Studie zu Systemaufbau, Protokollierung, Härtung und Sicherheitsfunktionen in Windows 10“
(orig., ger.). The project is contracted by the German Federal Office for Information Security (orig., ger.,
Bundesamt für Sicherheit in der Informationstechnik - BSI).

The objective of this work package is to provide a technical solution for monitoring the Windows telemetry
component analyzed in work package 4 during execution (ERNW_WP4). Therefore, a research tool was
developed that enables detailed recording of system and application behavior and resource usage – named
System Activity Monitor. The tool uses the extremely low overhead and high speed Event Tracing for
Windows infrastructure to collect behavior and resource usage data. It extends Event Tracing for Windows
and enables detailed recordings of system and application behavior and resource usage based on recording
profiles, which makes it an extensive information source for research and system analysis by capturing
system activity data generated during execution.

 Federal Office for Information Security 6

2 Concept and Terms

2.1 Recording Activities

In the context of the operating system, recording means that activities that occur in the operating system
and application components are recorded in the form of events (also referred to as records in this work).
Some activities are, for example, reading or writing files and starting and stopping processes.

Recording activities is relevant from several perspectives, such as:

• IT security: Recorded activities in a certain environment can be compared with activities typical for
the environment in order to identify atypical, possibly malicious activities. This is relevant in order
to recognize or understand attacks that are in progress or that have already occurred. If an
environment is known to be compromised, analyzing the recorded activities can help determine
how the environment was compromised and what countermeasures should be applied.

• Troubleshooting: Analyzing recorded activities of system and application behavior in scenarios
where they do not work as expected can help identify the root cause (for example, incorrect
implementations or configurations) and in the end correct the problem.

• Component Profiling: A component is the implementation of a single functionality of the Windows
operating system, which consists of single or multiple parts of this system. A component profile is
the detailed recording and analysis of the behavior and resource usage of a component in a specific
scenario. For example, how often was a network connection established by a component and how
much data was sent and received. Such a profile can be used in various analyses scenarios, such as:
in the context of a statistical analysis of a component, in the case of a security incident, or malware
analysis.

The amount of information provided by recorded activities (i.e., record data) is proportional to the number
of recorded activities. Recording data on an operating system instance can be a problem if the recording
frequency is too high in relation to the central processing unit (CPU) performance, main memory or disk
space available to the operating system. This is particularly problematic in scenarios in which the operating
system is used productively and must always maintain sufficient CPU performance, main memory or hard
disk capacity. This problem is usually resolved by combining different processing and retention
approaches. These include: i) deleting records after a certain number of records has been recorded, ii)
moving records to an external resource (e.g., network drive or SIEM), and/or iii) distribution of tasks to
different systems. How exactly the applied approach is implemented in a given environment depends on
the environment in which it is implemented.

2.2 Event Tracing for Windows

Record data in Windows can be created using the Windows built-in recording mechanism Event Tracing for
Windows (ETW). ETW is deeply integrated into the operating system, making it an extensive source of
system activity data. Most executables that implement operating system and application components come
with ETW providers. The ETW application programming interface (API), which is part of Windows, is the
central interface to ETW functionalities. This API allows Windows users and third-party software vendors
to use ETW in a standardized manner to create new record data and / or access previously generated
record data. The architecture of ETW consists of several components: ETW providers, ETW sessions, ETW
consumers and ETW controllers.

ETW providers: An ETW provider is a software entity that records activities i.e., produces and delivers
record data to ETW sessions. An ETW provider is implemented and declared using the ETW API (see
[ERNW WP2], Section 2.5.1), as part of code-instrumented user- or kernel-land resources. Each ETW
provider can be uniquely identified by a global unique identifier (GUID) (128-bit number e.g., 00112233-

https://www.dict.cc/?s=previously

 Federal Office for Information Security 7

4455-6677-8899-AABBCCDDEEFF). In addition to a GUID, an ETW providers can also be assigned a

name (e.g., ETW provider Microsoft-Windows-PowerShell).

In terms of how ETW providers are implemented in code, there are the following types of providers:1
Managed Object Format (MOF) providers, Windows software trace preprocessor (WPP) providers,
Manifest-based providers, and TraceLogging providers.2 Among other things, providers of these types differ
in terms of what functions of the ETW API are used for provider registering, and what information is
required for a provider to be registered.

ETW sessions: An ETW session is a software entity implemented in the Windows kernel that receives
record data from ETW providers associated with it. ETW has been designed with performance in mind;
ETW does not perform expensive logging operations, such as synchronous file flushing using system calls.
This results in frequent context switches. Instead, ETW providers delegate data to the Windows kernel,
which writes the data to designated memory buffers and asynchronously flushes the data to ETW
consumers in real-time, or to files.

ETW consumers: An ETW consumer is software entity that receives and processes (e.g., rendering and
viewing recorded data) the data supplied by ETW sessions, such as the Windows Event Viewer utility.

ETW controllers: The management of ETW sessions (e.g., activation and deactivation) and the association
of ETW providers to ETW sessions is done by special-purpose applications, referred to as ETW controllers.
An example ETW controller (outside of the core operating system, which is directly using the ETW-API) is
the xperf utility, distributed as part of the Windows Performance Toolkit.3

2.3 Record Data

Recorded activities i.e., the records generated by ETW, have a standard format - each record consists of a
record header and additional record data. The record header is in a standard format and contains
information about the record, such as: record identifier (ID) - an ID number used to identify the record, the
time the record was created, and the process ID of the process that produces the record (msft_ehs, 2020).
The format and content of the additional record data does not have a standard format and is defined by the
ETW provider that produces and delivers the data.

Most records that can be recorded by a Windows instance have information on the format of the additional
record data (event format information). This enables the correct display and interpretation of these
records. For example, the Windows Event Viewer utility uses record format information to display records
created by ETW providers in Extensible Markup Language (XML) format. Figure 1 shows a record displayed
by the Windows Event Viewer in XML format. Information about the record (i.e., the record header) is
typically stored under the XML node <System> (see Figure 1, label 1), and the additional record data is

stored under the XML node <EventData> or <Data>(see Figure 1, label 2), often as values of XML

attributes.

1https://msdn.microsoft.com/en-us/library/windows/desktop/aa364161(v=vs.85).aspx [Retrieved:12.08.2021]
2https://msdn.microsoft.com/en-us/library/windows/desktop/aa363668(v=vs.85).aspx#providers

[Retrieved:12.08.2021]
3https://docs.microsoft.com/en-us/windows-hardware/test/wpt/ [Retrieved:12.08.2021]

https://msdn.microsoft.com/en-us/library/windows/desktop/aa364161(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363668(v=vs.85).aspx#providers
https://docs.microsoft.com/en-us/windows-hardware/test/wpt/

 Federal Office for Information Security 8

Figure 1: Record displayed by the Windows Event Viewer

 Federal Office for Information Security 9

3 System Activity Monitor

System Activity Monitor (SAM) is a research tool that enables detailed recording of system and application
behavior and resource usage. SAM uses the extremely low overhead and high speed ETW infrastructure to
collect behavior and resource usage data. The decision to use ETW as a basis is mainly based on the fact,
that ETW is deeply integrated into the operating system (i.e., it is an integral part of the operating system)
which is equivalent to being integrated into every application that runs under Windows. SAM extends ETW
and enables detailed recordings based on recording profiles (see section 3.3), which makes it an extensive
information source for research and system analysis by capturing system activity data generated during
execution.

SAM recording profiles control all aspects of a recording session. A recording profile is a file in XML format
that has a .samp extension. A recording profile contains all relevant information to enable a recording

session for a specific analysis scenario. This includes configuration information about ETW sessions and
providers. Each .samp file contains a recording profile definition, which among other things, associates a

specific set of ETW providers with a recording session.

SAM by default delegates records provided by a configured ETW provider (i.e., configured in a recording
profile) into Windows Event Log4 system through an ETW provider with the name
SystemActivityMonitor. The records recorded by SAM can be viewed with the Windows Event
Viewer utility at the Event Viewer path Application and Services

Logs/SystemActivityMonitor/Operational.

An ETW record always consists of a record header and additional record data (see section 2.3). Figure 2
shows the record header and additional record data written by SAM, displayed by the Windows Event
Viewer in XML format.

Figure 2: Example record written by SAM

4 https://docs.microsoft.com/en-us/windows/win32/wes/windows-event-log [Retrieved:12.08.2021]

 Federal Office for Information Security 10

The record header contains meta information, such as record ID, name of SAM’s internal ETW provider, the
time the record was created by SAM, the process ID of the SAM process, and so on (see, Figure 2, label 1).
The additional record data contains the encapsulated data provided by a configured ETW provider i.e., the
header and additional record data of this provider (see Figure 2, label 2). The data fields of the
encapsulated record header are presented as individual attributes (see Figure 2, label 3), whereas data
fields of the encapsulated additional record data are serialized into JavaScript Object Notation (JSON)
presented as single attribute (see Figure 2, label 4). Serializing the additional record data of a configured
ETW provider as single JSON formatted attribute enables SAM to provide a single data format and layout,
that is standardized and independent of the underlying ETW provider providing record data.

It must be emphasized that strings written to the Windows Event Log are limited to a size of 32K
characters. For this purpose, SAM distinguishes between recorded records that exceed this limit or not.
Because a record which exceed this limit have to be divided into several contiguous records, otherwise it
cannot be displayed by the Windows Event Log. Records that are below this limit are witten to the
Windows Event Log with EventID 10, whereas records that exceed the limit are written with EventID

20. The formate and layout are conceptional identical except for the Data Name="MessageNumber"

and Data Name="MessageTotal" fields, which are nessesary to determine the order of a contiguous

record set. Table 1 summarizes and describes each of the fields available in a record that SAM writes to the
Windows event log.

Field Description

Provider Name="[Value]" Defines the name of SAM’s internal ETW

provider.

Provider Guid="[Value]" Defines the GUID of SAM’s internal ETW

provider.

EventID Defines the unique number of a specific event

type written by SAM.

Version Defines the event version that the SAM

provider attaches to events.

Level Defines the event level that can be used for

filtering that the SAM provider attaches to
events

System
Task Defines the tasks that apply to the event that

the SAM provider attaches to events

Opcode Defines the standard operation codes that the

SAM provider attaches to events.

Keywords Defines the event keyword that can be used

for filtering that the SAM provider attaches to
events.

TimeCreated SystemTime="[Value]" Defines the timestamp at which the record

was created by SAM in UTC timestamp format.

EventRecordID Defines the number for the record written by
SAM. The very first record written to the
Windows Event Log is record number 1, and
other records are numbered sequentially.

Execution ProcessID="[Value]" Defines the process ID of the SAM process

from which the record is derived.

 Federal Office for Information Security 11

Field Description

Execution ThreadID="[Value]" Defines the thread ID running in the context of

the SAM process from which the record is
derived.

System
Channel Defines the event channel name in which SAM

writes recorded records.

Computer Defines the computer name from which SAM

recorded the record.

Security UserID="[Value]" Defines the security identifier of the SAM

process from which the record is derived.

Data Name="MessageNumber"
(appears only in complex records (i.e.
EventID 20))

Defines the index number of a single record of
a record set (i.e. excessively large record that
had to be divided).

Data Name="MessageTotal" (appears
only in complex records (i.e.
EventID 20))

Defines the total number of a record set.

Data Name="ProviderName" Defines the name of the ETW provider.

Data Name="ProviderGUID" Defines the GUID for the ETW provider.

Data Name="EventID" Defines the unique number for a specific event

type.

Data Name="EventName" Defines the unique name for specific event

Type.

Data Name="DecodingSource" Defines the decoding source of the event data.

Data Name="EventVersion"

Defines the event version.

EventData
Data Name="EventLevel"

Defines the event level that can be used for
filtering.

Data Name="EventTask":

Defines the tasks that apply to events.

Data Name="EventOpcode" Defines the standard operation codes that the

event source attaches to events.

Data Name="EventOpcodeName" Defines the operation code name.

Data Name=" EventKeyword" Defines the event keyword that can be used

for filtering.

Data Name="EventTime" Defines the timestamp at which the record

was created as unsigned 64-bit integer.

Data Name="EventSystemTime" Defines the timestamp at which the record

was created in UTC timestamp format.

Data Name="ImageName" Defines the process image name from which
the record is derived.

Data Name="CommandLine" Defines the command line parameters of the

process from which the record is derived.

 Federal Office for Information Security 12

Field Description

Data Name="ProcessId" Defines the process ID from which the record

is derived.

Data Name="ThreadId" Defines the thread ID from which the record is

derived.

EventData
Data Name="ParentImageName" Defines the parent process image name of the

process from which the record is derived.

Data Name="ParentCommandLine" Defines the command line parameters of the

parent process from which the record is
derived.

Data Name="ParentProcessId" Defines the parent process ID of the process

from which the record is derived.

Data Name="EventPayload" Defines the encapsulated additional record

data derived from a ETW provider.

Table 1: Field description of a record written by SAM into the Windows Event Log

3.1 Installation and Usage

This section discusses how SAM is installed on a system and which system modifications are conducted
during the installation of SAM. In addition, it also discusses the two primary usage scenarios that enable an
analyst to view and further process the recorded data.

Installing SAM5: SAM can be installed on a Windows system using a .msi package (msiexec.exe /i

setup.msi /qn)6. This allows SAM to be installed on the system, which includes:

• Copying necessary files on the filesystem: By default, SAM files are located at C:\Program
Files\SystemActivityMonitor\Sam path.

• Creation of an Event channel: Application and Services Logs/SystemActivityMonitor

• Registration of a SAM ETW provider: SystemActivityMonitor(4eb5f182-ae41-4822-
929a-f7b91a7a3eab)

In order to install SAM on a system the following system requirement has to be met:

• Supported operating system and C++ redistributable package: Windows 10 version 1607 or higher
and Visual C++ Redistributable for Visual Studio 2019

Local Usage Scenario: After a successful installation, SAM is ready for use. Once started SAM writes its
records into the Windows Event Log channel Application and Services

Logs/SystemActivityMonitor/Operational. The records stored in the channel can then be

processed as usual e.g., viewed and analyzed locally with the Windows Event Viewer or PowerShell utility.
As already mentioned, SAM serializes the additional record data provided by a configured ETW provider
into a single JSON formatted attribute. However, the Windows Event Viewer utility does not have JSON
parsing capabilities, which makes this utility difficult for a more in-depth analysis (e.g., filtering records
based on parameter stored as part of the JSON string). Therefore, it is recommended to use the PowerShell

5 The installation must be performed with local administrator rights.
6 If there are any issues during installation try a verbose installation method: start /wait
msiexec.exe /i setup.msi /qn /l sam.log

 Federal Office for Information Security 13

utility for a more in-depth local analysis, as it provides significantly better and more flexible data processing
capabilities.

Example #PowerShell demonstrates the analysis of records stored in the Windows Event Log channel
Application and Services Logs/SystemActivityMonitor/Operational. The analysis is

conducted using the Get-WinEvent and ConvertFrom-Json PowerShell commands, in the context of a

PowerShell script, to extracted records from the Windows Event Log channel Application and

Services Logs/SystemActivityMonitor/Operational associated with a specific ETW provider

and event ID. In this context, the Get-WinEvent command is used to extract the records from the

Windows Event Log channel, whereas the ConvertFrom-Json is used to deserialize the JSON string. In

the end all data (i.e., header and additional record data) is copied into a custom PowerShell object, which
now makes them easily accessible for further processing.

Example #PowerShell

function Get-SAMEventsPayload()

{

 [CmdletBinding()]

 Param

 (

 [Parameter(ValuefromPipeline=$true, Position = 1, Mandatory = $false)]

 [String]$ProviderName,

 [Parameter(ValuefromPipeline=$true, Position = 2, Mandatory = $false)]

 [String]$EventName,

 [Parameter(ValuefromPipeline=$true, Position = 3, Mandatory = $false)]

 [Int64]$EventId,

 [Parameter(ValuefromPipeline=$true, Position = 4, Mandatory = $false)]

 [Int64]$MaxEvents = 1000

)

 $EventsAsXmlObject = Get-WinEvent -LogName "SystemActivityMonitor/Operational" -MaxEvents

$MaxEvents | ForEach-Object{ ([xml]$_.ToXml())}

 if($ProviderName)

 {

 $_EventsAsXmlObject = $EventsAsXmlObject.Where({

 ($_.Event.EventData.Data.Name -eq "ProviderName") -and ($_.Event.EventData.Data.InnerText -

eq $ProviderName)

 })

 $EventsAsXmlObject = $_EventsAsXmlObject

 }

 if($EventName)

 {

 $_EventsAsXmlObject = $EventsAsXmlObject.Where({

 ($_.Event.EventData.Data.Name -eq "EventName") -and ($_.Event.EventData.Data.InnerText -eq

$EventName)

 })

 $EventsAsXmlObject = $_EventsAsXmlObject

 }

 if($EventId)

 {

 $_EventsAsXmlObject = $EventsAsXmlObject.Where({

 ($_.Event.EventData.Data.Name -eq "EventID") -and ($_.Event.EventData.Data.InnerText -eq

$EventId)

 })

 $EventsAsXmlObject = $_EventsAsXmlObject

 }

 foreach($EventAsXmlObject in $EventsAsXmlObject)

 {

 Federal Office for Information Security 14

 $EventObjectAsPsObject = New-Object -TypeName PSObject

 foreach($EventDataAsXmlElement in $EventAsXmlObject.Event.EventData.Data)

 {

 if($EventDataAsXmlElement.Name -eq "EventPayload")

 {

 foreach($EventPayloadProperty in ($EventDataAsXmlElement.InnerText | ConvertFrom-

Json).PSObject.Properties)

 {

 $PropertyName = $EventDataAsXmlElement.Name + "-" + $EventPayloadProperty.Name

 Add-Member -InputObject $EventObjectAsPsObject -MemberType NoteProperty -Name

$PropertyName -Value $EventPayloadProperty.Value

 }

 }

 else

 {

 Add-Member -InputObject $EventObjectAsPsObject -MemberType NoteProperty -Name

$EventDataAsXmlElement.Name -Value $EventDataAsXmlElement.InnerText

 }

 }

 $EventObjectAsPsObject

 }

}

Get-SAMEventsPayload -ProviderName "Microsoft-Windows-DNS-Client" -EventId 3008 -MaxEvents 10

Output

=====> PowerShell Integrated Console v2021.12.0 <=====

PS C:\Users\dphillips> c:\Users\dphillips\Documents\Get-SAMEventsPayload.ps1

ProviderName : Microsoft-Windows-DNS-Client

ProviderGUID : {1c95126e-7eea-49a9-a3fe-a378b03ddb4d}

EventID : 3008

EventName :

EventDecodingSource : DecodingSourceXMLFile

EventVersion : 0

EventLevel : 4

EventTask : 0

EventOpcode : 0

EventOpcodeName :

EventKeyword : 0x8000000000000000

EventTime : 132842325190763194

EventUTCTime : 2021-12-17T16:35:19.0763194Z

ImageName : svchost.exe

CommandLine : C:\Windows\System32\svchost.exe -k utcsvc -p

ProcessId : 7140

ThreadId : 16536

ParentImageName : services.exe

ParentCommandLine :

ParentProcessId : 716

EventPayload-QueryName : v10.events.data.microsoft.com

EventPayload-QueryType : 28

EventPayload-QueryOptions : 2251800887582720

EventPayload-QueryStatus : 1460

 Federal Office for Information Security 15

EventPayload-QueryResults :

...

Code Block 1: Query SAM generated records via PowerShell

Remote Usage Scenario: An alternative to the local analysis approach described above is the use of a
comprehensive log management and analysis infrastructure to analyze the records, such as Elastic Stack. As
already mentioned, once started SAM delegates records into the Windows Event Log channel
Application and Services Logs/SystemActivityMonitor/Operational. Forwarding these

records to a log management and analysis infrastructure offers several advantages over a local data
analysis with e.g., the PowerShell utility. Such an infrastructure is specifically designed to process and
manage large amounts of record data. Therefore, they are equipped by default with many built-in features,
such as the quick search or aggregation of stored record data in order to identify trends and patterns.
However, the specific procedure and processing options depend on the environment, implementation, and
the used log management and analysis infrastructure.

3.2 SAM How To Topics

This section provides procedures on how to use SAM. A recording session can be managed or unmanaged.
Managed means registering and executing SAM as Windows service, whereas unmanaged means executing
SAM as a high privileged user from a cmd.exe or powershell.exe session. Therefore, the following

procedures will now be discussed in more detail: start a recording, stop a recording, managing a recording
profile, and authoring of a recording profile.

Start a Recording: This procedure describes how to start a recording session. Starting a managed
recording session requires that SAM is executed as Windows service. In order to start SAM as Windows
service, SAM needs to be registered as Windows service. The registering and unregistering of SAM as
Windows service is conducted with the following commands: sam.exe -register_service

<recording profile id> and sam.exe -ungregister_service.

Once SAM was registered as Windows service it can be managed (i.e., started or stopped) using Windows
build in procedures. For example, by using the PowerShell cmdlets start-service -name sam and

stop-service -name sam.

As already mentioned, SAM can also be started unmanaged. This requires that SAM is executed from a high
privileged (i.e., administrator privileges) cmd.exe or powershell.exe session. Starting an unmanaged

recording session is conducted with the following command: sam.exe -start <recording profile

id>.

Stop a Recording: This procedure describes how to stop a managed or unmanaged recording session7.
Stopping an unmanaged recording session is conducted with shortcut CTRL+Q, whereas a managed

recording session is stopped by stopping the registered SAM service e.g., with the PowerShell command
stop-service -name sam.

Managing a Recording Profile: This procedure describes how to add, remove, and list SAM recording
profiles. As already discussed, SAM recording profiles control all aspects of a recording session. This
includes configuration information about ETW sessions and providers.

• Add a recording profile: sam.exe -add <recording profile file (fullpath)>

• Remove a recording profile: sam.exe -remove < recording profile id>

• List stored recording profiles and the associated profile ID: sam.exe -list

7 It is important to emphasize that it can sometimes take a short time to end a recording session because of the

need to process data that is already in the processing pipeline.

 Federal Office for Information Security 16

• Update the recording profile of a running managed recording session: sam.exe -
update_config <recording profile id>

3.3 Authoring Recording Profiles

This section describes all XML elements that are used to author a SAM recording profile. Recording profiles
contain all the necessary information to conduct a recording session for a specific analysis scenario. This
includes information about ETW sessions, providers, and keywords. An example of such a file and the XML
schema definition of a recording profile is placed in the Appendix, section ‘Example #Recording Profile’ and
‘SAMRecordingProfile.xsd’.

A SAM recording profile supports the following ETW features:

• User- and kernel-land ETW sessions

• User-land ETW provider and attributes, such as name and GUID, detail level, and keywords

• Kernel-land ETW flags

• Filter rules to control the recording of records.

The following represents the element hierarchy of a SAM recording profile.

<SystemActivityMonitor>

 <Collector>

 <SystemCollector>[...]</SystemCollector>

 <EventCollector>[...]</EventCollector>

 <Filter>[...]</Filter>

 </Collector>

 <Provider>

 <SystemProviders>[...]</SystemProviders>

 <EventProviders>[...]</EventProviders>

 </Provider>

</SystemActivityMonitor>

Code Block 2: General SAM recording profile XML node overview

Collector: SAM supports two types of collectors: the SystemCollector and EventCollector. The
SystemCollector definition specifies buffer sizes and other attributes for ETW kernel-land recording
sessions, whereas the EventCollector definition specifies buffer sizes and other attributes for ETW user-land
recording sessions. A collector definition requires a mandatory Name attribute. The Name attribute

specifies the unique ETW session name (e.g., SamSystemCollector) that should be enabled. In addition,

the following optional attributes can be used to fine-tune SystemCollector and EventCollector parameters:

• FlushTime: Specifies the time interval at which any non-empty buffers are flushed.

• BuffersSize: Specifies the size of each single allocated buffer, in kilobytes.

• MinimimBuffers: Specifies the minimum number of buffers to be allocated when starting a

session.

• MaximumBuffers: Specifies the maximum number of buffers to be allocated when starting a
session.

Example #Collector demonstrates a SystemCollector and EventCollector definition.

Example #Collector

<SystemCollector Name="SamSystemCollector">

 <FlushTimer Value="1"/>

 <BufferSize Value="1024"/>

 <MinimumBuffers Value="80"/>

 <MaximumBuffers Value="128"/>

</SystemCollector>

 Federal Office for Information Security 17

<EventCollector Name="SamEventCollector">

 <FlushTimer Value="1"/>

 <BufferSize Value="1024"/>

 <MinimumBuffers Value="80"/>

 <MaximumBuffers Value="128"/>

</EventCollector>

Code Block 3: XML collector node example

A global filter can be defined at the collector level to specify a list of command line or image name field
rules that can be used to filter out records that match a rule. A filter as well as the field rules contain
conditions that correspond to a value. This includes: condition="include" the filter defines whether
records are included that match a rule, condition="exclude" the filter defines whether records are

excluded that match a rule, condition="is" the field equals the value, and condition="contains"

the field contains the value.

Example #Filter demonstrates a collector Filter definition.

Example #Filter

<Filter condition="exclude">

 <CommandLine condition="is">svchost.exe</CommandLine>

 <CommandLine condition="contains">svchost</CommandLine>

 <ImageName condition="is">svchost.exe</ImageName>

 <ImageName condition="contains">diagtrack</ImageName>

</Filter>

Code Block 4: XML collector filter node example

Provider: SAM supports two types of providers: the SystemProvider and EventProvider. The SystemProvider
definition specifies the system keywords to use in an ETW kernel-land recording sessions. The
EventProvider definition specifies the provider to use and the keywords and levels to enable in an ETW
user-land recording sessions.

A SystemProvider definition requires a mandatory Name attribute. The Name attribute describes the kernel-

land ETW flag that should be enabled for the kernel-land session. In addition, the following optional
attributes can be used to fine-tune SystemProvider parameters:

• Filter: Specifies a list of either event ID or opcode values that can be used to filter out records
that match a filter. A filter contains conditions that correspond to a value. This includes:
condition="include" the filter defines whether records are included that match a value and

condition="exclude" the filter defines whether records are excluded that match a value.

An EventProvider definition requires a mandatory Name and Guid attribute. The Name attribute describes

the registered unique ETW provider name (e.g., Microsoft-Windows-Kernel-Process), whereas the
Guid attribute describes the registered unique ETW provider GUID (e.g., 22FB2CD6-0E7B-422B-A0C7-

2FAD1FD0E716) that should be enabled for the user-land session. In addition, the following optional

attributes can be used to fine-tune EventProvider parameters:

• Level: Specifies a 1-byte ETW logging level (i.e. value range from 0 to 255) value associated with

a record. This provides the ability to filter records based on the associated logging level.

• Any and ALL: Specifies an 8-byte hexadecimal bitmask (i.e. value range from
0x0000000000000000 to 0xffffffffffffffff) value that can be used to filter out records

that correspond to the bits set in the bitmask.

For example, ETW provider X supports the three keywords (i.e. READ: 0x001; WRITE: 0x010;

and EXECUTE: 0x100) and two records (i.e. record 1 -> “READ + WRITE” keywords (0x011); and

record 2 -> “READ + EXECUTE” keywords (0x101)).

 Federal Office for Information Security 18

To filter out any record that has an associated READ keyword, the Any attribute (i.e. match any of

the bit set in the bitmask) can be set to 0x001. In this case, the ETW provider X will produce and

deliver record 1 and 2. In order to filter out only records that have an associated READ + EXECUTE

keyword, the All attribute (i.e. match all of the bit set in the bitmask) can be set to 0x101. In this

case, the ETW provider X will produce and deliver only record 2.

• Rundown: Specifies a Boolean value that controls if rundown records should be captured.

Rundown records are not true real-time tracing records. Instead, they describe the state of the
system - either at the start or at the end of a trace session.

• Filter: Specifies a list of either event ID or opcode values that can be used to filter out records

that match a filter. A filter contains conditions that correspond to a value. This includes:
condition="include" the filter defines whether records are included that match a value and

condition="exclude" the filter defines whether records are excluded that match a value.

Example #Provider demonstrates a system and event provider definition.

Example #Provider

<SystemProviders>

 <SystemProvider Name="DiskIO">

 <Filter condition="include">

 <EventIdList>1 5 64</EventIdList>

 <!-- either use EventIdList or OpcodeIdList -->

 <OpcodeIdList>7 2 9</OpcodeIdList>

 </Filter>

 </SystemProvider>

</SystemProvider>

<EventProviders>

 <EventProvider

 Name="Microsoft-Windows-Kernel-EventTracing"

 Guid="{b675ec37-bdb6-4648-bc92-f3fdc74d3ca2}"

 Level="255"

 Any="0x010"

 All="0x020"

 Rundown="true">

 <Filter condition="exclude">

 <EventIdList>1 5 64</EventIdList>

 <!-- either use EventIdList or OpcodeIdList -->

 <OpcodeIdList>7 2 9</OpcodeIdList>

 </Filter>

 </EventProvider>

</EventProviders>

Code Block 5: XML provider node example

3.4 Avoiding Lost Events

As already discussed, SAM uses the extremely low overhead and high speed ETW infrastructure to collect
behavior and resource usage data. However, depending on the underlaying hardware and the deployed
recording profile there are certain situations where an ETW provider or a collection of ETW providers
generate so many records that the ETW infrastructure cannot keep up with the recording frequency. This
problem manifests as lost records in a recording session and could lead to analysis difficulties or erroneous
conclusions because of incomplete datasets. In order to avoid situations in which record data is lost, the
following basic rules should be considered when creating a recording session:

• Simplify the analysis scenario e.g., select a fewer number of ETW providers.

• Increase the number of buffers.

• Increase the size of buffers

 Federal Office for Information Security 19

• Use advanced hardware e.g., use a system with a powerful CPU for higher throughput. This is the
last option to consider. A better option to avoid losing records is carefully selecting the providers to
enable and the buffers to use.

 Federal Office for Information Security 20

4 Windows Telemetry Component Profile

This section discusses an exemplary deployment of a Windows Telemetry component profile i.e., the
detailed recording and analysis of the behavior and the resource usage of the Windows Telemetry
component (also referred to as DiagTrack in this work) in a specific scenario with the help of SAM. The
recording is based on the recording profile (see Appendix, section ‘Exemplary DiagTrack Recording
Profile’) which controls all aspects of the recording session. However, the recorded data is analyzed using
the Elastic Stack log management and analysis infrastructure. Therefore, an environment consisting of
three Windows systems was prepared. Figure 3 depicts this environment which includes: one Windows 10
system and two Windows server systems, and several additional configured or installed software
components.

Figure 3: Exemplary Elastic Stack analysis environment

Table 2 lists each of these systems, its purpose, and the additional configured or installed software.

System Purpose Description Additional Configured
and Installed Software

Windows 10
system hosting the
DiagTrack service
and the SAM
recording session.

Windows 10 system on which relevant system
activities are recorded with SAM in order to analyze
the behavior and resource usage of the DiagTrack
component.

SAM delegates records into the Windows Event Log
channel Application and Services
Logs/SystemActivityMonitor/Operational,

from where they are further processed using Event
Forwarding (i.e., send to the Event Collector).

• Windows Event
Forwarding

• SAM (incl.
corresponding
recording profile)

Windows Server
system hosting the
Windows Event
Collector and
WinlogBeat
components.

The Windows Server system receives the recorded
activities (i.e., acting as Event Collector) from the
Windows 10. Once arrived, they are further
processed with the help of the WinlogBeat8
component (i.e., shipped to the Elasticsearch or
Logstash).

• Windows Event
Collector

• WinlogBeat

Windows Server
system hosting the
Elastic Stack
infrastructure

Windows Server system which operates the Elastic
Stack log management and analysis infrastructure, to
which the Windows 10 recorded activities are
ultimately forwarded. Once arrived, the built-in
features of the Elastic Stack components can be used
to perform the actual component profile analysis.

• Logstash

• Elasticsearch

• Kibana

Table 2: Overview of configured systems

8 https://www.elastic.co/beats/winlogbeat [Retrieved:12.08.2021]

https://www.dict.cc/?s=development

 Federal Office for Information Security 21

The selection of ETW providers defined in the SAM recording profile (see Appendix, section ‘Exemplary
DiagTrack Recording Profile’) is based on activities between the relevant aspects of operating system and
DiagTrack operation: interaction between DiagTrack and the operating system components, initialization of
DiagTrack and operation of DiagTrack. Table 1 provides an overview of the scenarios considered in this
component profile i.e., an overview of scenario descriptions (column 'Description') and ETW provider
associated with the scenario (column ETW Provider').

Description ETW Provider
Activities related to the operation of processes, such
as process start and stop and image loading.

Name=Microsoft-Windows-Kernel-Process
Guid=22FB2CD6-0E7B-422B-A0C7-2FAD1FD0E716

Activities related to the operation of the ETW
infrastructure, such as ETW provider registration
and ETW session start.

Name=Microsoft-Windows-Kernel-EventTracing
Guid=b675ec37-bdb6-4648-bc92-f3fdc74d3ca2

Activities related to network operation, such as
connection establishment and termination.

Name=Microsoft-Windows-Kernel-Network

Guid=7dd42a49-5329-4832-8dfd-43d979153a88

Activities related to the operation of registry, such as
registry read and write.

Name=Microsoft-Windows-Kernel-Registry
Guid=70eb4f03-c1de-4f73-a051-33d13d5413bd

Activities related to the operation of the diagtrack
component, such as collected telemetry data.

Name= Microsoft-Windows-Diagtrack
Guid= 43ac453b-97cd-4b51-4376-db7c9bb963ac

Activities related to DNS operation, such as IP to
Domain name resolution.

Name=Microsoft-Windows-DNS-Client

Guid=1c95126e-7eea-49a9-a3fe-a378b03ddb4d

Activities related to the operation of files, such as file
read and write.

Name=Microsoft-Windows-Kernel-File
Guid=edd08927-9cc4-4e65-b970-c2560fb5c289

Table 3: Overview of considered component profile scenarios

4.1 Exemplary Data Analysis

This section provides a brief overview of two exemplary analysis scenarios in tabular form. A scenario

(indicated by the symbol ⊜) is either a single record or a correlation of multiple records. A scenario that is

based on the correlation of multiple records, combines multiple records into an aggregation of records and

thus of activities. When a scenario consists of two or more correlated records, the symbol ⊕ indicates the

record correlation. The symbol appears between the ETW provider, that produces the records to be

correlated. If records need to be filtered, the symbol ✂ indicate a record filter – for example, to reduce

high volume records.

Uploaded Telemetry Data (single record scenario): Diagtrack collects telemetry data in a JSON-
structured form. Once data is sent to the Microsoft’s backend infrastructure, the ETW provider
Microsoft.Windows.DiagTrack

generates the record AsimovUploader_PersistEvent containing the sent telemetry data.

Scenario Track uploaded telemetry data.

⊜

ETW Provider Microsoft.Windows.DiagTrack

✂
winlog.event_data.ProviderName:"Microsoft.Windows.DiagTrack" AND wi

nlog.event_data.EventName:"AsimovUploader_PersistEvent"
Microsoft.Windows.DiagTrack
EventID: 0
(AsimovUploader_PersistEvent)

{"EventPayload":

"{"ver":"4.0","name":"Microsoft.OSG.DU.DeliveryOptClient.TraceRoute

","time":"2021-08-

05T10:54:58.3583876Z","iKey":"o:0a89d516ae714e01ae89c96d185e9ae3","

ext":{"utc":{"eventFlags":258,"pgName":"WIN","flags":472908336,"epo

ch":"1009422","seq":6878},"metadata":{"f":{"startTime":5}},"os":{"b

ootId":9,"name":"Windows","ver":"10.0.19042.1110.amd64fre.vb_releas

e.191206-

1406"},"app":{"id":"W:0000f519feec486de87ed73cb92d3cac802400000000!

 Federal Office for Information Security 22

0000010db07461e45b41c886192df6fd425ba8d42d82!svchost.exe","ver":"19

72/12/14:16:22:50!1C364!svchost.exe","asId":11857},"device":{"local

Id":"s:B94EF8EB-7A52-4FAF-82CC-

F4C5C23806B9","deviceClass":"Windows.Desktop"},"protocol":{"devMake

":"LENOVO","devModel":"10MKCTO1WW"},"user":{"localId":"w:E3111673-

C112-BB48-A6E4-

98589113B47D"},"loc":{"tz":"+02:00"}},"data":{"experimentId":0,"sta

rtTime":132726342382031145,"networkType":"Ethernet","destIP":"205.1

85.216.10","hopInfoList":[{"IP":"109.90.147.0","RTT":1,"hopNumber":

3},{"IP":"81.210.148.0","RTT":12,"hopNumber":5},{"IP":"84.116.191.2

21","RTT":12,"hopNumber":6},{"IP":"84.116.190.94","RTT":10,"hopNumb

er":7},{"IP":"151.139.84.6","RTT":10,"hopNumber":8},{"IP":"151.139.

84.14","RTT":10,"hopNumber":9},{"IP":"94.46.154.139","RTT":17,"hopN

umber":10}],"deviceProfile":1310976}}","EventLatency":

"0","EventPersistence": "1","GroupId": "{4f50731a-89cf-4782-b3e0-

dce8c90476ba}","ProviderId": "{f13cd440-a9b2-4d51-8b09-

62dc6ad60194}","Categories": "140737488355328","IsCore":

"0","ProcessId": "3020","StorageBufferType": "0","EventSizeBytes":

"1247"}

Table 4: Track uploaded telemetry data

Downloaded Settings Data (multiple records scenario): DiagTrack downloads settings data and stores
the data in the filesystem (e.g., the file %ProgramData%\Microsoft\

Diagnosis\DownloadedSettings\utc.app.json, see section (ERNW_WP4)). The ETW provider
Microsoft.Windows.DiagTrack generates the record AttemptingDownload each time a download

attempt is initiated and a SettingsDownloader_FinishDownload once the download is finished.

Correlating these records with those of the Microsoft-Windows-Kernel-File ETW provider, allows

to track when settings data is downloaded and where this date is stored in the filesystem.

Scenario Track downloaded settings data.

⊜

ETW Provider Microsoft.Windows.DiagTrack and

⊕

Correlating Microsoft.Windows.DiagTrack (i.e., AttemptingDownload

and SettingsDownloader_FinishDownload) with Microsoft-Windows-

Kernel-File activities.

ETW Provider Microsoft-Windows-Kernel-File

✂

((winlog.event_data.ProviderName:"Microsoft-Windows-Kernel-File" OR

winlog.event_data.EventName:AttemptingDownload) AND

winlog.event_data.EventPayload:utc.app*) OR

winlog.event_data.EventName:"SettingsDownloader_FinishDownload"
Microsoft.Windows.DiagTrack
EventID: 0 (AttemptingDownload)

{"Endpoint": "utc.app"}

Microsoft-Windows-Kernel-File
EventID: 12 (FileObjectCreate)

{"Irp": "0xFFFFE489489F20F8","FileObject":

"0xFFFFE4893BF8D650","IssuingThreadId": "12032","CreateOptions":

"0x1200000","CreateAttributes": "0x0","ShareAccess":

"0x7","FileName":

"\Device\HarddiskVolume3\ProgramData\Microsoft\Diagnosis\Downloaded

Settings\utc.app.json"}

Microsoft-Windows-Kernel-File
EventID: 12 (FileObjectCreate)

{"Irp": "0xFFFFE489489F20F8","FileObject":

"0xFFFFE4893BF8B3F0","IssuingThreadId": "12032","CreateOptions":

"0x5000060","CreateAttributes": "0x100","ShareAccess":

"0x1","FileName":

"\Device\HarddiskVolume3\ProgramData\Microsoft\Diagnosis\Downloaded

Settings\utc.app.json.new"}

Microsoft-Windows-Kernel-File
EventID: 30 (CreateNewFile)

{"Irp": "0xFFFFE489489F20F8","FileObject":

"0xFFFFE4893BF8B3F0","IssuingThreadId": "12032","CreateOptions":

"0x5000060","CreateAttributes": "0x100","ShareAccess":

"0x1","FileName":

"\Device\HarddiskVolume3\ProgramData\Microsoft\Diagnosis\Downloaded

Settings\utc.app.json.new"}

Microsoft-Windows-Kernel-File
EventID: 10 (NameCreate)

{"FileKey": "0xFFFFBD864CC1E7C0","FileName":

"\Device\HarddiskVolume3\ProgramData\Microsoft\Diagnosis\Downloaded

Settings\utc.app.json.new"}

Microsoft-Windows-Kernel-File
EventID: 22 (QueryInformation)

{"Irp": "0xFFFFE48946BED0F8","FileObject":

"0xFFFFE4893BF8B3F0","FileKey":

 Federal Office for Information Security 23

"0xFFFFBD864CC1E7C0","ExtraInformation": "0x0","IssuingThreadId":

"12032","InfoClass": "5"}

Microsoft.Windows.DiagTrack
EventID: 0
(SettingsDownloader_FinishDownload)

{"Partner": "","Feature": "","Headers": "","ErrorCode":

"3997765","DownloadDurationMs":

"3659436697583654","OnDiskFileSizeBytes": "10"}

Microsoft-Windows-Kernel-File
EventID: 18 (SetDelete)

{"Irp": "0xFFFFE48946BED0F8","FileObject":

"0xFFFFE4893BF8B3F0","FileKey":

"0xFFFFBD864CC1E7C0","ExtraInformation": "0x1","IssuingThreadId":

"12032","InfoClass": "13"}

Microsoft-Windows-Kernel-File
EventID: 14 (FileObjectClose)

{"Irp": "0xFFFFE48946BED0F8","FileObject":

"0xFFFFE4893BF8B3F0","FileKey":

"0xFFFFBD864CC1E7C0","IssuingThreadId": "12032"}

Microsoft-Windows-Kernel-File
EventID: 11 (NameDelete)

{"FileKey": "0xFFFFBD864CC1E7C0","FileName":

"\Device\HarddiskVolume3\ProgramData\Microsoft\Diagnosis\Downloaded

Settings\utc.app.json.new"}

Microsoft-Windows-Kernel-File
EventID: 22 (QueryInformation)

{"Irp": "0xFFFFE48946BED0F8","FileObject":

"0xFFFFE4893BF8B3F0","FileKey":

"0xFFFFBD86519097C0","ExtraInformation": "0x0","IssuingThreadId":

"12032","InfoClass": "4"}

Table 5: Track downloaded settings data.

 Federal Office for Information Security 24

Appendix

Example #Recording Profile

Example #Recording Profile

<?xml version='1.0' encoding='utf-8' standalone='yes'?>

<SystemActivityMonitor Author="Dominik Phillips" Company="ERNW" Team="Windows Security"

Version="1.0">

 <Collector>

 <SystemCollector Name="SAM_KERNEL_SESSION">

 <BufferSize Value="1024"/>

 <MinimumBuffers Value="64"/>

 <MaximumBuffers Value="128"/>

 <FlushTimer Value="1"/>

 </SystemCollector>

 <EventCollector Name="SAM_USER_SESSION">

 <BufferSize Value="1024"/>

 <MinimumBuffers Value="64"/>

 <MaximumBuffers Value="128"/>

 <FlushTimer Value="1"/>

 </EventCollector>

 </Collector>

 <Provider>

 <SystemProviders>

 <SystemProvider Name="DiskIO">

 </SystemProvider>

 <SystemProvider Name="FileIO">

 </SystemProvider>

 <SystemProvider Name="FileIOInit">

 </SystemProvider>

 <SystemProvider Name="HardFaults">

 </SystemProvider>

 </SystemProviders>

 <EventProviders>

 <EventProvider Name="Microsoft-Windows-Kernel-EventTracing" Guid="{b675ec37-bdb6-4648-bc92-

f3fdc74d3ca2}" Rundown="true">

 </EventProvider>

 <EventProvider Name="Microsoft-Windows-Kernel-Network" Guid="{7dd42a49-5329-4832-8dfd-

43d979153a88}" Rundown="true">

 </EventProvider>

 <EventProvider Name="Microsoft-Windows-Kernel-Registry" Guid="{70eb4f03-c1de-4f73-a051-

33d13d5413bd}" Rundown="true">

 </EventProvider>

 <EventProvider Name="Microsoft-Windows-Diagtrack" Guid="{43ac453b-97cd-4b51-4376-

db7c9bb963ac}" Rundown="true">

 </EventProvider>

 <EventProvider Name="Microsoft-Windows-Kernel-Process" Guid="{22FB2CD6-0E7B-422B-A0C7-

2FAD1FD0E716}" Rundown="true">

 </EventProvider>

 <EventProvider Name="Microsoft-Windows-DNS-Client" Guid="{1c95126e-7eea-49a9-a3fe-

a378b03ddb4d}" Rundown="true">

 </EventProvider>

 <EventProvider Name="Microsoft-Windows-Kernel-File" Guid="{edd08927-9cc4-4e65-b970-

c2560fb5c289}" Rundown="true">

 </EventProvider>

 </EventProviders>

 </Provider>

</SystemActivityMonitor>

 Federal Office for Information Security 25

SAMRecordingProfile.xsd

<?xml version="1.0" encoding="utf-8"?>

<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="SystemActivityMonitor">

 <xs:complexType>

 <xs:all>

 <!-- Collector Level -->

 <xs:element minOccurs="0" name="Collector">

 <xs:complexType>

 <xs:all>

 <!-- SystemCollector -->

 <xs:element minOccurs="0" name="SystemCollector">

 <xs:complexType>

 <xs:all>

 <xs:element minOccurs="0" name="BufferSize">

 <xs:complexType>

 <xs:attribute name="Value" type="xs:integer" use="optional" />

 </xs:complexType>

 </xs:element>

 <xs:element minOccurs="0" name="MinimumBuffers">

 <xs:complexType>

 <xs:attribute name="Value" type="xs:integer" use="optional" />

 </xs:complexType>

 </xs:element>

 <xs:element minOccurs="0" name="MaximumBuffers">

 <xs:complexType>

 <xs:attribute name="Value" type="xs:integer" use="optional" />

 </xs:complexType>

 </xs:element>

 <xs:element minOccurs="0" name="FlushTimer">

 <xs:complexType>

 <xs:attribute name="Value" type="xs:integer" use="optional" />

 </xs:complexType>

 </xs:element>

 </xs:all>

 <xs:attribute name="Name" type="xs:string" use="required" />

 </xs:complexType>

 </xs:element>

 <!-- EventCollector -->

 <xs:element minOccurs="0" name="EventCollector">

 <xs:complexType>

 <xs:all>

 <xs:element minOccurs="0" name="BufferSize">

 <xs:complexType>

 <xs:attribute name="Value" type="xs:integer" use="optional" />

 </xs:complexType>

 </xs:element>

 <xs:element minOccurs="0" name="MinimumBuffers">

 <xs:complexType>

 <xs:attribute name="Value" type="xs:integer" use="optional" />

 </xs:complexType>

 </xs:element>

 <xs:element minOccurs="0" name="MaximumBuffers">

 <xs:complexType>

 <xs:attribute name="Value" type="xs:integer" use="optional" />

 </xs:complexType>

 </xs:element>

 <xs:element minOccurs="0" name="FlushTimer">

 <xs:complexType>

 <xs:attribute name="Value" type="xs:integer" use="optional" />

 </xs:complexType>

 </xs:element>

 Federal Office for Information Security 26

 </xs:all>

 <xs:attribute name="Name" type="xs:string" use="required" />

 </xs:complexType>

 </xs:element>

 <!-- Filter -->

 <xs:element minOccurs="0" name="Filter">

 <xs:complexType>

 <xs:sequence>

 <xs:choice minOccurs="0" maxOccurs="unbounded">

 <xs:element name="CommandLine">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="condition" type="xs:string" use="optional" />

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="ParentCommandLine">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="condition" type="xs:string" use="optional" />

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="ImageName">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="condition" type="xs:string" use="optional" />

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="ParentImageName">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="condition" type="xs:string" use="optional" />

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 </xs:choice>

 </xs:sequence>

 <xs:attribute name="condition" type="xs:string" use="required" />

 </xs:complexType>

 </xs:element>

 </xs:all>

 </xs:complexType>

 </xs:element>

 <!-- Provider Level -->

 <xs:element minOccurs="0" name="Provider">

 <xs:complexType>

 <xs:all>

 <!-- SystemProviders -->

 <xs:element minOccurs="0" name="SystemProviders">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="0" maxOccurs="unbounded" name="SystemProvider">

 <xs:complexType mixed="true">

 <xs:sequence minOccurs="0" maxOccurs="1">

 <xs:element name="Filter">

 Federal Office for Information Security 27

 <xs:complexType>

 <xs:choice minOccurs="0" maxOccurs="1">

 <xs:element minOccurs="0" maxOccurs="1" name="EventIdList"

type="intValuelist" />

 <xs:element minOccurs="0" maxOccurs="1" name="OpcodeIdList"

type="intValuelist" />

 </xs:choice>

 <xs:attribute name="condition" type="xs:string" use="required" />

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="Name" type="xs:string" use="required" />

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <!-- EventProviders -->

 <xs:element minOccurs="0" name="EventProviders">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="0" maxOccurs="unbounded" name="EventProvider">

 <xs:complexType mixed="true">

 <xs:sequence minOccurs="0" maxOccurs="1">

 <xs:element name="Filter">

 <xs:complexType>

 <xs:choice minOccurs="0" maxOccurs="1">

 <xs:element minOccurs="0" maxOccurs="1" name="EventIdList"

type="intValuelist" />

 <xs:element minOccurs="0" maxOccurs="1" name="OpcodeIdList"

type="intValuelist" />

 </xs:choice>

 <xs:attribute name="condition" type="xs:string" use="required" />

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="Name" type="xs:string" use="optional" />

 <xs:attribute name="Guid" type="xs:string" use="optional" />

 <xs:attribute name="Level" type="xs:unsignedByte" use="optional" />

 <xs:attribute name="Any" type="hexValue" use="optional" />

 <xs:attribute name="All" type="hexValue" use="optional" />

 <xs:attribute name="Rundown" type="xs:boolean" use="optional" />

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:all>

 </xs:complexType>

 </xs:element>

 </xs:all>

 <!-- General Section -->

 <xs:attribute name="Author" type="xs:string" use="optional" />

 <xs:attribute name="Company" type="xs:string" use="optional" />

 <xs:attribute name="Team" type="xs:string" use="optional" />

 <xs:attribute name="Version" type="xs:decimal" use="optional" />

 </xs:complexType>

 </xs:element>

 <!-- Custom Types -->

 <!-- intValuelist -->

 <xs:simpleType name="intValuelist">

 <xs:list itemType="xs:integer"/>

 </xs:simpleType>

 <!-- hexValue -->

 <xs:simpleType name="hexValue">

 Federal Office for Information Security 28

 <xs:restriction base="xs:string">

 <xs:pattern value="0x[0-9A-Fa-f]+"/>

 </xs:restriction>

 </xs:simpleType>

</xs:schema>

Supported ETW Kernel Flags Names

Alpc: A provider that enables ALPC events //a provider that enables ALPC events

CSwitch: A provider that enables context switch events

DbgPrint: A provider that enables debug print events

DiskFileIO: A provider that enables file I/O name events

DiskIO: A provider that enables disk I/O completion events

DiskIOInit: A provider that enables disk I/O start events

FileIO: A provider that enables file I/O completion events

FileIOInit: A provider that enables file I/O start events

ReadyThread: A provider that enables thread dispatch events

DPC: A provider that enables device deferred procedure call events

Drivers: A provider that enables driver events

ImageLoader: A provider that enables image load events

Interrupt: A provider that enables interrupt events

HardPageFaultsOnly: A provider that enables memory hard fault events

AllPageFaults: A provider that enables memory page fault events

NetworkTrace: A provider that enables network tcp/ip events

Process: A provider that enables process events

ProcessCounter: A provider that enables process counter events

SampledProfile: A provider that enables profiling events

Registry: A provider that enables registry events

SplitIO: A provider that enables split I/O events

SystemCall: A provider that enables system call events

Thread: A provider that enables thread start and stop events

VAMap: A provider that enables file map and unmap (excluding images) events

VirtualAlloc: A provider that enables VirtualAlloc and VirtualFree events

ObjectManager: A provider that enables Object Manager events

Exemplary DiagTrack Recording Profile

<?xml version='1.0' encoding='utf-8' standalone='yes'?>

<SystemActivityMonitor Author="Dominik Phillips" Company="ERNW" Team="Windows Security"

Version="1.0">

 <Collector>

 <EventCollector Name="SAM_USER_SESSION">

 <BufferSize Value="1024"/>

 <MinimumBuffers Value="64"/>

 <MaximumBuffers Value="128"/>

 </EventCollector>

 <Filter condition="include">

 <CommandLine condition="contains">svchost.exe -k utcsvc -p</CommandLine>

 <ParentCommandLine condition="contains">svchost.exe -k utcsvc -p</ParentCommandLine>

 Federal Office for Information Security 29

 </Filter>

 </Collector>

 <Provider>

 <EventProviders>

 <EventProvider Name="Microsoft-Windows-Kernel-EventTracing" Guid="{b675ec37-bdb6-4648-bc92-

f3fdc74d3ca2}" Any="0x630" Rundown="true">

 <Filter condition="include">

 <EventIdList>2 3 8 9 12 14 15 19 26 27 29</EventIdList>

 </Filter>

 </EventProvider>

 <EventProvider Name="Microsoft-Windows-Kernel-Network" Guid="{7dd42a49-5329-4832-8dfd-

43d979153a88}" Rundown="true">

 <Filter condition="exclude">

 <EventIdList>42 43 49 58 59</EventIdList>

 </Filter>

 </EventProvider>

 <EventProvider Name="Microsoft-Windows-Kernel-Registry" Guid="{70eb4f03-c1de-4f73-a051-

33d13d5413bd}" Rundown="true">

 <Filter condition="include">

 <EventIdList>1 2 3 4 5 6 7 8 9</EventIdList>

 </Filter>

 </EventProvider>

 <EventProvider Name="Microsoft-Windows-Diagtrack" Guid="{43ac453b-97cd-4b51-4376-

db7c9bb963ac}" Rundown="true">

 </EventProvider>

 <EventProvider Name="Microsoft-Windows-Kernel-Process" Guid="{22FB2CD6-0E7B-422B-A0C7-

2FAD1FD0E716}" Any="0x70" Rundown="true">

 <Filter condition="include">

 <EventIdList>1 2 3 4 5 6</EventIdList>

 </Filter>

 </EventProvider>

 <EventProvider Name="Microsoft-Windows-DNS-Client" Guid="{1c95126e-7eea-49a9-a3fe-

a378b03ddb4d}" Rundown="true">

 <Filter condition="include">

 <EventIdList>3006 3008 3009 3020 3011 3020</EventIdList>

 </Filter>

 </EventProvider>

 <EventProvider Name="Microsoft-Windows-Kernel-File" Guid="{edd08927-9cc4-4e65-b970-

c2560fb5c289}" Rundown="true">

 </EventProvider>

 </EventProviders>

 </Provider>

</SystemActivityMonitor>

SAM Commands

-start

Starting an unmanaged recording session from a cmd.exe or powershell.exe session.

Syntax

sam.exe -start <recording profile id>

Description

<recording profile id>: Specifies the recording profile ID (i.e., the file of the SAM recording profile),

that defines the properties of the recording session.

Examples

sam.exe -start 3

 Federal Office for Information Security 30

-add

Add a recording profile to the SAM’s database

Syntax

sam.exe -add <recording profile file>

Description

<recording profile file>: Specifies the absolute file path of the SAM recording profile file, that

should be added to the SAM database.

Examples

sam.exe -add C:\SAMProfiles\ExampleProfile.samp

-remove

Remove a recording profile from the SAM’s database.

Syntax

sam.exe -remove <recording profile id>

Description

<recording profile id>: Specifies the recording profile ID (i.e. the file of the SAM recording profile),

that should be removed from the SAM database.

Examples

sam.exe -remove 3

-list

List all available recording profiles stored in the SAM’s database.

Syntax

sam.exe -list

Examples

sam.exe -list

list available recording profiles

 id | recording profile file

--

 1 | C:\recording_profiles\SAMContorlProfileExample.samp

-register_service

Register SAM as windows service with <recording profile id>

Syntax

sam.exe -register_service <recording profile id>

 Federal Office for Information Security 31

Description

<recording profile id>: Specifies the recording profile ID (i.e. the file of the SAM recording profile),

that defines the properties of the recording session.

Examples

sam.exe -register_service 1

-unregister_service

Unregister SAM service

Syntax

sam.exe -ungregister_service

Examples

sam.exe -ungregister_service

-update_config

Update recording profile config of registered SAM service

Syntax

sam.exe -update_config <recording profile id>

Description

<recording profile id>: Specifies the recording profile ID (i.e. the file of the SAM recording profile),

that defines the properties of the recording session.

Examples

sam.exe -update_config 3

-help | -h | -?

display usage information

Syntax

sam.exe -help

Examples

sam.exe -help

 Federal Office for Information Security 32

References

ERNW_WP4. (n.d.). SiSyPHuS Win10 (Studie zu Systemaufbau, Protokollierung, Härtung und
Sicherheitsfunktionen in Windows 10): Work Package 4.

 Federal Office for Information Security 33

Keywords and Abbreviations

application programming interface 6, 7
central processor unit 6, 19
Coordinated Universal Time 10, 11
Event Tracing for Windows 6, 7, 9, 10, 11, 12, 13, 15, 16, 17, 18, 21, 22
Extensible Markup Language 7, 9, 16
global unique identifier 6, 7, 10, 11, 16, 17
identifier 7, 10, 11, 12, 13, 15, 17, 18, 29, 30, 31
JavaScript Object Notation 10, 12, 13, 21
Managed Object Format 7
System Activity Monitor 9, 10, 11, 12, 15, 16, 17, 18, 20, 21, 29, 30, 31
Windows software trace preprocessor 7

	1 Introduction
	1.1 Zusammenfassung
	1.2 Executive Summary

	2 Concept and Terms
	2.1 Recording Activities
	2.2 Event Tracing for Windows
	2.3 Record Data

	3 System Activity Monitor
	3.1 Installation and Usage
	3.2 SAM How To Topics
	3.3 Authoring Recording Profiles
	3.4 Avoiding Lost Events

	4 Windows Telemetry Component Profile
	4.1 Exemplary Data Analysis

	Appendix
	Example #Recording Profile
	SAMRecordingProfile.xsd
	Supported ETW Kernel Flags Names
	Exemplary DiagTrack Recording Profile
	SAM Commands
	-start
	-add
	-remove
	-list
	-register_service
	-unregister_service
	-update_config
	-help | -h | -?

	References
	Keywords and Abbreviations

